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Vector smoothing splines on the sphere are deftned,

Theoretical properties are briefly alluded to. An approach to choosing

the appropriate Hilbert space norms to use in a specific meteorological
application is described and justified via a duality theorem. Numerical

procedures for computing the splines as well as the cross validation

estimate of two smoothing parameters are given. A Monte Carlo study
is described which suggests the accuracy with which upper air vorticity

and divergence can be estimated using measured wind vectors from the

North American radiosonde network.
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1. Introduction

	

s	 A theory of spline functions on the sphere is rapidly being developeds
i

see WAHBA 09810, FREEDEN (1981a,b), SHURE, PARKER AND BACKUS (1981).

Dr. FREEDEN will be reporting on salve of his results elsewhere in this

volume. Much of the rich theory surrounding univariate splines and

thin plate splines clearly is extendable to the theory of splines on the

sphere, via the use of reproducing kernels, n-widths, etc. In particular

convergence rates for smoothing splines on the sphere can be obtained

from the known rate of decay of the eigenvalues of the relevant reproducing

kernels, see e.g. MICCHEItIand WAHBA (1981), WAHBA (1977), UTRERAS (1981).

In this paper we propose a notion of vector splines on the sphere. It

is clear that interesting approximation theoretical properties of these

splines can be obtained. However, in this paper our focus will be on the

solution of certain practical problems which must be solved so that these

splines may be usefully applied to the analysis of neteoroiogical data

	

4	 from the upper air radiosonde network.

For the purpose of numerical weather prediction the global radiosonde
6-

(weather balloon) network takes measurements every 12 hours of the

horizontal wind velocity vectors and other variables, at 9 standardized

vertical levels. From this data it is desired to estimate the horizontal

wind field and its vorticity and divergence (and other variables) at

a regular grid of points, for each level. These estimates on a grid are

then merged with estimates of the same variables en the same grid, which

have been obtained from a forecast, to provide an estimate of the present

state of the atmosphere. This state estimate is then used as the initial

conditions co a mwerical integration scheme which integrates a set of

differential equations describing the dynamics of the atmosphere, to

provide a new forecast. Numerical weather forecasts can be quite sensitive

to errors in the vorticity and divergence in the initial wind fields.

Unfortunately, horizontal wind vectors at, for example the 500 millibar

	

4	 height, of the order of a few tens of meters per second, are measured

with an error standard deviation in each component of the order of

	

r	 2-4 meters per second. Thus, it is not a trivial matter to obtain accurate

information concerning the vorticity and divergence from this data, even

in areas such as the continental U.S. where the radiosonde network is
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relatively dense. We belie" that the apprepriinte dwivetives of OA;
smoothing splines we prose he" the potential for del"I tMs reietively
well.

Speaking intuitively, the vector nothing splines we propose frill
behave like low pass filers. In the spliros wr propose there will be

two regularization or smoothing parameters to 'V! CNMW and two (sets of)
"shape" parameters. The first smoothing parvnmeter to bo chosea, so

be thought of as governing the overall half power point of the low

pass filter. The second parameter governs the relative distribution of

power between vorticity and divergence in the estimate. The choice of
the two sets of shape parameters correspond to the choice of Hilbert

space norms, but in an important practical sense the y govern the rates

of decay of the energy spectra of the solution, one "shape" for vorticity,

and one "shape" for divergence. It is well known from the theory and

practice of ill posed problems that the appropriate choice of certain of

these parameters can affect the practical usefulness of the result.

In this paper we propose the use of generalized cross-validation (GCV)

for choosing the two smoothing parameters. GCV can also be used to

choose a small number of "shape" parwaters (see CRAVEN and WAHBA (1979),

WAHBA and WENDELBERGER (1980)). However, in this paper we show how

historical "meteorological data can be used to choose the "shape"

parameters, or Hilbert space norm. We discuss some numerical methods,

and we describe the results of some numerical experiments on synthetic

data which mimics actual 500 millibar horizontal wind fields over the U.S.

