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1. Introduction

A theory of spline functions on the sphere is rapidly being developed,
see WAHBA (1981a), FREEDEN (1981a,b), SHURE, PARKER AND BACKUS (1981).

Or. FREEDEN will be reporting on same of his results elsewhere in this
volume. Much of the rich theory surrounding univariate splines and

thin plate splines clearly {s extendable to the theory of splines on the
sphere, via the use of reproducing kernels, n-widths, etc. In particular
convergence rates for smoothing splines on the sphere can be obtained

from the known rate of decay of the efgenvaluas of the relevant reproducing
kernels, see e.g. MICCHELLI and NAHBA (1981), WAHBA (1977), UTRERAS (1981).

In this paper we propose a notion of vector splines on the sphere. It
is clear that interesting approximation theoretical properties of these
splines can be obtained. However, in this paper our focus will be on the
solution of certain practical problems which must be solved so that these
splines may be usefully applied to the analysis of neteorological data
from the upper air radiosonde network.

For the purpose of numerical weather prediction the global radiosonde
(weather balloon) network takes measurements every 12 hours of the
horizontal wind velocity vectors and other variables, at 9 standardized
vertical levels. From this data it is desired to estimate the horizontal
wind field and its vorticity and divergence (and other variables) at
a regular grid of points, for each level. These estimates on a grid are
then merged with estimates of the same variables cn the same grid, which
have been obtained from a forecast, to provide an estimate of the present
state of the atmosphere. This stat2 estimate is then used as the initial
conditions to a nmumerical integration scheme which integrates a set of
differential equations describing the dynamics of the atmosphere, to
provide a new forecast. Numerical weather forecasts can be quite sensitive
to errors in the vorticity and divergence in the initial wind fields.
Unfortunately, horizontal wind vectors at, for example the 500 millibar
height, of the order of a few tens of meters per second, are measured
with an error standard deviation in each component of the order of
2-4 meters per second. Thus, it is not a trivial matter to obtain accurate
information concerming the vorticity and divergence from this data, even
in areas such as the continental U.S. where the radiosonde network is



relatively dense. e belfeve that the eppropriate derivatives of the vector
smoothing splines we propose have the potential for doing this relatively
well, T

Speaking intuitively, the vector smoothing splines we propose will
behave 11ike low pass filters. In the splines wn propose there will be .
two regularization or smocthing parameters to "t chasen and two (sets of)
"shape" parameters. The first smoothing parameter to be chosen, may
be thought of as governing the overall half power point of the low
pass filter. The second parameter governs the relative distridution of
power between vorticity and divergence in the estimate. The choice of
the two sets of shape parameters correspond to the choice of Hilbert
space norms, but in an important practical sense they govern the rates
of decay of the energy spectrum of the solution, one “"shape" for vorticity,
and one "shape" for divergence., It is well known from the theory and
practice of 111 posed problems that the appropriate choice of certain of
these parameters can affect the practical usefulness of the result.

In this paper we propose the use of generalized cross-validation (GCV)
for choosing the two smoothing parameters. GCV can also be used to
choose a small number of "shape" parameters (see CRAVEN and WAHBA (1979),
WAHBA and WENDELBERGER (1980)). However, fn this paper we show how
historical meteorological data can be used to choose the "shape"
parameters, or Hilbert space norm. We discuss same numerical methods,
and we describe the results of some numerical experiments on synthatic
data which mimfcs actual 500 millibar horizontal wind fields over the U.S.
In our experiments we have observed that the accuracy in estimating both
vorticity and divergence can be quite sensitive to the relative distribution
of power allocated between them, (chofce of second smoothing parameter) but
that GCV can be quite effective in estimating the correct relative power
distribution.

For the meteorological experts in the audience we remark that
estimating the present state of the atmosphere fram current data is not
exactly the same problem as nstimating the siate of the atmosphere from a
combination of present data and a forecast of the present. This is so
because a data only estimate needs to take account of properties of the
atuosphere and measurement system while a data plus forecast estimate needs
to take into account the relative error of the data and the forecast. In
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this paper we are studytng the data only problem, Hewever, we believe that
this class of techniques can be extended to the data plus forecast problam
and hepe to do that in a subsequent paper.

In Section 2 we define the vector smoothing spitnes. In Section 3
we discuss the choice of Hilbert space norms. In Section 4 we describe
numerical methods and the cross validation estimate of the smoothing
parameter and in Section 5 we describe a Monte Carlo test of the method.

