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ATTITUDE AND VIBRATION CONTROL OF A LARGE
FLEXIBLE SPACE- BASED ANTENNA

S.M. Joshi and G.L. Goglia

SUMMARY

The problem of control Fkysteme synthesis is considered for
controlling the rigid-body attitude and elastic motion of a large
deployable space-based antenna. Two methods for control systems
synthesis are considered. The first method utilizes the stability
and robustness properties of the controller consisting of torque
actuators and collocated attitude and rate sensors. The second
method is based on the linear-quadratic-Gaussian (LQG) control
theory. A combination of the two methods, which results in a
two-level hierarchical control system, is also briefly discussed.
The performance of the controllers is analyzed by computing the
variances of pointing errors, feed misalignment errors and surface
contour errors in the presence of sensor and actuator noise.

INTRODUCTION

The successful operation of the NASA space transportation sy:Item
(STS) has opened a new era for more cost-effective utilization of
space. One class of examples of future missions using the STS
includes personal communication systems, Earth observation systems,
radio astronomy systems, and electronic mail systems. These missions
require large space-based antennae. For early missions utilizing
large antennas, the development of a deployable antenna which can be
transported into orbit using a single shuttle flight has a special
appeal. The 122 meter hoop/column antenna represents such a concept
for relatively near-term missions.

The detailed description of a technology development program for
large space-based antennas was presented in Ref.. 1. The hoop/column
antenna concept, shown in figure 1, consists of a deployable central
mast attached to a deployable hoop by cables held in tension. A
secondary drawing surface is used to produce the desired contour of
the radio-frequency (RF) reflective mesh. The RF surface shaping is
accomplished by mesh shaping ties. The deployable mast contains a
number of telescoping sections which are deployed by means of a cable
drive system. The hoop consists of 48 rigid segments, and is
deployed by four motor drive units. The reflective mesh is made of
knit gold-plated molybdenum wire, and is attached to the hoop by
quartz or graphite fibers. The RF mesh is shaped in the desired
manner (e.g. parabolic or spherical) with control cords attached to
the mesh through the secondary drawing surface.



In order to achieve the required RF performance, the antenna must
be controlled to specified precision in attitude and shape. For
example, for missions such as the land mobile satellite system
(LMSS), which is a communications concept for providing mobile
telephone service to users in the continental United States, it is
necessary to achieve a pointing accuracy of 0.03 degree RMS (root
mean square) and a surface accuracy of 6 mm RMS. It is also
necessary to have stringent control (usually a fraction of a degree)
on the motion of the feed (located near one end of the mast) relative
to the mesh.	 In this paper, two approaches are considered for
control systems synthesis for such an antenna. The first approach
uses a "collocated" controller, which consists of torque actuators	 r:
and collocated attitude and rate sensors The second approach is based
on the linear-quadratic-Gaussian (LQG) control theory. The
performance of the controllers is evaluated in the presence of sensor	 ;?
and actuator noise.	 ^!

h
{

HOOP/COLUMN ANTENNA MATHEMATICAL MODEL
14

A large space structure (LSS) such as the hoop /column antenna has,
in theory, infinite number of structural modes.	 In order to

n

facilitate analytical treatment, it is necessary to have a finite
order "evaluation" model which is an acceptable representation of the
LSS. The evaluation model considered in this paper is a 20
structural mode, finite element model of the 122 meter diameter
hoop /column antenna as described in ref. 2. For the purpose of this
study, four, 3-axis torque actuators ( a total of 12 actuators) are
assumed to be located on the mast at points shown in figure 2. 	 In
addition to 20 structural modes, three rigid-body rotations are also 	 ;l

included. The equations of motion are given by:	 r';

..	 nT	
t

t

Isas	T^	 (1)
1

q+Dq+Aq @TT	 (2)

where Is is the 3 by 3 inertia matrix, n. r is the number of 3-axis
torque actuators, 4 =(Os, gs , Ŝ ) r ,denotes the rigid-body attitude
vector, Tj denotes the 3 X 1 torque vector produced by the jth 	 f
(3-axis) torque actuator , q is the n 9 X 1 modal amplitude vector
(for ncy structural modes) , D-DTI 0 is the matrix representing the
inherent damping.

