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Introduction

During the past two decades, space physics has progressed from missions

whose goal was a rUdimentary exploration of the near-earth magnetosphere to

the present stage in which rather det~iled modeling and understanding of

magnetospheric plasma processes has emerged. Nonetheless, because of the vast

scale distances involved within the magnetosphere, it has been a very

difficult problem to probe the system, concurrently, at enough different

points to truly understand the complex relationships between its different

parts.

Understanding just the '~uiet' or 'equilibrium' state of the magnetosphere

has been a challenge. Even more difficult has been the problem of understand

ing the dynamic behavior of, the magnetosphere. This dynamic aspect of the

magnetosphere may be effectively discussed in tenns of energy input from the

solar wind into the magnetosphere. Such excess added energy causes the mag

netospheric system to move out of its equilibrium state into a more energetic

state. In some cases this gives rise to a very large scale disturbance (the

geomagnetic stonn) which in turn causes worldwide effects. )tach more fre

quently, however, disturbances within the magnetosphere tend to be somewhat

more localized involving the regions connect.tng to nightside auroral field

lines: such a disturbance is termed the magnetospheric substonn. (See the

paper by HcPherron [1973, and papers thereafter] for a discussion of a

phenomenological model of substorms .)

In order to understand better the nonequilibrium behavior of the

magnetosphere, a period (July 2~-30, 1977) was chosen for intensive study.
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This period was characterized by the developnent of a large geomagnetic stonn

and also by the occurrence of several magnetospheric substorms [Manka et al ••

1981]. In addition this period offered the advantage that there were a total

of 12 earth-orbiting spacecraft positioned at. widely separated points

immediately upstream and throughout the magnetosphere and these satellites

provided data coverage of plasma and field changes associated With the

geanagnetio storm and substorms.

In order to exploi t fUlly the infonnation prov ided by such a wide array of

spacecraft probes, an effort was made under the aegis of the International

Magnetospheric Study (tMS). to assemble researchers who had data fran satel

lites for the 28-30 July 1977 time per~od. In May of 1979. approximately 10

scientists with interest in, and data on. the high-energy plasmas of the mag

netosphere met at the National Space Science Data Center (NSSDC)located at

the NASAGoddard Space Flight center in Greenbelt. Maryland. In a workshop

setting called CDAW2.0 (Coordinated Data Analysis Workshop - 2). the

researchers studied data \ob1ch they had earlier provided to a central canputer

facility. This central computer allowed data from any sensor on any satellite

to be directly compared with concurrently-acquired data from any other sensor

on the same or any other satellite. Thus, unlike most prior space research

situations, experimenters, modelers, and theorists had at their immediate

commandthe data required to address many questions about magnetospheric

dynamics. Variations of plasma conditions throughout much of the magneto-

sphere could thus be described for a large· number of different regions.

There are two distinct facets of, or reasons for studying, energetic
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particles within the earth's magnetosphere. The first of these facets

reflects the intrinsically interesting question of where, and how, these

particles are actually produced, say, during magnetospheric substorms. The

second facet of energetic particle studies is a very practical and prasmat1c

one: given that such particles exist (Le., that they can be observed) how

can these particles be used as tracers or probes·of large-scale magnetospheric

processes? The CDAW-2subgroup 6 research team attempted to explore each of

these avenues associated with energetic particles.

The types of studies carried out by subgroup 6 were basically focrin

number:

(1) Timing and morphology of particle inj ections;

(2) Variation of particle phase space densities;

(3) Measurement of bomd ar y motions using ion (proton) grad ient

anisotropies; and

(ll) Adiabatic modeling (with increased particle nux (i.e., injection),

convection, corotation, and drifts).

In the following, we will discuss our findings derived fran each of the

above li~es of inquiry. Our initial research efforts were concentrated on the

1200 lJ]' substorm of 29 July. This was the last and largest (AE tI'. 1200 y) of a

series of substorms that occurred on 29 July following a worldwide sse that

occurred at 0027 UT [King et al., 1981; Wilken et a1., 198~]. We concentrate

here on measurements made at geostationary orbit (6.6 RE) where a total ·of six

spacecraft made extensive observations of the energetic particle behavior.
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Observations

Figure 1 is a geocentric solar ecliptic proj ection of the positions of the

six primary, near-geostationary satellites used in the present study. The

ATS-6 and 1977-007 spacecraft were located very near one another at ~ 0300 LT.

ATS-6 had NOAA,Aerospace, and TRWenergetic particle, UCLAmagnetometer, and

UNHplasma experiments on board, \bile 77-007 had Los Alanos energetic parti-

cle sensors on board. The Los Alamos-instrumented spacecraft 1976-059 at

~0700 LT was bracketed by the GOES-1and -2 satellites which carried NOAA

energetic particle and magnetometer instruments. Finally, the European Space

Agency satellite GEOS-1 (1. 3 < r < 8 HE) carried a complete complement of
~ ~

plasma and field measurement instruments and was located near apogee at ~ 1300

LT.

General geomagnetic activity for JUly 29-30, 1979 is shown in Figure 2

[see also ,Hanka et al., 1981]. The upper panel shows selected high-latitude

magnetometer station records, while the second panel from the top shows

H-canponent magnetograms from five standard auroral zone stations. The third

panel of Figure 2 shows mid-latitude stations from several geographic

longitude sectors. The bottom panel sunmari zes auroral electrojet activity in

the form of'the AE(5) index, i.e., the index derived from the five auroral

zone stations shown in panel 2.

