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Algorithms !br seem Modelling

r

Introduction

Zn this report we study the concept of a scene model

for image analysis. This concept was originally invented

for one on Landsat data, but after the model Was defined and

a program to generate it was designed, it became apparent

that the method would apply to robotics, target acquisition,

and similar recognition problems. Thus this report has been

couched in general terms.

For a general overview of the literature in this area,

the reader is referred to the texts in the bibliography.

-1-
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Overview: The Need for a Scene Model 	 j

Various methods have been used or proposed for analyzing

visual scenes. most of these methods are local, that is,

they look for local features such as edges, corners, tex-

tures, or combinations of these. We may instead build a

structure from edges, corners and other features which
V

contains the essential information of the figure in a

more explicit forth. That is, in such a model, all the edges

have already been detected and included, so it is possible

to refer to the model rather than reprocessing the original

data. Such a model is more likely to be complete, and

relations between distant parts of the figure will already

have been taken into account. For example, if we are

looking for a line within an image, the knowledge that

there is exactly one such line will help us tell which

of the detected line segments might be the real line.

Building a model of the scene, then, pro ,.--es necessary

infrastructure which allows later recognition algorithms

to process the scene easily. In the model, all preliminary

calculations have already been done, and the secondary

algorithms need only consult a table. In addition, when

we construct the model we may impose conditions of con-

sistency which allow us to cull the model and eliminate

spurious effects. When an attempt is made to apply the

high-level recognition algorithms without this culling,

the extra, noise data will also be used in the calcul-

ation, resulting in g reatly reduced reliability.

1 ,
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Thus the creation of a model decreases noise, increases

reliability, cuts computer time, and simplifies the pro-

gramming of higher-level recognition elements. A scene

model appears to be a basic element on which scene analysis

may be made.
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Parts of the Scene Model

What sort of scene model are we interested in?

Clearly the set of models allowed, or the language in

which they are expressed, is infinite. We give here a

basic model which may be ramified to allow more detail.

However, even if all the ramifications are included, there

will exist types of scenes for which the model is not

applicable, and separate classes of models would have to

be made for these. Most practical situations, from

Landsat data analysis to robot vision or target identifi-

cations, should be amenable to the methods used here.

In an intuitive sense, they are based on the characteristics

of the human visual system, and thus can handle any prob-

lem which can be attacked by that system.

An actual visual scene contains a number of elements.

The most prominent of these are boundaries, or sharp de-

marcations between regions with dissimilar properties,

and continuous variations. boundaries may be very sharp

(at the pixel or optical resolution of the system) or they

may be diffuse, such as the edge of a shadow. There is

usually some degree of similarity between the regions on

the two sides of an edge. This is most noticeable for the

two sides of a shadow, where the only difference is in

luminance. Other edges may change only part of the char-

acteristics of a region. For example, in Landsat data the

underlying soil types may give a set of ed ges which is

independent of the edges which delineate crop boundaries.

► 	 -	 -	 --	 -
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Similarly for an image printed on paper, the texture and

other conditions of the paper are continuous across printed

boundaries. There may also be boundaries within an other-

wise continuous region, for example, uneven paint, grease

spots, or uneven crop growth in a Landsat scene. Usually

if there are two sets of variations, the boundaries are

•	 independent and cross each other freely.

1

	

	
Continuous variations range from diffuse boundaries to

a gradient extending across the whole scene. Perhaps the

most common type of gradient is a mottling of an area,

where the variation has some characteristic lower spatial

frequency. Continuous variations may also occur in para-

meters besides Lhe brightness, such as parameters involved

in texture, or in the statistics of region sizes and

shapes. MoEt of the programs for finding various types of

continuous variation can be applied to these other types

of data as well. In fact, the boundary recognition

algorithms may also be applied to these data sets.

Besides the basic categories of boundaries and contin-

uous variation, there are a number of additional aspects

to a reasonable model of a visual scene. The most important

of these is texture. This may range from the fine-grained

texture of a fabric to the coarse texture of a tree bark.

In agricultural remote sensing, texture is not important,

since the regions of interest are fairly uniform; however,

in remote sensing of wild lands texture may still be

meaningful. Texture may also be useful in recognition of

urban regions.
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One major difficulty with texture is the ambiguity

in what is texture and what is structure. An urban region,

for example, may be thought of as many small regions or

as a large region with urban °te. • ture." Similarly, a robot

handling machine parts may interpret a grease spot or a

ragged, burred edge as meaningful data or irrelevant

information ( noise). Most such separations can be made

on the basis of the size, distinctness, regularity, etc.

However, the criteria to be used will vary from application

to application, and the separation of texture from feature

may not be possible without more detailed information about

the expected visual scene.

Another element of the scene model are geometric

relations. The simplest of these are the identification

of true circular arcs. Other geometric elements include

the parallelism or perpendicularity of lines. This should

include mostly parallel curving lines, such as river beds.

