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ABSTRACT

. j
	

The rates and altitudes for the dissociation of atmospheric

constituents on Titan are c0 culated for solar ultraviolet radiation, the

.y
solar wind, Saturn magnetospneric particles, the Saturn co-rotating plasma,

and cosmic rays. Laboratory experiments show that a variety of simple gas

phase organic molecules and more complex organic solids called tholins are

produced by such irradiations of simulated Titanian atmospheres. Except

for ultraviolet wavelengths longward of the methane photodissociation

continuum, most dissociation events occur between about 3100 and 3600 km

altitude, corresponding well to the region of EUV opacity detected by Voyager.

For a wide variety of simple to moderately complex organic gases in the

Titanian atmosphere, condensation occurs below the top of the main cloud

deck at about 2825 km. We propose that such condensates, beginning with CH 

at about 2615 km, comprise the principal mass of the Titan clouds. There is a

distinct tendency for the atmosphere of Titan to act as a fractional distillation

device, molecules of greater complexity condensing out at higher altitudes.

F	
To produce the observed detached limb hazes near 2900 km by the condensation

of such organic gases, the rate at which abundance falls with increasing heavy

c
atom number, n, should lie between about 10

-0.25n 
and about 10

-0-5n 
, just the range

suggested by laboratory experiments. There seem to be no plausible circumstances

in which such hazes will condense in observable abundances at optical frequencies

•¢	 at altitudes r,uch above the observational upper limit of 3000 km. Typical organic
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compounds which condense out at the 2900 km level are in the molecular

weight range 100 to 150 dal,tons. Organic molecules produced or condensed

at higher altitudes have properties similar to the so-called "Axel dust."

There should be a sedimentary column of condensed organic ices and tholins

on the surface of Titan, produced by coagulation and sedimentation of

cloud and haze particles; the depth of this layer, accumulated over

4.5 x 109 years, ranges from about 100 meters (if only a < 1440 A photons

can photodissociate atmospheric constituents) to kilometers (if considerably

longer wavelength ultraviolet photons can be employed with quantum yields

ti 0.1.)

9
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It has long been known, since Kuiper's (1944) spectroscopic discovery, that

Titan holds a reducing atmosphere composed at least in part of the simplest organic

molecule, methane (see also , Trafton, 1972). Subsequent photometric and polarimetric

observations indicated a very red, ultraviolet-absorbing material (Harris, 1961;
b	

r

sec also Ca"awell, 1974), probably distributed in and above a thick cloud

deck (Veverka, 1973; Zellner, 1973). Knowing that photolysis of CH  alone
S

leads to a range of complex hydrocarbons, and that dissociation of CH 4 and

other cosmically abundant reduced compounds leads to dark red organic hetero-
i
X

polymers (Khare and Sagan, 1973), it was natural to suggest that the clouds

of Titan might be composed, at least in part, of complex organic molecules

(Sagan, 1971; 1973; 1974; Khare and Sagan, 1973). The quantities of organic

molecules synthesized on Titan over geological time were estimated to be at

least hundreds ofcm-2 (Sagan, 1974; Chan et al., 1979).	 ti9	 9	 9 _

The hypothesis of abundant organic matter in the atmosphere of Titan

was supported by the identification of infrared emission features (Gillett et al.,

1973) with the hydrocarbons C 2H2 , C2H4
9
 and C

2 H6
in a Titanian atmospheric

inversion (Danielson et al., 1974). The Voyager infrared spectrometer

experiment (Hanel et al., 1981; Maguirg It al., 1981; Kunde et al., 1981)

clearly established the presence of aliphatic hydrocarbons up to C 3 , substituted

and polyacetylenes, and nitriles. The results are summarized in Tale 1.

Additionally, most of these gas phase organics have been produced in 11boratory

experiments by sparking, electron.-irradiating or ultraviolet-irradiating a m

mixture of N2 and CH4 in approximatel;+ the Titan atmospheric proportions

(Balestic, 1974; Toupance et al.., 1,975; Raulin et_aL,.1979;. Gupta et al., 1981).
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Ultraviolet, infrared. imaging, and radio occultation experiments,

•	 conducted during the Voyager 1 and 2 encounters-with Titan in November 1980

1 dN Pu	 he	 Cal i	 rf	 *and August 1981, `00 e a deep 2 1 4 atmosp re ove y ng a su ace a

2575 km and 94 K (Hanel et al. 1981; Tyler et al. 1981; Broadfoot et 1. 1981);

with a thick, opaque and nearly featureless cloud deck extending to about

2825 km,.end distinct limb hazes above the main cloud deck at altitudes.. 	 !

ranging to about 2925 km (Smith et 1. 1982x; Rages, 1983). Haze layers

merge with the main cloud deck toward Titan's north pole, with separation

increasing toward the south and with multiple haze layers apparently present

at high southern latitudes (Smith et al. 1981, 19829),__:__ r
z3

The availability , of a nominal pressure-temperat!re'profile for Titan's 	 t
r

atmosphere based on Voyager radio occultation and IRIS experiments (Hanel

at al. 1981; Tyler et al. 1981; Samuelson et al. 1981), and of more

detailed information on high-energy charged particles in Saturn's magneto-

sphere has prompted us to investigate the altitude-specific deposition of

energy by those sources thought to be responsible for most of the organic

synthesis on Titan: solar ultraviolet radiation, the solar wind, Saturn

magnetospheric high energy particles, Saturn corotating plasma, and'solar

and galactic cosmic rays. It will then be possible to consider the rate

of organic synthesis on Titan, and the possible condensation of synthesized

molecules to form the observed clouds and haze.