In our experiments we have observed that the accuracy in estimating both

vorticity and divergence can be quite sensitive to the relative distribution

of power allocated between them, (choice of second smoothing parameter) but

that GCV can be quite effective in estimating the correct relative power

distribution.

For the meteorological experts in the audience we remark that

estimating the present state of the atmosphere from current data is not

exactly the same problem as estimating the state of the atmosphere from a

combination of present data and a forecast of the present. This is so

because a data only estimate needs to take account of properties of the

atmosphere and measurement system while a data plus forecast estimate needs

to take into account the relative error of the data and the forecast. In
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this paper we are studying the data only proalon. However, we believe that

this class of techniques can be extended to the data plus forecast problem

and hope to do that in a subsequent paper.

In Section 2 we define the vector smoothing splines. In Section 3 	 e^

we discuss the choice of Hilbert space norms. In Section 4 we describe

numerical methods and the cross validation estimate of the-smoothing

parameter and in Section 5 we describe a Monte Carlo test of the method.

2. Helmholz Theorem and The Definition of Vector SMoothina Splines

We let P be a point on the sphere S, P = (a,#), where A = longitude

(0<a<2n) and	 latitude (- '2r<#<2). V = (U,V) is a (sufficiently regular)

horizontal vector field an the sphere, where U(P) is the eastward camponent

and V(P) is the northward capponent at P.

The vorticity Z and the divergence D of V are given by

= acaco^s4 "{Ucos4) + ax

	

y	 (2.1)

D = acosm{- as + 3^ Vcoo)],
	

(2.2)

where a is the radius of the sphere. Then there exists (by Helmoltz

Theorem) two functions T(P) and O(P), PES, called the stream function and

the velocity potential respectively, with the following properties:

U 1 (- R + 1 316)
cosh as

(2.3a)
V = 1 ( 1 at + 

ao)a coso aaN a^

AT	 (2.3b)
D = A^

where a is the (horizontal) Laplacian on the sphere

Af = Viz[ 12 
faa + c si(coof4)^].a cos

T and t are uniquely determined up to a constant (which we will take to be
r
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determined by IT(P)dP n fo(P)& - 0. We are interested in defining Hilbert
S	 S

spaces of vector fields whose divergence and vorticity exists pointwise. We

will do this as follows. Let f(P) be a square integrable function on the

sphere which integrates to 0. Then f has an expansion in the normalized

spherical harmonics Yts

f(P) _ - I 	 I fftYts(P)
Jul S=-$

where

:j	
8 cossaPts(sin^)	 0<s<JZ

Y^s(a.0)

9 sinsxplsl (sino) -z<s<0,

0= ,	 47	 ^.- s !	 s #0is4^r	 ^,+ s

4	 s =0

and the Fourier Bessel coefficients f
9'
s are given by

fis = ff(P)YRs(P)dP

with

ff2(P)dP = I f 2.
t.s

Now Y 
I 
s are the eigenfunctions of the Laplacian

AY Z
s
 = -X(z+1)YR .

Thus

0f = - Zj X(z+1)fisYts.I's
Let ais , z	 1,2,..., s	 -lZ,...,2 be a set of nonnegative numbers with

X	 max X and
s=-L'...91 s

LJ
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(2.5)
1

Using the addition formula for spherical harmonics

s^ R
Y1 s (P)Yi s(Q) ` 2

1+1
 .6y(^P.Q))

where y is the angle between P and Q, the Cauchy-Schwartz inequality and

the fact that P1(1) - 1 gives

f
jAf(P)j = l 1I s1(1+1)^Yi s(P) f

1s

<(J12(1+1)2 E a (Y s(P))2)1/2(	

f1s2)1/2

1	 s=-1 is 1
	

1,s Nis

2

<(4n 
12(1+1)2(21+1)11)1 /2(E 

f1s )1/2

1	 1,s	 is
f 2

Thus {X }satisfying(2.5) and 	 is « im ply that Af(P) is well defined
I ts	 1s

and finite for all P.