All of these elements are important, but car. probably be

relegated to higher levels of analysis.
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Describing the Scene Model

The scene modelling program must generate a numerical

description of the scene. This must contain a representa-

tion of all scene elements, such as boundaries, continuous

variations, textural information, etc. The method of

description attempted here hierarchical--that is, the

boundaries are taken to be basic to any description, and

the other parts of the description are hung onto this

component. Some continuous variation across boundaries

is described independent of the boundary system. Questions

such as independent systems of boundaries (e.g. shadows

vs. edges) are not attacked at this level, although the

approach for doing so is clear.

We wish the numerical model to be the best possible

description of the picture, .-;ithout. having so much detail

that the main features are difficult to extract. We may

also wish it to be in accord with the hierarchical struc-

ture of the description, so that the code for the extraction

of various features can be written independently. This

would allow the edge extraction process to be programmed

without the necessity of coding to process texture, con-

tinuous variations, etc. Then the higher level analyses

could be coded using a well-debugged background routine.

The boundary model consists of a graph of points,

edges, and fields, as shown in Fig. 1. Boundaries lie

between fields and are conceptually the basic unit, In

the simples form of this model boundaries are restricted



Fig. 1 The basic elemt.-ats of the boundary model.
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	 to straight lines. Curved lines are then represented

by sequences of straight lines, in a manner reminiscent

of numerical integration. A higher level representation

of lines includes circular arc3 as well as straight lines.

Von-circular curves would still be represented by a

sequence of arcs. In a completely ideal system even these
t

curves would have a direct representation, such as by

spline fits.

Points, in the boundary model, refer to the end

points of lines. Of course, several lines may have the

same end point. Regions are the areas enclosed by lines.

All of these may be represented in the computer using

pointer structures. In Fig. 1, each line would be repre-

sented by a block of data giving its end points, curvature,

line sharpness, and other information. Each point would

correspond to a Mock of information giving its location

and a list of lines incident on the point. The data asso-

ciated with a region need only contain one line or edge

borderinq on the region, the side of the line which the

region is on, and any ancillary information about the

s
region. This ancillary information may include stat^s-

tical information on the points within the field. For

î 	 more complete representations which include the contin-

uous variation analysis, the continuous information is

accessible through the data for that particular region.

The continuous variation of variables across regions

in Figure 1 is represented by a zonal process, described

below. It is also possible to describe continuous vari-
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ations across larger regions or the whole s cene. The

interrelationship between these global variations and

the single region variations has not yet been worked out;

however, it should be possible to work out a data struc-

ture which can accomodate both types of variation.

The zonal method separates the region into zones of

varying size, with the data constant or linearly varying

across a zone. The zones are selected to be of the

maximum size consistent with no statistically significant

variations across the zone. This method provides a

general description of the continuously varying data with

maximum accuracy and minimum description size.

The procedure for modelling texture is much less well

defined. This is partly because there are some fairly

complex textures which we might wish to represent, such

as a chain-link, or chicken-wire fence. We will restrict
i

this analysis to "local" textures, where the texture

can be represented by few-point statistical functions.

3

	 The one-point textural function is the distribution

(mean, variance, etc.) of the individual data paints. 	 4M

The two-point function is the power spectral density.

Simple 3 and 4-point functions may also he developed. The

exact parameters available from a textural analysis de-

pend on the application; a power spectral density or a

distributicn function contain too mcuzy parameters to be

useful statistics, so that some condensed form -rust be used.

The actual condensation used will have to be different for
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different applications. In any event, the texture modell-

ing system will produce a set of local texture parameters

which may be processed by the continuous variation system.

These parameters may also be processed by the boundary sys-

tem to find boundaries which appear primarily in texture.

Although these bounrl a.ries will not be sharp, they are still

detectable, and in fact are detectable to the eye.

In summary, we want a numerical description of the

data which embodies the major components: boundaries,

continuous variation, and texture. This model should be

hierarchical, so that we may represent boundaries even

if the code for the texture and continuous variation is

not yet written.

This description is compact yet fairly complete: the

most essential information is represented, without too

much inessential information. In terms of volume of data,

the major part not carried over into the abstraction is

the pixel-to-pixel variations in brightness, generally

treated as noise. Of course the original data will still

be available for analyses not possible in the model.

The numerical description includes first a description

of the boundaries, by giving the end points of boundary

line segments. Then continuous variations are represented

by zones and gradients. Texture is represented by average

textural measures over a region, using the zonal system.
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Detailed Description of Boundary Analysis System

In this section we give a more detailed description

of the boundary analysis system, both its function and

output. This system takes raw pixel data and identifies

and locates all the boundaries in the image. This is

done in three parts: initialization, boundary adjust-

ment (tuning), and faint and diffuse boundary location.

The initialization step goes over the image and finds

all the clearly present lines and boundaries, and gives

their location to a pixel oL so. This is basically a

rapid process based on the concept of global edge and

line detection, which will be elucidated below. Whin

it is finished there is available a consistent graph

of the boundaries, which can be used in further process-

ing.

