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ABSTRACT

A development program to produce large-area (5.9 x 5.9 cm) space quality
silicon solar cells with a cost goal of 30 $/watt is described. Five cell
types under investigation include wraparound dielectric, mechanical
wraparound and conventional contact configurations with combinations of

2 or 10 ohm-cm resistivity, back surface reflectors and/or fields, and
diffused or ion implanted junctions. A single step process to cut cell and
cover-glass simultaneously is being developed. A description of cell
developments by Applied Solar Energy Corp., Spectrolab ana Spire is
included. Results are given for cell and array tests, performed by
Lockheed, TRW and NASA. ruture large solar arrays that might use cells of
this type are discussed.

INTRODUCTION

Future large space systems such as the Space Operations Center or the Space
Platform (refs. 1 and 2) will require solar array power levels in the
multikilowatt range. The cost of these solar arrays may be a significant
proportion of the total spacecraft acquisition cost. The solar cell cost in
turn_may be as much as 40% of the array cost. Present space cells are

g ¢ in area, 12-13% efficient and cost about $10U per watt. Tnerefore,
solar cell cost reductions could have a significant impect on future
programs.

In early 1980, NASA initiated a program to develop low cost solar cells.
The goals of this effort are to develop a space yuality silicon solar cell
with an area greater than 25 cmz, an efficiency of 15% AMO, (air mass

zero) that can have a cell cost of less than $30 per watt in volume
production,

APPROACH

Studies have shown that cell costs can be reauceud by increasing cell size,

simplifying cell fabrication processes, streamlining cell specitications and
documentation ana minimizing redundant in-process ‘destructive testing.

Ihe use of large cells can be beneficial in several ways: 1) more of the
silicon in the round starting wafer is used, ¢) tewer cells need to be
tauricated to achieve the required power level and 3) fewer cells neea to be



handled (interconnected, etc.) in array production. Une technique for
simplifying cell fabrication is to use a single step to saw-cut both the
cell and its attached coverglass (i.e. autoregistration-sizing). Auto-
registration-sizing eliminates~the need for expensive, close dimensional
tolerances on the coverglass and reduces labor cost and assembly time
usually needed for cell-cover glass alignment.

Another means to reduce costs is to increase cell efficiency. Solar cell
costs are expressed in terms of dollars per watt so that the greater the
power output per cell (i.e. the higher the AMQ efficiency) the less the cost
per watt. Using the same fabrication process, if cell efficiency could be
increased from 13 to 15% AMO, then costs could be reduced, for example, from
$100/watt to $86/watt.

CELL DEVELOPMENT

In early 1980, NASA initiated a low cost solar cell development program.
The program to produce low cost solar cells attacks the problem in three
phases. In Phase I, the questions to be addressed were i) can a large area
cell be fabricated which will perform as well as a2 x 2 cmor a2 x 4 cm
size cell? 2) are large area 5.9 x 5.9 cm cells usable in flexible
substrate solar arrays? 3) is a cost goal of $3U per watt a reasonable
target? and 4) are ion implantation and the autoregistration-sizing
technique viable strategies for cost reduction?

In Phase Il a large quantity of cells will be produced to determine cell
yields, cost and performance, and to demonstrate a production rate of 14,000
cells per month., These cells will be available for qualification tests.
Phase III1 is the production of large area cells for future large space
arrays such as StEP, PEP, or space stations.

The program organization includes NASA, the solar cell vendors (ASEL, Spire
and Spectrolab) and two array vendors (TRW and Lockheed Missiles & Space
company). This arrangement is used to assure that the cells and the
specifications to which they are manufactured are compatible with array
requirements. Under this arrangement, NASA acts as an overseer with Lewis
Research Center (LerC) being responsible for cell technology issues and
Johnson Space Center (JSC) being responsiple for cell array systems and
programmatic issues.

The cost goal for Phase I is to produce cells for $30 per watt. This cost
is about one third of present space cell costs. Two primary types of
baseline cells are under development: 1) a cell with a base resistivity of
two ohm-cm incorporating a back surface reflector (BSR) with a thermal
absorptivity (alpha) of 0.70 and 2) a ten ohim-cm cell with a back surface
field (BSF) and a BSR with an alpha of 0.75. A third cell type (two ohm-cm
BSK, BSF) was also evaluated for PEP mission suitability.