Energy Sources

(1) Solar Ultraviolet light
0

Methane is photolyzed at a < 1440 d and-nitrogen at a < 800 A. The

solar UV photon flux is taken from the compilation of Heroux and Hinteregger

(1978), the N2 absorption spectrum from Allen (1965), and the CH 4 absorption
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spectrum from Okabe and 8erker (1963) and from Koch and Skibowski (1973).

Photon deposition as a function of altitude is w outed by numerical integration

of the CH4 and N2 absorption, employing the nominal Voyager pressure-temperature

profile. Minor atmospheric constituents, including those in Table 1 and

those discussed below, will increase the photon deposition rates. In this and

	

	 N
P

other computations, the model (,p,T) profile is represented as a grid of (p,T)

points recorded at a resolution of 0.01 in log10p, with an assumed linear

temperature gradient between the grid points. The pressure-altitude scale is

generated from this profile by a seminumerical solution of the equation of hydro-

static equilibrium. Photodissociation rates are computed initially assuming
0

unit quantum yield for photolysis, and zero quantum yield at A > 1440 A.

•	 (2) Maanetospheric high energy particles.

Saturn magnetosphere high energy particle fluxes were measured by

_Voyagers 1 and 2 (Krimigis et al. .1981, 1982). We assume negligible intrinsic

_. or induced magnetic field strength for Titan.* Levels of energy deposition

for charged particles are then computed'frdin semi-empirical relationships

(Cook et al. 1953; Friedlander et al. 1964) to determine the penetration

loading density L (g cm -2 ), and thus the effective pressure level of

penetration p a DgL/uX, for protons haling the measured energies. Since

the Voyager results are reported only for energy intervals, and since for

protons of energies E less than several hundred MeV nearly all the particle

energy is deposited near the penetration level, altitude limits for energy

deposition are determined by calculating the penetration level of particles

at the minimum and maximum extremes of the reported range. The number of

dissociations per unit volume for this altitude range 15 then N a rnE/eddz,

where r is the counting rate (units,s" 1 ); d is the detector factor

[0.12 cm2 sr for Voyaqer detectors (Krimigis et al. 1977)1; n is the
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j	 detector acceptance solid angle (assumed to be 2n); a is the net particle

energy required per dissociation, taken as 10 eV [the bond strength of N2

is 9.9 eV; of CH4 , 4.5 eV]; and Az is the altitude range.

.

Saturn magnetospheric particle fluxes are summarized in Table 2. The

computed dissociation rates, if based only on particle counting rates near

20Rs in the magnetopause at spacecraft entry (about 14 0 and 80 from the

noon meridian for Voyagers 1 and 2, respectively), would be substantial

overestimates, since particle fluxes near 20R S at spacecraft exit (about

137° and 93°, respectively, from the noon meridian) are reduced by factors

of 10 to 100 (cf. Table 2). [This is the reason that our ma9netnspheric fluxes and

(below) dissociation rates are significantly less than those of Strobel (19M).]

•	 Planetary magnetocentric approach angles are taken from Ness et al. (1981,

1982). We estimate, based on this sparse information, that Titan spends roughly

1/4 of its orbit in the region of high particle flux; peak dissociation rates

are scaled accordingly'to give net dissociation rates. Because the flux in

the lowest energy range measured is still substantial near the noon meridian,

there may be significant but periodic additional dissociation caused by < 28 keV

protons at high altitudes.

(3) Solar Wind

Although Titan's orbit is usually contained completely within

Saturn's magnetosphere, this was not the case at the Pioneer 11 [CHK]

encounter (van Allen et al., 1980). Titan is estimated to lie beyond the

magnetopause, exposed to the solar wind, about 20% of the time (Bridge, 1981).

The solar wind at Saturn has a density of about 0.1 cm-3 . at velocities of

450 to 550 km s -1 , and a random kinetic temperature of about 10 4 ' 8K (Wolfe et al.,

R



1980). The solar wind energy deposition occurs primarily between the penetration

levels of 450 and 550 km s -1 (1.05 keV to 1.57 keV) protons.

(4) Corotatino plasma

Another source of charged particles in the upper Titanian atmosphere

is plasma corotating with Saturn's magnetic field. At Titan's distance from

.	
Saturn, the plasma Lags the magnetic field: a rotational velocity of about

150 km s-1 , a density of 0.1 em-3. and a random kinetic temperature of 5 x*105K

were indicated by the Voyager plasma analyzers (Bridge at al., 1981, 1982).