Although this initial graph is sufficient for many

purposes, it is not the optimal or best fit representation

of the data. Two types of improvements are possible, and

correcting routines exist to make these improvements in

the model of the scene. These correcting routines may

be applied iteratively, if necessary, in order to get

the desired accuracy.

The first correction is to the exact positioning of

the points and boundaries. The estimated error of the

initializing routine in the positions of the points is
I

currently estimated at about + 1 pixel. This causes

proportional errors in line positions, region areas, and

other aecmetry. For many applications of a general visual
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system this is easily adequate. However, when attempting

high-resolution analyses, where a pixel is relatively large,

it is necessary to tighten the estimation of the point

position as much as possible, to a theoretical limit which

depends on noise levels, but is on the order of + .1 pixel.

The routine to do this correction examines the division of

each boundary pixel and makes a best fit of the boundary

through these split pixels. The actual adjustment is in

the boundary end points, requiring several boundary segments

to be consistent.

The second correction is the detection of faint and

diffuse lines not discovered by the boundary initialization

routine. The initialization routine is designed to quickly

pick up the obvious lines and edges, not to detect features

close to the edge of statistical obscurity. It is thus

necessary to go over the regions produced by the initial-

ization routine and determine if there are any faint edges

or boundaries which are so spread out and gradual that they

were not detected during the initialization stage. The

program to do this uses the continuous variation (zonal)

system to determine if statistically significant variations

still exist in the region. If there are such variations,

then, the faint and diffuse edges program will determine

the optimum location of an edge, and whether the edge fits

the data sufficiently better than a gradual variation. If

so, a new edge has been detected. The detection program

will process all regions in this fashion, finding faint

and diffuse boundaries, locating their end points, and

. a
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putting them in the boundary graph. It may be run re-

cursively applied to regions divided during the first pass.

Locating faint lines (not edges) is more difficult and will

require a more complex routine than given here.

In summary, the boundary analysis program has three

parts, initialization, fine adjustment, and faint and

diffuse edge detection. Its output is a graph of the

boundaries and lines within a figure. The initialization

routine alone will produce the same type of output,

although the actual values will not be as refined.
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Initialization Routine

The boundary initialization routine is a basic

sequential procedure on the incoming (multispectral) pixel

brightness values. It quickly goes through the image

locating all the essential and prominent lines and edges.

It will locate nearly all statistically significant sharp

lines and edges, and the stronger diffuse lines and edges.

Boundary positioni:ig should be more accurate than + 1 pixel.

The procedure is a simple and direct algorithm process-

ing the points in a raster scan with a minimum number of

operations per point. In the currently planned version,

an additional scan is made with the x and v axes inter-

changed, in order to process oblique lines not easily de-

tected in the first pass. In a later, or production

version this second pass could be incorporated in the

first, resulting in better data flow. These two pas:3es

are referred to as the x-pass and y-pass respectively.

The use of two passes is made necessary by the diffi-

culty of detecting highly oblique lines. Fig. 3 shows

the x-pass and y-pass scans including a normal (perpendicular)

and oblique line. Vie oblique line shows only a gradually

changing profile in the x-direction scan, se that it will

not be readily detected. The y-direction scan will readily

detect this line but will not see the vertical line detected

by the x-scan. For this reason the lines detected by the

x-direction scan are ar-' , itrarily limited to a:-out 45''

slope. Since the vertical and h-)riaontal lines are detected

in different passes, special processing must be done in a
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oblique

perpendicular

y-pass
scan
lines

Fig. 3. (Upper) X-pass scan with perpendicular and oblique
lines. (Lower) Y-pass scan with perpendicular and oblique
lines.
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a later stage to associate these two groups of boundaries.

The analysis below applies to the x-pass. The y-pass

is the same, mutatis mutandi, but has some extra steps to

allow coordination with the previously calculated x-pass

results. This will be detailed after the x-pass discussion.

The data is processed in a row-by-row fashion. Certain

conditions are tested for at each point to determine

whether it is a previously undetected edge, or, if a nearby

point on the row above was an edge, whether this point is

the continuation of the edge, whether the edge is turned

into two edges, whether the edge angle is within the

+45 0 limit, etc. These tests are made for each point in

the row as the p rogram processes it.	 Khen the tests

are satisfied, an appropriate action is taken in the model

being created. If the model boundaries are depicted by

lines, then these are filled in row-by-row as though the

model were being painted by a wide brush.

The tests made and the appropriate actions are listed

in Table la.

This set of tests is used to build up the graphical

model of the boundaries

are started, stopped, a

When the image has been

graph of the lines with

been generated.

from the numerical image. Lines

nd joined using these trans formations.

completely scanned, a complete

slopes less than 45° will have

The x-pass leaves special markers to be picked up

by the y-pass. This is to allow the y-pass logic to

pick up certain conditions or vertices where one lire is
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generated during the x-pass and the other line is generated

during the y-pass. These lines must be joined to form

the full graph. Table 1b. gives these transformations.