Particularly evident in Figure 2 are the storm sudden commencem'ent(sse),

due to an interplanetary shock wave h1t t10g the earth at 0027 UTon 29 July,

[c.f. King et a1., 1981 and Wilken et a1., 1981] and the rap1d storm ma1nphase

developnent thereafter. These features are seen clearly 1n the m1dlat1 tude

magnetograms of panel 3. Also quite evident, especially in the plot of AE~

are the generally d1sturbed auroral zone oond1t10ns on 29 July and the large

10
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Fig. 1. Positions of the geostationary and near-geostationary
(GEOS-l) spacecraft used in this study. The nominal
magnetopause location in this solar ecliptic projection
is also shown.
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substorm (AL > 1000 y) at ~1200 UT. As previously mentioned, it is the 1200

UT suustorm upon Which we concentrate in this paper.

Energetic Particle Behavior at 0300 LT

Figure 3 shows energetic electron fl uxes measured by instrunents on the

1977-007 spacecraf't. The five energy channels shown are a representative

sample of the ~ 20 electron channels (E ~ JO keY) available from 77-007 and/or

ATS-6. All electron channels at ~ 0300 LT exhibit roughly the same sequence

of events with a prono mced fl ux decrease, or "drcpout ;! canmencing at ~ 11'35

UT [see Fennell et a1., 1981). The fluxes eventually diminish from ~1 to 3

orders of magnitude (depending on energy) but, as is especially clear in the

jO keV channel, the measured intensities remain nonzero throughout the

dropout. Hence, it is concluded that the geostationary spacecraft at 0300 LT

entered a region of much reduced electron flux, but they did not emerge into

the extremely low intensity region of the high tail lobes. The most likely

explanation is, therefore, that 77-007 and ATSentered the high-latitude

plasma sheet between ~11LjO and 1155. In the northern 'horn' of the plasma

sheet it w~uld be expected that energetic particle fluxes (prior to substorm

onset) were lower than in the outer trapping zone, but higher than in the tail

lobes.

After the fl ux dropout, the electron intensities appeared to recover

simul taneously at all energy levels to slightly more than the predropout

val ues. At 1200 UTthere was a large increase of electron flux and this

injection corresponded closely to the sharp negative bay onset seen at College

(cf. figure 2). Note that lack of energy dispersion between the several

energy channels suggests that the electron 'injection front' extended as far

east as 0300 LT.

At 1205 UT, another substantial flux increase or injection took place.

This was largest and most evident in the higher (E ~ 100 keY) energy channels.
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This injection spike was also simultaneous in all energy ranges (i.e., without

energy dispersion) and this again allows the concl uat on that the inj ection

region extended as far eastward as 0300 LT•

. A third nux injection event (with some evidence of energy d~ispersion)

occurred at ~ 1208 UTe Note further that after ~ 1225 UT the drifting

high-energy electron POPUlation apparently moved aZimuthally around the earth

and once again passed over the spacecraft.

Given this observed electron behav ror , we now turn to the energetic

proton nux variations. In Figure 4, several representative low- and

mid-energy proton (ion) channels from ATS-6 are shown. The 18-20 keY channel

is from the U. of New Hampshire plasma experiment while the other four

channels (33-150 keY) are from the NOAAenergetic particle experiment.

Prior to 1200 ~T, the energetic protons in the range 15-150 keY exhibited

behavior very similar to that of the energetic electrons seen in Figure 3. A

pronounced nux dropout was seen after ~ 1135 UTI but at least for particle

energies up to many tens of keY the nux dropout was not total. This further

suggests passage of the spacecraft into a region of reduced, but nonzero.

flux. This again argues that the spacecraft entered the high-latitude plasma

sheet where the presubstorm particle nuxes were intermediate between the

outer trapping region and the tail lobe.

Following the dropout, (as with the electrons) a recovery characterized by

several complex nux variations was seen in the protons. Note, however. that

the lowest energy proton channels showed little ev idence of pronounced

injections of 'new' particles since the average intensity level was the same

both before and after the dropout. By contrast, the higher energy proton

channels (above ~ 50 keY) appeared to show a recovery to approximately

predropout fl ux val ues (1155-1200 UT) and then showed large fl ux increases at
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substorm onset, i.e. at 1200 UTe This compares well with the electron

injection morphology of Figure 3.

The high energy proton data acquired concurrently at 77-007 are shown in

"Figure 5. The upper panel shows that 1~5-3~0 keV protons also exhibited flux

-dropout-recovery sequence just as the electrons and low-energy protons did.

The recovery fluxes (1155-1200 UT) were a factor of ~ ~ higher than prior to

the dropout at 1130 UT. In the lower panel of Figure 5 it is seen that the

very high energy proton (E > O.~ MeV) fluxes were quite low before 1135 UT (j

< 1 cm-2_s-1_sr-1_keV-1) and were near background during the dropout period

(1135-1155 UT).