A Maxwell-Boltzmann energy distribution is computed and vectorially added to the

measured, rotational energy (ti 120 eV per, particle) to produce the net energy

distribution .used to determine altitudes of.nlasma Rnergy deposition. The,

vertical resolution in this computation is about 35 km.

(5) Cosmic _s,

The final energy source we consider is solar and galactic cosmic rays.

Low-energy cosmic ray altitude-specific dissociation rates were computed

by digitizing the measured cosmic ray spectrum at the Earth (Biswas and

Durgaprasad, 1979), finding penetration depths as for Saturn magnetospheric

particles, and computing the flux in a given energy range deposited in the

altitude interval between the maximum and minimum penetration depths.

For higher energy cosmic rays (>500 MeV), the results of Capone et al. (1980)

were employed.

Dissociation and Synthesis Rates.
k

Dissociation rate per unit volume from all five sources is shown as
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a function of altitude i n Figure 1. For the solar wind, the endpoints

of the vertical line represents the limits of the altitude i.iterval over

which the given average dissbc ,iati®n' rate appl,los. The total altitude-

integrated dissociation rates are displayed in Table 3:

Above the main cloud deck, Saturn magnetospheric particles and solar

UV are the dominant energy sources. The solar wind and the Saturn corotating

plasma also make significant contributions, but over much more restricted

altitude intervals; the total dissociation rate is much smaller for these

sources (cf. Table 3). Neglect s -g the possibility that long wavelength

ultraviolet photons can be employed through photolysis of minor constituents,

the highest dissociation rates are at 3100 to 3700 km altitudes, well above

the clouds and visible hazes. "',The ' contribution of s®'tar -N Ly a radiation

is'localized near x400 km. % Significant CH4 dissociation, by those wave-

lengths closest to the dissociation threshold of 1440 A, continues down to

about 3040 km. Cosmic rays are deposited mainly in the main cloud deck

in the altitude range 2600 to 2750 km.

For high energy charged particles, we assume ti 1 dissociation of

an atmospheric molecule per 10 eV deposite^ along each ion track through the

Titanian atmosphere. For direct CH 4/N2 photolysis we assume unit quantum

yield and (cf. Strobel, 1974; Allen et al., 1980) unit efficiency in the

production of heavier organics. It is also possible that A > 1440 A ultraviolet

radiation can be effective in indirect methane photodissociation and in the

production of higher molecular weight organic molecules. A small steady

state abundance of such long-wavelength absorbers as H 2S, NH3 , and aldehydes
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can, on photodissocation . generate su perthermal hydrogen atoms which in

turn provide the activation energy for subsequent chomical reactions (Sagan

and Khare, 1971x, 1991b, 1974). Small quantities of NN  may exist in

,the Titanian atmosphere and the detection of CO2 well above the clouds

(Maguire, at al., 1982) sugdests that small quantities of the simplest

aldehydes should be present there as wall. Precisely because of their large

ultraviolet absorption cross-sections the abundances of such molecules should

be low.

The resulting sur'face'de0osit of complex organic compounds from each

energy source, accumulated over 4.5 x 109 years, is also given in* Table 3.

These molecules are not expected to be merely such simple gas phase organics

as are detected spectroscopically (Table 1), but also a category of

complex organic heteropolymers called tholins that are produced by high

energy irradiation of simulated Titanian atmospheres and that seem to

reproduce well the observed spectral properties, particle sizes, and

refractive indices of the clouds of Titan (Sagan and Khare, 1981, 19830

Khare et al., 1981). Scanning electron microscopy of tholins (Sagan and

Khare, 1981) shows no significant void volume and implies a density %,l  g cm 3.

Thus the numbers in the last column of Tab^e 3 are also the anticipated

thicknesses (in cm) of accumulated tholin sediment on the surface of Titan

from the various energy sources listed. We see that a layer at least 100 meters
O

thick is expected and, if wavelengths longer than 2000 A are utilized with

production quantum yields larger than 0.1, depths of kilometers seem possible.

The likelihood that tholin densities are ti 1 g cm 3 implies, for the

Toon et al. (1980) model of coagulation and sedimentation in the Titanian
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clouds, an organic production rate N 3.6 x 10013 g cm 2 sec-1 , corresponding

to a column of tholin w 0.6 km thick built up over geological time. This

in turn implies (cf. Table'3) that wavelengths longer then the onset of
0

the methane photodissociation continuum near 1440 A are being utilized for

photochemistry on Titan, and perhaps provides some evidence for long-wavelength-

absorbing organic intermediaries producing hot hydrogen atoms. If, for

example, the mean molecular weight of organic products produced by a single

long wavelength photolytic event were y • 30 with an effective quantum
0

yield of 0.1, wavelengths as long as about 2200 A would have to be employed;

equivalently, for v x 30 and an effective quantum yield of 10 0.2 , wavelengths
O

as long as 2600 A would be required. We stress, however, that the conclusions

of this paragraph are highly model-dependent.

Cloud and Haze Condensation Processes.