Wien the scene is processed transforrrung the graph

according to these rules, the result will be a graph of

the boundaries in the segment. The details of this graph

depend in part upon the type of basic line detector used.

The detectors and their thresholds for line detection and

continuation are an important part of this graph-building

process. This will be taken up in the section Global

Ed ge Detection.
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Summary of Boundary Initialization Proced.urc

The boundary initialization procedure is a program

for obtaining the basic set of boundaries in an image.

it does this using simple point-by-point procedures. Two

passes are made, one in the x-direction, the other in the

y-direction, although these might be combined in later

versions. As the program scans over the image in each

pass, transformations are made in sequence on the boundary

graph for the image, until the entire graph has been

built. This graph, after both passes, is then the output

of the boundary initialization routine, which may be

passed directly into routines doing classification of

areas, shape analysis, etc. Alternatively, this output

may be passed to additional routines which impro ve the

quality of the boundary graph before passing the output

to the final processing routines.
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Global Edge Detection

The boundary initialization routine uses a special

form of edge detection called1q obal edge detection. Most

edge detectors are local, that is, the condition of the

line passing through a pixel is detected by looking at

some region around the pixel and doing a fixed calculation.

A global edge detector attempts to detect a whole line

segment as a single unit. Figures 4a and 4b show a local

and a global detector respectively.

A global detector is superior to a local detector in

several ways. First, more information is integrated

into the final decision as to whether a line is present or

not. Second, in detecting an actual line using local

detectors, a local detector must be applied to each point

on the line. (See Figure 4c) This means that data from

each point must be used more than once in doing the detec-

tion. Further more, an additional algorithm is required

to assemble the edge pixels into meaningful lines. Thus

a local detector plus this assembly algorithm becomes a

two-stage, poorly optimized, global detector. In addition,

a g lobal detector looks only at one row at a time, and

so will require less computer time.

A global detector is intrinsically closer to what is

meant by an edge detect -r than is a local detector. An

edge is not a point object, but has =he geometry of a line,

gnat is it extends over a group of pi<els. Since a line

cannot be separated from its continuations above and below

a given pixel, a detection mechanism which takes the whole

n
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Fig. 4a. Local edge detector. Detects an edge througha Pixel (shaded) by looking at a local region around it(3 x 3 square).
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Fig. 4b. Global edge detector. Detects a line from A
to B by looking at all the x'd pixels. Information can
generally be accumulated along the lire, without any
unnecessary calculation.
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line into account is much closer to the actual situation

than is an algorithm which looks at each pixel separately.

This proximity to the real problem makes the global edgy

detector approach superior to a set of one-pixel edge

detections. Not only is the data processed in a fashion

which does not use the data from a single pixel more than

once, but also the question of the existence of a line be-

comes a well-posed statistical problem.

In principle, to detect a line from each point A to
z

each other point B would require N R calculations, where

N is the number of terminal pixels, and Z is the line

length. In fact, however, most of these calculations are

duplicate, since the sums for one line are parts of the

sums for a subline, as shown in Fig. 5. The net effect

of this is to reduce the order of the calculation to N,

the number of pixels in the scene. The global edge de-

tection process is reduced to a simple scan of the image

doing the appropriate calculations. These calculations

consist of looking for the beginnings of lines, continuing

lines, ending lines, and some combinations of these pro-

cesses. These are the transformations given in Table 1.

Accumulations are made of the edge strength of each line,

and of its best starting and ending points. All of these

art- simple cal,:;ulations.

The calculations for each point consist of convolving

a mask .aith a horizontal line of pixels (1 hign by n wide).

The p articular mask used is not specified by the global

edge detection process itself, and should be chosen to
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Fig. 5. The calculations for the line A'B' are a subset of
those for the line AB, so that a Great savinq in computation
time is made by avoiding duplicate calculations.
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give optimum detection, consistent with e f ficiency, for

the particular problem at hand. In the simplest version

of the boundary initialization routine, this mask is just

a simple difference operator.

The result of this convolution operation is used in

different ways depending on the circumstances. If a line

has been projected to pass through the point, then the

convolution value is accumulated on the line, less a mini-

mum value for the difference. If the accumulated value

since the most

negative, then

high point.

Similarly,

point, then th,

local sums and

recent high accumulation becomes sufficiently

the line is ended back at the most recent

if there is no line projected throu gh the

convolution output is added to various

the result is compared to a threshold for

now line starting. The local sums are basically the

best tentative lines passing through the point, each

associated with its best starting point. Thus a line is

started when the accumulated convolution output (squared)

is raised above a threshold; the line is started at the

statistically "best" point above the line being scanned

when the start was made.

This process is done for an x-direction scan and a

y-direction scan, in order to detect all lines. The

derailed operations made are all listed in Table la

and Table lb.