The electrical contact metallization system to be applied to the generic
cell type (i.e. base resistivity and back surface treatment) selected will
be either a wraparound or a conventional top-bottom contact. AiIr mass zero
(AMU) efficiency goals for each contact type are 12.8% for the wraparound
and 14% for the conventional cell. Multilayer antiretlection (AR) coatings
may be used.



The system designer will select the solar cell technologies that yield the
best combination of beginning-of-life (BOL) and/or end-of-1ife (EOL)
performance, lowest overall system cost and acceptable technical and
schedular reliability and risk. The low cost cell development activity will
provide the information needed for that selection.

Some of the advantages and disadvantages of the various cell technologies
are as follows: The base resistivity affects power output (performance),
radiation degradation rate and temperature coefficient of performance. As
resistivity increases, power decreases during irradiation. Use of a BSF
increases BUL performance. However, this increase is lost after moderate
radiation fluences. Conversely, a BSF increases thermal absorptivity which
raises cell operating temperature in orbit thus reducing performance. {n
the other hand, a BSR reduces thermal absorptivity and operating temperature
and thus increases performance. Both BSR and BSF add to the complexity and
cost of the cell. AR coating type affects power output, temperature
coefficient and cell cost. Thus there is a multitude of effecis which
mandates side by side comparative development and testing,

Tne cell development efforts at Spectrolab (ref. 3), at ASEC (ref. 4) and at
Spire (ref. 5) have addressed a wide range of similar, though not identical
issues. Some of the development efforts are as follows: ]? investigation
of alternate cell technologies and processing techniques, 2) optimization of
cell design and manufacturing process, 3) equipment and tooling design and
construction, 4) acceptance and approval type testing, b) generation of
software such as manufacturing control documents, solar cell specifications
and test plans, ana plans for implementing full production, o) cell
fabrication, and 7) analysis of cell costs.

The cell development contractors at ASEC and Spectrolab have shown that
large area (5.9 x 5.9 c¢m) cells can be made and that the 12.8 and l4%
performance goals can be met. Preliminary analysis indicates tnat the
$30/watt cost goal can be achieved with optimistic but realistic assumptions
of process yield.

Figure 1 enumerates solar cell cost reduction expected by cell area
increases and shows that a single three inch diameter silicon wafer can be
used to make either three ¢ x 4 ¢cm cells, one 5 x b cm, Or one 5.9 x b.9 cm
cell. Three 8 cm¢ area cells require more handling during manufacture,

use only 53% of the wafer are? and have the hignest normalized cost.
Increasing cell area to 25 cm® uses about the same wafer area (55%) but
decreases normalized cost per watt (.tb) oy reducing the numver of waters
handled during manufacture. If the cell is made with slightly roundea
corners, a 5.9 cm "square" cell can be made that uses 75% of the wafer area
(i.e. wastes nnly 25%) and reduces the cost to about half that of three

2 x 4 cmcells. The figure also shows that for a 25 kilowatt array the
number of cells that must be assembled can be reduced from about 179,000 to
about 36,000 it cell area and efficiency were increased from 8 cmé at 13%
AMU to 34 cmé at lbw AMO.

Spire 1s working on a 5.9 x 5.9 cm cell with two ohm-cm base resistivity,
ion implanted boron back surtace field and an evaporated aluminum back
surtace reflector. Experiments are in progress to determine if a sinterea



or non-sintered back contact with full or gridded metaliization will be
optimum. Emitter formation experiments have shown that arsenic
implantation, either directly or thru an oxide, may be the best technique.
Lamination of six mil 0211 coverglass has been achieved with three
-adhesives: Teflon FEP, ethylene vinyl acetate (EVA), and Uow Corning
93-500. Both FEP and 93-500 are space proven adhesives. EVA is a low cost
material that has only been used in terrestrial modules to date. Sawing of
assemblies to final size has been achieved.

Figure 2 illustrates the autoregistration-sizing technique. A processed
round wafer containing a 5.9 cm “"square" solar cell witn interconnect tabs
attached at the rounded corners has an over sized coverglass bonded to the
cell surface. The bonded cell-cover assembly is sawed to size in one
cutting operation (4 cuts). The extra step of separately cutting the fused
silica cover glass to exact size is eliminated.

CELL TESTING

Extensive measurements and tests of large area cells were performed at all
the contractor facilities. These include current-voltage characteristics,
contact reliability evaluation, optical properties, temperature coeffi-
cients, thermal cycling, environmental tests, module fabrication and process
and handling tests.