A	 diag. (W12,w22,..,Wng2) 	 (3)

2



where wj is the natural frequency of the ith struct^Aral mode,

T	 t1T 02T ...mnTT j0	 `^ 

(T is the n X 3nT matrix of "mode
the n q X I mode slope matrix
actuator. The 3nT X 1 vector T is

T - (Ti T ,T2T ,.., TnTT ) T

slopes", and (V-corresponds to
for the location of the jth torque
given by

(5)

The total attitude vector (including the contributions of the
rigid-body and structural modes) at the location of the jth actuator

is given by

yaj - as +'^ j q	 (6)

The data presented in the model consists of structural
frequencies, , three mode shapes and three mode slopes (6 degrees of
freedom) at 6 points on the mast, at 8 points corresponding to the
feeds, feed panels., etc., and at two points corresponding to the at
two solar panels. Three mode shapes (3 degrees of freedom) at 96
points corresponding to the mesh surface are also given. The
knowledge of the mode-shapes enables one to compute the elastic
displacements (X, Y, Z directions ), and that of the mode slopes
enables one to compute the elastic rotations (about X t Y,Z axes), from

a given modal amplitude vector q. Table I shows the mass and inertia
properties of the hoop/column antenna, and the frequencies of the
first 20 structural modes are given in Table II. Figure 3 shows the
plots of elastic deformations resulting from some of the modes. (The
first and the sixth modes are torsion modes, and are not shown
because they have very small translational deformations.) The
rssumed nominal damping ratio of 1 per cent (0.01) will be used in
this paper for the numerical computations.

CONTROL SYSTEMS DESIGN

As stated previously, only torque actuators located on the mast
are considered in this paper for controlling the antenna attitude and
flexible motion. Because of the geometry of the antenna, it appears
that reaction jets located on the hoop might be effective in
controlling rigid-body roll and torsion modes; however, because of
their propellant storage requirements and to avoid possible
hardware-related difficulties in generating required precision

a
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control forces, reaction ,bets are not considered in this preliminary
investigation. As pointed out earlier, surface accuracy is of
extreme importance to successful operation of the antenna. The
surface can be actively controlled by pulling the control stringers;
however, from practical considerations, it is preferable to avoid
active surface control if at all possible, and to try to control the
surface-using only the torque actuators on the mast.

Two approaches are considered in this paper for control systems
synthesis. The first approach requires collocated sensors and
actuators, while the second approach is based on the LQG control
theory.

Method I- Collocated Controller

It is assumed that nT, 3-axis attitude and rate sensors are
located on the mast at the locations of the torque actuators. The
equations of motion are (from eqs. 1 and 2):

A 
s 
x s + Bsxs + C 

s 
x s = rTT
	

(7)

where A = diag. (I ' -fs	
s ngKnq)'

xsT
	 (a aT gq ).

Bs = diag. (0,D), Cs = diag. (0,A),

T	 T T	 Tr = 
(rl ,r2 '.. , rnr 

I

where r  _ 
[T3x3' (Di I

(Ikxk denotes the k x k identity matrix.)

Since the attitude and rate sensors are collocated with torque
actuators, the measured attitude and rate vectors are:

ya = rxs + w
p	

(g)

yW = rX + wr	 (9)

i
t'
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where y., y. are the 3 l vectors of measured attitude and rate,
and W,, , wr are 3nT Ti sensor noise vectors. Consider the control
law:

T - -Kpya - Kryw	 (10)

where Kp and Kr denote 3nT X3nr, symotetrsc proportional and rate gain
matrices. The closed-loop equations, ignoring the noise terms, then
become:

Asxs + B a x a + Csxs = 0	 (11)

where	 Bs = Bs + rTKrr	 (12)

