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CELSS-RELATED 
CHEMICAL MEASUREMENTS RESEARCH AT GEORGIA TECH: 

A Summary of activities between January 1, 1981, and March 1, 1982. 

1.0 Introduction 

During the past eighteen months our efforts have focused on four 

.... 
areas: 

1. Preparation and analysis of standard materials for use by CELSS 

researchers, 

2. Analysis of samples from Professor Modell's wet oxidation experi-

ments, 

3. Development of ion chromatographic techniques utilizing conven-

tional HPLC equipment, and 

4. The investigation of techniques for interfacing an IC (ion 

chromatograph) with an ICPOES (inductively coupled plasma optical 

emission spectrometer). 

We also performed limited elemental analyses on a series of samples from 

Dr. Bruce Onisco' s (formerly of NASA Ames Research Center) batch wet-

oxidation experiments. 

During this period Professor Richard Browner of the School of 

Chemistry at Georgia Tech became involved in CELSS-related research. 

Professor Browner is an analytical chemist with an international reputa-

tion in atomic spectroscopy. 

Our work involving elemental analysis has been seriously hampered by 

problems with our ICPOES system. The original instrument (model ICP 5000 

manufactured by the Perkin-Elm<!r Corporation) was an early production 

integrated sequential ICPOES and AAS (atomic absorption spectrometer) 
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system~ The' advantages' o£'~ tliis' integrated approach' are substantial 

incitiding the "-ability ~to analyze' for trace " quantities of all but four or 

fi~e of' the' known' elements and' the, availability of both emission and 

ab'sor~pdori ' spectrometric mddes~ in!' the same instrument. Unfortunately, a 

series of hardware problems has prevented us from fully investigating and 

capitalizing on these ca~abilitie~. Shortly after the instrument was 

delivered, a problem-developed 'in the RF power supply for the plasma torch. 

Ultimately, the' power' supply and torch assembly had to be returned to 

Norwaik and'replaced'with new' units. The'monochromator assembly developed 

a problem in the wavelength drive subsystem which could not be repaired in 

the field,' and Perkin-Elmer" elected to replace the monochromator with a new 

unit' incorporating improvements in the wavelength drive assembly. Signi­

ficant' problems were also experienced with the computer based instrument 

control and data system and with the graphite furnace power supply. The 

rep'lacememt monochrouuitor system exhibited intermittant noise in the 

analyte sIgn'al and calibration drift, consequently. Perkin-Elmer has 

elected to rep1ace' the e'ntire system with a model rcp 5500. The problems 

we have expeifenced with this new type of instrumentation have been a 

sou'rc'e of great frustradon, slowing our research and making the acquisi-

Hon of high-quality analyticaf data very tedious. Despite these 

frustrations l-ie have .1ccomplislled our major goals, and we hope to soon have 

a' fully f~mctioriaI rCPOES. 

2.0 P~epatation' ,and: Analysis _of. Standard Materials for CELSS Researchers 

Sta'ndard materials prepared' and/or analyzed during this period 

in'cluaed :' 

1. free ie-dried hum'an feces 

2.- freeze..;;cii-ied flliithi n' urine 

., 
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3 freeze-dried inedible food preparation waste; Batch 1 

4. freeze-dried inedible food preparation waste; Batch 2 

5. Serafil (young rye) 

Small batches of freeze-dried feces and urine were prepared and dis­

tributed prior to this period. Information about these materials can be 

found in our last progress report on NASA grant NSG 2403. This report 

deals with the preparation of the final batches of these materials. 

The standard materials were analyzed for B, C, Ca, Cu, Fe, H, K, Mg, 

Mn, N, Na, S, Si, V, and Zn. The analyses for B, Ca, Cu, Fe, K, Mg, Mn, Na, 

Si, V and Zn were carried out by ICPOES while C, R, and N were determined 

using a Perkin-Elmer Model 240 CRN Analyzer, and S was determined using a 

modified Dumas method. 

