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ABSTRACT

A geﬁeral survey of the progress made in the current and past
grant years in the areas of mathematical modelling of the system
dynamics, structural analysis, development of control algorithms, é
aud‘simulgtion of environmental disturbances is presented. The use |
of graph theory techniques is employed to examine the effects of in-
herent damping associated with LSST systems on the number and locations
of the required control actuators. The presence of damping allows a
greater flexibility to the éeleccion of actuator locations under which
the system is controllable, while the rank characteristics of the system
matrix influence both the number and locations of the required actuators.
A mathematical model of the forces and moments induced on a flexible
orbiting beam dve to solar radiation pressure is developed and typical
steady-state open-loop reséonses obtained for the case when rotations
and vibrations are limited to occur within the orbit plane. A preliminary
controls analysis based on a truncated (13 mode) finite element model of
the 122m. Hoop/Column antenné iﬁdicates that a minimunm of six appro-
priately pleced actuators is required for controllability. An algorithm
to evaluate the coefficients which describe coupling between the rigid
rotational and flexible modes and also intra-modal coupling has been

developed and numerical evaluation based on the finite element model of

Hoop/Column system is currently in progress.
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I. INTRODUCTION

The present grant represents a further extension of the effort
initiated in previous grant years (May 1977 -~ May 1981) and reported
in Refs, 1-7%, Techniques for controlling both the shape and orienta-
tion of very large inherently flexible proposed future spacecraft
systems are being studied. Possible applications of such large struc-
tures in orbit include: large scale communications; earth observation
and resource‘sensing systems; orbitally based electronic mail trans-
mission; and as orbital platforms for the collection of solar energy
and transmission (via microwave) to earth based receivers.

This report is subdivided into seven chapters. Chapter II is
based on an invited general survey paper presented at the recent 10th
IMACS World Congress on System Simulation and Scientific Computation,

- +dugust 1982, and presents a general survey of the progress to date in
four general areas: (1) mathematical modelling of the system dynamics;

(2) structural analysis; (3) development of control algorithms, and (4)

review of prcvious work in the simulation of environmental disturbances
| (mainly due to solar radiation pressure).

In Chapter iII, the use of graph theoretic techniques, previously
introduced7 to simplify the eigenvalue calculation for LSST systems by

reducing the system matrix to a collection of lower order sub-matrices,

o sl &

*For references cited in this report, please see list of references
at the end of each chapter.
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1s extended here to address the controllabiiity of inherently damped
large flexiblg space systems. A second paper to be presented at the
33rd International Astronautical Congress, Sept. 1982, forms the basis
of this chapter.

At the operational altitudes of the future missions involving large

space structures, the principal environmental disturbance is that due
to solar radiation pressure. The effect of solar radiation (pressure)
disturbance on a flexible orbiting free-free beam is addressed in Chapter
1v, #nd to the authors' knowledge represents a first attempt to include
such disturbances in the system dynamics of a flexible structure in
orbit. (A paper based on Chapter IV has just been accepted for presenfa-
tion at the 1983 AIAA Aerospace Sciences Meeting, ianuary 1983.)
Ourprop05318 for the 1981-82 grant year originally emphasized work
to be performed in three areas: (1) further analysis of environmental
effects; (2) graph theory appgﬁach to the controllability, observability
and eigenvalues of large scale systems; and (3) consideration of sensor
and actuator dynamics. Shortly after submission of this document, we
were advised by NASA-LRC that it was desired to redirect our effort so
as to provide direct support to the synthesis of control laws for the
LSST Hoop/Column Maypole Antenna system whose feasibility is currently
being.studied by the Harris Corporation, Melbourne, Flori':. As a result
of this the third task listed in our proposal was not considered, but,
instead, Chapters V and VI represent our preliminary efforts in support

of the Hoop/Column controls analysis.