2. Helmholz Theorem and The Definition of Vector Smoothing Splines

We let P be a point on the sphere S, P = (A,4), where A = longitude
(0<A<2w) and ¢ = Yatitude (-§5¢5;). V = (U,V) is a (sufficiently regular)
horizontal vector field on the sphere, where U(P) is the eastward component
and V(P) 1s the northward component at P.

The vorticity ¢ and the divergence D of ! are given by

= ZE%EE[' g%(Ucos¢) + %%J (2.1)
D= - ¥+ 2ivcosq)] (2.2)
acosé- 3 3¢ ' :

where a is the radius of the sphere. Then there exists (by Helmoliz
Theorem) two functions ¥(P) and &(P), PeS, called the stream function and
the velocity potential respectively, with the following properties:

. Jo 2,130
u i( 3¢+ )

C0S¢ A
(2.3a)
Sl 1y, 20
Ve dGss a5y
C= oy (2.3b)

where A is the (horizontal) Laplacian on the sphere

1
fi * E;;;(cos¢f

] 1
af= - [ )]
az cosz¢ ¢ ¢

¥ and ¢ are uniquely determined up to a constant (which we will take to be

¢
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determined by [¥(P)dP = [¢(P)dP = 0, We are interested in defining Hilbert
§ §

spaces of vector fields whose divergence and vorticity exists pointwise. We
will do this as follows. Let f(P) be a square integrable function on the
sphere which integrates to 0. Then f has an expansion in the normalized
spherical harmonics YZS

£(P) 5 %f Y,5(p)
1-2-1 sang S L

where

8 cosskP:isin¢) 0<s<t

s L5
Y (Xs¢) = L= ],2,...
: 0 sinsAP|S|( ing) -2<s<0
s g (sine) -kes<h,
_ f2+1 (2-[s])}
8 = 2 [Sar TSP
= Jeit -
"N 4n s=0

and the Fourier Bessel coefficients fzs are given by
s
fos = JE(P)Y, (P)dP

with
[f2(P)dP = T f,. 2.
g B

Now Ygs are the eigenfunctions of the Laplacian.
3

AYQ

S
= -z(m)vl .

Thus
- S
Af = -9}?32(1&1)fm\!’z .

Let Agg» & 7 1,2,...5, 5 = =%,...,2 be a set of nonnegative numbers with

A, = max A and
boogag,..n S



- ORIGINAL PAGE ]
OF POOR QUA

JR2(L+1) 2 (2041 1) <o, (2.5)
L
Using the additton formula for spherical hammonics

L 05
) IYRS(P)Y,LS(Q) - 2l PMP.Q))

where y is the angle between P and Q, the Cauchy-Schwartz inequality and
the fact that P2(1) = 1 gives

fZS
|af(P)|=] } z(z+1)/5;;¥2 (p) =2
LS 25

L
IR )? T A (r SNy (L f‘ )12
L S--!, s

< I () 2k, ey D 172
L, l
2

Thus {A,.} satisfying (2.5) and §
L P

<o imply that Af(P) is well defined

and finite for all P.

Let H be the collection of all pairs (v,b) on the sphere which integrate
to zero, are square integrable and

o A 2

Miy) - B e = [¥(P)Y S(P)dP

3" (y) QZ] S-Z-lw ‘i’zs [¥(P) R.( )

32 (q) = E % —(-ﬂ«o“z o ¢ = [HP)Y S(P)dP
p=1 sa-giys Is o

where {Azs(l)} and {AQS(Z)} are sequences satisfying

3 23(e+1)2 (2241 )maxa, (f)<=, 1 = 1,2,
0= s Ls

H is clearly a Hilbert space with sguare nom
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Hewe) 12 = o (w) + 9)e)

for any fixed § > 0 and both members of each pair possess Laplacians every-

where. It is easy to show that if A, = [£(2+1)]™, then

J(f) = I(Awlzf)zdP m even

(A(m'])/zf); (2.5)
{——

——2+ (A(”")’zf):)dp m odd.
Sﬂ¢

If Apg = [2(241)]™™, them m > 3 guarantees the pointwise existence of the

Laplacian.
The observations are assumed to be of the form

U = v =
Uy = U(Py) + g5, Vo = VIPY) +eq, 12 1,2,00000 (2.7)

where (U(Pi),V(Pi)) is the true (wind) vector at Py and e?.ev are
measurement errors. We propose estimating the stream functidn and velocity
potential (¥,0) associated with U and V by finding (¥,0)eH to minimize

