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VARIATIONAL METHODS IN SIMULTANEOUS OPTIMUM
INTERPOLATION AND INITIALIZATION

Grace Wahba
Statistics Department

University of Wisconsin-Madison

ABSTRACT

This report was prepared for the Proceedings of the Fourteenth
Stanstead Seminar, sponsored by the Department of Meteorology,
McGill University, and the National Center For Atmospheric Research,
and was written with the Stanstead audience in mind. The theme of
the Seminar was "The interaction between objective analysis and
initialization". We first review a duality between optimum interpolation
and variational objective analysis. We use this duality to set up
a variational approach to objective analysis which uses prior
information concerning the atmospheric spectral energy distribution,
in the variational problem. In the wind analysis example we study,
the wind field is partitioned into divergent and nondivergent parts,
and a control parameter governing the relative energy in the two
parts is estimated from the observational data being analyzed by
generalized cross validation, along with a bandwidth parameter. We
then propose a variational approach to combining object i ve analysis
and initialization in a single step. In a simple example of this
approach, data, forecast, and prior information concerning atj,nspheric
energy distribution is combined into a single variational problem.
This problem has (at least) one bandwidth parameter, one partitioning
parameter governing the relative energy in fast and slow modes, and
one parameter governing the relative weight to be given to observational
and forecast data. It may be possible to estimate good values of
all three parameters from the observational and forecast data.
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1. INTRODUCTION

In this work, we exploit a duality between optimum interpolation and
variational objective analysis to set up a certain variational approach to
objective analysis, as well as to propose an approach to combining objective
analysis and variational initialization into a single step.

In Section 2 we describe the duality. 	 In Section 3 we describe the
variational approach to objective analysis in the context of the estimation
of vorticity and divergence from observed wind vectors. The duality of

Section 2 is used to suggest how data concerning the energy spectral
distribution in the atmosphere, as studied by, e.g., Baer (1974, 1981),
Kasahara (1976), Kasahara and Puri (1981), Stanford (1979), may be used to

help choose the form of the variational problem to be solved. The

variational problem we solve to estimate vorticity and divergence has one
"bandwidth" parameter (related to the half power point of the equivalent low

pass filter) and one "partitioning" parameter, representing the relative
allocation of energy to the divergent and non-divergent part of the wind.
Both can be estimated by generalized cross validation (GCV).

In Section 4 we begin a synthesis of several ideas -• i) the duality of
Section 2, ii) the idea of partitioning the "signal" into divergent and

non-divergent parts (which generalizes to the idea of partitioning the signal

into slow and fast modes) and iii) the modified Kalman filter ideas as

proposed by Ghil and coworkers (1981). The result is an argument that (in

principle) one can set up the problem of estimating initial conditions by

combining i) the forecast, ii) the observational data, iii) possibly certain

physical constraints and iv) (partial) prior information concerning

atmospheric spectral energy distribution, into a single variational problem.

This result is in some sense a converse of Phillips (1982b), who argues that
normal mode initialization can be done as part of optimum interpolation. The

resulting variational problem as we propose it will have (at least) one

bandwidth parameter, one balance parameter controlling the relative weight to
be given to forecast data and observational data, and one partitioning

parameter, governing the relative energy in the "signal" assigned to fast and

slow modes.	 We conjecture that these three (control) parameters can be
estimated dynamically from the data by GCV. They can also be chosen by trial

and error.	 Objective analysis and (linear) normal mode initialization are

thereby combined in one step.	 The estimation of one (or more) balance
parameter(s) from the data may possibly avoid the pitfalls due to

misspecification of the Kalman filter statistics as noted by Phillips

(1982a).

Some of this work is joint with D. R. Johnson.
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2. ON A DUALITY BETWEEN OPTIMUM INTERPOLATION AND VARIATIONAL OBJECTIVE
ANALYSIS

We will describe this duality for the analysis of a univariate variable on

the sphere (say 500 mb height) although the result is completely general.
Let P denote a point on the sphere and let h(P) be (say), the 500 mb height

minus the global average 500 mh height at P. Let the observations

yl, • • - Yn be modelled as

y i = h(P i ) + c i	,	 (2.1)

where the Ei are supposed to be zero mean independent measurement errors with
common variance 

a2 = E Ei2.