1.2
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In connection with this effort, the ORACLS computer algorithmg, developed
by NASA LRC 1is being used exteusively in this effort. A "Versatile Hoop/
Column Antenna Structural Dynamics Model 10, based on a NASTRAN finite
element software Package, prepared by the Harris Corporation, has been
transmitted to us by NASA-LRC, togehter with a magnetic ccmputer tape
containing the eigenvectors for the first 34 modes of a single layer
surface model of the 122m. model of the Hoop/Column - the latter received
shortly before the end of the 1981-82 grant year. The effort described

in Chapters V and VI ig being continued during the 1982-82 grant year,

Chapter VII describes the main general conclusions together with

recommendations for further work.
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II. ON THE MODELLING AND SIMULATION OF THE DYNAMICS AND CONTROL OF LARGE

FLEXIBLE ORBITING SYSTEMS -

This paper attempts to review the steps involved in the devalopacat of mathematical
wdels that can be used to simulace the in-orbit dynamics of large flexible systens.
The use of graph thworetic techniquaes can oftea be used to reduce tha computational

effort involved for calculating the eizenvalues of large orderad systexs.

Computer

generated graphical techniques may provide additional insight into che understinding

of elastic mdal shape functions of complex systems,

Finally the aumerical techmi-

ques commonly used to devalop shape and attitude control laws will de briefly reviewved.

I. INTRODUCTION

Large, flexible orbiting systams have been pro-
posed for possible use in comrunications, elec~
tronic orbital based mail systecms, and in solar
energy collection. The size and low weight to
area ratio of such systems {ndicace that systea
flexibility is now the main consideration (o
the dynaaics and control probles as compared to
the inherently rigid nacure of esrlier apace-
craft systems. For such large flexible s7steus
both osrientation and surface shape control will
often be required.

Fig. 1 {llustrates a conceptual glan of develop-
ment nf a system software capability for use in
the analysis of the dynawics and control of
large space structures technology (LSST} systezs.
This concept can be subdivided into four dif-
ferent stages: (1) systen dynamics; (2) struc-
tural dynanics; (3) application of control algo-
rithzs; and (4) the similation of the eanvircn-
mental di{sturbances. The most fundamental com=
ponent 1s that of the modelling of the system
dynanmics of such systexs in orbit.

II. MATHEMATICAL MODELLING OF SYSTEM DYAIAMICS

Treviously zany authors analyzed spacecrafz sys-
tems consisting of a prizary rigid body and
elastic appern Jages which vepresented solar pa-
nels, antenna booms, instrumentation platforss,
etc. The hybrid coordinate modelling method as
{ntroducted by Mafrovitch! and Nelson! and fur-
ther developed by Likins® has been widely usad
in che study of such systems. The hydbrid coor=-
dinates are comprised of the attitude (Euler)
angles or quasi-coordinates of the pricary body,
as discrete coordinates, together with che dis-
placecent of the elastic appendagas relacive ta

the pricary, characterized as discributed or
modal coordinatss.

*Research supported by NASA Crant: NSG-1414
*gmfessor of Aerospace Engineering
**Graduste Research Assistancs
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The presence of rotcrs and movable damping
mechanisecs on the main part can be readily in-
ccrporated and the errer involved in using a
finice truncated seriss ropresentation decreases
with an increasing nuzder of code shapes., The
remaining high frequency errors should be atten-
uvated by suitable desig: of the closed-ioop
atzitude control systenm.

When the siza cnd weight to area ratio of such
proposed future LSST systems indicates that the
eatire systea must be trasidered to be flexible,
che hybrid coordinate formulation may not always
be read{ly adopted by sinply assuuing the zass
and inerzias of the (previously) rigid central
sart 2eni to zero in ths limit. Santini? has
devaeloped & mathemtical formulation for pre-
dicting the motion of a general orbiting flexi-
ble body using a coatizmua appiozch. Elastic
deformations are consifzred small as cocpared
vith characteristic body dimensions. Equations
are developed for both the rigid and elastic
(generic) wmdes.  Thisdavelopment is based oa
an a prior’ knowledge of the frequencies and
adzl shape finctions of all wodes to ba in-
cluded {n the truncated systea model. Kumar®
and Bainum® have rodified the development of
Ref. 3 based on vector zalculus so that elastic
modal shape functions wzpressed in arbitrary
systens of coordinates my be accormcdaced.
III. STRUCTURAL ANALYSIS