1D 1y 1 30 2
ﬁig,('a 5$(P1) * acos ¢, Py )-Uq)

n
1T oo Rep) ¢ 1 ey’ (2.8)

RNORFAOY

Note that in the residual sum of squares above, U(Pi) and V(Pi) are

expressed in terms of ¥ and ¢ via (2.3a), A unique minimizer (WA,G‘OA,G)
exists for each A > 0, § > 0 and the resulting wind field (UX.G’VA.G)
constructed from (WA,S’ox.G) may be termed a vector spline field. Its
vorticity and divergence will be given by cx'a = wa,&' DA,G = AWA.G'
(Obviously, interpolating splines can be defined as minimizers of

J](W) + %JZ(W) subject to the interpolating conditions, we will not discuss
these further.) Using WAHBA (1981a) or FREEDEN (1981a) it is straightforward
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to write an explicit (infinite serfes) expression for (U, .V, ).
. ] B *

3. on the Chotce of 3¢ and 9(2)

m
Let A, = Ijzoujt(-z)(z+l)]j|'2 and suppose that A, > 0 for

L=1,2,...,% ==2,...,2, It 1s not hard to see that

wzfz

()3 ) —-f(zaAJf)zap (3.1)

L] 5mg &s

so that the choice of the Azs can then be reduced to the choice of m and
the {a,}. (If As ™ 0 for one or more S, the minimization problem can
be handled.by the methods described in XIMELDORF and WAHSA (1971), see
also FREEDEN (1981a). In principle m and possibly o ; (with qm-l)
can be chosen by cross validation (see WAHBA and WENDELBERSER (1980)), but
it is undesireable to attempt to choose too many of these parameters from
the data, see WAHBA (1981c).

in this section we will use the duality theorem which relates
smoothing by splines to Bayesian estimation/Weiner filtering on stochastic
processes to suggest how the J's may be chosen based on historical
meteorological data.

To give the duality theorem we need some background, which we will give
in a univariate context.

Let X(P), PeS be a (univar:ate)} zero mean Gaussian stochastic process
on the sphere with covariance R(P,Q) defined by

R(P,Q) = EX(P)X(Q),

where E is mathematical expectation. Following PARZEN (1961), CRAMER and
LEADBETTER (1967) we can define the Hilbert space X spanned by X(P), PeS,
as all finite llnear combinations of random variables (r.v.'s) of the form

{ ngX(P (3.2)

and their quadratic mean {q.m.) limits. (A sequence Z1slyseey of rovi's

has a q.m. “imit if 1lim E(Z Zm)2 = ). The inner product in X is
L 4Meo
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<X(P),X(Q)> = EX(P)X(Q) = R(P,Q), and {s extended by 1tnearity to all r.v.'s
"k
of the fom 2, = J & .X(P,,) and their q.m. 1twmits. For example, letting
k" &gk

L be a linear functfonal, the r.v, LX = g%x(po) will be in X 1f the sequence
of r.v.'s

X(A N +h )-X(k 9 )
0°¥0 "k’ "'70°Y0
Zk = Ahk (3.3)
has a q.m. limit, as hk+0. where (A0.¢0) = Po. Then, 1t is not hard to
show that the sequence {Zk} will have a q.m. limit Z = g%x(Po) 1f and only if

32 '
saagr R(PoP )P-P'-Po (3.4)

is well defined and finite. Then the quantity in (3.4) is equal to

E(%X(Po))z,, and furthermore
) 9

More generally, let HR be the reproducing kernel Hilbert space with
reproducing kernel R. Then each random variable of the form Z = LX can be
identified with the bounded linear functional L on HR’ and vice versa. The
argument is as follows. If Z = LX is a r.v. in X it can be shown that
EZX(Q) = L(P)R(P,Q) = n(Q), say, where L(P) means the linear functional L

applied to R considered as a function of P. However, by the properties
of reproducing kernels, it can be shown that n(-) is the representer of L
in R, that is Lf = <n.f>R. where <*at>p is the inner product in HR. We
are now ready to state the

Duality Theorem (KIMELDORF and WAHBA (1970)).

Let X(P), PeS be a zero mean Gaussian stochastic process with
covariance bR(P,Q), and let HR be the reproducing kernel Hilbert space
with reproducing kernel HR' Let

Y, = L. X+ €y i=1,2,...,n,

i i



where Lix' {=1,2,....naren r.v.'s in X, and the EyseeesE, APE
independent, 0 mean Gaussian r.v.'s, independent of X(P), PeS, with common
variance o?. Then the conditional expectation of X(Q), given

Yi = Yy i=1,2,...,0,

EX(QIY, = yy0 1= 1,2,.0..0) (2.5)

is given by fA(Q). where fl(-) is the solution to the minimization problem:

Find feHR to minimize

n
L (LTt e,

and A = g?/nb.