All significant energy deposition occurs at least 100 km abovq M,

highest optical hazes at about 2900 km, except for the cases of long-wavelength

UV, and cosmic rays where the enemy is deposited ir, and below the main cloud

deck. Thus (again excepting long-a UV) the largest part of organic synthesis

in the Titan atmosphere takes place at high altitudes; the region of the

optical hazes and upper main cloud deck is in fact a deep minimum in the

dissociation/synthesis rate curve, indicating that the presence of well-defined

haze layers near 2900 km is not the result of local primary production of

organic molecules. If hot-hydrogen photochemistry occurs in -the 2825 to 2925 km

region, it is utilizing long-wavelength photon acceptors -probably produced at

higher altitude.

I
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in a solar occultation experiment, the Voyager 1 ultraviolet

spectrometer detected (Broadfoot et e1., 1961; Smith, et 1., 1982b) an 	 x
o

absorbing layew in tho 1640 to 1630 A bandpasses at an altitude of 3260 to

3600 km. It corresponds to no known optical haze layer, and is believed

due to atomic or molecular absorption. This is just the region of

mUinuo direct methane phgtolysis (Figure 1). * While methane is transparent
0

at 1540 - 1630 A. ethane, propane, butane, and higher , paraffin'' 1i^y+'dro=

carbons begin absorbing significantly (Okabe and Becker, 1963), as do many

other organic molecules. (This ultraviolet opacity through the upper

atmosphere of Titan is responsible in part, through the absorption of

sunlight, for the essentially isothermal regime at about 160°K which extends

from below the main cloud deck to the exobase.) The picture suggested is

that significant dissociation of major atmospheric constituents occurs

between 3100 and 3700 km, where the products constitute an organic haze,

contributing to the UV but not to the visible opacity -- because of

in situ production, not necessarily because of vapor condensation.

Below 3100 km, the situation may be reversed.

In early irradiations of CH 4/N
2
 a000heres, performed in the context of

the origin of life, high molecular weight products up to some 900 daltons

were detected (Balestic, 1974). In proton bombardment experiments, aliphatic

hydrocarbons up to CZZ have been reported (Scattergood and Owen, 1977).

Pyrolytic GC/MS of the solid organic tholins produced on sparking methane/ammonia



J 2

mixtures detects some 50 compounds (Khare et al., 1981). Preliminary

pyrolytic GC/MS analysis of tholins prepared in a Titan atmosphere simulation

indicates a comparable or greater variety and complexity (Khare at al., 1982). The

Titan thol ins , which match the observed properties of the • Titan clouds	 r

(Sagan and Khare, 1981, 1982 ; Khare et al., 19814 presumably form from,

simpler constituents resembling their pyrolyzates, and release their pyrolyzates

on irradiation. Thus, with a wide variety of simple and complex organic

molecules expected in the atmosphere of Titan, each characterized by its own {

vapor pressure curve, we anticipate condensation at many levels in the

Titanian atmosphere. Do the condensation levels correspond to the observed

altitudes of the main cloud layer and the detached limb hazes?

Since the suite of organic gases detected in the Titan atmosphere is

still only a tiny fraction of the gases likely to be present, we need to

estimate the rate at which molecular abundance falls .4-Ith increasing heavy

atom number, a parameter whose common logarithm we define as a. in Figure 2

we have plotted, from various simulation experiments and from measurements of

terrestrial organic sediments, the relative mole fraction of organics versus the

heavy atom (C or W) number. The slope of these curves yields a. Also plotted is

a 3eg-nlih't of the observed curve for Titan (Table 1). There are no Voyager measure-

ments for butane or higher paraffin hydrocarbons on Titan and it is not.yet

appropriate to consider the butadiyne or cyanoacetylene abundances as

representative of the abundance of molecules with four heavy atoms in the

Titan atmosphere. We see from Figure 2 that ultraviolet irradiation at



X < 1440 A , and electrical discharge or high-energy electron bombardment

of methane or methane/nitrogen mixtures at a wide variety of pressures

yields a value of a & 0.25 to 0.5. Suspected abiogenic hydrocarbon gases

dissolved at great depth in Black Sea sediments give a between 0.3 an y' 1.0

(Hunt and Whelan, 1978). Only the Nonesuch shale hydrocarbons, which are

probably biogenic, have values of a significantly less than in simulation exper-

iments, at least in the low heavy-atom number range. The currently available

data make the observed value of a for Titan comparable to that in laboratory 	 E

simulations; comparable values emerge from an elaborate absolute reaction

rate kinetics calculation of Titanian photochemistry (Yung, 1982).
3

Pyrolyzates of CH4/NH3 tholins produced by long-wavelength ultraviolet or

spark irradiation exhibit compounds with up to nine heavy atoms present at

an abundance about 10 -1 to 10
-2
 that of the most abundant pyrolyzates

(Khare et al., 1978, 1981); i.e., tholin pyrolyzates exhibit values of

a almost as small as for the Nonesuch shale. Similar conclusions apply for

CNO2 tholins (Y,hire et al., 1982). Despite our sense from these data that

0.25 < a < 0.5, we do,not deduce ;from,Figure 2 any particular value of a for the

atmosphere of Titan, and the calculations below are performed for a - 1.0, 0.5,

0.25, and 0.