For simply isotropic structures, such ar homo-
geneous beams and circ:lar plates, closed form
expressions are availatle for the elastic modal
frequencies and shape Tractions. For ore com-
plex and/or anounisotropic svitems numarical
=ethods cust be employel to obtain this informa-
tion., Conmonly used routines include versions
of STRUDL and MASTRAN {zke latter rore coxmplex
algoritha cay also be wreful in the simulation
of therroelastic envircuzental effects). The
use of coumputer generated zgraphics may also
prove useful {n undersanding the elastic shape
funczions of complex srstens when excited at
differeat codal frequenties,
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Fig. 2 Qllustrates the mdal shape functions of
3 free~frae circular elascic plate, showing the
prasence of the nodsl lines and meridians as o
fuaction of the frequency paramecar, A.

For systems requiring a large nucmber of elastic
mdes to accurately reprssent the systen dyna-
aics, graph theoretic techniques may provide an
alteraativs to the numsrical problens involved
in calculating the eigeavalues (mdal fre-
quencies).® With this approach che system
(stiffness) matrix can often ba reduced to &
systea of lover ordered subracrices so that,
under certain conditions, the eigenvalues of tha
original nstxix are given by the union of the
eigeavalues 2¢ the submatrices, inciuding their
: cultipliziey.’ For large order systems this

: approach can substantially reduce the nuamarical
" effare involved with an irprovemsac in accuracy.
AS an example, a free-freaa hooogeneous

square plate vas consicdered {n Ref. 5 where

the original stiffness matrix contained a dimen-
' sionalicy of 16. Although this matrix was

: fairly sparse (less than 202 of the elements

. vere non-zero), cany of tha non-zero elements
ware off-diagonal. Fig. 3 represents the di-
graph of the 16x16 stifiness matrix and {ndi-
caces that, under appropriate conditiong, the
eigenvaluas of the original matrix cay be ob-
tained by calculating the eigenvalues of sevea
sub-atrices; the largest dicensionality of any
9f the sub-matrices here is 4xé4. Complete de-
tails descriding this exacple and an algorithe,
that zay be used to decerzine the sub-matricas,
if the ortginal matrix s reducible, are pro-
vided {n Ref. 5. The non-zero elezents o¢ tha
‘stiffness ratrix are given in Table I. The
eigeavalues are evalusted from the original
16x16 sciffnass zacrix as well as the seven
reduced order sub-catrices and are compared in
Table II.

TABLE I
Yon-zero elezents of the K-macrix:

K(3,3)= 34.919

: R(12,4)= ~19.9054
i K(14,6)= 15.4658
K(15,7)= -11,6130
K(16,8)= 96,9152
K(4,10)= 17,5471
K(9,11)= -5.31786

K(9,3)= 8.03522
K(10,%)= 17.5471
R(16,6)= 17.8584
R(6,8)= 15.4658
K(3,9)= 8.03522
R(10,10)= 34.9190
K(11,11)= 76.8770

K(12,12)= 326.604
K(6,14)= 15,4658
K(7,15)= -11.6130
K(8,16)= 96,9152
K(11,3)= -5,31786
K(5,6)= 13.3938
R(7,7)= 34.9190
K(8,8)= 386.913
K(9,9)= 34,9190
X(12,10)= -11.6130
K(4,12)= -19.9054
R(13,13)= 265,337
R(16,14)= 386,913
X(15,15)= 325,604
K(16,16)= 1732.85

K(7,13)= 17,5371
K(8,14)= 56,1775
K(13,15)= -19.9054
K(14,16)= 96,9152
K(4,5)= 265.337
K(8,6)= 15,4658
K{13,7)= 17.5471
X(14,8)= 56.1775
K(11,9)= -5.31786
K(3,11)= -5.3178¢
K(10,12)= -11.6130
K(15,13)« -19,9054
K(16,14)= 96.9152
K(6,16)= 17.3584