We thus see that alobal edge detection is a process

which looks for a whole line, rather than the local cross-



ing of a line with a pixel. It is conceptually more

accurate, and, when the problems of associating local

pixels are considered, it is easier to use and program

than is local edge detection. It is this process that

is used in the boundary graph initialization routine.

29
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Adjustment Routine

The adjustmert routine corrects the boundary graph

generated by the initialization routine. The initialization

routine will give approximate, first-guess positions to

the lines in the image, estimated at + 1 pixel error. The

adjustment routine will make small-scale adjustments to

these initial boundary positions to achieve a best-fit

boundary graph. The adjustment routine calculates a set

of shifts of the boundaries (or endpoints) using the exact

mixing of the gray pixels on the boundary to determine the

optimum boundary position. These corrections may be

applied iteratively to give as accurate an adjusted graph

as desired.

Suppose we are given a boundary graph. We can calcul-

ate the expected luminance of any mixed pixel (a pixel

straddling the boundary) from the coordinates of the

boundary. We may then calculate the deviation of the actual

brightness from its expected value. Summing some measure

of this deviation along the lire gives a measure of the

fit of the line to the data. Adjustment of the line can

then proceed using derivatives of this measure of fit.

:fie simplest measure of fit is least-squares. This

measure can be posited directly, or derived from a maximum-

likelihr • c , d approach. Tte latter is preferred, since it also

allows the handlin g of more general situations.

Figure 6 shows an example of the boundary acjustment

problem.

The adjuFtments of each line are nct ir.dependen;, since
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- - - - Original lines (from initialization)

Final, adjusted lines

Fig. 6a. This figure shows the effect of boundary adjust-
ment on an image. The original lines and their adjusted
positions are both shown.
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Fig. 6b. Each of the pixels on the boundary can be divided
into a part belonging to Region 1 and a part belonging to
Region 2. For example, pixel a is mostly Region 1, pixel b
is mostly Re gion 2, pixel c has slightly more Region 1,
and pixel d is evenly divided. These divisions can be cal-
culated in terms of the parameters of the lines, and the
expected greyness or color compared to the observed values,
enabling an adjustment of the line position.
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many lines will have common endpoints. Thus an inner

iterative loop is required, given the boundary fit deriv-

atives, to find the best (linear) adjustment of the

boundary to the actual data. In an outer loop, we recalcul-

ate the fit and its derivatives and then recycle through

the inner loop for solving the linear equations defined by

the derivatives of the measure of fit.

The final result of the boundary adjustment program

is a boundary graph with coordinates which give a best

fit to the boundary position for the grey levels observed

in the data. This is the closest approximation to the

position which is available in the data on a statistically

significant basis. Boundary adjustment needs to be done

only where precise positioning information is required,

and should typically give results accurate to + .1 pixel.
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Faint and Diffuse Line Detection

Another correction to the output of the boundary

initialization routine is the location of faint and diffuse

lines. The initialization routine will detect only

fairly sharp, distinct lines. This results from its need

to do only local processing in order to quickly scan an

image. (A way of handling this problem, which will take

care of most of the situations examined below, is to group

the pixels into squares of 4, 16, 64, etc. and do a bound-

ary analysis of these. This would find most of the faint

and diffuse lines, but there would be difficulties in

relating the various sizes=levels of abstraction. The

procedure defined below will find these lines more com-

pletely.)

There are two types of boundary which produce insufficient

gradient to trigger the edge detector in the initialization

routine. These are faint boundaries, which do not have

a large enough step to be detected in scanning across

on a single line, and diffuse boundaries, where the step

is spread across so many pixels that it is locally un-

detectable. It is useful to have a separate process for

detecting these types of edges, augmenting the boundary

initialization routine.

The procedure used is related to, and as a program,

uses, the procedure below for detecting continuous vari-

ations. Each region is divided into two sub-regions, and

and each of these into two further sub-regions, etc. down

to the pixel level. If the two parts of a region are
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significantly different in brightness, then the possi-

bility exists that the region is divided by a boundary

through it. It is also possible, however, that the

region just has a continuous variation in brightness

across it. The program must then locate the best position

for an edge and determine if that edge is a better hypo-

theses than the assumption of a gradient.

The best position for the boundary may be determined

by trying it in various positions and determining which

fit is best. For local changes in positioning, we may

simply look at the pixels adjacent to the boundary and

determine if the boundary would be better placed on the

other side of them. This same process may be applied

to the larger groups of pixels in the tree generated by

the continuous variation system, giving more global

aprroximations to the boundary position.

We may, therefore, find the best boundary position

by the following process: first, assume that the boundary

lies between the two subregions which were found to have

a significant difference in brightness. Look at the

highest-level subdivisions of these regions. Find any

of these subdivisions which is next to the boundary

and is spectrally more like the region on the other side

of the boundary. Move the boundary to put the region on

the other side. Repeat this process using smaller sub-

divisions until the pixel level is reached.