To test the hypothesis that organic products in detectable abundances

might condense at the altitudes of the observed clouds or hazes, vapor

saturation curves have been constructed for the Voyager-detected molecules

(Hanel et al., 1981; Maguire et al., 1981; Kunde et al., 1981); for some

of the major and minor tholin pyrolyzates of synthesis experiments for which

extensive gas chromatographic/mass spectrometric analysis has been performed



(Khare et al., 1981); and for a series of aliphatic hydrocarbons and

aromatic ring systems. The estimated abundances are given by X s X0
 10-00 - n0),

where X is the mole fraction, n is the heavy atom number, and the zero subscript

denotes the reference molecule. For each class of molecule, the reference was

that Voyager-detected molecule Judged most appropriate. for saturated hydro-

carbons. C3H8 ; for alkenes, CA; for alkynes and aromatic rings, C,H 2 ; for

saturated nitriles, HCN; for dinitriles, C 2N2; etc. Molecules exhibiting

more than one functionality were generally assigned the smallest abundance
5

calculated for each functionaiity independently. For a . 0, X was calculated

assuming constant weight fraction rather than mole fraction as a function of n.

Saturation curves were constructed using data from various sources (e.g..

Weast, 1980), employing standard values for heats of vaporization and fusion

and at least one pressure-temperature reference point. In a single case,

cyanoacetylene, the heat of vaporization, and in some cases, the heat of

fusion, was estimated by comparison with a series of homologous compounds

because relevant data could not be found in the literature (Appendix I). The

normal hydrocarbon and aromatic series were chosen as models largely because

of the readily available vapor pressure data. Variation of the heats of

vaporization and fusion with temperature was generally unavailable, and in any

case is of insufficient magnitude to be of concern here. Condensation tempera-

Lures T  as a function of atmospheric pressure p are given by

•	 Tc a jT- 1 - u in 
P 

yl

r

i
where T r and p. constitute a vapor pressure-temperature reference point, R is

the universal gas constant, u is the molecular weight, ©H the heat of



vaporization or sublimation, as appropriate, and X the mole fraction.

(When the vapor pressure is below the triple point pressure, the computed

temperature will be below the freezing point, and the heat of sublimation,

which is the sum of the heats of vaporization and fusion, is used.)

Condensation occurs when the curve so constructed intersects the atmospheric

structure curve (Tc > Tatm).

i
i

Figure 3 exhibits vapor pressure curves for all the Voyager-detected

y
organic compounds; every one of them condenses out below the upper reaches

of the main cloud deck ( ^ t 2825 km). Since CH 4 condenses at about 2615 km
k

and all detected compounds condense below 2700 km, the upper portion

of the P)N in cloud deck must consis almost entirely of higher molecular

weight molecules, both the organic condensates discussed here and tholins.

Vertical optical depths, T v , of particulate condensates of detected

compounds are estimated from the scattering cross-section, K, in the geometric

limit:

, uXK s ^^3uXp
V D

g Mp;

where p and r are particle density and radius. 	 For altitudes near 2900 km

(g - 107 cm s`2),

TV c 1.4 x 106 (u/u)XPmb

for particles of p ti 1 g cm 3 and r ti 0.1 um (anticipating smaller particles

at higher altitudes; cf. Toon et al., 1980). At these altitudes, if the

particle and gas scale heights are comparable, the air mass for tangential

observations is about 20. A value of T
V 
as small as 5 x 10-2 suffices to
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generate unit tangential optical depth in the condensate haze. `It is clear 	 r
i

that even minor constituents of the region below about 3500 km can produce large

optical depths of condensate: vertical optical depths computed for condensation

of Voyager-detected compounds are displayed in Table 4. Within the main cloud

deck, some tens of kms above the CH4 condensation level, there are optically

very thick pure scattering clouds of ethane and propane.

There is a very simple constraint on the altitude of the highest possible

detectable haze: for condensation processes in which the abundance falls at

least fast enough that the mass fraction is constant with molecular weight

(uX/p n constar2 < 10-5 ), a tangential optical depth ti 1 implies p > 10-2 mb.

Thus no optically observable hazes should exist above about 3000 km. In fact
t

3000 km is very close to the altitude of the highest detected hazes at

visible wavelengths (Smith et al., 1982a; Rages and Pollack, 1983). The visible-

wavelength reflectivity of Titan would be much greater than it is if these

large optical depths of non-absorbing ice hazes surmounted the main cloud

deck. But even for a Q 0, it is very difficult to arrange T
V
 > > 1 above

2900 km, and no contradiction with observation emerges.