Chand '3
o 1
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TABLE 11

Eigenvalues of the K matrix:

Submatrices Original mtrix
S, 0.0 0.0
S, 0.0 0.0
53 26.883738000 26.38378¢€20
41.36168802 41.36169439
78.56953198 78.46953100
86 33.24206125 33.24206653
260.236817S 260.2367428
333.3811212 333.3811150
S5 0.0 0.6
56 12.21269086 "2,21269085
33C. 7355000 +30.7355804
429.6358695 429.6359588
1747,485740 1747.485839
S, 33.24206125 33.24296653
260.2368175 260.2167428
333.3811212 333.33811150

The eigenvalues of the syscem are the eigen=-
values of 1K znd as Merl, e’Zga~values of
M 1lg=(1/m) times eigenvalues of K.

Bafore surface and orlentation centrol systems
can be desfgned, it is aecessary to understand
the dynanics and stabllity of the 'mcontrolled
System. For 'irge order systems an analyzical
approach to the stability problem is not fea-
sible 2nd nuxmerical techniques mus: be employed
to develop the system charzcteriscic equation
and the loct of 1ts roots for different sets
of system parameters.® ais the nuzber o zodes
retained {n the truncated system sodel in-
creases, expansion of the characteristic deter-
ainental equation becomes algebraically pro-
hibitive. As an altermazive an algoricthn due
to Leverrier’** can be used to numsrically
deternine tha coefffcierte {n the charac-
teristic equation. 1In crdes to izmplement :his
algoricha the linearized equations must be
written in scandard state variable formac.

IV. CONTROL ALGOXITS

At this point the mdelling of the conzrol
actuztors can be added %o the praviously de-
veloped open~-loop system models.®r1? 1 3ea-
eral, an actuator placed at an arbitrary loca-
tion on a large space structure will affect
both the rigid and flaxible modes. The loca=-
tion of such an actuator has definitce izpli-
cations on the system controllab’licy, Fer
large ordes sysceas the reachability macrix
and term rank concepts, also developed from
grapn theoretic techniques, may be used te

vetifz controllability and can be ozvuta-
tionally more effective than numerical rank
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tests of the systea controllabflity marrix.
The free-free square plate is again ccosidered
ag an {llustrative exszple in Raf. 5.

Turee techniquas ars corzonly used to develop
control lavs once tha syszem controllabilicy
hns beea astablisted. These fnclude: (a) de-
coupling techniquas; (b) pole placeaeat (clus-
tering); and (c) 23 applicacion of the linear
regulator problen from optical control theory.
These threa techniques approach the coatrols
problem from different points of view aad each
will be briefly discusied.

The decoupling techanique can be applied in two
distinct sub-cases: (1) where the linesr state
equations ia the original coortdinates are de=
coupled by usiang state variable feedback tezh-
niques; and (2) wheTe the open loop linear
equations are first transformed into a ce-
coupled set in mdal coordinates sad thea con-
trol lavs are developed indepeadently for each
=nde. It then becomes necessiry to transform
tha control lavs as axpressed in =odal coordi-
nates to the actual control {n the original
coordinates. .

As an exacple of sub-case (1), we assume that
the linearized equations can be expressed as:

2« DI+ EZ+3BU ‘ (¢}

T
vhere Z = (21. ceeBie T "'zrm)

describes the Tizid body position displacercats
(1,2...1) plus the n elastic (posiclor )
coordinaces recained in any truncated model.
Afser selecting UsKg<+X,Z, wo can revrite che
controlled zotion equations as:

Z = (DHEKQE + (E43ERIZ- @)

where X_ and E_ are evaluated such that (D+3X.)
and (E+5L.) ari diagoaalized and thus yield the
tequired ing and frequency of the coa-
trolied todes. The total nucber of rigld+
elastic xodes, (r+n), zust be equal to the
ausher of actuators here to avoid the necessity
of using pseudoinverse matrices.