Let H be the collection of all pairs (T,m) on the sphere which integrate

to zero, are square integrable and

2

Is
9=1 s = - i 1s

(2) ('D) _
Go	 2

 Ia—i-s
i l s- i k s

Tis - IT(P)Y1s(P)dP

mks - PO)Y1s(P)dP

where {ais (1)} and {ais(2)} are sequences satisfying

Z 2 (k+1) 2 (21+1)maxk ts (i)<m , i = 1,2.
t = 1	 s

H is clearly a Hilbert space with square norm
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II(T-0 11 2 	 (1) (T) + ;J(`)(m)

for any fixed d > 0 and both members of each pair possess Laplacians every-

where. It is easy to show that if A.0 n [k(i.+lj]"m, then

J(f) f (emflf) 2V	 m even

. f{

	

 sin2^	
+ (e	 f) }dP m odd.

^

If ats n [1(1+1)]-m, them m > 3 guarantees the pointwise existence of the

Laplacian.

The observations are assumed to be of the form

U i 	U(Pi ) + ei , V i n V(P i ) + Ei, i n 1 9 2 9 ... ,n	 (2.1)

where (U(Pi),V(Pi)) is -the true (wind) vector at P i and 6i,6Y are

measurement errors. We propose estimating the stream functi and velocity

potential (T.0) associated with U and V by finding (T,O)EH to minimize

n	 y

ni^1( a a P i ) + acosoi a P i ) -Ui)

+	 ( 1 aT P i ) + 1 at P i ) V i ) 
z	

(2.8)

	

ni n l acoso i as	 a a0 

+ a[J 1 (T) + 112(0)]

Note that in the residual sum of squares above, U(P i ) and V(P i ) are

expressed in tens of T and 0 via (2.3a). A unique minimizer 
(Tx ,ox'd)

exists for each a > 0, d > 0 and the resulting wind field (UX1d,VX,d)

constructed from (TX,d-0a,d) may be termed a vector spline field. Its

vorticity and divergence will be given by C X.d = AT X'61 DX,d = Alp X16,
(Obviously, interpolating splines can be defined as minimizers of

J 1 (T) + I ( T) subject to the interpolating conditions, we will not discuss

these further.) Using WAHBA (1981a) or FREEDEN (1981x) it is straightforward



_7_	 ORIGINAL PAGE iS
OF POOR QUALITY

to write an explicit (infinite series) expression for (U,,d,YX,a).

3. On the Choice of J (1) and J(2)

m
Let Xis = II a,[(-R)(L+1)]j^-2 and suppose that Nis > 0 for

JEO

t = 1,2, ... , s = -£,... st. It is not hard to see that

J(f) _ E E a
f( I a^A^f) 2dP	 (3.1)

1=1 s=-i Is i=0

so that the choice of the aRs can then be reduced to the choice of m and

the 
{a3}. 

(If ats = 0 for one or more s, the minimization problem can

be handled by the methods described in KIMELDORF and WAHRA (1971), see

also FREEDEN (1981x). In principle m and possibly am_ l (with %-l)

can be chosen by cross validation (see WAHBA and WENDELBERGER (1980)), but

it is undesireable to attempt to choose too many of these parameters from

the data, see WAHBA (1981c).

in this section we will use the duality theorem which relates

smoothing by splines to Bayesian estimation/Weiner filtering on stochastic

processes to suggest how the J's may be chosen based on historical

meteorological data.

To give the duality theorem we need some background, which we will give

in a univariate context.