We suppose E h(P) - 0 and h has a prior covariance b R(P,Q),

E h(P)h(Q) = b R(P,Q).

Then using standard results in multivariate analysis

E ( h ( P ) IY,...yn) _ (R(P,P 1 ) ... R(P,Pn))(Rn + nXl)-
1 

yl	 (2.2).

•
ha(P), say	

n

where a = a2 /nb and Rn is the n x n matrix with ij th entry R(Pi,P ).
Considering the expression on the right of (2.2) as a function of P, wh  we

denote by h X (P), it is easy to see that if a = 0, then ho(P) interpolates to

the data exactly, ho(Pi) = y i , i = 1,2,...n, whereas for a > 0, hX (P) smooths
the data, and a controls the amount of smoothing -a is the "bandwidth"
parameter, ha(P) evaluated at grid points is the "optimum interpolant" of
Gandin, given that all the available data points are used simultaneously.

Duality Theorem: Kimeldorf and Wahba (1970, 1971) Wahba (1978).

For every covariance R(P,Q) satisfying ffR2 (P,Q)dPdQ<m , there is a
variational problem for which ha(P) is the solution. It is: find h in HR (a
certain reproducing kernel Hilbert space) to minimize

1 I (Yi - h ( P i) ) 2 + a J(h)•
n i=1	 (2.3)

where J(h) is the square norm of h in HR.

We will now describe J(h) in	 manner which we hope will make its

meteorological usefulness clear. R(P,Q) being a covariance, is a symmetric
non-negative definite function and (given that it satisfies the hypothesis)

has a so called Mercer-Hilbert-Schmidt expansion (Riesz -Sz.- . Nagy (1955)) in
its eigenfunctions and eigenvalues

i

s
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R ( P .Q) = I alts YRs(P) Yjs(Q) , where f R ( P ,Q) YLS (Q)dQ = XRs Y Rs (P).(2.4)
I's

(This expansion is a generalization of the factorization of a covariance
matrix E as E - rDr' where Tr' = I and D is diagonal). We have deliberately
used a notation to suggest that the eigenfunctions of R are spherical
harmonics, but that is by no means necessary. In any case

z	 '

J(h) = I 
his	

where hi s = f h(P) Yjs(P)dP.
Is Xis

(2.5)

(If h were a vector and R a matrix, then we would have J(h) = h'R- 1 h). As an
example, if the YXs are the spherical harmunics and Xis = [i(R+I)]-2m then by
using the fact that the spherical harmonics are the eigenfunctions of the

Laplacian, a YRs = -R(1+1) Yis, it is not hard to show that J(h)
ff( Amh ) 2 dP.

m
More generally, if aXs =	 1 av[(R)( j+1)]vj-2, then

v=0

m

J ( h ) = f 	 I av (-A) vhl 2 dP.
	 (2.6)

V = 0

More details may be found in Wahba (1981a, 1981b), the use of Hough functions

instead of spherical harmonics is briefly described in Wahba (1981b). If

E h ( P )h(Q) = b R ( P ,Q)	 9	 (2.7)

then h has a Karhunen-Loeve expansion

h(P) = b I hi s Yjs(P) where	 bhxs = f h(P) YIS (P) dP ,	 (2.8)

and thehis are independent zero mean random variables with E his hzl s , =
ba les, R,s = R',s', = 0 otherwise. The (A k s), that is, the relative energy
distribution by wave numbers may be estimated from historical data and/or
obtained (roughly) from theory, see Baer (1974, 1981), Kasahara (1976),
Kasahara and Puri (1981), Stanford (1979).