In Figure 5 it is seen that the injection features described above for

electrons and mid-energy protons were perhaps even more evident in the

high-energy protons measured at 77-007. Thus, the injection spikes commencing

at 1200 UT and ~ 1205 UT became progressively sharper and more distinct up to

at least several hundred keV.

One of the most striking aspects of the data in the lower panel of "Figure

5 is the appearance of the very regular, periodic proton drift-echo pulses

[cf. Belian et al., 197R and Baker et al., 1979]. As has been well-

documented in the literature, these high-energy proton pulses are injected

into the outer radiation zone at substorm onset and maintain their discrete

identity sufficiently long to drift aZimuthally around the earth many times.

In this case, it is seen in the 0.8-1.0 MeVchannel, for example, that at

least four 'echo' pulses were recorded. In a more detailed analysis section

below we will return to the information prOVided by the drift echo data.

Energetic Particle Behavior at 0700 LT

Figure 6 is the 0700 LT counterpart to Figure 1, i.e., it shows represent-

ative energetic electron channel measurements for the 1130-1300 UT period on

17
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29 July. 'Note that except for the lowest ene~gy channel, there was a gradual

nux decline between 1130 and v 1200 UT.Therewas ,however, no evidence for

the major flux dropout seen in the midnight sector (as revealed ,by 71-0011ATS

observ at.rcns) •

After'" 1205 UT there were substantial nux increases in all electron

energy channels. These increases were gradual in character with apparent

energy dispersion effects [Arnoldy and Chan, 196C)]. These observ.at fcna var-e

consistent with the electrons being injected over a broad front near local

midnight (actually extending ,asfar-east -as '" 0300 LT) andsubsequentl y

drifting eastward to the 76-059/GOES location.

Energetic proton data from spacecraft 1916-059 (0100 LT) corresponding to

those shown in Figure 5 are presented in Figure 1. In that figure, the upper
~ ,t

.panel summari zes the 145-340 keV flux variations while the lower panel

sumnarizes the variations of 'the very ene17get1c component (E > 0.4 MeV).

As was seen in Figure 6 for the electrons, the proton fluxes shown in

Figure 1 also exhibited a gradual flux decline prior ,to 1200 UT, but showed no

major fl ux dropout. The behavior of the proton'nuxes at 0700 LT after '"

1200 UT was highly energy dependent. Up 'to;J' 250keV, .the proton n uxes

appeared to recover gradually and indistinctly with some possible energy

dispersion. By contrast, the> 0.4 MeV.pr-ot.cn population exhibited a very

clear onset with considerable energy dispersion. As is eV,ident from the lower

panel of Figure 1, the high-energy proton 'behavior was of the clear drif~echo

character. Careful comparison of the details of shape and timing of the

pulses in Fig.ure 7wi,th those of Figure 5 shows two things:

(1) The pulse shapes at 03 and 01l:T·were remarkably similar in width and

anpl1 tude for any given energy channel ; and

(2) An identifiable drift-echo pulse :inany given channel at 01 LT

appeared slightly before the same pulse appeared at O~ LT.
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It is concluded that essentially all of the proton results seen at the

76-059/GOES location can be accounted for by an inj ection of protons near

midnight with a subsequent westward drift completely around the earth to the

07 LT position. The complex recovery behavior ·of 150-250keV protonn uxes

prior to ~ 1225 UT appears to have been primarily adiabatic and will be

discussed further below. The width of the proton injection regions around

local midnight are progressively broader at lower and lower energies.

Energetic Particle Behavior At 1~on LT

Figures 8 and 9 show the electron and proton n uxes, respectively,

measured at the location of GEOS-1. The data are shown in the form of stacked

energy spectra in each instance. In the case of both p'article species, the

:lowest energy channels show a gradual flux decrease between ~ 1130 and '1200

UT followed by a gradual recovery. Only in the higher energy channels (E> 80
~

keV) was the recovery very sharp or dramatic. The nux recoveries in both

particle species showed very clear energy dispersion with the recovery

occlrring first in the higher energy chann:els.This feature is consistent

with substorm injection of energetic particles (broadly) near midnight with

subsequent drift of the particles to the 1300.tT position.

Phase Space Density Variations

In the foregoing section, we have discussed pronounced flux increases in

terms of inj ections. That is. we have pr-esuned t hat the nux enhancements

actually corresponded to new or 'iresh' particles transported to, or

accelerated in the vicinity of, geostationary orbit. tn order to confirm this

supposition, we have evaluated the particle :distribution flmctions at constant

first adiabatic invariant [Schulz and Lanzer-ot tf , 1974).
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The phase spaoe density, or distribution funotion, of a partiole POPula

tion can be defined in terms of ai iabatio invariants and time:

2
f(~,J,t) = j/p (1)

Here, ~ is the first aUabatio invariant (magnetio manent), J is the seoond

i~variant, t is time, j is the direotional differential partiole flUX, and p

is the relativistio manentum. Taking j to be the equatorial perpendioular

fl ux and J ~ 0, the phase space density at oonstant first invariant is given

by

f(~ ,t) = j/2mo~B (2)

where mo is the partiole rest mass and B is the total equatorial magnetio

field streng th ,

As is evident from Eq. (2), the advantage of studying the phase density at

oonstant P is that adiabatio (magnetio field) variations are removed. Thus

true partiole density inoreases or deoreases are revealed and souroes or sinks

of partioles oan be identified. In partioular this analysis oan reveal

whether or not new partioles were inj eoted in the 1200 UT sub stonn on 29 Jul y.

