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ATTITUDE AND VIBRATION CONTROL OF A LARGE
FLEXIBLE SPACE- BASED ANTENNA

.M. Joshi and G.L, Goglia

SUMMARY

The problem of control «ystems synthesis 1s considered for
controlling the rigid-body sttitude and elastic motion of a large
deployable space-based antenna, Two methods for control systems
synthesis are considered. The first method utilizes the stability
and robustness properties of the controller consisting of torque
actuators and collocated attitude and rate sensors. The second
method 1is based on the linear-quadratic-Gaussian (LQG) control
theory. A combination of the two methods, which results in a
two-level hierarchical control system, 1is also briefly discussed.
The performance of the controllers is analyzed by computing the
variances of pointing errora, feed misalignment errors and surface
contour errors in the presence of sensor and actuator noise.

INTRODUCTION

The successful operation of the NASA space transportation sy:i3tem
(STS) has opened a new era for more cost-effective utilization of
space. One class of examples of future missions using the STS
includes personal communication systems, Earth observation systems,
radio astronomy systems, and electronic mail systems. These missions
require large space-based antennas. For early missions utilizing
large antennas, the development of a deployable antenna which can be
transported into orbit wusing a single shuttle flight has a special
appeal. The 122 meter hoop/column antenna represents such a concept
for relatively near—-term missions.

The detailed description of a technology development program for
large space-based antennas was presented in Ref. 1. The hoop/column
antenna concept, shown in figure 1, consists of a deployable central
mast attached to a deployable hoop by cables held in tension. A
secondary drawing surface is used to produce the desired contour of
the radio-frequency (RF) reflective mesh. The RF surface shaping is
accomplished by mesh shaping ties. The deployabl¢ mast contains a
number of telescoping sections which are deployed by means of a cable
drive system. We hoop consists of 48 rigid segments, and 1is
deployed by four motor drive units. The reflective mesh is made of
knit gold-plated molybdenum wire, and is attached to the hoop by
quartz or graphite fibers. The RF mesh is shaped in the desired
manner (e.g. parabolic or spherical) with control cords attached to
the mesh through the secondary drawing surface.



In order to achieve the required RF performance, the antenna must
be controlled to specified precision in attitude and shape. For
example, for missions such as the land mobile satellite system
(LMSS), which 18 a communications concept for providing mobile
telephone service to users in the continental United States, it 1is
necessary to achieve a pointing accuracy of 0.03 degree RMS (root
mean square) and a surface accuracy of 6 mm RMS, It 1is also
necessary to have stringent control (usually a fraction of a degree)
on the motion of the feed (located near one end of the mast) relative
to the mesh. In this paper, two approaches are considered for
control systems synthesis for such an antenna. The first approach
uses a "collocated" controller, which consists of torque actuators
and collocated attitude and rate sensors The second approach is based
on the linear-quadratic-Gaussian (LQG) control theory. The

performance of the controllers is evaluated in the presence of sensor
and actuator noise.

HOOP/COLUMN ANTENNA MATHEMATICAL MODEL

A large space structure (LSS) such as the hoop/column antenna has,
in theory, infinite number of structural modes. In order to
facilitate analytical treatment, it is necessary to have a finite
order "evaluation" model which is an acceptable representation of the
LSS. The evaluation model considered 1in this paper 1is a 20
structural mode, finite element model of the 122 meter diameter
hoop/column antenna as described in ref. 2. For the purpose of this
study, four, 3-axis torque actuators (a total of 12 actuators) are
assumed to be located on the mast at points shown in figure 2. In
addition to 20 structural modes, three rigid-body rotations are also
included. The equations of motion are given by:

Isas = 2: TJ (1)

q+Dq+ Aq = olT (2)

where I3 1is the 3 by 3 inertia matrix, ng, is the number of 3-axis
torque actuators,qr=(¢,)as,¢g)f ydenotes the rigid-body attitude
vector, Tj denotes the 3 X 1 torque vector produced by the jth
(3-axis) torque actuator , q is the nq X 1 modal amplitude vector

(for nq structural modes) , D-Dizo is the matrix representing the
inherent damping.