Proof: See KIMELDORF and WAHBA (1970,1971), WAHBA (1978). However, the
proof proceeds by direct calculation of fk(Q) and by using the facts that
E(Lix)X(Q) = n‘(Q). where <n1.f>R - L,f.

Now let f be same atmospheric variable of interest. We will proceed
as though the different realizations of f were sample functions from a
zero mean Gaussian stochastic process with covariance R(:,:). If repeated
(independent!) observations on f were available, then various properties
of R could be estimated from this data. We will discuss both "frequency
domain” and “space domain" methods for doing this. Using *he properties
of reproducing kernel spaces (see, e.g. NASHED and WAHBA (1974)) it is

2

f
not hard to show that if J(f) = | X&i is the norm on a reproducing kernel
£,8 72s

space H, ther the reproducing kernel R for H is given by
R(P.Q) = ] ae¥, (PIY, Q). (3.6)
K

To simplify the discussion, in this paper we are considering only R's

whose 2igenfunctions are the spherical harmmonics. (Other eigenfunctions,
i.e. those associated with Laplace's tidal equations, may well be reasonable
in certain meteorological applications, sec WAHBA (1981b)).

S
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If a stochastic process X(P), PeS, has covariance

S H
zz.sk“y‘ {pP)v,"(Q)

then X may be modelled as a random linear combination of the spherical
hermonics (Karhumen-Loeve expansfon)

X(P) = g;xgsvls(P) (3.7)

where the "zs are random variables with

EX X = dgeo RS = 2's', = 0, &5 $2's,

g's!
(To see thts, compute EX(P)X(Q) from (3.7) to obtain (3.6).) We have
s
Xps = JX(P)Y,(P)
and

As = EXp2 = ECJX(P)Y,(P)aP)2.

If K independent observations, 1’1 ....,fK of a meteorological variable of

interest are available, this suggests choosing {’&s} based on estimates
K
s L] Ky2
Mes Rk§1(f£s)

where the sample Fourier-Bessel coefficients fz:' k =1,2,...,K are given
by

k

I!k s
ws = JE(P)Y (P)eP.

f

Figure 1 gives a plot of I'ebruary 1974 monthly
averages of same atmospheric mean square sample Fourier Bessel Coefficients

collected by STANFORD (1979) from Channels 2 and 4 of the Radiometer
on NIMBUS-5. The radiation received by Channels 2 and 4 respectively can be
used (crudely) to infer the temparature T(P), PeS in the upper and lower

stratosphere, respectively below the satellite, By piecing toaether data
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from several orbits, (approximations to) ng - [Tk(P)st(P)dP can be
obtained. STANFORD has computed monthly mean square values ?9.2 .

iz.‘g(Tk)z

s Rty tas
What has actually been plotted in Figure 1 is the "TEMP SPECTRAL POWER"
defined as

5
.]-2
TEMP SPECTRAL POMER (2) SJZ]TE+3'3 .

The energy spectrum in Temperature fields is related to the energy spectrum

of other meteorological vartfables, i.e. wind and geopotential. We are not
concerned here with the exact details of these pictures b.. rather that
sequences {Azs} can be fitted to this kind of data to provide meteorologically
reasonable Hilbert Space norms. See KASAHARA (1976) for some plots of

sample Fourier-Bessel coefficients with respect to the eigenfunctions of
Laplace's Tidal equations for wind and geopotential. Figure 2 gives a

plot of an idealized sequence Azs = Aps L = 1,2,..., where xz was obtained

by fitting (by an ad hoc procedure), a function of the form

2 -2
Mg * ljzoaj[-z(w )31

to same of the data behind Figure 1. If Xls does not depend on s,

Azs = Al, then the covariance

3 3
R(P,Q) = az Mgy (P)Y.°(Q)
,S
reduces by the addition formula for spherical harmonics, to

R(P,Q) = 2= L2110, P(cosy(P.0)),

where y(P,Q) is the angle between P and Q. Figure 3 gives the function
p(y) defined by

ply) = 2g}(Zﬁﬂth(cosY)/lz](22+1)AzPl(cos(})
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which is assoctated with the‘{kz} of Figure 2, Figure 4 gives an estimate
for o(y) for £(P) = the 500 mt11ibar (geopotential) hefght obtained by
JULIAN and THIEBAUX (1975) from sample covarfances from data from a network
of 51 North American weather stations for the winters of 1966 and 1967. In
estimating p(y), an isotropic covariance function was assumed. The

purpose of providing Figures 1 and 4 here is to convince the reader that
historical collected or collectable meteorological data may be used to
choose the nomm on H, although the particular data sets exhibited here

may or may not be the most appropriate. In the numerical experiments

to be described we have taken the {Azs(I)}and'{Azs(Z)} both as in Figure 2.