Figure 10 shows exemplary spect.ra whioh were obtained at various times for

this event per-Lod , The panels on the left show speotra for the O~ LT

spaoeoraft grouping, while the panels on the right show similar data for the

07 LT grouping. The upper panel in either oase shows j for eleotrons, while

the lower panel s show j for protons.

As is ev 1dent from Figure 10, the data are distributed relatively

accurately according to a simple exponential spectrum. This is partioularl Y

true below'" 300 keY. The dashed line accanpanying each set of data is the

least-squares fit to the observed particle distribution where the fit is given

by
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l( ej =
-£IE o

( 2 )-,and has units of particles cm -s-sr-keV • Except in the highest proton

energy ranges after ~'220 UT (where drift-echo effects are dominant), the

spectral fits provide an excellent analytical representation of the observed

spectra. OUr procedure in the present analysis, therefore, has been to fit

(for each 1-min nux average) the observed energy spectrum to obtain l« t) and

Eo(t). Given these fits, we thus have j(E,t) to be used in Eq. (2).

The other required information for phase density calculation, is the total

magnetic field strength. In Figure l' we show the values of I'RIfor the 0300

and 0100 LT spacecraft locations. The largest variability, as might have been

expected, was seen·in the nighttime sector at the ATS-6 location. Because one

component (Y) of the ATS-6 magnetometer [McPherron et al., , 915J was

inoperative at the time of these measurements, the inferred field line

direction from electron anisotropy data at 11-001 was used to complement ATS

field data. In a CDAW-2algorithm procedure the two measured ATS-6 field

components (X and Z) and the field line direction from 11-001 were sufficient

+
to prov ide the total field vector, B, at ~0300 LT.

Combining the magnetic field data of Figure '1 with energy spectral data

for each minute between ~1130 and 1300 IJT gave us the desired phase space

densities at constant p. The ranges of ~-values selected for investigation

were chosen as follows. The mmfmim and maxtmtm kinetic energies of electron

and protons measured on any of the six observing spacecraft were first

considered. The minfmtm energy measured was Emi n ~ 10 keV whereas the max1mlJll

energy channel from which useful data were obtained was Emax ~ 1.0 MeV. The
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measured range 0 f B, s1mHarly considered, was Bioi' 100 y and B 01' 250 y.m n max

Thus, the ~ range was

(4 )

and with eome spectral extrapolations, a useful range of u-val ues in this case

was 01' 1-1000 MeV/gauss.

Figure 12 shows exanples of the phase space densities for electrons at u =

1, 10, and 100 MeV/G. The most eVident features in the upper panel

(77-007/ATS grouping) were the following:

(1) Even With removal of adiabatic effects, the nux dropout persists;

(2) The phase space densities at constant ~ were identical before the

dropout (01' 1130 un and after the dropout (01' 11';5 un;

(3) True phase space density increases were observed for all magnetic

moments (energies) after 1200 UTe

The points above, therefore, demonstrate that in a broad sector near local

midnight there was a large scale boundary motion which took the observing

spacecraft into a low density region (i.e., across a spatial discontinuity).

This thinning-like event clearly preceded the substorm onset. Prior to the

.sub storm onset the midnight-sector spacecraft also returned to a predropout

density configuration for several minutes <1155-1200 UT); this, therefore,

clearly was not an injection event. At 01' 1200 UT a clear inj ection of new or

'fresh' particles occurred for all magnetic moments.

The lower panel of Figure 12 shows the electron density variations at 07
i.

LT. Comparison of these results with Figure 6 shows that at this lccation

essentially all nux variations before 01' 1205 UT were ad iabatic. Viewing the

phase space densities in this region of the magnetosphere shows essentially
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flat profiles prior to 1205, a density dip at ~ 1205, and energy-dispersed

density increases after ~ 1206 UT, consistent with injection and drift from

the west.

Proton phase space density variations are shown in Figure 13"for u = 1,

-50, and 300 MeV/G. Compared to the electron data of Figure 12, much more

variability was seen in the proton density profiles. This in part represents

statistical variations in the measured fluxes which translate into variations

of K(t) and Eo(t) in Eq. (3). Nonetheless, the following features seem to be

established by the data:

(1) At 03 LT, there appeared to be a phase space density increase for

very low u-v al ues between ~ 1n5 and 1150 UT while at higher p-val ues

a clear dropout was seen;

(2) Substantial injections of new particles were seen at O~ LT for p ~ 10

MeVIGbut little clear evidence exists for injection of new protons

with low p-val ues;

(3) At 01 LT, there may have been some significant dips and peaks before

~ 1210 UT, particularly at high u-v at ues.but, the most substantial

effects occurred after ~ 1210 UT as protons azimuthally drifted

westward from midnight to the 76-059/GDES location.

Gradient Anisotropy Tnformation

By examining flux and phase space density variations (particularly at the

03 LT position), it is established that new particles(up to several hundred

MeV/G) appeared at synchronous orbit between ". 1~OO and 1210 UT on 29 July. A

remaining question about these particles is where the particles came from.