Let X(P), PCs be a (univar:ate) zero mean Gaussian stochastic process

on the sphere with covariance R(P,Q) defined by

R(P.Q) = EX(P)X(Q),

where E is mathematical expectation. Following PARZEN (1961), CRAMER and

LEADBETTER (1967) we can define the Hilbert space X spanned by X(P), PCs,

as all finite linear combinations of random variables (r.v.'s) of the form

n 
Zk ': 

311&kj 
X(P 

k')	

(3.2)

and their quadratic mean (q.m.) limits. (A sequence Z1,Z29 ... 9 of r.v.'s

has a q.m. 'A mit if lim E(Z Z_ Zm ) 2 = 0). The inner product in X is

t ,mom
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<X(P),X(Q)> a EX(P)X(Q) • R(P,Q1, And is extended by linearity to all r.v.'s
nk

of the form Zk a 
J
I Ek J X (Pk j ) and their q.m. limits. For unple, letting

L be a linear functional, the r.v. LX n fw((PO) will be in X if the sequence 	 1

of r.v.'s
Z	 X(xo,00+hk)-X.(a0100)	

(3.3)
ks

k

has a q.m. limit, as h k+0, where ( X0100 ) - P0 . Then, it is not hard to

show that the sequence Q ) will have a q.m. limit Z • a 1((P O ) if and only if

eQa^ R(P,P')p,P,,P
0	

(3.4)

is well defined and finite. Then the quantity in (3.4) is equal to

E(a X(PO W, and furthermore

E(a^X(PO))X(Q) '^ - R(PO.Q)

More generally, let HR be the reproducing kernel Hilbert space with

reproducing kernel R. Then each random variable of the form Z - LX can be

identified with the bounded linear functional L on H R , and vice versa. The

argument is as follows. If Z - LX is a r.v. in X it can be shown that

EZX(Q) - L (P) R(P,Q) n n(Q), say, where L (P) means the linear functional L

applied to R considered as a function of P. However, by the properties

of reproducing kernels, it can be shown that n(•) is the representer of L

in R, that is Lf - <o,f> R , where < • ,•>R is the inner product in HR . We

are now ready to state the

Duality Theorem (KIMELDORF and WAHBA (1910)).

Let X(P), PES be a zero mean Gaussian stochastic process with

covariance bR(P,Q), and let HR be the reproducing kernel Hilbert space

with reproducing kernel HR . Let

Y  n L 
i 
X + E i , i = 1,2 .... ,n,
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where Li x, i - 1,2,... n are n r.v.'s in X, and the c 1 ,...,En are	 i
independent, 0 mean Gaussian r.v.'s, independent of X(P), PeS, with coawion

variance c2 . Then the conditional upectation of X(Q), given
Y i - yi . 1 - 1 92.... ,n,

E {X (Q)I Y i - yi , i - 1 92 9 ... ,n)	 (3.5)

is given by fa (Q), where fx(•) is the solution to the minimization problem:

Find fcHR to minimize

n

fiill(Lif'Yi)2 + X111`112

and X - c2/nb.

Proof: See KIMELDORF and WAHBA (1970,1971), WAHBA (1978). However, the

proof proceeds by direct calculation of fM) and by using the facts that

E(Li X)X(Q) - n i (Q). where "i .f>R - Lif.

Now let f be some atmospheric variable of interest. We will proceed

as though the different realizations of f were sample functions from a

zero mean Gaussian stochastic process with covariance R(.,,). If repeated

(independent!) observations on f were available, then various properties

of R could be estimated from this data. We will discuss both "frequency

domain" and "space domain" methods for doing this. Using }he properties

of reproducing kernel spaces (see, e.g. HASHED and WAHBA (1974)) it is

2

not hard to show that if J(f) - 	
SRS 

is the norm on a reproducing kernel
t,s is

space H, there the reproducing kernel R for H is given by

R(P.Q) - t^sXIsYRs(P)Yts(Q).
	

(3.6)

To simplify the discussion, in this paper we are considering only R's

whose zigenfunctions are the spherical harmonics. (Other algenfunctions.

i.e. those associated with Laplace's tidal equat{ons, may well be reasonable

in certain meteorological applications, sec WAHBA (1981b)).
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If a stochastic process X(P), PES, has covariance

i^sa1 sYis(P)Yis(Q)

then X may be modelled as a random linear combination of the spherical

hr.rmonics (Karhumen -Loeve expanston Z

X(P) - 
I XRSYiS(P)

	
(3.7)

where the Xis are random variables with

EXisXi1s, - XIS , is - R e s" - 0, LS f L'S'.