Analysis by ICPOES requires that the sample be in solution and free of 

suspended solids. An extensive literature search was carried out to find 

an adequate method to digest the solid standard materials. The most 

promising wet ashing techiques were tried, including the nitric acid­

hydrogen peroxide technique outlined in our last progress report on NSG 

2403. All of these techniques posed two serious problems for our applica­

tions: the feces, Serafil, and food preparation wastes either did not 

digest completely or formed a fine white precipitate upon dilution to final 

volume and all digestates were strongly acidic, requiring at minimum a ten 

to one dilution to bring the concentration of acid into a range acceptable 

for use in our instrumentation. 

In hopes of overcoming these problems we evaluated a simple dry ashing 

technique consisting of heating from 100 mg to 1 g of sample contained in a 

covered porcelain crucible to SOOoC in a muffle furnace and holding at this 

temperature for four hours. We hoped this technique would produce complete 
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ashingwithout significant analyteloss. Table 1 shows the results of our 

analyses of NBS "orchard" and "spinach" leaves ashed using this technique. 

With the exceptions of K.and Cu the results agree to within the uncertain-

.ties in the NBS certified values;, We strongly suspect that the. problem 

with the K results is instrumental and not a result of the ashing process. 

h I. h· Ot ers uSl.ng t l.S technique have reported copper contamination from 

porcelain crucibles, and this conclusion appears to be supported by our 

results. 

The dry ashing technique produced particle free solutions (the resi-

due was taken up in 5% HN0
3

) for all of the standard materials except 

Serafi1. Serafil left a fine white residue which did not dissolve. We 

suspect this solid is Si02 • 

Since this technique provided acceptable recoveries for most of the 

elements of interest and was successful in ashing the matrices involved, it 

was incorporated into the sample preparation protocol of the analyses 

which follow. 

2.1 Freeze-Dried Human Feces 

Working under a cooperative agreement, the Human Nutritional Research 

Laboratory of the U. S. Department of Agriculture, located at Grand Forks, 

North Dakota, collected and freeze-dried feces and urine samples for us. 

These samples were collected during transitional periods when the diets of 

their volunteer subjects were being modified. 

1 Zeitlin, H. et a1., Anal. Chetn., 30, 1284 (1958) 
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Table 1: Results of analyses of NBS standard reference 
materials following dry ashing. 

OBSERVED CERTIFIED 
NBS STANDARD CONCENTRATION CONCENTRATION PERCENT 

REFERENCE MATERIAL ELEMENT llg/g llg/g ERROR 

SRM 1571 B 31±7 33±3 -6 

"Orchard Leaves" Ca 19,000±2,000 20,900±300 -9 

Cu 26±9 l2±1 +120 

Fe 270±30 260±10 4 

K 11,000±2,000 14,700±300 -2~ 

Mg 5,500±500 6,200±200 -11 

MIl 89±11 91±4 -2 

Zn 25±4 25±3 0 

SRM 1570 B 27±4 30* -10 

"Spinach Leaves" Ca 14,000±1,000 13,500±300 +4 

Cu 33±3 12±2 +175 

Fe 520±50 550±20 -5 

K 32,000±3,000 35,600±300 -10 

MIl 180±20 165±6 +9 

Zn 51±5 50±2 +2 

* not certified by NBS 
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The particle. size distribution of the· feces as received was such that 

a-very large aliquot was required to obtain a representative sample. Since 

some CELSS researchers' utilize· samples. on· the order of a few. hundreds of 

milligrams, it was necessary to significantly reduce particle sizes and to 

insure adequate mixing of the entire batch. This was achieved by grinding 

100-g lots of the feces in a Waring commercial blender, sieving through a 

20-mesh grid, combining all lots into a large polyethylene bag and rrshak-

ing" to produce uniform mixing. The homogenized batch was divided into 

100-g samples and packaged 1n tight-sealing, wide-mouth polyethylene 

bottles. All of these operations were carried out in an externally sup-

ported glove bag setup in a properly functioning laboratory fume hood. - The 

glove bag was supplied with dry compressed air to minimize moisture absorp-

tion. It was necessary to locate the glove bag in a fume hood to prevent 

escape of fecal- particulate into the laboratory when the glove bag seal. ,.,as 

broken. As an added precaution personnel working in the hood always wore a 

surgical-type dust mask. A 0.5% NaOCl solution was used to disinfect all 

surfaces, containers, etc. contaminated with feces. 