Figures 4a-d show the condensation jewels for normal hydrocarbons

with various values of a, the index of the (assumed constant) decrease of

abundance with molecular weight. Using these aliphatic hydrocarbons as a model

series, we see that observablq ,,,hazes at the correct altitudes can be produced

provided a < 0.5. The substantial optical depth of the main cloud deck

below 2775 km also requires a decrease no faster than this. No compounds

condense in adequate abundance to produce visible wavelength opacity above

about 2670 km -- i.e., anywhere in the upper clouds -- if a > 1 (Figure 4d .
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The results for a similar model based on representative aromatic ring

systems are shown in Figures 5a-d. If the production of higher molecular

weight products is extensive (Figure $a-b), compounds condensing below about

3000 km can be seen; but those having more than about 10 heavy atoms, both

for the aliphatic series, Fig. 4a-b, and the aromatic series, Fig. 5a-be will

condense at higher altitudes -- many at the level of production -- and be

mixed vertically as particulates rather than as gases. Members of the model ring

series have a lower overall abundance since the reference molecule adopted for

this computation is C2H2 . For this series, the generation of observable hazes

-	 at high altitudes requires a k 0.25 (Figure 5b).

In Figures 6 a-d are shown vapor pressure curves for a few of the

most abundant tholin pyrolyzates made in simulation experiments (Khare, et Al.,

1961). These low molecular weight compounds condense at altitudes below

2700 km, in the main cloud deck. In order for them to contribute significant

cloud opacity there, a must be < 0.5. Results for some lower abundance GC/MS

tholin pyrolyzates are shown in Fi gure; 7a-d. Again, if these compounds are to

produce substantial opacity in and possibly above the main cloud deck,

a must be ` 0.5. (A small laboratory value of a is indicated by the simple fact

that these pyrolyzates cdn be detected at all by GC/MS.)

Conclusions.

Many of the molecules produced in greatest abundance in Titan's upper

atmosphere condense at the level of the main cloud deck. Discrete hazes

may be produced by the condensation of a single major compound, or of a
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group of compounds which condense at approximately the same altitude.

Nearly all high molecular weight products synthesized at high altitude will

condense in situ.

In all cases for which detectable hazes condense near 2900 km altitude,

the heavy atom number appears to be around 9 or 10, and we are led to speculate

that the detached limb hazes are composed of molecules with approximately

this number of (carbon plus nitrogen) atoms. The condensation of molecules

with a particular number of heavy atoms at a particular altitude derives

from a general correlation between molecular weight and vapor pressure

curve, a correlation which is remarkably similar for many different categories

of organic molecules. thus, because of its temperature structure, the

atmosphere of Titan serves as a kind of fractional distillation device, 	
a

condensing out simple organic molecules deep below the cloudtops, molecules

of intermediate complexity near the tloudtops, and detached hazes and

molecules of still greater complexity at higher altitudes 	 where their

number density is too low to be detected optically,, but where they may contribute

to the observed opacity in the extreme ultraviolet. To explain the detached

limb hazes by such a fractional distillation /condensation mechanism requires,

for most categories of molecules tested, that a < 0.5. This is Just the

range suggested by the relevant laboratory simulation experiments in

which methane or methane/nitrogen mixtures are irradiated (Fig. 2), and

suggests that the detached hazes may in fact be organic condensates in

the molecular weight range 100 to 150 daltons.
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The highest measured instantaneous particle fluxes from the Saturn

magnetosphere (Table 2) are a factor ' 4 greater than the adodted mean values

in Table 3. Accordingly, those particle fluxes may periodically produce

incremental dissociation ra ges a few tens of percent th.-t produced by the

most abundant indisputable energy source, the methane photodissociation

•	 continuum and H Ly a in the solar ultraviolet. Thus, it seems possible that

the Titanian atmosphere and clouds exhibit, superposed on longer-term variations

(Sromovsky, et 1., 1981), a brightness or color variability with a period
equal to the Titan orbital period, or to half that period.

We recognize at least three varieties of organic hazes-or clouds

in the atmosphere of Titan: (1) primary production hazes of simple organic

molecules chiefly in the 3200 to 3600 km range; (2) condensation hazes of
E

primary production organic molecules chiefly localized in the detached limb

hazes below 2900 km and in the main cloud deck; and (3) tholins, formed from the

irradiation of-atmospheric constitutents and chemical reaction of primary hazes,

chiefly localized in the main cloud deck below 2900 km. In addition, some in

situ generation and substantial reprocessing of organic hazes by near-UV

radiation may occur in the few scale heights near and above the tops of the

visible clouds. The condensation of methane at about 2615 km is probably
l

responsible for the minimum near that altitude in the atmospheric

temperature structure curve (cf. Fig. 3). These organic condensations

are generally entirely transparent in the visible (although much less so

in the middle ultraviolet), and through pure multiple scattering would

diffuse and render indistinguishable Titanian surface contrast, even if

there were no pure absorption by the tholin particles. The scattering

optical depths for propane, ethane, and especially methane, may be enormous
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(cf. Table 4).	 The properties of the high-altitude hazes	 --	 including

substantial ultraviolet opacity and negligible visible absorption (although

providing significant scattering) 	 --	 are consistent with the so-called

"Axel dust" proposed for the upper atmosphere of Titan (Danielson, 1974), as

well as for Jupiter (Axel, 1972) and Saturn (Macy, 1973). 	 We will report

in a separate communication on the application of similar ideas to Jupiter

and Saturn.