- 2 2 2
A = diag. (w; e sw ) (3)
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where w; is the natural frequency of the ith structiral mode,

o = (0,7 0" 00 1T (4)

d;r is the neX 3ny matrix of "mode slopes", and @T corresponds to
the ng X mode slope matrix for the location of the jth torque
actuator. The 3n, X 1 vector T is given by

T, T T.,T
T - [Tl 'T2 ,tt,TnT ] (5)

The total attitude vector (including the contributions of the

rigid-body and structural modes) at the location of the jth actuator
is given by

yaj = as + Qiq (6)

The data presented in the model consists of structural
frequencies, , three mode shapes and three mode slopes (6 degrees of
freedom) at 6 points on the mast, at 8 points corresponding to the
feeds, feed panels., etc., and at two points corresponding to the at
two solar panels. Three mode shapes (3 degrees of freedom) at 96
points corresponding to the mesh surface are also given. The
knowledge of the mode-shapes enables one to compute the elastic
displacements (X, Y, Z directions ), and that of the mode slopes
enables one to compute the elastic rotations (about X,Y,Z axes), from
a given modal amplitude vector q. Table I shows the mass and inertia
properties of the hoop/column antenna, and the frequencies of the
first 20 structural modes are zgiven in Table II. Figure 3 shows the
plots of elastic deformations resulting from some of the modes. (The
first and the sixth modes are torsion morles, and are not shown
because they have very small translational deformations.) The
rssumed nominal damping ratio of 1 per cent (0.01) will be used in
this paper for the numerical computations.

CONTROL SYSTEMS DESIGN

As stated previously, only torque actuators located on the mast
are considered in this paper for controlling the antenna attitude and
flexible motion. Bei:ause of the geometry of the antenna, it appears
that reaction Jjets located on the hoop might be effective in
controlling rigid-body roll and torsion modes; however, because of
their propellant storage requirements and to avold possible
hardware-related difficulties in generating required precision
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control forces, reaction jets are not considered in this preliminary
investigation. As pointed out earlier, surface accuracy 1is of
extreme importance to successful operation of the antenna. The
surface can be actively controlled by pulling the control stringers;
however, from practical considerations, it is preferable to avoid
active surface control if at all possible, and to try to control the
surface using only the torque actuators on the mast.

Two approaches are considered in this paper for control systems
synthesis. The first approach requires collocated sensors and

actuators, while the second approach is based on the LQG control
theory.

Method I- Collocated Controller

It is assumed that n,, 3-axis attitude and rate sensors are

located on the mast at the locations of the torque actuators. The
equations of motion are (from eqs. 1 and 2):

L1 ® T
Ax  +Bx + Cxg = r'r (7)
where As = diag. (Is’Inqan)’

T T T
xs = (GS Q4 ),

B, = diag. (o,n), C, = diag. (0,M),

T _pToT T
P [I‘l ’Pz ,-.,Pnr]

where T, = [T

h| 3x3*¢j]

(fok denotes the k x k identity matrix.)

Since the attitude and rate sensors are collocated with torque
actuators, the measured attitude and rate vectors are:

ya = sz + wp

(8)

Yo = Fxs + wr (9)
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where W Y are the 3n{x1 vectors of measured attitude and rate,
1

and W, , w,. are 3ng sensor noise vectors. Consider the control
law:

T = —pra - Ky, (10)

where K, and K,. denote 3ny X3ny, symmetric provortional and rate gain
P r T T !

matrices. The closed-loop equations, ignoring the noise terms, then

become:

Asxs + Bsxs + CsxS = 0 (11)
h B =B +rkr (12)
where s s r
T =c +rkr (13)
S S P

It can be shown that the closed-loop system as given by Eq.(ll) is
stable in the sense of Lyapunov if K, >0 and K20, and 1is
asymptotically stable if Kﬁ;O, Kr70, and the system 1is stabilizable
(Ref. ). This method attempts to make matrices Bg; and 5} equal
some d.sired matrices By and Cy . For example, in order to assign
closed-loop deamping ratio ‘%i to structural mode i without changing
their frequencies, and to assign closed-loop damping ratic and
frequency@&}%{i-x,y,z) to the rigid-body modes,

Bd’zdiag<°sstx,psywsy,pszwsz,pdlwl,-.,pdnqwnq) (14)
- 2 2 2 2 2 2
Cy diag. (msx ’msy Wy, g, ""wnq ) (15)
The equations to be solved for KP and Kr then become

T
r KrP Bd - BS

By

>

(16)

(@]

T A
= 4 l 7
P K P (Jl - Cs = l ( )

(4 denotes equality by definition.) It will be assumed that rfris
of full rank, or has been reduced to be of full rank (by eliminating
locations corresponding to 1linearly dependent columns). If it is



desired to control only ng (< ng+3) modes, theo the rows
corresponding to the modes which are not controlled are assumed to be
removed from Y. It is alsc assumed that B, and cd are nonnegative

definite. If the number of controlled modes, n., 13 less than or

equal to the number of actuators, m (row dimension of {*¥), then the
solution

- T . =1= , T -
Ke = 1) B 0y 1T (18)

minimiz2s the Frobenius norm of K where the Frobenius norm 1is
defined as:

o -@zj: Kuf)"

For the case ng»m, the solution which minimizes the

Frobenius norm
of the equation error in (16) is given by (Ref, 4)

k= rrH7 T (el (19)

The main advantage of this method is the guaranteed stability. The
closed-loop system 1is stable in the sense of Lyapunov regardless of
the number of modes 1in the model, and in spite of parameter
inaccuracies (Ref. 4). This result is true only for perfect (i.e.,
linear, instantaneous) actuators and sensors; however, even with

actuators and sensors of finite but sufficiently high bandwidth
(Ref. 5), the closed-loop system would be stable.

In practice, it may be 1impossible to exactly collocate the

actuators and sensors. The folowing analysis obtains a bound on the
tolerable inaccuracy of collocation.

Let the closed-loop system of Eq.
(for perfect collocation) Then,
exists a matrix P=P*>» 0 such that

(11) be asymptotically gtable
given a 2nX2n matrix Q=Q 70 there

ATP+pa =-q (20)
C Cc

where A, is the 2nX2n closed-loop system matrix corresponding to Eq.
(11). Consider now the case where the

collocated with the actuators.
become (ignoring noise terms):

senscts are not exactly
In this case, the sensor equations
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Yo ™ (P+6P1) L (21)

Y, = (T481,) (22)

2)

where 6Ty = [0,8%) ] represents the collocation error for the attitude
measurements and oI, = [0,6¢,] represents that for the rate
measurements. The “following theorem gives bounds on §,,8@, which
ensure stability.

Theorem 1.~ The closed-loop system with imprecisely collocated
sensors and actuators is Lyapunov-stable 1if

Ay (@ A (M)

5 8611, + Loty )1, <oty o

where||L|L.denotes the spectral norm of a watrix L

||L|Lf (Maximum eigenvalue of LTL}/Z

7\% ) and 754 ) denote the smallest and largest eigenvalues,

Proof.~ The closed-loop equation with collocation error can be
written in the state variable form as:

0 0 ]

z = Alz - z (24)
a 1T sr,  A”rTk _er
P 1 r 2
z = (xT, iT)T
Consider a Lyapunov function
T
V(z)=z Pz (25)
Then it can be shown that
V= —zTQz + 2 2 PEz (26)




where E denotes the coefficient matrix in,k the second term on the
For V to be nonpositive, the

right-hand-side of Eq. (24)-
inequality

zTPEz < zTQz

should hold. But

T 2
2 PEz < ||P|| | [E]|,l]2]|® and
2’0z 2 A (@]]z]|®

Therefore, V s nonpositive if

2 . 2
el HEl =2l <% A @] ]z]]

or, since ||P||s = AM(P)