4. Numer’cal Methods. The Generalized Cross-Validation Estimates of
A and §.

Given 1,6, {Als(l). ARS(Z)} and the data {(ui,vi)}. an approximate
minimizer (¥,9) of (2.8) can be obtained in the form

N
S
ya a Y (4.1)
gu] sacg =%
N
S
o= 7 ] BY (4.2)
gal sacg = 4

where N is sufficiently large. For other numerical approaches to the
minimization of (2.8) see WAHBA (1980,1981a), WENDELBERGER (1982). Let

~ N 2
N= J ] 1=N2-1 and renumber the indices (2,8), s = -£,...,%,
L=l g=-g

™
2= 1,...,N, as 1,2,...,N. Let x¢ be the nxN matrix with (i,2s)th entry

13,5
a 3¢Yz (Pi)

and XA be the nxN matrix with (1,2s)th entry

1_1 3ys
a cos¢1 SA %

(p,)

and let X be the 2nx2ﬁ matrix
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X, X
xa( ¢ Y (4.3)
X Xy
Let D be the 2NxZN matrix
o, 0
0 = ( ) (4.4)
o o,

where D, is the NxN diagonal matrix with 2s,tsth entry Azs(i). 1=1,2.
Letting = (U] .....Un.vl.....vn). Y = (al.oo-.ﬁgalyo-..ai). 1t 1S SQGH
by substituting (4.1) into (2.8) that we have to find y which minimizes

1 2 -1
allz = Xy[|? +av'0 'y,

The minimizer is

Y= (x‘x+nAD;])"X'z. (4.5)

By the use of (2.3a) and (4.3), it follows that the estimated wind field
(UA G‘VA 6) at the data points satisfies

/UA’G(P]) \

UA.6(Pn)
Vy,5¢P1)

= A())z (4.6)

Vx,s(Pn)
where A()) is the 2nx2n "influence" matrix

A(R) = x(x'x+nm;‘)”x'

The generalized cross validation (GCV) estimate of (1,5) is the minimizer
of the cross validation function V(1,5) defined by
1| (1-a00,80)2] |

1 2 (4.7)
ﬁ[Trace(I-A(A.G))]

V(x,8) =
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This method for estimating smoothing parameters in regularization problems
was proposed in CRAVEN and WAHBA (1979), GOLUB, HEATH and WAHBA (1979)

and WAHBA (1977b) and its numerical and theoretical properties have been
studfed in various places, see for example UTRERAS (1981}, We only note here
the useful property of the GCV estimate of A and §. Let the oredictive

mean square error R(A,5), when A and § are used be defined by

-

n
R(%,8) = 1Z](UA'6(P1)-U(Pt))2

- ¥ P

n
‘i 1Z‘(VA.6(P1)-V(P1))2. (4.8)

where U(Pi), V(Pi) is the true (but unknown) wind vector, and suppose the
measurement errors eiu and eiv are independent identically distributed
zero mean normally distributed rancom variables. AThen under rather
general conditions, for large n the minimizer (i,c) of V(1,8) provides

a good estimate of the minimizer of R(A,8). V is not guaranteed to

have a unique, or even a finite minimizer. rPractical difficulties in
minimizing V though poscible appear to be moderately rare when the
assumptions are reasonably well satisfied. Various diagnostic tools are
available in troublesome cases and will be discussed elsewhere.