for the second sub-case, as zn exazple, let us
consider a different fora of Eq. (1) in teras

of the mass (M) and stiffaess (K) matrices,
where D=0,

T +ZeF =20 (3)
with the folloving type of transformation:
Zeoq, Eg. (3) =ay Se recast {u ter=s of the
rodal coordinates, q, and the transformation
=atrix (iavolving the eigenvectors), 3, as:

(274313 + [37x0)q = 3°F )
such that $°M9 and ::Ka are diagonalized

Cy, JaeUxdam sTF e £ )
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It s thea possible to desizn the coa%rol laws,
F', in the modal space go that indapendent con-
tol of esch of the mdes can ba achieved. A
erangforration is then required to obtaian tha
econtrol laws {n tha original coordinates, F,
and, then, for a given locacien of actuators,
the actual control from: Us=3~lpes” ¢,

In the pole cluatering method the overall tran- )

sient requiremsnts 3f the systes are consicdered
instead of conceatrating on the betavior of the
tadividusl coordinatus. The linesarized systea
equacions, Eq. (1), «2n be recast in the scate
space format as:

X = AX+3U 6)

where

. e o . ]I'
"‘m"l""r'zﬁl"‘z:m
The coatrol, UsekX, {s then selected by uutr;§
a digital computer algorithu such as GRACLS®® .
such that (A-BK) has ths ideatical negative
real part in each of its efgeavalues. Al~
though the nu=ber of actuators caa be lass than
the nucbar of modes, a limitation of this par-
ticular algoritha is that the gains are se-
lected such that all of the closed-loop poles
1ie on a line parallel to the {=aginary axis.
The algoritha ¢s useful, hovever, vhea it is
izportant that aach code {n the systea satisfy
some minizua dacping characteristics.

x'f‘x-"‘r-'w.

The linear regulator theory allows the analyst
to sat, a priori, distinct pemslcty vei<hsing
functions on the control effort as wali as the
gstate varizbles. The control law, Us -KX, is
seleccted such that the following parformance
i{ndex is nintnized

I i‘(i‘qx + UTRUde m

vhere Q and R are positive definite penalty ma-
trices. The steady states soluticn of the ma-
trix Riccati equation of dinensisa equal to rhe
state has to be solved {n order to obtain the
gain matrices, K (which represeat the positive
definite solution to the algebraic matrix
Riccazi equaticns).

A computer algoritha within the crACLS ! sofr-
vare package can be used to obtain the gain
matrices, K, for different combinations of the
Q sad R peralty matrices. This algoritha uti-
1izes tha Newton-Raphson cethod of solving the
Riccati equation.

Soch tha linear regulator problem and the pole
clustaring pethods can rtesult {3 soms of the
closed loop freguencies being orders of sagni-
tude greater than those of the wacontIolled
systea. These higher frequencies may also
cotrespond to the frequeacies of higher odes
not included in the previously truncated sys-
tem mndel. 1In order to cozplecely consider
such effects the order of the orizinal systexz
model would have to be increased in order to
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avoid the effects of control spillover. On the
other hend, these methods have the advantage
that thoy car ba applicd to situaticns wvhere
the nuzber of actuators {s less than the nua-
ber of mades in the sathematical =ndel, in
contrast to tThe usual applications of the de-

- coupling mathods. Examples of the application
of the various control algorichas are given n
Ref. i0. As an exasple, a typicel application
of deccupling, uaing state variable feedback
for the orimcation and shape coantrol of a
a free-free square plate nominally followving
the local vertical with {ts larger surface
normal to the ordit noraal ts considered. The
eodel contsins three rigid rotetional sodes eand
the first three cransverse flexible =odes, with
six actuators assumed £o bde located as shovn {n
Fig. 4. The docoupling gains are salected in
order to produce 202 of critical damping in
e3ch of the rigid ewdes and tha fundacancal
elastic mode and 103 of critical damping in
the secons and third {lexible mndes. The
controlled state response i{s given {n Fig. $
and the corresponding time history of the re-
quired control forces is {llustrated in Fig. 6.