A (Q)
m
IlEl |5 iéAM(p)

The 4inequality (23) can then be obtained by using the properties of
the spectral norm to obtain an upper bound on ||E|le, It should be
noted that a strict 1inequality in Eq.(23) assures asymptotic
stability. The bound given by the theorem 1s conservative and
difficult to compute. Also, 1t depends on the choice of Q, and
requires the knowledge of the system parameters. Additional
investigation 1s needed in this area 1in order to obtain less
conservative bounds. However, it is apparent from the theorem that

the system will be asymptotically stable for sufficiently small
collocation errors.

Although the "collocated controller" approach has desirable
stability and robustness properties, the decision regarding which
modes to control rests with the designer,as does the choice of the
desired matrices By and Gy. The most straightforward choices of Bd
and Cq are given in Eqs.(l4) and (15); however, this artificial
decoupling may not give the best performance, and might result in
unreasonably high gaine- One method of systematically selecting
these matrices for computing rate gains was given in Ref 6. However,
the choice of the weighting matrix which is required in this metho
was not discussed. The choice of Bd and Cd’ which give the best
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performance with the smallest possible magnitudes of the feedback
gains, remains an open area of research,

Method II-~ Controller Based on LQG Theory

This approach uses the steady-state LQG control theory as a design
tool. Unlike the collocated controller, the LOG controller does not
automatically guarantee the closed-loop stability. This 1is because
the plant (i.e., the LSS) has an infinite number of structural modes,
and one can actlively control only a finite number of modes via this
approach. Furthermore, from practical cosiderations, in order to
limit the number of feedback channels and the complexity of the
controller, 1t 1is usually necessary to design a controller which is
of much lower order than the "evaluation'" model. (An evaluation
model 1is an acceptably realistic representation of the LSS which
consists of a finite but large number of structural modes.) The use
of lower order controller may cause instability because of the (ref.
7) unwanted excitation of the residual or uncontrlled modes by the
control 1input ("control spillover") and the unwanted contribution of
the residual modes to the sensoi outputs ("observation spillover").
It is well known that the L. controller minimizes the performance
index:

t

f

Ta T

Jp= lim 1 f(z Qz + u'Ru) dt (27)
tf" tf [

where z, u denote tihe state and control vectors, 6-6‘_;_0, R-RT>0
denote the state and control weighting matrices,and £f denotes the
expected value operator. An LQG controller consists of a
linear-quadratic(LQ) regulator in tandem with a state estimator
(Kalman-Bucy filter). Only the steady~state versions of the LQ
regulator and the Kalman-Bucy filter, which use time-invariant gains,
are used in order to facilitate implementation. The Kalman-Bucy

filter uses the knowledge of the system model (rigid-body modes and
selected structural modes which are to be controlled) and the sensor

outputs in order to generate an estimate of the state vector (i.e.,
an estimate of a.,9, a. and ¢ ,where q . denotes the modal amplitude
vector of the controlled modes). This estimate is multiplied by the
regulator gain matrix in order to synthesize the control torques.
Thus the central problem in primary controller design 1is to ensure
the stability of the full-order closed ~loop system, which is not
guaranteed because of the use of truncated models in regulator and
estimator design. Several methods for primary contreoller design
based on the LQG theory were discussed in Ref 8. They include 1)
truncation method, in which the residual modes are merely ignored in
the design process, 1ii)modified truncation, or model error
sensitivity suppression (MESS) method (Ref. 9) 1ii1i) use of higher
order estimator iv) selective modal suppression, etc. Of these
methods, the first two were found to be effective. Stability bounds



on spillover terms were ~btained for this type of controllers in
Ref 10.