Cs	 Cs + rTKpr	 (13)

It can be shown that the closed-loop system as given by Eq.(I1) is
stable in the sense of Lyapunov if K P >0 and Kr > 0, and is
asymptotically stable if K^>O, K,,>0, and the system is stabilizable
(Ref. ?). This method attempts to make matrices IS and d. equal
some desired matrices Bd and Chi	 For example, in order to assign
closed-loop damping ratio  to structural mode i without changing
their frequencies, and to assign closed-loop damping ratio and
frequency ,jW4 i-x,y,z) to the rigid-body modes,

Bd=2diag(P
sxwsx,p sywsy, P szwsz, Pdlwl,.., Pdngwnq )	 (14)

C  = diag. (wsx2,nisy2 ' wsz 2 ' w1 2 ' w2 2,..,wnq 2)	
(15)

The equations to be solved for K  and K I,then become

r 
T 
K 

r 
r = B  - Bs Bd	 (16)

rTKpr C  - Cs	 Cd	 (17)

( 4 denotes equality by definition.) It will be assumed that r r is
of full rank, or has been reduced to be of full rank ( by eliminating
locations corresponding to linearly dependent columns). If it is

s
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desired to control only n. (-,^ n4+3) modes, then the rows
corresponding to the modes which are not controlled are assumed to be
removed from r r . It is also assumed that Bd and Cd are nonnegative
definite.	 If the number of controlled modes, n; , is less than or
equal to the number of actuators, m (row dimension of 	 then the
solution

Kr = r(rTr)-l8d(rTr)-1rT

minimizes the Frobenius norm of Kr,
defined as:

II Kr)I F ' L,^ 
Krij 2 V14

For the case n e >, m, the solution which minimizes the Frobenius norm
of the equation error in (16) is given by (Ref,4)

Kr = (rr T)-1 rBj T (rr T)-1 	(19)

The main advantage of this method is the guaranteed stability. The
closed-loop system is stable in the sense of Lyapunov regardless of
the number of modes in the model, and in spite of parameter
inaccuracies (Ref. 4). This result is true only for perfect (i.e.,
linear, instantaneous) actuators and sensors; however, even with
actuators and sensors of finite but sufficiently high bandwidth
(Ref. 5), the closed -loop system would be stable.

In practice, it may be impossible to exactly collocate the
actuators and sensors. The folowing analysis obtains a bound ern the
tolerable inaccuracy of collocation.

Let the closed-loop system of Eq. ( 11) be asymptotically stable
(for perfect collocation) . Then, given a 2nX2n matrix Q-QTy 0, there
exists a matrix P-PTA 0 such that

AcTP + PAc - - Q	 (20)

where At is the 2nX2n closed-loop system matrix corresponding to Eq.
(11). Consider now the case where the senses are not exactly
collocated with the actuators. In this case, the sensor equations
become (ignoring noise terms):

6

(18)

where the Frobenius norm is



ya - (r+sr1) x 	 (21)

yw	 (r+6r 2> xs	 (22)

where dr l - (0,60 1 ]represents the collocation error for the attitude
measurements and 6r 2 - [0,602] represents that for the rate
measurements. The following theorem gives bounds on 6 0,,d f which
ensure stability.

Theorem 1.- The closed-loop system with imprecisely collocated
sensors and actuators is Lyapunov-stables if

^ (Q) i(A)
IlKplls	

m	 m
lls ,Pl ll s + I1 Kr ll s 11

b4,2 1 I s _ 2 
r s^M(P̂

	(23)

where jI L 11S denotes the spectral norm of a matrix L

JI
LJ - (Maximum eigenvalue of LTL^/2

A( ) and N ) denote the smallest and largest eigenvalues,

Proof.- The closed-loop equation with collocation error can be
written in the state variable form as;

0	 1
i A 1 z -

	

	 z	 (24)

A lrTKpsr1 A lrTKrdr2

z - (xT , xT)T

Consider a Lyapunov function

V(z)-zTPz	 (25)