(To see this, compute EX(P)X(Q) from (3.7) to obtain (3.6).) We have

Xis - f X(P)Yis (P)

and

IN 	 EX R 2 - E(fX(P)Yis(P)dP)2.

If K independent observations, f19 ... ,f K of a meteorological variable of

interest are available, this suggests choosing %) based on estimates

K

a t s - RkI I (fis) 2

where the sample Fourier-Bessel coefficients f Rs , k - 1,2,...,K are given

by

fis - kff(P)Y s (P)dP.i 

Figure 1 gives a plot of I :ebrugry 1974 monthly

averages of same atmospheric mean square sample Fourier Bessel Coefficients

collected by STAN MRD !1979) frcma Channels 2 and 4 of the Radiometer

on NIMBUS-5. The radiation received by Channels 2 and 4 respectively can be

used (crudely) to infer the temperature T(P), PeS in the upper and lower

stratosphere, respectively below the satellite. By piecing tooether data

i
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from several orbits, (approximations to) T ts = jTk(P)YRS(P)dP can be

obtained. STANFORD has computed monthly paean square values TRs

K
T^ = RRlI(TIs)z.

What has actually been plotted in Figure 1 is the "TEMP SPECTRAL POWER"

defined as

TEMP SPECTRAL POWER (1) - 1^ Tt+^,3 .
3=1

The energy spectrum in Temperature fields is related to the energy spectrum

of other meteorological variables, i.e. wind and geopotential. We are not

concerned here with the exact details of these pictures b,.; rather that

sequences { ais I can be fitted to this kind of data to provide meteorologically

reasonable Hilbert Space norms. See KASAHARA (1976) for some plots of

sample Fourier-Bessel coefficients with respect to the eigenfunctions of

Laplace's Tidal equations for wind and geopotential. Figure 2 gives a

plot of an idealized sequence a is = aR , I - 1,2,..., where at was obtained
by fitting ( by an ad hoc procedure), a function of the form

2
a _ I ail - 9-01+U31 -j=0^s	 3=0 3

to some of the data behind Figure 1. If a is does not depend on s,

Xis = at , then the covariance

R(P,Q) _ I XLSYts(P)Yism
£;s

reduces by the addition formula for spherical harmonics, to

00

R( P ,Q)_	 (2t+1)XZ Pt(cosy(P,Q)),

where y(P,Q) is the angle between P and Q. Figure 3 gives the function

p(y) defined by

co	 00

p ( y ) _ 1 (2 Q+1^ 9.Pt (cosy)/ 1 (2t+1) XZPt(cos o)
Z=1	 Q=1

L--. , ,.,
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which is associated with the {at ) of Figure 2. Figure 4 gives an estimate

for p(Y) for f(P) a the 600 millibar (geopotenttal) height obtained by

JULIAN and THIEBAUX (1975) from sample covariances from data from a network

of 51 North American weather stations for the winters of 1966 and 1967. In

estimating p(y), an isotropic covariance function was assumed. The

purpose of providing Figures 1 and 4 here is to convince the reader that

historical collected or collectable meteorological data mdy be used to

choose the norm an H, although the particular data sets exhibited here

may or may not be the most appropriate. In the numerical experiments

to be described we have taken the {A Rs(1))and { ARs (2)) both as in Figure 2.

4. NumW cal Methods. The Generalized Cross-validation Estimates of

A and d.