The"Two~level" controller (Ref 11)is a variation of the LQG
controller in which the collocated controller is also used, but only
for damping enhancement. The controller consists of two hierarchical
levels: 1) a secondary controller, the function of which is to
enhance damping in the LSS structural modes without attempting to
control rigid-body modes, and ii) a primary controller for
controlling the rigid-body modes and possibly some selected
structural modes. Robust secondary control can be achieved using
feedback of relative velocities (or angular velocities) between
various points on the LSS, If the actuators and sensors for the
secondery controller are collocated, the closed-loop system
(excluding rigid-body modes) with only the secondary controller in
the loop is guaranteed Lyapunov-stable with positive semidcfinite
rate gain (K,>0), and is asymptotically stable if K, >0, and 1f(A, Q)
is controllable (Ref 3). The closed-loop secondary system is stable
regardless of the number of modes and parameter inaccuracies. In
addition, under certain conditions, the system i1s asymptotically
stable 1in the large (ASIL) for sector-type sensor and actuuatoy
nonlinearities. (Ref 5): A variation of the secondary controller is
obtained by wusing one or more Annular Momentum Control Devices
(AMCDs) as discussed in Ref. 3.

ifie procedure for secondary controller design using velocity
faedback 1s similar to that for the collocated controller. the
difference being that the first three rows of the 'Y matrix are
zero, and the rest of the rows consist of differences between the
appropriate columns of 7 . Thus the secondary controller is used
only cto enhance the damping of the structural modes.

The closed-loop system including the secondary controller provides
the starting point for the design of the primary controller. The
primary controller design 18 accomplished using the LQG control
theory as discussed przviously. Since the damping of the LSS is
enhanced by the secondary controller, it should facilitate the design
of the primary controller such that the overall system has an
acceptable degree of stabiliity.

YERFORMANCE EVALUATION

The performance of the contro} system can be evaluated by
computing the standard deviations or root mean square (RMS) values of
various errors in the presence of sensor noise, actuator noise and

other disturbances. Disturbances such as gravity gradient and solar
pressure are low-frequency and predictable, and can be open-loop
compensated. However, sensor and actuator noise represent very

significant sources of error. In this paper, the attitude senzors
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and rate sensors are assumed to have additive white measurement
noise. The nominal standard~deviation intensities of these noise
processes are assumed to be 0.488 arc-second and 0.031
arc-second/sec. respectively (Ref 12). The rate gyro drift is not
modeled. The actuator noise 18 also assumed to be zern-mean and
white. Since data were not available on nominal actuator noise, it
was not included in the nominal performance computations. However,
the actuator noise was included in the computation of the
parametrized data (i.s., coeficlient ba, as will be explained later).
The sensor and actuator noises additively enter the closed-loop
equations for both the controllers considered, and 1in both the
primary and the secondary levels of the two-level controller. The
final closed~loop equation is of the type:

X = Ax + By (28)

where x 1s the overall closed-loop state vector (n, Xl), A 1is the
strictly Hurwitz closed-loop matrix, B is the noise input matrix, and
v 18 a vector white noise process whose entries represent all the
noise terms. The closed-loop covariance evolves according to the
equation

T =aX+X AT 4 pyBT (29)

whve z(t):ELx(t)X';tjis the covariance matrix, and V is the covuriance
intensity matrix of the noise process v. If v 18 a statiomnary
process, ¥ approaches a steady-state value 2 as t tends to
infinity. Since the performance variables of interest (e.g.
attitude angles and deflections at various points on the antenna) are
linear transformations of the state vector x, the variances of _ these
variables can be obtained by appropriate transformations of 3 . A
number of methods are available for numerical solution of the
steady-state version of Eq. (29). The method given in Ref. (13) is
used in this paper.