Then it can be shown that

V = -zTQz + 2 zTPEz	 (26)

7



i,

where. E denotes the coefficient matrix in s the second term on the
right-hand-sideof Eq.	 '24^,	 For V to be nonpositive, the 	

T

inequality

fl
i3

TPEz	 Tzz	 t Qz
^i

should hold. But
I

zTPEz < IIPIIsIIEllsllzll2 and
r

zTQz > A (Q)IIZII`
f

Therefore, V is nonpositive if 	 it

IIPII s IJ E II s IIzII 2 _	 am(Q)IIz112
s

	

or, since I1PIIs' XM(P)	 E

Xm(Q)

II E II s
<

2A (P)

The inequality (23) can then be obtained by using the properties of
the spectral norm to obtain an upper boundon 11EIL. It should be
noted that a strict inequality in Eq.(23) assures asymptotic
stability. The bound given by the theorem is conservative and
difficult to compute.	 Also, it depends on the choice of Q, and
requires the knowledge of the system parameters. Additional
investigation is needed in this area in order to obtain less
conservative bounds. However, it is apparent from the theorem that
the system will be asymptotically stable for sufficiently small
collocation errors.

Although the "collocated controller" approach has desirable
stability and robustness properties, the decision regarding which
modes to control rests with the designer,as does the choice of the
desired matrices Bd and Cy. The most straightforward choices of Bd
and Cd are given in Egs.(14) and (15); however, this artificial
decoupling may not give the best performance, and might result in
unreasonably high gains= One method of systematically selecting
these matrices for computing rate gains was given in Ref 6. However,
the choice of the weighting matrix which is required in this metho
was not discussed. The choice of Bd and Cd , which give the best

8



performance with the smallest possible magnitudes of the feedback
gains, remains an open area of research.

Method II- Controller Based on LQG Theory

This approach uses the steady-state LQG control theory as a design
tool. Unlike the collocated controller, the LQG controller does not

` automatically guarantee the closed-loop stability. ThI.s is because
the plant (i.e., the LSS) has an infinite number of structural modes,
and one can actively control only a finite number of modes via this
approach. Furthermore, from practical cosiderations, in order to
limit the number of feedback channels and the complexity of the
controller, it is usually necessary to design a controller which is
of much lower order than the "evaluation" model. (An evaluation
model is an acceptably realistic representation of the LSS which
consists of a finite but large number of structural modes.) The use
of lower order controller may cause instability because of the (ref.
7) unwanted excitation of the residual or uncontrlled modes by the
control input ("control spillover") and the unwanted contribution of
the residual modes to the sensor' outputs ("observation spillover").
It is well known that the L.16 controller minimizes the performance
index:

tf

j  = lim 1 Er(Z Tjz  + uTRu) dt	 (27)

tf_"W t  O

where z, u denote 6)e state and control vectors, Q-Q a 0, R-R.P0
denote the state and control weighting matrices,and	 denotes the
expected value operator. 	 An LQG controller consists of a 	 }
linear-quadratic(LQ) regulator in tandem with a state estimator
(Kalman-Bucy filter).	 Only the steady-state versions of the LQ	 '!
regulator and the Kalman-Bucy filter, which use time-invariant gains,
are used in order to facilitate implementation. The Kalman-Bucy
filter uses the knowledge of the system model (rigid-body modes and
selected structural modes which are to be controlled) and the sensor
outputs in order to generate an estimate of the state vector (i.e.,
an estimate of ayy^, as and ge,where q c denotes the modal amplitude
vector of the controlled modes). This estimate is multiplied by the 	 t
regulator i3ain matrix in order to synthesize the control torques.
Thus the central problem in primary controller design is to ensure 	 r
the stability of the full-order closed -loop system, which is not
guaranteed because of the use of truncated models in regulator and
estimator design. Several methods for primary controller design
based on the LQG theory were discussed in Ref 8. They include i)
truncation method, in which the residual modes are merely ignored in

the design process, ii)modified truncation,	 or model error
sensitivity suppression (MESS) method (Ref. 9) iii) use of higher
order estimator iv) selective modal suppression, etc. 	 Of these
methods, the first two were found to be effective. Stability bounds



on spillover terms were btained for this type of controllers in
Ref 10.