The resulting boundary position, achieved by successive

motions of the boundary, is a simple best fit to the opti-
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mum position, and the degree of fit achieved by it can be

compared to the degree of fit given by a gradient or other

continuous variation fit. Of course, the boundary fit

contains additional parameters, and so will naturally give 	 f

a somewhat better fit. This must be compensated by a

priori biases in the Bayesian decision rule used to decide

which alternative to choose, or by some related method.

If the boundary approach yields the best fit, then a

new boundary is created and put into the boundary graph.

The new regions created by this process are checked for

further divisions. In this way all the faint and diffuse

lines are discovered and placed in the boundary graph.

This process, with proper setting of controls, should find

all the statistically significant boundaries in the image.

A special question arises for diffuse lines, whether

discovered by this method or by the boundary initialization

routine. Any diffuse line will have a form factor, that

is, a profile of brightness changes across the line.

A "standard" form factor would be tanh(x) or some sirralar

smooth step function. However, most diffuse lines will have

a different brightness shape. In addition, the width and

shape of the line vary along its length. This may be

most clearly seen in a shadow from a corner, or an object

rising out of the surface on which the shadow is cast.

.s the shadow gets further from the edge casting it, the

width of the shadow will increase, from zero where the

shadow is next to the shadow caster.

Thus some explicit account should be taken
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form factors of diffuse lines. This may range from a fixed,

simple shape invariant along a line, to complex structures

allowing changes of width and shape along the length of

a line, and allowing complex line shapes. For most appli-

cations the former, simpler method is probably the best,

but for some applications the more complex methods may

apply.

In summary, one of the extensions of the ioundary

graph system, beyond the initialization, is the location

of faint and diffuse lines, which are then included in

the boundary graph. This is done by taking information

generated by the continuous variation system, and determin-

ing whether a proposed continuous variation is in fact a

boundary. An additional point is that diffuse edges must

be modeled in some fashion, which might be quite complex.

r
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tinuous Variation ,"id the Zonal Method

Continuous variation is relatively smooth variation

within a recion. Since the boundaries define a region,

there are no toundaries in the area to be analyzed by the

continuous variation model.

This variation may give a constant value across a

recion, a gradient, or various kinds of local variation

or mottlinc. we wish to divide the region into a minimum

number of zones, across which the brightness is constant

or linearly varyin g . This will allow description of the

..a ge brightness with a minimum number of parameters .

The zonal method divides a recion into successively

smaller zones by binary division ir. the lon gest dimension.

.-s fc:...s a tree c_ s:: divisions of different sizes. Only

art of `^ s tree is used for the zonal process. If two

s ` re-:or_s -a:e essentially the same value of a Zara ter

the-: are nc_ retained- as secarate from the pare-t recion.

.2f course t:.e =are-.-:: re= 	 itself -a ce cc . tined with

a-.:.-:.e_ za=e-r _ec:c.. or. the saw level to form 	 suoer-

=.a=oa as	 -whether to --roc a -e-.-el

i e=a.:._ -s nade on the bas-s = sta.=stica_ s_anificance

to=.een the two re gions z oxsed to be

- -- _-- --- a s1= ':.:r --cre 	 :e:sio . of --.e

s ran. -e ca. a as tc	 tc

_e Snc.°_.

-e- =.e	 a a:-- s _s __	 eve . we are

=c= es . s xxe ir-- . s--r-.v-- =-a-- =:.eve _.ere is
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always a statistically significant difference :)etween diff-

erent remaining bra_nche5. Figure 2 shows an example of the

zonal analysis cin a region.

This method allows us to compact data maximally with-

out throwing away any statistically significant informatioi,.

The zonal information gAves a representation of the contin-

uous variation as it can be recocmized under tests of

statistical significance. The zonal analysis may be

done using the x and y gradients in addition to the parameter

bein g analyzed itself. This will produce a smoother model

of the variation cf the parameter mean.

The continuous variation procedure thus models the

data with a minimum set of independent values. A value or

gradient is assi gned to each zone of varying size, arid these

make up the model of the variation.



ORIGINAL PAGE IS
OF POOR QUALITY	 40

Fig. 2. Zonal accumulation scheme. Each pixel is averaged
into a first-level (two pixel) group denoted by 1. These
are accumulated into (four pixel) level 2 groups denoted by
2, and so on up to the highest level in the picture, denoted
by 4 and containing 16 pixels. Tests are made at each level
to determine if the pixels belon g together. The accumulation
process must be done in a sli ghtly different way when the
area ^as a more complex, limited shape.

r
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Texture Detectors

Besides the detectors for the boundary analysis system

and the continuous variation system, which are described

elsewhere, there are special detectors for texture compon-

ents, and higher-level detectors for periodicities, repeated

figures, special angles, etc. These detectors are used

to gather additional or higher-level information about the

image.

The textural detectors gather information about a speci-

fic region; information from multiple regions may be inte-

grated together if there are Plemerts of common texture.