The best available tool for examining the question of the general source

reg ion for the inj ected hot plasma and energetic particles is prov iderl by ion

gradient measurements. Because of their large gyroradii, 10-1000 keV protons
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can provide good information about density gradients that exist within a

region of strong radial intensity variations or within an injected cloud of

plasma and energetic particles [Fritz and Williams, 1979; Williams et·a1.,

1979; Palmer et a1., 1976; Walker et a1., 1976].

_ The spacecraft 77-007 and 76-059 are particularly well suited for

examining ion grad ient anisotropies. The reason for this is that these

spacecraft spin about an axis that points continually toward the center of

earth and proton n uxes are measured by sensors with view directions that

point radially outward perpendicular to the spin axis. Thus, a rather

comp1ete scan of ion n uxes is obtained on each ten-second spacecraft rotation

in both the east-west sense and in the north-south sense. Given the fact that

100-200 keY protons have typical gyrorad ii of several hundred km (", 0.1 RE) at

synchronous orbit, one can probe regions far removed from the spacecraft by

the grad ient anisotropy technique.

The gradient parameters are computed as follows:

AEW= (E - W)/(E + W)

where E is the proton nux (Ep > 145 keY) measured in the sector with the

detector looking eastward and W is the proton nux measured looking westward.

Similarly,

ANS = (N - S)/(N + S)

where N is the north-looking measured nux and S is the south-looking measured

nux. Given the direction of the magnetic field in the vicinity of the

satellites, and using the sense of gyration of protons, AEW> 0 generally

1mplies a higher density (n ux) inside the SIC, whereas AEW< 0 implies a

higher density outside the SIC. For a stretched (taillike) magnetic field

orientation (as distinguished from a completely dipolar field) one also

obtains scme secondary information from AEW• S1milar1y, the primary

information from ANS concerns higher nux above the 51 C (ANS > 0) or below the
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SI C (ANS < 0). The implications of various kind s of grad ient anisotropies are

summarized in Table 1.

We only present ~ and ~S for the 03 LT position here since this was the

primary region into which the direct particle injection was Observed. In

order to give a sense of the magnetic field orientation at that location,

Figure 14 shows the magnetic field line meridional tilt, BB. The solid line,

for reference, is the field tilt at 0700 LT, W1ile the dashed line is the

value of BB at 0300 LT. Note that in ·a dipole magnetic field, BB w:>uld be the

magnetic dip angle (BB = tan- 1(2tanA)). For the 76-059/GOES space~raft this

means the dipolar value w:>uld be ~ 25° while for 77-007/ATSthe dipolar value

would be ~ 10°. An extreme tail-like (nondipolar) magnetic configuration, with

the field lines lying nearly parallel to the magnetic equatorial plane, is

seen at 03 LT during the nux dropout. This again seems to reinforce our

interpretation that a large-scale boundary motion tOok place Ouring the

dropout period. It also strongly suggests that the spacecraft entered the

high-latitude plasma sheet where very taillike field w:>uld be expected. We

note that the appearance of this taillike field topology is a common precursor

to substorm onset (McPherron, 1970, Baker __et.al., 1978J and apparently

indicates an ex treme stressing of the outer magnetosphere prior to the

substorm energy release at 1200 UT.

Figure 15 shows the AEW (upper panel) and ANS (lower panel) values

calculated from the 77-007 energetic proton data (E > 145 keV). Looking at

AEWand ANS together, the following sequence of events is seen. Between 1155

and "'1200, i.e. during the recovery from the nux dropout ,A EWwas strongly

positive. This suggests that the higher particle density was inside the

spacecraft. ANS during this sane period was, for the most part, strongly

negative, suggesting a high particle nux below the spacecraft. Since Figure

14 showed the field to be very taillike during this period, our contention of
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Table 1. Proton Gradient Anisotropy Information

Parameter Val ue High Density Location

(Primary Infonnation)

High Density Location

(Secondary Infonnation)

A
EW

> 0 Inside SIC ( Below-East)

AEW< 0 Outside SIC ( Above-West)

ANS > 0 Above SIC ( Inside-East)

ANS < 0 Below SIC (Outside-West)
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a boundary motion during the dropout with the high nux reg ten moving

earthward and equatorward ,'is fully borne out. As the n uxes recover, the

spacecraft were enveloped from inside and from below.

At 1200 UT, A
EW

went strongly.negative. This period corresponded

precisely to the first energetic particle and hot plasma injection into

synchronous orbit. The character of A
EW

showed that the injected particles

cane from outside the spacecraft location. .For this sane period ANS was

strongly positive, showing that the particles also generally arrived from above

the SI C. The conclusion is therefore unambiguous in this case, viz. the

inj ected particles arrive at 6.6 RE from the outside and from above. This

very likel y means that these particles filled the hig~lati tude plasma sheet

and that these filled field lines then collapsed inward over the spacecraft •

After the leading edge of the particle injection passed over the

spacecraft, AEWwent strongly positive and ANS was weakly negative (1202-1205

UT). This indicates that the highest particle density, after the injection,

I\~ t generally inside 6.6 RE•

A second particle inj ection occurred (cf. Figures 3 and 5) at '" 1205 UT.