The"Two-level" controller (Ref 11 )is a variation of the LQG
controller in which the collocated controller is also used, but only
for damping enhancement. The controller consists of two hierarchical
levels % i) a secondary controller $ the function of which is to
enhance damping in the LSS structural modes without attempting to
control rigid-body modes, and ii) a primary controller for
controlling the rigid-body modes and possibly some selected
structural modes. Robust secondary control can be achieved using
feedback of relative velocities (or angular velocities) between
various points on the LSS.	 If the actuators and sensors for the
secondery controller are collocated, the closed -loop system
(excluding rigid-body modes) with only the secondary controller in
the loop is guaranteed Lyapunov-stable with positive semidefinite
rate gain (K.1.0), and is asymptotically stable if K r),O, and if(A,^r.
is controllable (Ref 3). The closed-loop secondary system is stable
regardless of the number of modes and parameter inaccuracies. In
addition ) under certain conditions, the system is asymptotically
stable in the large (ASIL) for sector-type sensor and actuatoe
nonlinearities. ( Ref 5): A variation of the secondary controller is
obtained by using one or more Annular Momentum Control Devices
(AMCDs) as discussed in Ref. 3.

"ze procedure for secondary controller design using velocity
f^iedback is similar to that for the collocated controller, the
difference being that the first three rows of the r r matrix are
zero, and the rest of the rows consist of differences between the
appropriate columns of r"r . Thus the secondary controller is used
only co enhance the damping of the structural modes.

The closed-loop system including the secondary controller provides
the starting point for the design of the primary controller. The
primary controller design is accomplished using the LQG control
theory as discussed previously. Since the damping of the LSS is
enhanced by the secondary controller, it should facilitate the design
of the primary control ler such that the overall system has an
acceptable degree of stability.

VERFORMANCE EVALUATION

The performance of the contro system can be evaluated by
computing the standard deviations or root: mean square ( RMS) values of
various errors in the presence of sensor noise, actuator noise and
other disturbances. Disturbances such as gravity gradient and solar
pressure are low-frequency and predictable, and can be open-loop
compensated. 'However, sensor and actuator noise represent very
significant sources of error. In this paper, the attitude sensors

10



and rate sensors are assumed to have additive white measurement
noise. The nominal standard-deviation intensities of these noise
processes are assumed to be 0.488 arc-second and 0.431
arc-second/see. respectively (Ref 12). The rate gyro drift is not
modeled. The actuator noise is also assumed to be zero-mean and
white. Since data were not available on nominal actuator noise, it
was not included in the nominal performance computations. However,
the actuator noise was included in the computation of the
parametrized data (i.e., coeficient ad, as will be explained later).
The sensor and actuator noises additively enter the closed-loop
equations for both the controllers considered, and in both the
primary and the secondary levels of the two-level controller. 	 The
final closed-loop equation is of the type:

x = Ax + By 	(28)

where x is the overall closed-loop state vector (nx X1), A is the
strictly Hurwitz closed-loop matrix, B is the noise input matrix, and
v is a vector white noise process whose entries represent all the
noise terms. The closed -loop covariance evolves according to the
equation

t -AE+E AT + B'JB T	(29)

^: <<e J&f —_L'[X&)4gis the covariance matrix, and V is the co y .Ariance
ntensity matrix of the noise process v. 	 If v is a stationary
process, I	 approaches a steady-state value ir	 as t tends to
infinity. Since the performance variables of interest (e.g.
attitude angles and deflections at various points on the antenna) are
linear transformations of the state vector x, the variances of_ these
variables can be obtained by appropriate transformaations of 1. . A
number of methods are available for numerical solution of the
steady-state version of Eq. (29). The method given in Ref. (13) is
used in this paper.