Basic texture analysis consists of evaluating various

local n-point operators on the region. A typical 2-point

function, the power spectral density, gives the correlation

of points at various relative positions (distances, angle)

to each other. This information may be further reduced by

looking at the isotropic (angularly uniform) falloff of

the power spectrum: does it fall off as a power law?

with what exponent? are there subsidiary peaks? at what

distances? etc. The isotropic (all-directional) informa-

tion in the power spectrum may thus be reduced to a few,

or many parameters, dependin g on the circumstances and

general usage of the vision system.

The non-isotropic information in the power spectrum

may be analyzed in a similar fashion. If the power spec-

tru.,n falls off differently in different directions, then

t-his information ma.: be reduced to vector information about

the pcwer spectral com onents (that is, to x and y com-

r
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ponents of the power spectral parameters.) For example,

in a region of one-directional fibers, the correlation

will have a (cos 26, sin 26) type dependence, with high

correlation along the direction of the fibers, and low

correlation, with subsidiary peaks, in the cross direction.

The regularity of the fibers is shown by the strength and

sharpi_ess of these subsidiary peaks. In a normal fabric

the power spectrum autocorrelation will have 4 peaks as

we go around the circle of directions. That is, it will

be modelled by a (cos 46, sin 4e) type of angular depend-

ence. Looking at the various parts of the non-isotropic

variation and parametrizing them will give measures of the

textural information. As in the case of the isotropic

information, the number and type of the parameters used

is dependent on the type of scene being analyzed.

The simplest power spectral components may be analyzed

using only the eight pixels adjacent to any level. The

accumulation of these correlations for all the pixels in

the region will give a four-parameter description of the

texture. (There are only four parameters since the auto-

correlation function is even, and averaged correlations

on opposite sides of a pixel will be the same.) In most

cases, however, the scale of the textural features will be

larger than a pixel, so that power spectral information

must be extracted at larger distances and lower spatial

frequencies.

We may usa two-point functions other than the power

spectrum to analy ze the texture of a region. The power

6



43

spectrum is derived from the autocorrelation function and

is basically bilinear. Other measures, such as looking

at extremal values, at mathematical transformations of the

variables, or even at bihistograms, may be used in deriving

textural parameters. Again, the particular reduction of

the data used depends on the application.

Of course, relations may be made between more than two

pixels. However, the number of parameters or dimensions

of parameters grows astronomically as the number of points

used increases, and severe reductions must be made in the

parameter space. For certain applications special n-point

functions may be devised, if enough is known that certain

n-point configurations are expected. Otherwise abbreviated

`orms must be used.

The simplest n-point functions are the four-point quadratic

forms of localized two-point functions. For these, we

take a local two-point, generally non-isotropic, function

and sum it over areas of intermediate size. We then square

the result, and add the squares over the entire region.

An example of this is the textural analysis of a region

with fiber patches of varying direction, for axample, a

spruce tree. The fibers do not have any common direction,

and would not give any large non-isotropic parameter. How-

ever, in a local sense the region is certainly composed

of fibers, and the four-point function described will meas-

ure this.

Other types of n-point detectors are based on edge

detection or other "macroscopic" types of analysis. Com-
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plete analysis of a fiber area falls in this class. Since

the edge detection has generally been done already, these

measures may be computationally efficient.

The variety of textural information that may be gathered

is immense. A few basic measures may be selected as having

major importance, but many others may appear in special

cases. Ultimately, a texture system will probably take

into acccunt the particular texture peaks, valleys, and

other features appearing in a given region on an adaptive

basis. The problem of texture analysis is basic and incom-

pletely understood.
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Higher Level Detectors

Hiqher level detectors are detectors which use the

output of one of the original or low-level detectors to

make additional analyses. Usually the lower-level detector

used is the boundary detector.

Numerous analyses can be made based on the boundary

graph. There may be some preferred orientation of image

lines (vertical, North, etc.) There may be special angles

of incidence in the picture, such as a tendency for lines

to meet at right angles. The most important of these is

the location of parallel lines. Parallelism is an invariant

no matter what angle one views the picture from. Parallel

lines occur in almost every application, from Landsat data

and optical character recognition to locating parts in a

bin (for example, the edge of a punched part.) Parallel-

ism is also one feature detected in the early stages of

the human visual system (reference not available). Parallel-

ism is thus the primary higher-level detector. Derived

from parallelism is the location of periodic or repeating

structures.

There are a number of more complex detectors based on

the boundary graph. Some of these additional detectors

and processinc include: the detection of occluded or

partially covered up lines, locating multiple copies of

a figure in a scene, analysis of three-dimensional

rotations, matching figures to templates, analysis of

shadows, analysis of general visual scenes, etc. These

procedures are outside the provenance of this report.

4 M
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Use of the Scene Model in Registration

The scene model described in this report was originally

designed to aid in the registration of two images to sub-

pixel accuracy. In this section we show how this may be

done.

When the boundary initialization ar.d adjustment routines

are both used, the result is a very precise set of bound-

aries. The subpixel accuracy of these boundaries is the

basis of the subpixel accuracy of the registration.