NUMERICAL RESULTS

As stated previously, four 3-axis torque actuators and four 3-axis
attitude and rate sensors (at the same locations) are used for the
nominal control systems design. Three types of zZero-mean,
white~noise disturbances are considered for performance analysis.
Each attitude and rate sensor output is assumed to be contaminated
with additive white measurement noise, and each actuator 1is assumed
to introduce additive white noise. All individual noise processes
are assumed to be mutually uncorrelated. The basic design objectives
are: 1) to obtain sufficiently high bandwidth (i.e.,closed~loop

11



frequencies corresponding to rigid-body modes) and satisfactory
closed-loop damping ratios for rigid-body and structural modes 2) to
obtain satisfactory RMS pointing errors, feed motion errors, and
surface errors. The first design objective arises from the need to
obtain sufficiently fast error decay when a step disturbance (such as
sudden thermal distortion caused by entering or leaving Earth’s
shadow) occurs. The second design objective arises from the RF
performance requiremente. These two objectives may not necessarily
be compatiable, and may even be conflicting. For example, the use of
increased feedback gains for obtaining higher bandwidths and damping
ratios will, in general, result in higher RMS errors (because of the
amplified effect of sensor noise) beyond a certain point. Therefore,
it is necessary to carafully consider the tradeoffs between the speed
of response and lower RMS errors.

As a part of the first design objective, the desired rigid-body
closed-loop bandwidths in the range of 0.02- ¢,k 25 rad/sec were
considered. Also as a part of the first objective, the desired real
parts of the closed-loop eigenvalues correesponding to the structural
modes, ﬂﬂhﬂg‘in the range 0- 0.5 were considered for the collocated
controller (inherent damping of 1 X is assumed for all structural
modes, and (PW); =0 implies "no additional desired damping".). That
13, the desired damping ratio for each structural mode was inversely
proportional to 1its frequency, and the desired closed~loop
eigenvalues would 1lie on or to the left of the ~(PW)y line in the
complex plane. For the LQG controller, the weights corresponding to
q can "be successively increased in order to achieve successively
higher damping on the structural modes. RMS errors were computed for
nominal noise standard deviation intensities (as stated previously)
for different vwalues of the closed-loop rigid-body frequency
OQ‘ (same for all three axes), and desired closed-loop structural
damping. The desired rigid-body damping ratio f} was held at 0.7,
The five measures of performance considered were: a) maximum (taken
over all points on the mast) RMS poiating errors €p,€¢p,fy about the
X, Y, Z axes (all erors include the contributions of rigid body modes
and all 20 structural modes). b) maximum RMS feed motion error
(maximum taken over seven points corresponding to feeds and feed
panels, with error at each point being defined as the resultant of X,
Y, Z direction motions of each point relative to the point on the
mast where the reflective surface intersects the mast). ¢) maximum
RMS surface error ( maximum taken over the resultant displacements
from nominal positions , of 96 points on the surface).

The nominal performance of the collocated controller was first
obtained. The closed—-loop eigenvalues for the collocated controller
indicated satisfactory stability margins (i.e., real parts close to
the desired values). Figure 4 shows the nominal performance of the
collocated controller for the different values of the closed-loop

rigid-body frequency, &Js= 0,02 rad/sec, 0.1 rad<§$c and 0.25 rad/sec
(same Wg for the three axes, with damping ratio f5 =0.7) The nominal