A total of four samples were taken from the master batch, dry ashed, 

taken up into 5% HN03 , and analyzed by ICPOES. The resul ts of these 

analyses as well as those for C, Hand N are given in Table 2. Chloride ion 

content was determined using a Corning ion specific electrode. The 

chloride value reported in Table 2 was obtained using the method of stan-

dard additions to reduce matrix effects. 

2.2 Freeze-Dried Human Urine 

The USDA Human Nutritional Research Laboratory collected and freeze-

dried the urine excreted by the experimental group during the period that 

our fecal material was collected. The urine as received also required 

-6-
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Table 2: Elemental composition of the CELSS standard 
material "feces." 

ELEMENT AVERAGE COMPOSITION 

Mg 6,600±600 

Ca 25,OOO±3,OOO 

Na l8,OOO±l,OOO 

K 28,OOO±4,OOO 

Zn 270±40 

Cu 40 estimate 

Mn l70±l4 

V 6 estimate 

Si 400±40 

B lS±l 

Fe 430 estimate 

C 41.92% 

H 6.59% 

N 8.26% 

C1- 2.1% 

-7-
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grinding for particle size reduction and careful mixing. All operations on 

the urine sample had to be carried out in the dry atmosphere of the glove 

bag because of the hygroscopic nature of the material. Three samples were 

taken from the master batch and prepared for analysis following the pro­

tocol used for the feces. The results are given in Table 3. Chloride ion 

content was determined using a Corning ion specific electrode. The 

chloride value report in Table 3 was obtained using the method of standard 

additions to reduce matrix effects. 

2.3 Inedible Food Preparation Waste 

Professor Marcus Karel of Food Sciences at NIT prepared two batches of 

a model inedible food preparation waste. Our last progress report on NSr. 

2403 contains a section contributed by Professor Karel characterizing this 

material. Grinding and mixing was not necessary. Three samples were taken 

from each batch arid analyzed. The results are given in Tables 4 and 5. 

2.4 Serafil 

Professor Michael Shuler of Chemical Engineering at Cornell obtained 

a large batch of Serafil, a commercial material prepared by milling young 

rye plants. The material was adequately ground as received. The individ­

ual lots were combined into a master batch and repacked into 100-g 

containers. six samples of Serafil were taken for analysis, and the 

results are given in Table 6. 

3.0 Analysis of Samples from MIT Wet-Oxidation Experiments 

Table 7 contains our resu1ts from the aniaysis of samples from MIT. A 

discussion df these results wiii be l.i1c1uded in the next report on NSG 

2403. 
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Table 3: Elemental composition of the CELSS standard 
material "urine." 

ELEMENT AVERAGE CONCENTRATION (~g/g) 

Mg 2,100±200 

Ca 4,500±200 

Na 68,000±6,000 

K 42,000±5,000 

Zn l3±4 

Cu 19±4 

Mn ND 

Fe 7±3 

V 4±2 

Si 150 estimate 

B l4±3 

C 17.58% 

H 4.93% 

N 21.69% 

S 1.80% 

cr 1.6% 

-9-



Table 4: Elemental composition of,CELSS standard 
·reference material "Food Preparation 
Waste 1I1~" 

ELEMENT AVERAGE CONCENTRATION (~g/g) 

Mg 4,600±200 

,Ca 19,OOO±l,OOO 

Na 710 estimate 

K 7,400±600 

Zn 78±2O 

Cu 31 estimate 

Mn 170±20 

Fe 150±15 

V 6 estimate 

Si 1,100±300 

B 13±2 

C 43.93% 

H 6.34% 

N 2.40% 

-10-



.. 

! 

Table 5: Elemental composition of CELSS standard 
reference material "Food Preparation 
Waste 112." 