Figure 15 shows again that these particles cane from outside 6.6 RE since AEW
+

was strongly negative. Note in Figure 14 that B was more nearly dipolar by

1205 UT. Therefore, in this case ANS became only weakly positive during the

injection. It is concluded with considerable certainty that the 1205 UT

inj ection of energetic particles and hot .pl.asm a , as was a1 so true for the 1200

UT case, cane from outside of synchronous orbit.

The apparent 1208 UT inj ection of particles (see Figures 3 and 5) seemed

to show energy dispersion effects, consistent with the interpretation that the

injection front did not directly extend as far eastward as 0300 LT. Indeed, a

SUbstantial gradient anisotropy signature of this injection is not seen in

Figure 15.
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A composite plot of the> 145 keV proton nux and the computed value of

AEW is shown in Figure 16. The recovery sequence between 1155 and 1200 UT,

the nux inj ection at 1200 UT, and the nux inj ection beg inning at 1205 UT are

·all particularly ev ident in that figure. Minor (but statistically

~ignificant) changes in Arwbetween 1212 and 1225 UT are also evident as

sUbsequent small pulses of protons drift past the spacecraft, approaching from

the east (Arw> 0) and reced ing to the west (Arw< 0).

Drift-Echo Timing Information

Proton drift-echo events such as shown above in Figures I:) and 7 can be

used to infer times and locations of the 'centroid s' of particle inj ections

[Belian et a1., 1918 J. As illustrated by the detailed 10-s nux averages in

Figure 11, the pulses of drifting protons show evidence of basically a triple

structure in each pulse. 'these more detailed (10-s) nux values have been

used to carefull y detenn ine the time of the 'peak 1', 'peak 2' and 'peak 3'

relative nux maxime for the 0.4-0.5, 0.5-0.6, 0.6-0.R, and 0.8-1.0 MeV

channels at the 0700 and 0300 LT positions. The local time of the observed

peak pulses (modulo 360°) was then considered versus the universal time of

each peak pulse. Two drift-echo pulses could be clearly discerned in each of

the two lower energy ranges, while three pulse echoes were seen at the two

higher energies.

Table 2 summarizes the LT and UT data points inferred from· the high

resolution drift-echo data. It should be noted that discerning the individual

relative 'peaks' was uncer-t.a rn when the pul ses overlap. On the other hand,

sane of the peak times, as might even be evident from the 1-m1n averages of

Fig ures 5 and 1, are qui t.e distinct and obvious. Other of the peak times had

to be judged from relatively subtle inflections in the nux profiles.

Overall, the data points in Table 2 have associated UT uncertainties of

approx imatel y !. 1 min.
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Table 2. Proton Drift-Echo Pulse Time

Peak Energy
(HeV)

SIC 76-059 (UT) SIC 77-007 (UT)

#1

112

0.4-0.5 1212.0 1228.0

0.5-0.6 1211.0 1226.0

0.6-0.8 1209.5 1221.5 1233.5

0.8-1.0 1209.0 1219.5 1232.0

0.4-0.5 1217.2 1233.5

0.4-0.6 1216.~ 1231.0

0.6-0.8 1214.5 1225.5 1237.0

•0.8-1.0 1213.0 1223.0 1235.0

1215.0 1231.0

1214.0 1228.0

1211.5 1222.5 1236.0

1210.4 1221.5 1233.5

1220.5 1236.5

1219.0 1233.0

1216.0 1227.0 1238.5

1214.5 1224.5 1235.0

13 0.4-0.5 1220.5 1237.1 1223.5 12:19.5

0.5-0.6 1219.5 1235.0 1222.5 1237.0

0.6-0.8 1217.0 1228.5 1239.5 1218.5 1229.9 1241.0

0.8,:",1.0 1216.0 1225.5 1236.0 1217.6 1227.0 1237.0

•Point not used in least-squares fit.
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Results for the several selected 76-059 and 77-007 energy channels are

plotted in Figure 18. In each panel we separately plot data for each of the

peak 1 through peak 3 pulses. The parameter. is equivalent to LT (in

degrees) except that it runs clockwise from midnight (in the same sense as

proton drifts) rather than counterclockwise. For each energy channel a

least-squares fit through the data points is shown.

As seen by Figure 18, it is possible to arrive at an internally consistent

interpretation of all of the high-energy proton data, at both 0700 LT and 0300

LT. This interpretation is that there were three high-energy proton

injections centered in the post-midnight region and these injections each

exhibited several echoes that were indiVidually seen at both the 0700 and 0300

local tim es • The uni ver sal tim es of the inj ecti ons infer red from Fig ur e 18

are: peak 1 eventa , II' 1200 ur; peak 2 events, II' 1205 ur; and peak 3 events, II'

1208 UT.

Adiabatic Modeling Results

A major underlying thane of our analysis has been that sub storm energetic

particles are injected in the nightside magnetosphere and that these particles

subsequently are trapped and drift to positions removed from the injection

site. MUchof the foregoing analysis has been carried out within this

framework and, generally, supports such an interpretation. However, in order

to model the injection and drift more quantitatively the time-dependent

convection model of Smith et ale [1979] was used.

This model follows the motions of charged particles under the influence of

the gecmagnetic and electric fields. A Vollan9-Stern type of convection

electric field (E = -v ~ and ~ = AR2 sin .) and a dipole magnetic field are

assumed. Here t is the electric potential, • is a local time parameter

measured from local midnight. and R is geocentric rad ial distance. As shown
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illustrates the sic locations and the centroids of
proton injection.
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by Smith et ale [1979J, the time-variation in the electric field may be

characterized by the geomagnetic index Kp which is then introduced via the

paraneter A.