E

Ultraviolet irradiation of organic ices at 77K leads to significant

radical mobility and the synthesis of organic molecules of greater complexity

(Khare and Sagan, 1973).	 The longer an alkene is, the longer the wavelengths

to which its ultraviolet absorption extends (Okabe and Becker, 1963). 	 Aromatic r

rings characteristically absorb to 2600 A.and longer.	 With, say, a 10-yr

residence time above the main cloud deck for 0.3 on particles (cf. Toon
o

et al., 1980) the accumulated ultraviolet dose by such hazes for a < 2000 A

amounts to the breaking of every chemical bond several times over, assuming

an effective quantum yield,	 w Q.1.	 (The same is true at a < 1440 A for 	 1.)

Eventually	 --	 for example, through the production of polyenes, or porphyrins,

or polyaromatics	 --	 the condensates tbat, originally had substantial opacity
i

only in the ultraviolet, begin to darken in the visible as well. 	 It is possible
t

that ultraviolet-damaged organic condensates are, on Titan, an alternative

path to the synthesis of tholins.

The main cloud deck must be at least somewhat differentiated, with product; u;

lower volatility	 and/or higher abundance condensing in its upper reaches,

and those of higher volatility, and/or lower abundance condensing at lower
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altitudes. The higher molecular weight products condensing at higher

altitudes will precipitate through and to some vegree be mixed with generally

more abundant condensates at lower altitudes. The mix of condensed ices

and largely photoproduced tholins, coagulating and sedimenting out of the

Titanian atmosphere will provide a rich layer of complex organics at

the surface. Further processing of organic sediments on the Titanian surface

by cosmic rays (c f. Fig. 1) is expected despite the tow ambient temperatures.

i

•

t

1

f

•	 4



a22-

Acknowledgments.

We thank M. Nowak for help in compiling data used in our vapor pressure

computations, and B.N. Khare and Y. Yung for helpful discussions. This

research was supported by NASA grants NGR 33-010-082 and NGR 33-010-101.

r



l

{

Appendix I i

• The following estimates of heats of fusion were made from homologous
compounds:

Formula Nom- t1mf. Cal g -

CH2CHCN acrylonitrile 40

CH3CH2CN propanonitrile 35

CO8
1-butene 30

C4H8 cis-2-butene 30

C4H8 trans-2-butene 30

(CH2CN)2 succinonitrile 39

OCN benzenonitrile 32

CH30C2H5 3-ethyltoluene 26

C4HgCN pentanonitrile 28

CH3OCN p-tolunitrile 32

C6H12 1-hexene 30

OCHCH2 styrene 32

CH3CHCHCN methaerylonitrile 35

CH2CH2 ethylene 33

CHCCN cyanoacetylene 40

OCH20 diphenylmethane 30

m3CH triphenylmethane 30

n-C	 H13 Z8
--- 35.8

n-C
14 30H --- 53.4

n-C 15 H32 --- 37.5

n-C
16H 34

"'- 55.6

n-C1,7H36
--- 39.1

n-C
26 H54

^+---	 . 39.

Heats of fusion for linear hydrocarbons were derived by linear interpolation
between the nearest available values for odd or even carbon number representatives,
as appropriate	 --	 a permissible approach because of the smooth variation of the
heats of fusion of the odd and even carbon number series, taken independently.
For other molecules, we employed the heats of fusion of those compounds, for which
data were available, that were chemically and structurally most similar.	 These
values were adjusted in some cases to take account of trends in the heats of fusion
of a structurally similar series. 	 E.g., we adopt

oHf (n-C8H16 ) c Of (n-C6H12)  + [®Hf (n-C8H18 ) - ANf (n-C6H14).
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Table 1

Identified and Deduced Constituents of the Atmosphere of Titan

(Hanel -at a1.o 1981; Maguireo et al., 1981;

Kunde, fit, al.,, 1981; Maguire at Al.. , 1982; Yung, 1982)

N2	 Nitrogen	 61-93%

[36Ar	 Argon	 r 12% ^]

CH	 Methane	 f 6%
4 F

[Ne	 Neon	 < 1%]

H	 Hydrogen	 r 0.2%
2

CO	 Carbon monoxide	 r 0.1%

HUCH	 Acetylene	 2 ppm

H2C•CH2	Ethylene	 0.4

H3C-rH-1 	Ethane	 20

H3C-CH2-CH3	Propane	 3

HC=C-C=-CH	 Butadiyne (Diacetylene)	 0.03

H3C-C=CH	 Methylacetylene	 0.03

HC=C-C=N	 Cyanoacetylene	 0.1-0.01

HC=N	 Hydrogen cyanide	 0.2

N=C-C=_N	 Cyanogen	 0.1-0.01

CO2	Carbon dioxide	 0.01 ppm
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Table 2

Saturn Magnetospheric Particle Flux Measurements
(Calculated from the Voyager measurements of Krimigis, #1$1., 19819 1982)