ELEMENT AVERAGE CONCENTRATION 

Mg 4,SOO±300 

Ca 15,OOO±600 

Na 1,000 estimate 

K 8,600±1,000 

Zn 77±14 

Cu 26 estimate 

Mn 160±16 

Fe 130 estimate 

V 5 estimate 

Si 660 estimate 

B 10±2 

C 43.55% 

H 6.45% 

N 2.S7% 

-11-
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Table 6: ;E1ementa1 composition of CELSS standard 
material· "Serafi1." 

ELEMENT AVERAGE.COMPOSITION (~g/g) 

Mg 1,100±200 

Ca 3~900±500 

Na 1,300±400 

K 41,000±4,000 

Zn 29±6 

Cu 13±4 

Mn 84±9 

V 3 estimate 

Fe 460 estimate 

Si did not digest 

B 8 estimate 

C 40.63% 

H 5.57% 

N 4.21% 

S 0.11% 
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SAMPLE ID 

Average Detection 
Limits 

9-22 116 
(filtered) 

9-22 ii8 
(fil tered) 

9-24 fft! 
(filtered) 

I 
l-' 

9-24 1;4 w 
I 

(filtered) 

9-24 f#5 
(filtered) 

9-24 ji6 
(fil tered) 

9-24 ,17 
(fil tered) 

10-19 iF2 
(fil tered) 

10-19 113 
(fil tered) 

10-19 #4 
(filtered) 

"'- j .. , 

Table 7: Composition of MIT wet-oxidation samples. The concentrations 
are in ~g/ml unless otherwise indicated. 

Ca Mg Mn P K Fe Ni 

0.0021 0.036 0.0022 0.015 0.61 0.012 0.056 

0.48 2.3 0.018 6.3 13.5 <.0l7 

0.45 2.9 0.019 10.0 15.8 <.0l7 

0.21 0.18 0.008 6.7 2.0 <.0l7 

0.19 <.036 <.002 3.1 62.0 <.017 

0.12 0.36 0.004 8.8 78.0 <.017 

0.17 0.41 0.005 14 86 <: .017 

0.088 0.27 0.004 19 105 < .017 

<1.0 0.62 <.002 3.1 74 <: .017 

< 1. 0 0.45 < .002 2.4 81 < .017 

<1.0 0.26 <.002 0.88 90 < .017 

-Cr Cl 

0.013 

360 

500 

-<0.1 

57 

110 

170 

240 

120 

180 

210 



Table 7 (continued) 

-SAMpr.E ID Ca Mg Hn P 1< Fe Ni Cr Cl 

10-19 112 <1.0 9.5~ 0.035 3.3 47 0.22 0.18 
Suspe~ded Solids 
Dige~ted 
10-19 ii3 <1.0 0.38. 0.022 . , . 3.0 55 0.22 0.088 
Suspe~ded Sol~ds 
Digested 
10...,19 i14 <1.0 0.27 0.028 2.1 55 0.22 0.295 
Suspended Solids 
Digested 

MIT SOLID SAMPL~S UNITS ARE mg/g 

MIT: if! 58 36 0.87 160 <0.Q009 17.4 1.2 0.87, 
I 0.274 mg/ml 

..... 
""" I HIT if.2 22 12 0.39 70 < 0.0009 4.8 0.96 0.10 

0.1244 mg/ml 

HIT it3 55 30 1.2 150 < 0.0009 4.9 7.8 0.46 
1.044 mg/ml 

MIT 42 29 0.84 130 30 4.0 1.3 3.83 
10...,19 WETOX 
0.7282 mg/m1 

NIT 134 50 1.3 169 <3.3 7.0 0.41 
9/11-1 
0.2538 mg/ml 

MIT 91 53 1.3 145 < 3.3 12.4 1.81 
9/22-2 
0.1856 mg/ml 

r-, ~ 



4.0 Development of Ion Chromatographic Techniques Using Conventional HPLC 

(High Performance Liquid Chromatography) Equipment 

Waste oxidation and food production research in the CELSS program 

rely heavily on quantitative inorganic analysis. Atomic absorption 

spectrometry, and more recently plasma emission spectrometery, provide 

powerful tools for elemental analysis at the trace levels often of impor-

tance in these areas of research. Atomic spectroscopy techniques do, 

however, have some serious limitations including: 

1. They provide no information about the chemical bonding associated 

with an element; eg., it is possible using special techrtique·s to 

determine total N using ICPOES but it is not possible to distin-

guish between NH
4

, N03 or N02 • 

2. Cl and F- ions cannot be determined using commercially available 

systems, and S is difficult if good precision is required. 