NUMERICAL RESULTS

As stated previously, four 3-axis torque actuators and Four 3-axis
attitude and rate sensors (at the same locations) are used for the
nominal control systems design. Three types of zero-mean,
white-noise disturbances are considered for performance analysis.
Each attitude and rate sensor output is assumed to be contaminated

with additive white measurement noise, and each actuator is assumed
to introduce additive white noise. All individual noise processes
are assumed to be mutually uncorrelated. The basic design objectives
are: 1) to obtain sufficiently high bandwidth (i.e.,closed-loop

11



frequencies corresponding to rigid-body modes) and satisfactory
closed-loop damping ratios for rigid-body and structural modes 2) to
obtain satisfactory RMS pointing errors, feed motion errors, and
surface errors. The first design objective arises from the need to
obtain sufficiently fast error decay when a step disturbance (such as
sudden thermal distortion caused by entering or leaving Earth's
shadow) occurs. The second design objective arises from the RP
performance requirements, These two objectives may not necessarily
be compatiable, and may even be conflicting. For example, the use of
increased feedback gains for obtaining higher bandwidths and damping
ratios will, in general, result in higher RMS errors (because of the
amplified effect of sensor noise) beyond a certain point. Therefore,
it is necessary to carefully consider the tradeoffs between the speed
of response and lower RMS errors.

As a part of the first design objective, the desired rigid-body
closed-loop bandwidths in the range of 0.02- 0.25 rad/sec were
considered. Also as a part of the first objective, the desired real
parts of the closed-loop eigenvalues correesponding to the structural
modes, (pU44 in the range 0- 0.5 were considered for the collocated
controller (inherent damping of 1 % is assumed for all structural
modes, and (J"d -0 implies "no additional desired damping".). That
is, the desired damping ratio for each structural mode was inversely
proportional to its frequency, and the desired closed-loop
eigenvalues would lie on or to the left of the -(PMj line in the
complex plane. For the LQG controller, the weights corresponding to
q can 'be successively increased in order to achieve successively
higher damping on the structural modes. RMS errors were computed for
nominal noise standard deviation intensities (as stated previously)
for different values of the closed-loop rigid-body frequency
CJS (same for all three axes), and desired closed-loop structural
damping. The desired rigid-body damping ratio 4 was held at 0.7.
The five measures of performance considered were: a) maximum (taken
over all points on the mast) RMS pointing errors EO .,ee 0% about the
X, Y, Z axes (all erors include the contributions of rigid body modes
and all 20 structural modes). b) maximum RMS feed motion error
(maximum taken over seven points corresponding to feeds and feed
panels, with error at each point being defined as the resultant of X,
Y, Z direction motions of each point relative to the point on the
mast where the reflective surface intersects the mast). c) maximum
RMS surface error ( maximum taken over the resultant displacements
from nominal positions , of 96 points on the surface).

The nominal performance of the collocated controller was first
obtained. The closed-loop eigenvalues for the collocated controller
indicated satisfactory stability margins (i.e., real parts close to
the desired values). Figure 4 shows the nominal performance of the
collocated controller for the different values of the closed-loop
rigid-body frequency, Ws- 0.02 rad/sec, 0.1 rad/ec and 0.25 rad/sec
(same CJy for the three axes, with damping ratio S _0.7) The nominal
performance does not include actuator noise because of the present

12



lack of knowledge of the type of device that will be used. The
nominal attitude and rate sensor noises are as stated previously. It
is apparent from Fig. 4 that the RMS pointing errors 60'fa,Fp,decrease
as (pW)W is increased. However, as WS is increased, the RMS
pointing errors first decrease, and then increase. RMS feed motion
and surface errors go through a minimum as (PW )d is increased. As
can be seen from Fig. 4, the nominal RMS errors are very low, well
below the allowable limits. For example, for GJs -0.1 rad/sec and