-
Although this large-scale convection model has been qui t.e successful in

-predicting the behavior of low-energy charged particles during storms [c.f.

Smith et a1., 1979J. a goal of the CDAW-2effort was to test the model for

higher energy particle injections. Figure 19 ill ustrates several of the

results for "high-energy" trajectory simulations. In each case, protons '1

with-p = 1.0 keV/y (100 MeV/G) and pitch angle = 90° were injected at a

botzid ar y of 10 RE• For 1I = 100MeV/G, the kinetic energy of the protons at

L=6.6 would be about 100 keV. In Figure 19 one-hour increments of the

traj ectories between 1200 and 1600 UT on 29 December are displayed. In each

instance the GEOS-l orbit is shown for reference.

Case A shows the nominal model cal culations for assumed proton inj ections

at 2300 LT through 0300 LT. As is evident from the figure, the normal

convection model described in the preceding paragraph gives rise to untrapped

particle drift trajectories which typically encounter the dayside boundary

near local noon. In Figure 19B. the Volland-Stern convection field was

decreased to one-fourth strength in the radial range 6-10R E and 100o-l~OO LT.

This change causes the particles to be "pulled" back on the dayside and the

relatively high-energy protons injected at 0200-0300LT are thereby trapped.

(Note, however. that the boundary between the decreased field and the normal

model field in case B is non-physical).

Magnetic field observations in the outer magnetosphere during the substorm

period under investigation indicated a gradient (liB/B) value much less than

the normal, nonstorm value. In case C of Figure 19. lIBIB was reduced to

one-half its normal value to be more consistent with observations. This

45



..

...

..

..•

..

II

..

II

'A'

'e'
.._-..........._-.._.-

..

II

...

"

...

"

..

II

..

II

"

..

..

'B'

'0'

Fig. 19. Several time-dependent convection model trajectory plots
(as described in the text) for high-energy protons on
July 29, 1977.



feature increased the trapping efficiency somewhat, but most trajectories from

the midnight sector still remain~ untrapped.

Finally, in case D the field gradient was maintained as in case C but the

convection electric field was increased by a factor of 2 in the r~ial range

7-l0R E and between 2000 LT and 0400 LT. This change drove particles more

deeply into magnetosphere initially and thereby increased the trapping.

(Again, the boundary between the increased and normal field is unphysical.)

In summary. the time-dependent convection model can produce trapped drift

trajectories for the higher energy proton component ()100 keV). The changes
~

to the normal model in order to accomplish a large trapping ratio (such as

changing the magnetic field gradient) appear quite consistent with observation

and. thus. seem to provide reasonable physical improvements to the model. In

most cases. it is seen that only high-energy protons injected near 0200-0300

LT are durably trapped. It is interesting that our proton drift-echo analyses

also tend to show injection positions near 0200 LT for the observed proton

pulses in this substorm case (c.f. Figure 18).
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III. DISCUSSIONANDSUMMARY

In this paper we have used energetic particle and magnetic field data from

six satellites near geostationary orbit to study an intense substorm period on

July 29, 1977. Using these several spacecraft, well-distributed in local

time, has given us a perspective- on global sub storm phenomenology not

previously available. Several different analysis techniques (of which some

are unique to energetic particles) were applied to the data sets and a

self-consistent picture of the event period has emerged.

The following list summarizes our observational results for the 1200 UT

sub storm at the three local times sampled:

Observations at 0300 LT

Taillike m~net1'c field topology was seen prior to sub sterm onset.

Large-scale boundary motion occurred as indicated by the nux

dropout.

Dropout boundary moticn was to the inside and below observing

spacecraft .

Observing satellites remained in a finite nux region (h1g~latitude

pl.aana sheet).

In recover y from the dropout, the spacecraft were enveloped from

below and inside.

Two clear particle injections occurred (1200 and 120S UT) with

injection fronts extending as far east as O~OO UT.

Injected particles clearly came from outside and above ~VC.

Hig~energy proton drift-echoes were seen (injected at ~ 0100-0200

LT) •
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Observations at 0700 LT

Weak nux decline was observed.

Only mildly taillike magnetic field stretching was seen.

Energy-dispersed, inj ected electron population was observed:

1205-1220 UT,

Ini tial proton inj ect t orr . spikes ,were only weakl y manifested.

Proton drift-echo peaks were clearly seen (injected ~ 0100-0200 LT).

Observations at 1300 LT

Energy-dispersed, mj ect ed vpr-ot ons and electrons (E > 50 keV) were
~

observed: 1205-1220 UT.

Most low-energy (E < 50 keV) particle effects (1130-1300 UT) were
~

ad iabatic.