performaiice does not include actuator noise because of the present

12



lack of knowledge of the type of device that will be wused. The
nominal attitude and rate sensor noises are as stated previously. It
is apparent from Fig. 4 that the RMS pointing errors €y €p,€, decrease
as (PW)y is 1increased. However, as Ws 1s increased, the RMS
pointing errors first decrease, and then increase. RMS feed motion
and surface errors go through a minimum as (PW)d 1s increased. As
can be seen from Fig. 4, the nominal RMS errors are very low, well
below the allowable limits. For example, for We -0.{ rad/sec and
(Pw)‘-O.ZS, ) -0,62x103degree,€9 =1 .0x10 degree, €y = o 55410
degrée,€g = 0.08 mm,Eg= 0.14 mm, where&;(<=%0,y,§,5) denote (maximum)
three RMS pointing errors, RMS feed motion error, and RMS surface
error respectively. For effectively designing a control system, more
generic data will be helpful. Since the covariance intensities of
the three noises considered (Vp, V., and Vg, which denote the
attitude and rate sensor noise and the actuator noise) enter the
covariance equation linearly, it is possible to parametrize the data
by activating each noise one at a time. Figures 5, 6, and 7 show the
coefficients Jhé,Jri ,6‘4‘; (1=®,9,4.f,8), which represent the
appropriate error variance (denoted by subscript 1), obtained by
making each of the noises Vp, V). and V4 equal to unity one at a time
while the other two are being held at zero. As a result, any of the
five performance measures €g (i= ¢,9,y,f,s) can be computed for any
given set of actual noise variances as follows:

- 1/2
ey = (SpgVy + 8V + 8,V

where the units of €; are degree for i=#.0,, and mm for i=f,s.
units of the noise variances are (rad)*, (rad/sec)*, and (ft-1lb)*
respectively. The coefficients in Figs. 5-7 are plotted for three
values of : 0.02, 0.1 and 0.25 rad/sec in order to consider three
response speeds. Generjdc data such as these can provide useful
guidelines for antenna control system design.

The nominal performance with the LQG- based controller was next
obtained. In addition to the three rigid-body modes, it was
arbitrarily decided to control the first three structural modes. The
nominal desired values of CUgwere selected to be 0.02, 0.1 and 0.25
rad/sec, corresponding to slow, medium and fast response speeds
(/% =0.7). The estimator was designed to estimate state variables
corresponding only to those modes which were controlled in this
preliminary analysis. With a 1little ¢trial and error, 1t was
straightforward to arrive at performance function weights Q which
yleld the desired s and .ps for the LQ regulator. Instead of using
the actual noise parameters for the design of the Kzlman- Bucy
filter, (which would give extremely slow filter response) weighting
matrices were adjusted by trial and error to yield closed-loop
frequencies (corresponding to rigid-body modes) approximately 3-4
times W, with damping ratios=0.7. Satisfactory (0.7 or better)
damping ratios for the structural modes were obtained by adjusting

13



the corresponding weights. Keeping the estimator fixed for eachWy,
the weights on the modal velocities (q) in the regulator design were
increased by factor of 10 at each step, and nominal performance was
computed similar to the collocated case. The closed-loop eigenvalues
indicated satisfactory stability margins for the controlled modes.
The closed-loop damping ratios for most of the residual modes changed
very little (i.e., remained between 0.0075 and 0.013), while that
for the rest of the residual modes increased. The nominal
performance is plotted in Fig. 8 for Ws =0.02, 0.1 and 0.25 rad/sec.
The RMS errors are significantly lower than those for the collocated
controller. At least for this preliminary model, the LQG method
using simple modal truncation does not cause any appreciable
destabilizing effect on the residual modes for the range of
closed-loop bandwidth considered (0.02-0.5 rad/sec). Therefore, it
18 not necessary to use special techniques fur the reduction of
spillover (e.g. Ref. 8). The data for the LQG controller can also
be parametrized in the same fashion as the collocated controller.
The resulting coefficients are shown in Figs. 9-ll. It can be seen
that the coefficlients Jp[ and in are much lower for the LQG
controller than for the coliocated controller, whiletSazappears to
be roughly the same. The LQG feedback gains were much smaller than
those for the collocated controller (typically by a factor of 100 or
more) .,

Generation of parametrized data such as these can provide useful
guidelines for the antenna control systems design. In order to
evaluate the controllers more completely, the following
investigations were made:

Effect of imprecise collocation.~ In order to investigate the
effect of 1imprecise sensor/actuator collocation on the collocated
contruller, all sensors were displaced from the corresponding
actuators by 60 cm along the mast. For the nominal case (g =0.1
rad/sec,ﬂ%Uﬁ;-O.ZS) the closed-loop eigenvalues remained practically
unchanged, and RMS errors showed less than 1% increase.