Registration based on the boundary graph is somewhat

different from that based on the point-by-point correla-

tion. For boundary graph registration, corresponding

points on the two images are identified using context

and approximate position. When a sufficient number of

these have been identified, we can use them as bases

to match up all corresponding lines in the two graphs.

We then have a qualitative alignment of the two graphs.

The qualitative alignment can be used to generate

a registration displacement by calculating the displace-

ment of various points and averaging over regions of

some size. This displacement can be used to produce

the proper resampled image.

Boundary graph registration is better than correlation

registration in several ways. Primarily, the identifi-

cation of features from one image to the other is positive,

and is not simply "there is an edge here." Features

may be identified in the second image far from their

positions in the first image. Since each feature is
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separately correlated, we may closely map the cross-

correlation surface, and appropriately deweight features

which have moved excessively. In general, the correlation

process is under much better control, and greater

selectivity of correlation is possible.

Otner advantages of the boundary graph approach

include: 1) It is possible to eliminate boundaries

appearing on only one graph from consideration. 2) Some

lines may be eliminated or deweighted directly. 3) The

uncertainty in line position may be used quantitatively.

4) IIistorical data may be accumulated for an area. 5) Reg-

istration may be made to a properly input map.

The boundary graph may also be used to perfoi-,n bound-

ary oriented resampling. in this case, since the boundary

positions are known, the form of resampling used to

produce a registered image may be modified near a boundary

to give an optimum fit to the relocated boundary. This

system, wculd not smear boundaries during resampling, but

would produce sharp boundaries i:. the resampled image.

Such an image will be closer to what one would expect had 	 .,

the original image been mans on the resampled grid.
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Summary

This report has outlined a general-purpose first-stage

visual system. This system was originally devised for

the processing of Landsat data for the NASA-NOAH-USDA AgRI-

STARS Project, which attempts to gain agricultural info nna-

tion. However, after the system was fully conceptualized,

comparison with other visual problems in industry and in

other areas revealed that this basic process applied there

as well. This presentation has been oriented towards this

general usage of Lh c: system.

There are three major parts to this recognition system:

the boundary analysis subsystem, the continuous variation

analysis subsystem, and the miscellaneous features analysis,

including texture, line parallelism, etc. These subsystems

all work together. For instance, part of the boundary sub-

system uses the output of the continuous variation subsystem.

Similarly, the parallel recognition subsystem uses the

boundary output; and the texture output will be further

analyzed in both the boundary and continuous sections.

The boundary analysis subsystem is the most important.

This system detects all the boundaries and lines in the image,

and builds a boundary graph. This divides the image into

regions, corresponding to fields in Landsat data and sur-

faces of an object in analyzing an every day environment.

Complete boundary analysis is done by using three rou-

tines, the initialization routine, the boundary adlustment

routine, and the faint and diffuse line detector. Of these,

the initialization routine is used to get the initi-1 bound-



49

ary graph. The other two are applied, possibly recursively,

to the initial output, to correct it to make an optimum fit.

These correcting routines do not need to be applied except

i- cases where the improved output is required. Most situ-

ations are analyzed perfectly well by the initialization

routine, and will not require any corrections. The faint

and diffuse line detector relies on information from the

continuous variation system.

The continuous variation system finds gradual variations

which are not well approximated by a boundary structure.

These include gradients, mottling and similar features.

The continuous variation is analyzed by successive binary

division of the image, looking for significant differences.

This allows the modelling of local, strong variations, as

well as larger, more gradual ones.

T-axture is an important part of many analyses. The

actual measures of texture employed will vary from prob-

lem to problem, but in each case they will result in local

measures of texture. These may be processed further by the

boundary and continuous variation subsystems to detect

boundaries and gradual variations in texture.

Additional analyses may be made on the output of the

boundary routines, looking for parallel lines, and other

spcial angles. When taken to an extreme, this becomeF

shape analysis, which is beyond the scope of this program,

although a true shape analysis would use the output of

this program as input.

The analyses done by these systems give a good repre-
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sentation of the image. The model of the scene resulting

from these analyses will give brightness values not statis-

tically discernible from the original data, except for the

fact that they are much less noisy. Thus the model closely

describes the data. It is also in a form which makes it

much more possible to answer questions about the scene.

This model, especially the boundaries, is especially

useful in the registration or rectification of images,

since the boundaries may be used directly in the cross-

correlation of two images. This method is under much better

control than is the ordinary method of cross-correlation.

It also can produce a much higher accuracy. Correlation

ith maps (rectification) is easy in this framework. Thus

the accurate boundary model produced by these routines is

the basis for a highly improved correlation routine.

By creating an accurate model of the scene, we make

possible detailed analysis of the scene and its features.

For Landsat data, we have a separation of the scene into

fields. For ordinary objects, we have the edges and out-

lines by which they can be recognized and located. Thus

the calculations done here constitute a basic first step

in the analysis of an image.

i
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