(P(J)j- 0.25, E¢0.62x10 3 degree, Ee -11. _9
1 degree, E^,, 0.55x103

degree, Ef . 0.08 • mm, ES- 0.14 mm, where E^^t_y^9,y^,f,S) denote (maximum)
three RMS pointing errors, RMS feed motion error, and RMS surface
error respectively. For effectively designing a control system, more
generic data will be helpful. Since the covariance intensities of
the three noises considered (Vp„ %., and V,t, which denote the
attitude and rate sensor noise and the actuator noise) enter the
covariance equation linearly, it is possible to parametrize the data
by activating each noise one at a time. Figures 5, 6, and 7 show the
coef f icients 6b.i , Sy.4 ► Sd , (1- 0, 9^^ f, S) , which represent the
appropriate error variance (denoted by subscript i), obtained by
making each of the noises Vp, Vp and Va equal to unity one at a time
while the other two are being held at zero. As a result, any of the
five performance measures Ci (ice a, , f,S) can be computed for any
given set of actual noise variances as follows:

C  - ( SpiVp + 6rivr ,+ 6aiVa)1/2

where the units of f.Z are degree for i-0,e,1t,, and mm for i-f,s.
units of the noise variances are (rad)', ( rad/sec)", and (ft-lb)3'
respectively.	 The coefficients in Figs. 5-7 are plotted for three
values of	 0.02, 0.1 and 0.25 tad / sec in order to consider three
response speeds.	 Generic data such as these can provide useful
guidelines for antenna control system design.

The nominal performance with the LQG- based controller was next
obtained. In addition to the three rigid-body modes, it was
arbitrarily decided to control the first three structural modes. The
nominal desired values of Ws were selected to be 0 . 02, 0.1 and 0.25
rad/sec, corresponding to slow, medium and fast response speeds
U*s -0.7).	 The estimator was designed to estimate stare variables
corresponding only to those modes which were controlled in this
preliminary analysis. With a little trial and error, it was
straightforward to arrive at performance function weights Q which
yield the desired Ws and s for the LQ regulator. Instead of using
the actual noise parameters for the design of the Kalman- Bucy
filter, (which would give extremely slow filter response) weighting

matrices were adjusted by trial and error to yield closed-loop
frequencies ( corresponding to rigid-body modes) approximately 3-4
times WS•, with damping ratios-0-7.	 Satisfactory (0.7 or better)
damping ratios for the structural modes were obtained by adjusting

13



the corresponding weights. Keeping the estimator fixed for each Ws,
the weights on the modal velocities (q) in the regulator design were
increased by factor of 10 at each step, and nominal performance was
computed similar to the collocated case. The closed-loop eigenvalues
indicated satisfactory stability margins for the controlled modes.
The closed-loop damping ratios for most of the residual modes changed
very little	 (i.e., remained between 0.0075 and 0.013), while that
for the rest of the residual modes increased. The nominal
performance is plotted in Fig. 8 for 41s -0.02 0 0.1 and 0.25 rad/sec.
The RMS errors are significantly lower than those for the collocated
controller. At least for this preliminary model, the LQG method
using simple modal truncation does not cause any appreciable
destabilizing effect on the residual modes for the range of
closed-loop bandwidth considered (0.02-0.5 rad/sec). Therefore, it
is not necessary to use special techniques for the reduction of
spillover (e.g. Ref. 8). The data for the LQG controller can also
be parametrized in the same fashion as the collocated controller.
The resulting coefficients are shown in Figs. 9-11. It can be seen
that the coefficients 6pt and 6Yj are much lower for the LQG
controller than for the collocated controller, while btu appears to
be roughly the same. The LQG feedback gains were much smaller than
those for the collocated controller (typically by a factor of 100 or
more).

Generation of parametrized data such as these can provide useful
guidelines for the antenna control systems design. In order to
evaluate the controllers more completely, the following
investigations were made:

Effect of imprecise collocation.- In order to investigate the
effect of—imprecise sensor actuator collocation on the collocated
controller, all sensors were displaced from the corresponding
actuators by ±60 cm along the mast. For the nominal case (WS -0.1
rad/sec,((`W)a -0.25) the closed-loop eigenvalues remained practically
unchanged, and RMS errors showed less than 1% increase.