3. ESTIMATION OF DIVERGENCE AND VORTICITY FROM THE OBSERVED WIND FIELD USING
VECTOR SPLINES ON THE SPHERE. PARTITIONING OF THE DATA INTO DIVERGENT
AND NON-DIVERGENT PARTS

Given observed wind data (ui,vi) at point P i , i = 1,2,. . . n, we estimate
the vorticity and divergence as follows. 	 The stream function and velocity
potential are expanded in spherical harmonics

L	 k	 L	 k
T ( P ) = I	 I a les Y A s(P)	 t ( P ) = I	 I bks Y ks( P )	 (3.1)

R=1 s=-x	 I	 X=1 s=-R
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Then (for given d,a), we find (als, b1s) to minimize

a y at
1 I (_ — —(Pi) +	 _(Pi)_ui)Z	 (3.2)

n i=1	 a at	 acosti as

+ 1 I ( 1	 a^	 1 

a^
(P1) +	

(P,)
-vl)2

n i=1 acosti as	 a at

1

+ a[J1('f) + -J2(t)1
d

whe re

J1(^')	
aXs 2

/a,s(1), J2( 0 )	 5X S 2 /aXs(2).	 (3.3)
k=1	 R=1

Given estimates of the a ts and b t s, estimates of the wind, vorticity and
divergence are obtained analytically for any desired P. 	 The resulting

estimated wind field is called a vector spline on the sphere. a is the
bandwidth parameter, it controls the partitioning of the data vector

(u l , . . . un , v1, . . . vn)' into a part due to "signal" and a part due to
noise. d can be viewed as a signal partitioning parmeter, it controls the

partitioning of the "signal" part of the data into a divergent part and a

non-divergent part.

A Monte Carlo study was carried out to test the effectiveness of the
method and to determine whether good estimates of a and d could be obtained

from the data by GCV.	 The re^u]ts are rtpyted in Wahba (1982), and in

preparation. The weights Xjs 
1 and Xj s 2 JJ were adapted from the data

collected by Stanford (1979). Realistically scaled model 500 mb wind fields

were generated via a Karhunen-Loeve expansion in stream function and velocity
potential, the resulting "tree" wind vectors at 114 North American weather
stations computed and a random 2.5 m/sec ms measurement error added to each

computed wind component. Good recovery of winds, vorticity and divergence in

an area covered by the data grid and extending a small amount past it was

obtained using the estimated a and d.	 (The individual a ts, bRs are not

recovered from only North American data). The results are sensitive to both

X and d. It can be seen from the experiments that a poor value of d causes
obvious edge effects and that fixing d at values which oversuppress the

divergent part of the wind tend to cause increased errors in the estimation

of the non-divergent part.

4. ON A SINGLE VARIATIONAL PROBLEM FOR MERGING DATA, FORECAST AND PRIOR

KNOWLEDGE OF ATMOSPHERIC SPECTRAL ENERGY DISTRIBUTION

We claim that a set of "moderately" reasonable assumptions concerning the
forecast errors and measurement errors, along with prior knowled5e concerning
the spectral energy distribution in the atmosphere, leads to an optimal"
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initial state obtained as the solution of a single (large) variational
problem. This variational problem will have the same number of "unknowns" as
the degrees of freedom in the forecast model, thus raising questions of
numerical feasibility. We brush aside computational questions for the
present, adopting the point of view that it is worthwhile to examine an
"optimal" variational problem, and then ask, how close can one come to
computing a reasonable approximation to it. (Some numerical shortcuts appear
in Bates and Wahba (1982)). One of the advantages of examining the
variational form is that it is .fairly evident how to add side constraints
based on the physics.