Given A,6, {XIS (1). XIS (2)1and the data {(U i ,v i )), an approximate

minimizer (T,0) of (2.8) can be obtained in the form

N	 X
a^YXs	

(4.1)

Xn 1 s n-^,

N

_	
S YXs	

(4.2)

Xn 1 s n -X

where N is sufficiently large. For other numerical approaches to the

minimization of (2.8) see WAHBA (1980,1981x), WENDELBERGER (1982). Let

-	 N	 X

N n I	 E 1 n N I -1 and renumber the indices (X,$), s n -X,...,R,

X n 1 s=-X n
X - 1,...,N, as 1,2,...,N. Let X0 be the nxN matrix with (i,Xs)th entry

S
a ao I (P i )

and X  be the nxN matrix with (i,Rs)th entry

a coso i 2AY Xs (P i )

and let X be the 2nx2N matrix
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p^R 4vAlV.
 
fs
7Y

' (
-X^ 

XXK)
X^ X4

Let D  be the 2Nx2N matrix

(4.3)

Da a (D1
	

0 )
	 (4.4)

0	 6D2

where D i is the NxN diagonal matrix with is ,Uth entry X
LS

(i) , i - 1,2.
Letting z n (U1,...,Un,VI9...,Vn)9 Y ' (Oi l 6 ... ,aN,8l 9 ... ,q) 0 it is seen
by substituting (4.1) into (2.8) that we have to find y which minimizes

111 z - XYII2 + AY ' D-6IY-

The minimizer is

Y - (X'X+nXDa l ) -I X'z.
	

(4.5)

By the use of (2.3a) and (4.3), it follows that the estimated wind field

(UX,a ,VX,a ) at the data points satisfies

UA,a(PI )

UX'a(Pn)	
A(a)z	 (4.6)

VM(PI)

VX,6(Pn)

where AM is the 2nx2n "influence" matrix

A(a) - X(X'X+nXDa1)-1X,

The generalized cross validation (OCV) estimate of (a,a) is the minimizer

of the cross validation function V(X,a) defined by

WTrace(I-A(X,6))3^
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This method for estimating smoothing parameters in regularization problems

was proposed in CRAVEN and WAHBA (1979), GOLUB, HEATH and MAMBA (1979)

and WAHBA (1977b) and its numerical and theoretical properties have been

studied in various places, see for example UTRERAS (1981). We only note here

the useful property of the GCV estimate of A and 8. Let the oredictive

mean square error R(A,8), when X and d are used be defined by

n
R(X,d) = n	 (U^^a(Pi)-U(Pi))2

i=1

n
+ i i

i
l (V

X'
a(Pi )-V(Pi )) 2 . (4.8)

where U(Pi ), V(P i ) is the true (but unknown) wind vector, and suppose the

measurement errors e i U and Ei V are independent identically distributed

zero mean normally distributed random variables. Then under rather

general conditions, for large n the minimizer (a,8) of V(a,8) provides

a good estimate of the minimizer of R(X,d). V is not guaranteed to

have a unique, or even a finite minimizer. Practical difficulties in

minimizing V though possible appear to be moderately rare when the

assumptions are reasonably well satisfied. Various diagnostic tools are

available in troublesome cases and will be discussed elsewhere.

The numerical experiment reported in Section 4 was performed on the

Amdahl at Goddard Space Flight Center, with 2n = 228, N = 15, 2N = 448.

We outline the calculations used. Let W S = XD 
112

, and let the singular

value decomposition (SVD) of W  be

W a = UDWV'
	

(4.5)

where UU' = U'U = I 2nx2n = V'V and DW is a diagonal matrix with entries

b l , ... l b2n . U,{bi} and V' are computed using LINPACK. Letting

wl

w	 V'z,

w2n

then

W
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1 2n 2	 1 2n 2	
bv2 2

	

^z	 I 	 (	 )
^i n1 i	 Y"wl v b 2+n)►

v .	 (4.10)

2n	 b 2 2

(1 rI1 bv 
z+na)

bl
0

b12+na

	

Y n Dal/2V	
b
	

W.	 (4.11)

0 	 2n

b2n+na

For fixed a,a(S), the minimizer of (4.10), is easily found by a global

search in increments of logo. Then V(a(a),a) was plotted for 8 values of

a chosen in pourers of 1/6, and the minimum was readily evident. No doubt

more efficient and automatic search procedures can be found.