Effect of using fewer actuators/sensors.- In order to investigate
if eewe- actuators sensors can be used,_Fo__tW the designs were carried
out for the nominal case, with a) one ( 3-axis) actuator and sensor
(actuator no. 1 in Fig. 2) b)two actuators/sensors (nos. 1 and 3),
and c)three actuators/sensors (nos. 1, 2 and 3). The collocated
controller failed to meet the rigid-body bandwidth and damping ratio
requirements with fewer than 4 actuators, while the LQG controller
met the requirements with two or more actuators. The RMS performance
of the LQG controller deteriorated by about 50% with 2 actuators (as
compared to the nominal 4-actuator case), which was well within the
acceptable bounds. the magnitudes of the maximum elements of the
regulator and Kalman gain matrices increased by about 70% and 15%
respectively, which is not excessively large. 	 In view of this
analysis, it appears that an acceptable LQG design may be obtained
using only two actuators. 	 It was not possible to obtain a
satisfactory stable LQG design with a single actuator and sensor.
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Effect of imprecise knowled a of parameters.- A change in
parameters _TWA, an of upto ±'T causeless t anX deterioration
in the collocated controller performance , and caused under 4%
deterioration in the LQG controller performance.

Two-level controller.- A secondary collocated controller was first
designed for the -0 to 0.5 range. The primary LQG controller
was then designed to obtain Ws w0.1 rad/sec. However, this caused
the RMS errors to increase by a factor of 10 or more as compared to
the case with LQG controller alone.

Effect of number of modes controlled.- For the LQG controller, the
number of—mo-c ea contro. lied and- estimated) was varied from nc-3
(rigid-body only) to 9 (rigid-body and the first six structural
modes). Slight improvement in the performance was noted as nc was
increased, with about 15% improvement for nc -9. Thus controlling
more than the first 4 or 5 modes appears to contribute little towards
the first objective (i.e., speed of response). However, since the
damping ratios of the residual modes remain close to 0.01, the speed
of response may not be satisfactory if the number of modes controlled
is too small

CONCLUDING REMARKS

Control systems synthesis was considered for a large flexible
space antenna using two approaches. From the results based on the
preliminary model and linear analysis, it appears that the performance
requirements can be satisfactorily met, and an acceptable degree of
stability and robustness can be obtained using either of the controll-
ers. However, the LQG approach yielded much lower RMS errors, with
significantly lower feedback gains. In addition, satisfactory perform-
ance was obtained with the LQG controller using as few as two actuat-
ors. Therefore, the LQG approach is more desirable for this problem.
A method was given for generating parametrized performance data which
would be useful as a design guideline. In order to arrive at more
complete conclusions, however, it will be necessary to include the
effects of actuator/sensor dynamics and nonlinearities. This can be
accomplished only after the actuator concepts are selected and their
characteristics known. It will also be useful to investigate other
types of actuator concepts (e.g. reaction jets) prior to arriving at
a control system design. Before commencing the final design process,
it will also be necessary to precisely define the design objectives
such as the speed of response requirement,.
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TABLE I. MASS AND INERTIA PROPERTIES

Mass- 4544.3 Kg.

Inertia about axes through center of mass (Kg-m2)

Ixx 5.724 x 106	Iyy= 5.747 x 106

I = 4.383 x x.06	I = 3:906 x 104
zz	 xz

I = I = 0
xy yz

TABLE II. STRUCTURAL MODE FREQUENCIES

Mode no. 1 2 3 4 5 6 7 8 9 10

Freq.ec
rad/ a

0.75 1.35 1.70 3,,18 4.53 5.59 5.78 6,84 7.4 8.78

Mode no. it 12 13 14 15 16 17 18 19 20

Freq.
rad/sec 10.85 11.24 15.05 15.4 15.75 15.85 16.04 18.84 18.84 18.99
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