Effect of using fewer actuators/sensors.~ In order to 1investigate
if Tewer actuators/sensors can be used, both the designs were carried
out for the nominal case, with a) one (3-axis) actuator and sensor
(actuator no. 1 in Fig. 2) b)two actuators/sensors (nos. 1 and 3),
and c)three actuators/sensors (nos. 1, 2 and 3). The collocated
controller failed to meet the rigid-body bandwidth and damping ratio
requirements with fewer than 4 actuators, while the LQG controller
met the requirements with two or more actuators. The RMS performance
of the LQG controller deteriorated by about 50% with 2 actuators (as
compared to the nominal 4-actuator case), which was well within the
acceptable bounds. the magnitudes of the maximum elements of the
regulator and Kalman gain matrices increased by about 70% and 15%
respectively, which is not excessively large. In view of this
analysis, it appears that an acceptable LQG design may be obtained
using only two actuators. It was not possible to obtain a
satisfactory stable LQG design with a single actuator and sensor.
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Effect of 1imprecise knowledge of parameters.- A change in
parameters "quiandt%) of upto 10X caused less than 2% deterioration
in the collocated controller performance , and caused under 4%
deterioration in the LQG controller performance.

Two-level controller.- A secondary collocated controller was first
designed for the (P&)y=0 to 0.5 range. Tha primary LQG controller
was then designed to obtainCQk =0,1 rad/sec. However, this caused
the RMS errors to increase by a factor of 10 or more as compared to
the case with LQG controller alone.

Effect of number of modes controlled.~ For the LQG controller, the
number  of wmodes controlled (and estimated) was varied from n_=3
(rigid-body only) to 9 (rigid-body and the first six structural
modes) . Slight dimprovement in the performance was noted as n, was
increased, with about 15% improvement for n,=9. Thus controlling
more than the first 4 or 5 modes appears to contribute little towaxds
the first objective (i.e., speed of response). However, since the
damping ratios of the residual modes remain close to 0.0l, the speed
of response may not be satisfactory if the number of modes controlled
is too small.

CONCLUDING REMARKS

Control systems synthesis was considered for a large flexible
space antenna using two approaches. From the results based on the
preliminary model and linear analysis, it appears that the performance
requirements can be satisfactorily met, and an acceptable degree of
stability and robustness can be obtained using either of the controll-~
ers, However, the LQG approach yielded much lower RMS errors, with
significantly lower feedback gains. In addition, satisfactory perform~
ance was obtained with the LQG controller using as few as two actuat~
ors. Therefore, the LQG approach is more desirable for this problem,

A method was given for generating parametrized performance data which
would be useful as a design guideline. In order to arrive at more
complete conclusions, however, it will be necessary to include the
effects of actuator/sensor dynamics and nonlinearities. This can be
accomplished only after the actuator concepts are selected and their
characteristics known. It will also be useful to investigate other
types of actuator concepts (e.g. reaction jets) prior to arriving at
a control system design. Before commencing the final design process,
it will also be necessary to precisely define the design objectives
such as the speed of response requirement.
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TABLE I, MASS AND INERTIA PROPERTIES

Mass= 4544,3 Kg.

Inertia about axes through center of mass (Kg-mz)

I =5.726 x10° 1 =5.747 x 10°
I =4.383 x10° 1 = 3.906 x 10%
z2 Xz

I =] =

xy- lyz= 0

TABLE ITI, STRUCTURAL MODE FREQUENCIES

Mode no. 1 2 3 4 5 6 7 8 9 10

Freq.

cad/sec | 075 |1.35 |1.70 13,18 }4.53 |5.59 |5.78 16.84| 7.4 | 8.78

Mode no. 11 12 13 14 15 16 17 18 19 20

Freq.
rad/sec [10.85 |11.24 | 15.05| 15.4] 15.75| 15.85/16.04 18.§f118.84 18.99
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