3. These techniques do not lend themselves to online real time moni-

toring; especially in a multielement mode. 

4. The sample matrix may interfere. 

Ion chromatography, a technique which has gained considerable atten-

1 tion since its introduction by Small, Stevens, and Bauman in 1975, fills 

many of these gaps while possessing a number of additional potentially 

useful characteristics. Ion chromatography will not replace atomic 

spectrometric technique for trace element analysis, but it is another 

extremely useful tool. 

1 Anal. Chern., 47, 1801 (1975) 
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Figures 1 and 2 are chromatograms illustrating the ability of ion 

chromatography to separate some common anions 'and cations. The retention 

time- of an ion under given chromatographic conditions is useful for 

identification, and the area under the peak is usually a simple function of 

concentration. As is characteristic of other chromatographic techniques, 

separation eliminates most background or matrix effects. 

Ion chromatography as introduced by Small et al. involves three 

steps: (1) separation of the ions of interest by ion exchange chromato­

graphy, (2) suppression of the background eluent conductivity by means of a 

second ion exchange column (suppressor column), and (3) detection by 

monitoring solution conductivity. 

As indicated by Figures 1 and 2, this technique has proven very 

successful. There are, however, some serious drawbacks including: 

1. The suppressor column must be regenerated periodically, thus 

requiring additional reagents and complicating applications in­

volving online monitoring. 

2. The low conductivity of the weak acids ~ormed in the suppressor 

column during analysis for ions such as silicates, cyanide, or 

borates makes trace analysis for these ions difficult. 

3. The suppressor column tends to broaden and skew the analyte peak, 

i. e., reduce the chromatographic efficiency. This effect is 

particularly important if an element specific detector such as 

ICPOES is interfaced with the IC because maximum emi~sion 

intensity, i.e., peak height is used for quantitation. 

-16-

.-



! 

CONCENTRATION (ppm) 
Na' 6.7 
W S.7 

I 
o I 

4 

MINUTES 

i 
8 

Eluent 
Flow Rate: 
Separator 

Column: 

Suppressor 
Column: 

CONDITIONS 
O.005M HN03 
184 mVhr 

6 )( 250 mm Cation 
Separator Column 

9 x 250 mm Cation 
Suppressor Column 

Na' Injeclion 

i 
12 

Volume: 100 "I 
Meter Full 

i 
16 

Scale Selting: 30 "MHO/em 

i 
20 

I 
24 

I 
28 

Figure 1. Ion Ch~omatog=aphic~Separation of Simple 
Monov8.1cnt C?t:.cns • .1. 

o 2 4 6 8 10 
Minutes 

Figure 2. Ion Chromatographic Separation of Simple Anions.
l 

1. From sales literature of the Dionex Corporation 
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Recently, interest has grown innonsuppressed IC,l i.e., IC without a 

suppressor column. We have chosen to investigate this approach because of 

potentially improved performance in online monitoring and coupling with an 

ICPOES. Figure 3 is a schematic of oui system showing the major compo­

nents. We are currently evaluating the system and anticipate using it to 

characterize some of the anions in the MIT wet-oxidation samples. In the 

near future we plan to use the system to investigate nonsuppressed ion 

chromatography for cation analysis, a little-explored area, the effect~ of 

using differential conductivity detection to minimize thermal and back­

ground effects, and the interfacing of Ie with ICPOES. This latter task is 

discussed in the next section. 