Enemy Range Meridian Counts/sec Intensity Flux	 Spececraf

keV cm-2 s
-1 

sr-1 eV cm 2 $•1

28 - 43 0 600. 5 x 103 1.1 x 109 V2

90 20. 1.7 x 102 4. x 107 V2

53 - 85 0 200. 1.7 x 103 8. x 108 V1

140 30. 2. x :02 1.1 x 108 V1

80 - 137 0 600. S. x 103 4. x 109 V2

90 7. 6. x 10 1 4. x 107 V2

220 - 540 0 100. S. x 102 1.9 x 109 V2

• 90 0.3 2. 6. x 106 V2

550 - 1050 0 0.2 2. 8. x 106 V1

140 0.1 0.8 4. x 106 V1

990 = 2100 0 0.2 2. 1.9 x 107 V2

90 0.04 0.3 3. x 106 V2

a



Table 3

Net Dissociation and Synthesis Rates*

Energy Source	 Dissociation Rate	 Synthesis Rate
of Organic Molecules

cm 2 sec ^ 1 	 a cm-2/4.5 x 109 yr

UV,1450 > a a 800 A	 3.6 x 10 9	1	 x 104
(CH4 dissociation)

UV, X < 800 A	 2.8 x 108	760
(N2 dissociation)

Solar Wind	 3.2 x 10 7	90

Saturn Magnetosphere Particles 	 1.9 x 108	540

Saturn Corotating Plasma	 8.0 x 106	22

Cosmic Rays	 1.0 x 108	290

[UV, a < 2000 A	 0.1)	 3.4 x 109	97003
0

[JV, X < 2500 A	 0.1)	 3.2 x 10 	 x 105]

*Except for the last two rows, we assume 1 dissociation per 10 eV for charged
particles, 1 dissociation per photon for UV, and a net yield of 1 carbon or
nitrogen atom incorporated into organic products per dissociation. For longer
wavelength UV, we tentatively adopt a quantum yield for higher organics ti 0.1.
Because products are expected to have densities % 1 g cm- 3, the last column
also gives the depth in cm of organic sediments accumulated on its surface
over the history of Titan.	 ',



Table 4

Optical Depths for Condensates of Known Atmospheric Constituents*

Vertical	
j

Compound	 Optical Depth

HC3N	 20.

HCN	 S.

CO2 	 25.

C2N2	28.

C3H8	1200.

C
3
 H42.

C2H2	80.

CA	 1300.

C
2
 H4770.

*Compounds are listed in condensation sequence from higher to lower altitudes
(Figure 3). Listed values assume the presence of an amount of condensate
equal U the column abundance of the overlying vapor. Actual optical depths
will depend on atmospheric settlin and mixing rates, and on actual-particle
sizes (assumed here to be ti 0.1 um?.



Figure 1: Variation of dissociation rate with altitude for various energy

sources at Titan. Assumed dissociation efficiencies are one per 10 eV for

charged particles and one per phovon for a < 1440 A UV. For illustration

we include two points, representing the photolysis of hypothetical minor

0	 0
atmospheric constituents at A < 2000 A and at A < 2600 A -- in both cases

assuming a photodissociation cross-section ti 10-18 cm  and a mole fraction

X ti 10-7 . if not for the presence of the clouds and 'limb hate these near UV

photodissociation events would happen roughly at 2625 W. near the peak dis-

sociation level for cosmic r&ys.

Figure 2: The abundance of simple organics (mainly, normal hydrocarbons)

as a function of heavy atom number for a variety of laboratory simulation

experiments, terrestrial biogenic and suspected abiopenic sediments, and for

Titan. The slope of these curves yields the abundance parameter a, used to

calculate Figs. 4-7. Sample values of a are shown in the inset.

Figure 3: Vapor saturation temperature profiles for Voyager-detected organic

molecules in Titan's atmosphere. On each Furve is shown the generic formula,

name and abundance of the condensate. All compounds condense in the mid to

lower clouds, below 2660 km. Condensation of C 2H4 is marginal.

Figures 4a-d: Vapor saturation temperature profiles for normal hydrocarbons

up to C26 . Abundances are based on C 3H8 at 2 x 10
-5
 mole fraction. Calculations



are performed for four values of a, the rate at which abundance decreases for

each increment in heavy atom number. Detectable condensates at the altitudes

of observed hazes and the upper cloud can be formed only for a < O.S.
I.

Figures 5a-d: Vapor saturation temperature profiles for representative

aromatic ring systems. Abundances are based on C 2H2 at 2 x 10 -6 mole

fraction. Detectable hazes require a < 0.25.

Figures 6a-d: Vapor saturation temperature profiles representative of

abundant tholin pyrolyzates detected by GC/MS after a CH 4 /NH
3
 laboratory

simulation experiment (Khare et el., 1981). Similar products result from

CH4/N2 simulations (Khare et al., 1982). Condensation occurs in the main
9

cloud deck for ill Abundance models.

Figures 7a-d: Vapor saturation temperature profiles for representative

minor pyrolyzates detected by GC/MS after a CH4/NH 3 laboratory simulation

experiment (Khare et al., 1981). Similar products result from CH4/N2

simulations (Khare et al., 1982). Condensation of detectable amounts of

organic products at the altitudes of the hazes and upper cloud deck occurs

only if a < 0.25. The condensation of a few particularly abundant compounds

could result in thin haze layers, as observed.

i

fi
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