The numerical experiment reported in Section 4 was performed on the
Amdahl at Goddard Space Flight Center, with 2n = 228, N = 15, 2N = 448,
We outline the calculations used. Let “6 = XD ]/2. and let the singular
value decamposition (SVD) of W be

NG = UD“V' (4.9)

where UU' = U'U = I2nx2n = V'V and Du is a diagonal matrix with entries

bl""'bZn' U,{bi} and V' are computed using LINPACK. Letting
"
w = = 'z
“2n

then
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1 2n 1 zzﬂ 2( \)2 )
LN b, 2+nA
V(x,68) = (4.10)
' 2
(] 1 Zzn b\) 2
ﬁvﬂ bvz'm‘;\
b
] 0
b, 2+nA
w2, VT
Y =Dg TV b w. (4.11)
0 _.aen
byZ4n)

For fixed G,X(G). the minimizer of (4.10), is easily found by a global
search in increments of logA. Then V(i(s).a) was plotted for 8 values of
5 chosen in powers of 1/6, and the minimum was readily evident. No doubt
more efficient and autamatic search procedures can be found.

For large n, N, and "6 poorly conditioned, computing the SVD
can be expensive, or it can fail to converge in a reasonable time. Sone
shortcut methods which alleviate this problem somewhat and use less storage
have been developed. (BATES and WAHBA, (1382) in preparation.)

5. A realistic Monte Carlo test of the wethod

A number of techniques for estimating divergence of the upper
atmosphere from radiosonde data have been proposed in the atmospheric
sciences literature. For example, see SCHMIDT and JOHNSON (1972). In an
attempt to determine how well the proposed method might work in practice
a Monte Carlo experiment simulating realistic measured wind data from
"model" stream functions and velocity potentials has been coded, and
various experiments run. We describe one such experiment.

We obtained a model streamfunction and velocity potential of the form

T e
Yy=¢C a,. Y
1 =l s=-9 Is 4
(5.1)
L

¢=C b, ¥,S
zzzls}-z“l
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by choosing & and bzs as normally distributed pseudo-random numbers with
mean 0 and varfances Als(l) - xzs(z) * A, gfven in Figure 2. € and G,
were scale factors chosen so that the simulated I = AY and D = A9 had
magnitudes typical of real atmospheres.
(fz2aP) /2 = 6 x 10" /sec., (/02dP)'/2 = 1 x 1075 /sec. Model wind vectors
(U(Pi).V(Pi)) were computed from the model (¥,¢) of (5.1) for {P,}
corresponding to n = 114 North American radiosonde stations. The data
Z % (Ul VooV ), where Uy = 0(R) + 6%, vy = W(R) 4 ¢Y,
were constructed by adding the measurement errors € » €4 aS normally
distributed pseudo random numbers with mean 0 and standard deviation
o = 2.5 meters/sec., a realistic value for the measurement error
standard deviation. Since the ability to estimate divergence will
depend on the signal to noise ratio, it is necessary that the values
of "signal" and "noise" be chosen realistically. The results reported
here can be expected to be rosier than that obtainable in practice,
however, primarily to the extent that wave numbers £ > N occur in practice
but are not simulated here, and (secondarily) because in practice J(1) and
J(z) cannot be so precisely matched to the "truth" as they are in this
experiment,

Figure 5 shows the simulated wind vectors. Figure 6 shows the
estimate of the true wind field, plotted on a 5° x 5° grid in latitude
and longitude. Figures 7 and 8 show the model and estimated vorticity
and divergence, respectively. Figure 9 shows V(A(ﬁ) +6) and R(A(&) +6),
(of 4.8) plotted as a function of §. In Figures 6 - 8. 5= 1/36 was used.
It can be seen that the minimizer of v(i(s),s) was a good estimate of
the minimizer of R(i(d),s). Figure 10 gives MSE(z. ) and MSE(D. )
and their sum, where A(8),8 A(8) .6

K

MSE(S, o) = g PEENFCARCRIL
K

MSE(D, 4) = L0y g(P-D(R D).

The {Pk} constitute a regular grid inside the U.S. It can be seen from

Figure 10 that if & is taken as too small (i,e, divergence is suppressed),
then the mean square error in the estimated vorticity becomes large,
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An estimate G2 for the variance of the measurement error {s avatlable as

|L(I-A(A,8) |]2
Tr(I‘A(A 06))

a?(2,6) =

since the numerator 1s the restdual sum of squares and the denominator
is the equivalent degrees of freedam for error. In this example 3 was
2.58m/sec., very close to the “true" value of 2.5 meters/sec. In those
occasional sticky cases encountcred in practice where V(2,5) has multiple
minima, if the order of magnitude of o {s known apriori, the exasination
of o can usually be used to resolve ambiguity. See WAHEA (1981d),
WENDELBERGER (1982). Bayesian confidence intervals are also available
for these estimates, see Wahba (1981d).

We have concluded that this approach has much promise for applications.
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