Based on the results presented her e jvsome very firm 'conclusions regarding

sub storm phenan enology can be stated and these resul ts can be extrapolated

slightl Y to speculate on the missing pieces. First, there seems to be

considerable evidence that the magnetosphere ,went through a period of

substantial energy" storage prior to the sudden energy release at ~ 1200 UT

[HcPherroo, 1970. Baker et, al.. 1978]. 'An attractive, and consistent

interpretation is that this energy storage'manifested itself as a taillike

change of the magnetic topology at6; 6" HE 'before the substorm which in turn

caused the observed fl ux dropout • The .dev ef optng magnetic stress seemed' to

relax slightly (1155-1200UT) and ,then·at1200 UTitwas suddenly relieved in

the midnight sector simultaneous with~.the'injectionof the first pulse of hot

plasma and energetic particles.

Our results also show that the injected substorm particles came from

outside (and above) the spacecraft at ~ 0300 LT. With the present
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infonn ation we are \J'1ab1e to tell fran how far outside 6.6 RE the particles

originated. Given the very stretched magnetic field topology that existed

during the injection process, it is qUite possible that the field lines

carrying the injected particles actually extended deep into the p1asna sheet

(i.e. beyond 10 RE). One point that is clear is that there was only a very

low level of energetic protons with E > 0.3 MeVin the outer radiation zone

before the substonn onset, and yet a large nux of such particles clearly

~ppeared at geostationary orbit at substorm onset. Adiabatic modeling shows

that trapping can be simulated by convection of high-energy particles from

beyond lORE.

Several recent papers have discussed the outer zone plasma injection

process in tenns of convection electric field s [cf. Kaye and Kive1sal, 1979

and references therein]. These papers show that inward convection of plasma

sheet particles associated with large-scale substorm electric fields can lead

to substantial particle acceleration (as, indeed, was the case in the modeling

represented in Figure 19). In this regard, however, Kive1son [1980] has shown

for the 1200 lIT event discussed in this paper that acceleration of particles

up to ~1 MeVcannot be done with the usual solar-wind imposed convection

electric field.

Kivelson (1980) has argued that the substonn induction electric field may

play an imPortant role in the energization of the high-energy particles seen

in this event. Using

,.

liB
II t ~ 100 y/5 min (see Fig. 1n
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...
Kivel son est1mates (using V x E = _ as) that

at

where lI4l is the chang e of electric potential and t is the scale of the reg ion

in which B was collapsing. Assuming ~4l is of the order of 1 MV and lIB/lIt ~ 20

r/min, gives t ~ 9 RE• Such a scale size for the region ,of near-tail collapse

associated with the sub storm seems reasonable and, thus, suggests that

induction ,field s could account for the observed particles as geostationary

orbit.

Based on large numbers of other high-energy proton events observed at

synchronous orbit and in the plasma sheet"Baker et a1. [1979J argued in

favor of the ampor-t.ance of ind uction electric fields. They showed from the

tim ing and duration of energetic protonevent·s that particles with en erg ies 0 f

~ 1 MeV cannot be produced by a small inward radial convection, say from 8-10

RE; large impul sive acceleration must be 'responsible for their prod uction

[e.g. Pellinen and Heikkila, 1978]. The high-energy proton results shown for

this event are, therefore ,consistent with :the plasna sheet energi zation model

presented by Baker et al. [19791.

In surrmary , it seens ev ident that the multiple-spacecraft observational

approach used here isa powerful one. Since the geostationary satellites that

we have used in this paper have acquired literally. years of concurrent data,

we look forward to many future joint studies of the effects of geomagnetic

storms and substorms on magnetospheric energetic particle popUlations.
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LABORATORYOPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting exper

imental and theoretical investigations necessary for the evaluation and applica

tion of scientific advances to new military space systems. Versatility and

flexibility have been developed to a high degree by the laboratory personnel in

dealing with the many problems encountered in the nation's rapidly developing

space systems. Expertise in the latest scientific developments is vital to the

accomplishment of tasks related to these problems. The laboratories that con

tribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry aerodynamics and heat
transfer, propulsion chemistry and fluid mechanics, structural mechanics, flight
dynamics; high-temperature thermomechanics, gas kinetics and radiation; research
in environmental chemistry and contamination; cw and pulsed chemical laser
development including chemical kinetics, spectroscopy, optical resonstors and
beam pointing, atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo
spheric optics, light scattering, state-specific chemical reactions and radis
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
battery electrochemistry, space vacuum and radiation effects on materiala, lu
brication and surface phenomena, thermionic emission, photosensitive materials
and detectors, atomic frequency standards, and bioenvironmental research and
monitoring.

Electronics Research Laboratory: Microelectronics, GaAs low-noise and
power devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser communications, lidar, and electro-optics;
communication sciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter-wave and microwave technology.

Information Sciences Research Office: Program verification, program trans
lation, performance-sensitive system design, distributed architectures for
spaceborne computers, fault-tolerant computer systems, artificial intelligence,
and microelectronics applications.

Materials Sciences Laboratory: Development of new materials: metal matrix
composites, polymers, and new forms of carbon; component failure analysis and
reliability; fracture mechanics and stress corrosion; evaluation of materials in
space environment; materials performance in space transportation systems; anal
ysis of systems vulnerability and survivability in enemy-induced environments.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation
from the atmosphere, density and composition of the upper atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation of
plaama waves in the magnetosphere; aolar physics, infrared astronomy; the
effecta of nuclear explosions, magnetic storms, and solar activity on the
earth's atmosphere, ionosphere, and magnetosphere; the effects of optical,
electromagnetic, and particulate radiations in space on apace systems.
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