5.0 Investigation of Techniques for Interfacing an Ion Chromatograph with 

an Inductively Coupled Plasma Optical Emission Spectrometer 

The primary function of the interface is the efficient transport of 

analyte from the liquid steam exiting the ion chromatograph to the induc­

tively coupled plasma. In order for the plasma to convert the analyte 

solution efficiently to free atoms ~lich can then be excited to give the 

desired radiation, it is essential that an appropriate aerosol be pre­

sented to the plasma. In this context, this necessitates the production of 

an aerosol with a small mean droplet size, as aerosol particles greater 

than 10 ~m diameter cannot be efficiently desolvated and vaporized by the 

plasma. In conventional atomic spectrometry, the desired fine aerosol 

particles are selected from a relatively coarse distribution produced by a 

pneumatic nebulizer, by means of a spray chamber. The spray chamber acts 

1 Gjerde, D. T. and Fritz, J. S., J. Chromatography 186, 509 (1979). 
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as a fi 1 ter which discards the larger droplets. Unfortunately, this 

process acts as a filter which discards the larger droplets. 

Unfortunately, this process is extremely inefficient, resulting in only 1-

2% of the liquid steam entering the nebulizer actually reaching the plasma. 

The transport efficiency, en' typical of pneumatic nebulizer/spray 

chamber combinations is unacceptable for IC/ICP interfacing, as the amount 

of analyte in the sample peak is already low.. In order to improve trans 

port efficiency, two ultrasonic nebulizer designs have been tested. One 

system was a cotmIlercially available device (Plasma-Therm) in which the 

effluent steam from the IC is fed across the face of a piezoelectric 

crystal, oscillating at 1.4 MHz (Fig. 3). This disrupts the liquid into a 

fine aerosol spray. The second device, which was constructed especially 

for this study, but not tested so thoroughly for lack of time, was the 

Berglund-Liu type of ultrasonic nebulizer. In this device (Fig. 4), liquid 

effluent from the IC is passed through a narrow (5-20 lJm diameter) orifice. 

The orifice is vibrated by a piezoelectric crystal. By controlling the 

liquid flow rate and oscillating frequency~ typically in the range (200-

400 kHz) aerosol of knOtm uniform Sl.Ze can be generated. 

5.1 Characterization of Drop Size Distribution and Transport Efficiencies 

The Plasma-Therm ultrasonic nebulizer was characterized in terms of 

the important parameters, transport efficiency and drop size distribution. 

This l{aS accomplished using published procedures developed in our labora-

" 1,2 d" h "F" 5 tor1es an 1S s own 1n 19. • The transport efficiency was measured as 

a function of both liquid flow rate and power to the transducer. The 

results are shmm in Table 8. The direct relationship between RF power and 

transport efficiency and the flow rate and transport efficiency is clear. 

I M. S. Cresser and R. F. Browner, Spectrochem. Acta, 35B, 73 (1980). 

2 D. D. Smith and R. F. Browner, Anal. Chern. 54, 533 (1982). 
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---- Orifice Plate 

:~------- Ultrasonic Transducer 

:..--------- Sample Inlet Tube 

Figure 4. Basic configuration and components of a Berglund-Liu 
droplet generator. 
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For this system, the lowest flow rate used (0.5 ml/min) and the highest 

power used (50 W) produced the highest transport efficiency (£ = 36%). 
n 

The influence of power on drop size distribution at a low flow rate is also 

interesting. Here, the increase in RF power from 20 to 50 W results in an 

increase in the mass of aerosol contained both in small (1.5 m drops) and 

larger (14 ~m) drops (Fig. 6). In fact the increase in concentration of 

the larger drops is the most pronounced. The drop size peak showing at 

approximately 0.3 ~m is probably largely due to evaporation effects. 

It can be concluded that with this system, a very high transport 

efficiency can be obtained at quite lm-1 solution flow rates and moderate RF 

power. These conditions are quite compatible with IC/rCp coupling. The 

gain in mass transported to the ICP should be approximately lax, which 

should result in a substantial benefit in efficiency of transport of 

analyte peaks contained in the solvent steam for the IC. 

The Berglund-Liu type of nebulizer has the potential for producing a 

higher proportion of droplets (close to 100%) in a suitable size range. 

Work with this system is currently underway. 
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FLOW'RATE (mL/rv.IN) 
RF Po\oJER (W) 0.5 1.0 

20 ± 2 

30 ± 4 

40:!: 4 

50! 4 

2.4 2.8 

14 12 

28 13 

36 18 

TABLE 8 
Transport Efficiency 
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