Future large area space arrays will operate in low eartn orbit for up to 1U
years and will be subjected to some performance degradation by space
radiation. Laboratory tests to determine the amount of cell degragation due
to radiation were performed at NASA-Lewis Research Center in a damage test
with side-by-side comparison of candidate cell types and pre- and
post-irradiation airplace calibration of outer space short-circuit current.
These results have been published (ref. o).

Six different cell types with the best potential for meeting the system
requirements were supplied by ASEC and Spectrolab for evaulation. The cells
had combinations of resistivity, BSR, BSF, and AR coating. The code used to
descrioe the cells and the test conditions shown in Table I.

The average maximum power versus fluence for the 1u and 2 onhm-cm cells is
shown in figures 3 and 4 respectively. For each point, the data spread was
less than 3%. These data snow that the AIUFRM, (i.e. tne ten onm-cm cell
with a BSF, a BSR ana a multilayer AR coating) had the highest beg]nning of
life (BUL) power (/6. mW) under laboratory conditions. At 3 x 10'4

e/cm® fluence, the AIUFRM and the AZRM cells both had the highest average
power (56.4 mW). The S¢FRT, a unique Z ohm-cm BSF cell, has about 10%
higher BUL power (72.4 mwW) than the SZRT, (65.6 mWw) due to the BSF.
however, the SZFRT degrades more quickly than the SZRT and at 3 x w14
e/an, the power increase due to the bSF effect is almost compietely
eliminated (53.2 vs. 52.8 mw) and S2FK1 (/2.4 W) shows about a 3./% boost
in power due to the multilayer AR coating. In terms of normalized power
{i.e. Tgximum,power at zero fluence divided by maximum power after

3 x 1'% e/cmé) the 2 ohm-cm BSR cells degraded to 0.8V of original; the

1U ohm-cm BSR/BSF cells degradea to U.73 of their original power.
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These radiation damage results are necessary, but not sufficient,
information needed by the array designer. These tests show that the cell
type with the highest power output at room temperature was the 10FRM at
BOL. The 10FRM and 2RM groups had equal power at EUL. The lower thermal
absorptivity (measured elsewhere) of non-BSF cells results in lower orbit
operating temperature and higher power output. Thus, the 2 ohm-cm BSR cell
will have the best EOL performance in orbit. The 2RM cells also had the
least change in power over mission life which aids power supply design.

RECOMMENDATIONS

A variety of large area, silicon solar cell types have been developed whicn
demonstrate a reduction in the cost per watt of space photovoltaic devices.
Manufacturing processes have been refined and engineering data have been
derived. Technology issues to further improve cell performance and reduce
cost have teen identified. Examples of these issues which are specific to
each manufacturer are as follows:

0 Heat treatment of the evaporated aluminum back surface reflector
and other cell processing steps should be studied to further
increase reflectivity and lower thermal absorptivity.

0 Photomask for front contact patterns should be redesigned to
increase short circuit current and collection efficiency and to
provide fiduciary marks.

0 Degradation mechanisms of wraparound cells must be identified and
eliminated. Kefinements in etch and thermal cureing steps may
further increase bond strength in mechanical wraparounds. Redesign
of back contacts to minimize n contact orea and p contact giveaway
may improve dielectric wraparound cells,

0 Cell cost reductions and production capacity increases are possible
with improved equipment ana augmented facilities (e.g. large
capacity contact metal evaporation systems).
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TABLE I. - CELL AND TEST DESCRIPTION
Cell Code

Cell manufacturer

Cell manufacturer

Base resistivity in ohm-cm
Base resistivity in ohm~-cm
Back surface field

Back surface reflector
Tap05 AR coating
Mu?tilayer AR coating

XTIV

Test Conditions

1 MeV electron flux 1012 e/cmé/sec in air.

Cell temperature 400 C during irradiation, 600 C for 17
hours in air post irradiation annealing.

Measurements: AMQ I-V at 28° C, spectral response and
aircraft calibration of AMO Ig..

A1l cells 2x2x0.02 cm, no coverglass, conventional contact.
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CELL AREA (CW)
IN A THREE INCH
DIAMETER SILICON
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Figure 1. - Reduction of sofar cell costs by increasing area in a 3-inch (76-mm) diameter silicon wafer.
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Fiqure 2. - Reduction of solar cell costs by autoregistration sizing isingle step sawing of cell with

bonded cover glass).
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