V. SDMULATION OF ENVIRONMENTAL DISTURSANCES

The principal disturbance forces and torques
acting oo a iarge flexidle system in ordit are
the gyroscopic and gravity-gradient torques
associated with the ordital =otion, the control
torques, aad those torques Jdus o the eaviron-
sant. In the formulation of Refs. ) end & the
gytoscopic and gravity-gradient torques are
ircluded in the mdel of the systen dynauics.
if other formulations ar¢ emploved, such as
geoeral {inite alexment nichods, which do not
account for tha orbital dynanics, the effects
of the gyroscopic and gravity-gradient torques
skould be carefully considered before deleting
thes f{roa the dynaxtic wmdel. The treat=ent of
control =ocelling 3ad alrorithas vas examined
{2 tha last section of this paper sad no fur-
ther elaboration will de provided here.

Eav{ronmental disturbances can be attribuced
oainly td the effects of solar radiation pres-
sure, except {n very lowv earth orbit where the
seTpcynanic drag forces predoainats. Mozents
due 20 solar radiation prassure are induced if
the center of solar radiation pressure {s not
co-located vith the systea center of zass.

The locatton of the ceater of pressure is de-
pendent on the surface characteristics as well
a3 the georstrical shape of the structure. 1In
add{tion, due to solar heating, thermal gradi-
eats can be induced {n the structure which zay
result (n sppreciadle thermal scrains. As a2
result, the structurs will undergo deformatior.s
wvhich will further concridute to tha forces
and- 20rques cauged by the solar prassure,

Several tavest{iators have constidered the ef-
fect of solar radistion pressure on the dynae
eics of spacecrafr. The majcrity of the space-
craft sodellad consisted of 2 smaller rigid
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central szatellite to vhich flat plate eppend=-
ages, aleoo treacted as rigid, vera acsucod to de
attacted. A fev sutdors shoved tov tha eolar
pressure coments geaerztwd could da uged for
satellite actitude control dy concrolling the
orientation of placas and/or vanes vwhich could
totate ot the ende of the appendaged?'?? aa
extension of these vodals td include larga fa-
horeatly flaxible orbiting systerms (s naeded
before the nature of the cavircaneatal dis-
tuchences on proposed LSST systems can be com
pletely wdarstood.

VI. CONCLUDING COMMENTS

This paper has stcenpted to veview the key
staps roquired for the codelling and simula-
tion of tha dynanics end control of futura pro=-
posed large flexidble orbiting systems vhich
will require, in gsaeral, both shaps as wall
as orieatation (atticude) control. Problem
areas, mainly associated vith the large order
of tuch system odels, are highlighzaed. The
wvidespread usa of various computer algocithas
required at diffevrent scages of the snalysis
should be noted. .
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/shallow. spharical
shell = 3-D

Hoop/Coluzn (IP)

"3

vSTRUDL-II

det. frequencies
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CONTROL ALGORITHMS ENVIRONMMENTAL
/Jones & Melsa = (IP) Solar
opt. control Radiation
JORACLS ‘- opt. Forces/Torques
control (IP) Thermal Effects
decoupl-
ing
pole
place-
ment
(IP) Hybrid systecs-
passive/active
voperational

IP- in progress

Fig. 1 Development of systen softwarc for LSST
dynamics analysis
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=2, p=0, A¥=38.55

=w===s nodal lines
A = frequency paramataer
j = number of acdal circles

P = nuxber of nodal meridians

j=2, p=1, A1=59.86

F1g. 2 Mode shapes of a free-free circular plate (computer generated at Howard Universicy).
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Fig. 3 Digraph of 16xi6 K magrix.
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Fig. 4 location of set of actuators (II).
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©2,(0) = 0,01, £ =1,2,3
8(0) = $(0) = 4(0) = 0
11(9) =0, £«1,23

0,9,0
‘// (202 critical damping)

21 (20Z critical demping)

tima, ¢t

(22, 23: 10Z cricical demping)