For large n, N, and Wa poorly conditioned, computing the SVD

can be expensive, or it can fail to converge in a reasonable time. Some

shortcut methods which alleviate this problem somewhat and use less storage

have been developed. (BATES and WAHBA, (1982) in preparation.)

5. A realistic Monte Carlo test of the v.gthod

A number of techniques for estimating divergence of the upper

atmosphere from radiosonde data have been proposed in the atmospheric

sciences literature. For example, see SCHMIDT and JOHNSON (1972). In an

attempt to determine how well the proposed method might work in practice

a Monte Carlo experiment simulating realistic measured wind data from

"model" stream functions and velocity potentials has been coded, and

various experiments run. We describe one such experiment.

We obtained a model strearnfunction and velocity potential of the form

N	
Z4' = Cl

	ats Z

=C2 1 s	 b Ys
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by choosing ats and bts as normally distributed pseudo-random numbers with

mean 0 and variances Ats(1) n Ats(2) - Ats given in Figure 2. Cl and C2

were scale factors chosen so that the simulated C n AT and 0 - At had

magnitudes typical of real atmospheres.

(f ^2dP) 1/' - 6 x 10
-
'/sec., UD20) 1/2 - 1 X 10-5/sec. Model wind vectors

(U(PO M PO) were computed from the model (T,4) of (5.1) for {pi}

corresponding to n - 114 North American radiosonde stations. The data

z - (U19 ... ,UnI VI 9 . 9Vn ), where U  - U(Pi ) + si U , Vi - V(Pi ) + EiV.

were constructed by adding the measurement errors si U , si V as normally

distributed pseudo random numbers with mean 0 and standard deviation

v - 2.5 meters/sec., a realistic value for the measurement error

standard deviation. Since the ability to estimate divergence will

depend on the signal to noise ratio, it is necessary that the values

of "signal" and "noise" be chosen realistically. The results reported

here can be expected to be rosier than that obtainable in practice,

however, primarily to the extent that wave numbers k > N occur in practice

but are not simulated here, and (secondarily) because in practice J (l) and

J (2) cannot be so precisely matched to the "truth" as they are in this

experiment.
Figure 5 shows the simulated wind vectors. Figure 6 shows the

estimate of the true wind field, plotted on a 5 0 x 5 0 grid in latitude

and longitude. Figures 7 and 8 show the model and estimated vorticity

and divergence, respectively. Figure 9 shows V(A(S),S) and R(A(S),S),

(of 4.8) plotted as a function of d. In Figures 6 - 8. d - 1/36 was used.

It can be seen that the minimizer of V(A(S),S) was a good estimate of

the minimizer of R(A(S),S). Figure 10 gives MSE(^. 	 ) and MSE(D„	 )

	

and their sum, where 	 A(S).S	 A(S),S

K

	

MSE(^ S ) _	 kIl(4A.S(Pk)-4(Pk))2

	

MSE(D),,S ) _	 I (D	
)2.

k=1

The {Pk } constitute a regular grid inside the U.S. It can be seen from

Figure 10 that if d is taken as too small i.e. divergence is suppressed),

then the mean square error in the estimated vorticity becomes large.

F
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An estimate.c2 for the variance of the measurement error is avAfilable as

„z ,... ^	 I-AaS	 2

i
since the numerator is the residual sum of squares and the denominator

A

is the equivalent degrees of freedom for error. In this example Cr was

2.58m/sec., very close to the "true" value of 2.5 meters/sec. In those

occasional sticky cases encountered in practice where V(X,d) has multiple

minima, if the order of magnitude of a is known apriori, the examination

Of a can usually be used to resolve ambiguity. See WAHBA (1981d),

WENDELBERGER (1982). Bayesian confidence intervals are also available

for these estimates, see Wahba (1981d).

We have concluded that this approach has much promise for applications.
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