A (simplified) example goes as follows. Consider a spectral model where
the state of the atmosphere is expressed in terms of Hough functions. Using
notation similar to Tribbia (1982), and considering a single level, let

'U
V = E 

Xi HJR + Nax

	

Yk 

Hk G	 (4.1)
¢	 j=1	 k=1

(U,V,^) is the "true" wind and geopotential field, and Hj R and k G are

rotational (slow) and gravitational (fdst) Hough functions. We suppose that
the true "state" of the atmosphere is adequately described by the Nmax + Mmax
vector e = (X:Y) _ (X 1 ,	 XN	 : Y1, . . . YM	 ) and an analysis

max	 max

consists of obtaining an updated estimate a of 9, given a forecast

eF = (XF:YF) _ (X1F, . . .,XN max :Y1F, . . ., NmaxY	 F).	 (4.2)

given data (ui,vi,^i) representing observations on the wind and geopotential

height at point Pi, and given the "prior knowledge" concerning atmospheric
energy distribution obtained, e.g. from data like that collected by Kasahara

and Puri (1981). This prior knowledge is of the form
2	 2

EX j = b l a jR =	 EY k = b2 XkG	 (4.3)

where we assume that the relative energies aj R and akG are known but that bl

and b2 are not. We will assume that all cross covariances E XiXj,.E XiYj

and E YiYj can be approximated by 0. Suppose further that

E(Xj-Xj F X Xk-Xk F ) = wFv XXjk	 E(Yj-YjF)(Yk-YkF) = wFa YYjk

E(X j -Xj F )(Y k -Yk F ) = WF0XY

(4.4)

f
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where tie ajk's are known, and let I be the (Nma + Mmax) x ( Nmax + %ax)
covariance matrix with entries ojk XX , o kXY^ o.kY.	 Let 2the me1sureme2t
errors of (ui, vi, #i) be independent with variances wQou	Wo ov • wo°# •
Suppose all random variables are normally distributed. Then

Theorem: (G. Wahba, in preparation) The Bayes estimate
A	 A	 A

e = (X	 Y) of a	 (X	 Y) is the minimizer of

1ui	 Nmax	 Mmax	 ^^2
Vi - E	 Xj Hi R (Pi ) - E YkHk Gp i ) o	 (4.5)

n i=1.	 ^i	 j=1	 k=1	 S

+ w{(X- XF : Y-Y F ) 1-1 (X-X F : Y-YF)'}

+a NT X22+6^
`j=1 a j R	 k=1

U 2 U2	 V2

where	 v	 =	 2 +	 2 +
°u	 °v

K Yk2

akG

^2

2 , and
a^

W = wo/wFn, a = wo/b i n, S = b l /b 2 ,

Since the expression to be minimized 1 a quadratic form in the components
of (X:Y), (for given w, a, 6), the minimizer can be readily expressed as

the solution to a linear system. It is conjectured that the bandwidth
parameter a, the partitioning parameter d and the "error balancing" parameter

w, can all be estimated (simultaneously!) from the data by GCV. Note that a
large w suppresses forecast relative to observational data and a large 6

suppresses fast modes relative to slow modes. 	 The results reported in

Section 3 suggest that at least one bandwidth and one (appropriately chosen)
partitioning parameter can be chosen by GCV. Part of the art of this

approach is to choose these "tuning" parameters so that they are (a) the

important ones and (b) their determination is relatively "well posed."
Sensitivity of optimum interpolation to bandwidth parameters has recently

been discussed by Hollingsworth (1982), Lorenc (1981) and others.

To be practical it may be necessary to assume an oversimplified structure

for E and/or to break up the variational problem into a series of sub-

problems. The usual Kalman filtering theory would give a as the minimizer of

the above expression, with a = 0 and with (w FE), the forecast error

covariance, given by a recursion formula in time. 	 Our description above,
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implicitly assumes the existence of a limiting (wFt). The forecast of Ghil
et al. would, roughly speaking reduce in this context , to setting I - 0 and

constraining Y to be 0. The above theorem generalizes to the simultaneous

analysis of all levels.	 Then satellite radiance data (which "cuts across"
all levels) can be included as another term in the variational formulation.
Physical constraints can, in principle be included as side conditions. It
also appears that non-linear balancing constraints related to those discussed
in, e.g. Tribbia (1982), whose purpose is to minimize the propagation of
unwanted gravity waves in the non-linear forecast equations, may also be
incorporated as either weak or strong constraints.
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