40

[zinutes

Fig. 5 -Controlled state response for all combinstions of

orientations and actuator locations.
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Abstrace

- Graph theoretic techmiques are used to scudy
controllability of linear systems which could re-
present’ large flexible orbiting space systems vith
inhercat dazping. The controllabilicy of the pair
of matricee represcating the system scate and con-
trol influence ratrices is assured whea all states
ia the mdel are reachsble iz a digraph sensa froa
at least one input 2nd ales when the term rank of
4 Boolean matrix whose non trivial components ere
baged on tho state and control influeace matrices
has & temm rank of the order of the state vector,
It 13 sesa that the damping catrix does mot in-
flucaea tha required nuzbar of actuators bu: gives
flexibility to tha posaibla locations of the sctu=
stors for vhich the system is controllabla, znd °
that the stiffness matrix term rank daficiency
dictstes the auczber as well as the location of
the required actustors. Specific exacples in-
clude a =odel of a shallow aphericel orbiting
shall vhere both orientation znd shaps control are
required, 2nd also a scallar dimensional numaricsl
example (iarelated to the shell) which resdily
deronstrates the effect of damping,

Nomemeclaturae
_A_ QxR system catrix
A 2ax2a gyetem matrix
n,np axn control influcace matrices
b3 2axm control influence matrix
D axm demping patrix
D . am mdified dirping matrix
AB.BB,DQ Boolezn equivelents of A,B and D'

mtrices

axn etiffness matrix

nxm cass ratrix

reachability macrix

oxm submatrix of catrix R
disgonal matrix (rxr)

axl f{aput vector

axn unitary orthogonal matrix

" mm wmitary orthogonal matrix

axl vectar

oxm satrix

small parazeter

4D siagular value of matrix A

qqmn_n:‘ﬂ

[y

N<

QoM

e

4Rasearch supported by NASA Grant NSG-~1414,
Suppl. 4 -
tSenior Graduate Research Assistant

**Professor of Aerospace Engineering

CONTROLLABILITY OF INHERENTLY DAMPED LARGE FLEXIBLE

I. du,

dny lidear, tima invariznt dynsmical system
can be, in general represented bdy:

X = ax+3v (1)

wheze

X i3 an nxl state vector cf tha systea
A is co oxn systea state matrix

B is an nxm coutrol influence matrix
U is an oxl input of the systesm.

The system described by equation (1) is said
to be controllable 1f, with finite U end in finite
tine, tha systea (1) can be transferred from any
state to eny other state. This ionupz vas first
introduced by Richard E. Kalman.” The verifica-
tion of controllability is essential for control
systex design as no coatrol law should be designed
for a syetean which is not concrollzble. The con-
trollability concept is even core importsat for
large space structural systexs vhosze dixension-
ality is very large. If che design of ths con-
trol systes is undeortaken without firet verifying
controllability, a considerabls arount of effort
my ba wasted, through the faflure to arrive st
eny satisfactory coutrol law for an uncontrollable
systen.

In the following .occ!bn:. the concept of
controllability, as a property of the A and B
watrices, is reviewvad.

The system, (1) is controllable if gad only

Lfl'zx

renk (B,AB,A2B,...., A718) e n @
or rank (B.A-ALI) =g, {=1,2,..0 (3)

whare li are the ligenvelues of the matrix, A,

The deterzinztion of the rank of the matrix
in equation (2) poces the probles of selecting n
i{ndapcndent colums out of am colums and this
could be done by such nunerical tectniques as the
singular value decomposition of a oatrix.3

The singular value decozposition is a numer-
ical algoritha used to find the numerical rank of
& rectangular matrix, A, (axm, say a>an) through
the avaluation of two orthogonal (uairary) ra -
trices, vl and Vz such that

T
RAY %)
vhere
- [g

sad S = diag (71"’2’ ceny u:)

A=YV

o] _.T
o] ViAY, (s)
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with 020, ...>ar>0, being singidar valuss of

A. Tha o;,c seeey0, ETQ the oca sero eigea-
values of thd cacrtf AAT (or ATA) and £ 1is thae
rank of the matrix A. The techaique of finding
tha singular values of A by avalunting the eigen~
values of AAT or ATA i3, in general, lasszccurate
thia using singulayr value decompueition tech-
niques and smay result in erroneous conclusions,
as 1s demastrated by tha following example.3

Let 11 "
A= w0 (6)
0 uJ

Then [1f 14u%=1, but 1+l, for the cosputer
accuracy involved] :

11
TA =
AlA [1 1] n

The eigenvaluas of this approxi=stion to ATA are

and 0, respectively, vhereas the precise
eigcavalues of ATA are found to be /295! and
u, respectively.

Tha usa of tha singular value decocposition
tecmique, itself may result in numerical pro-
bleas when the magnitude of the largest singular
value of the ratri: A, is an order of zagnitude
(or more) different from thst of the scallest
singular valus. [A complete discussion of the
singular velue decozpoaition technique s given
in Ref. 3. It should be noted that with the use
of this algorithn, tr is unnecessary to directly
evaluste tha singular values of the A catrix.
The rank determination {s accotplished based on
ths witary, orthagonal properties of the ca-
trices V) and V; withia tha algoritha.]

The applicaction of the controllebility con-
dition in equation (3) requires the determinacion
of the eigeavalues of tha matrix A and the eval-
ustiot. of the rank of a matrix of order [ax(a+m)]
for czch of the n eigenvaluas. This scheze is
@ore attractiva than that of condition (2) as
the problea of rank evaluation of an nxam matrix
is reduced to the rank evalustions of n ratrices
esch of dizension [nx(n+a)], The eigeavalues
are, in general, needed for the structural dyna-
nic analysis of the systea znd may, thus, be
alresdy available for this phase of the control
systex design.

II. Cootrollability of Large Space Structures

The dynamical equations of a lezge space
structure system are, in gensral, deucribed by
4 set of linear second order coupled differen=-
tial equations as:

ux+oi+rx-apu (8)

X 1is che axl vector of the generalized
coordinates

X {s the mass ratrix (nxn)

D 1s the damping =atrix (am) (cen include
viscous damping as well as gyroscopic
effects)

vhere

K 1s the stiffness matrix
'P is tha control influence ratrix

U 1s the oxl vector of inputs.
The dyaanical system ot equations (8) can be re-

vritten as a set of firstordardifferentisl equa-
tions (in standard state szpace form as):

X, ol 2 ]o
w - =1
. X ¥ Bp
Equation (9) can be considered as
X= A+ 10 (10)

vhers T

X = [x,X]

~lolt] _ To

A" Bwm - a1

alp B
and A= Nlg p'ealp Ba x‘1sp.

The controllability condition (2) for this systea
can be written as:

rank (5,i5,..., %°°15) « 2 2)
If ve assune D=0, which {3 true for nany idealized
fres vzbra:mg structurss, tha controllability
catrix

c= (5,A5,..., 2 81§, ‘ 13
becomes

ol Bf o] a® e
c'[flalﬁ ‘G‘I I—"] ae)

It can be very easily seen that C has & rank 2n
if and only if

rank  [B,AB,...,A%)3] = n (1s)

vhich leads to the following thwtcn‘:

Theoreas -
The pair [2—{%-] , [gJ is coa-

trollable 1f and only if the pair [A,B] is con-
tollable.

This theorem reduces tha decernination of the
controllability of a 2ath order system to the de-
termination of ths controllability of an equiva-
leat nth order system. In genemal for large spaca
structure applications, n fzgalf my still be suf-
ficeatly large znd, thus, numerical tecniques
would te required in order to determine control-
lability. This theorem {2 besed on the inkereat
ascuzption that D=0 and no insight can be drawm
vhea D 13 not equal to zero. The affect of the
vatrix, D, on controllabil ity 4s studied in this
papar using the graph theoretic definition of
coutrollabilicy,

3.2
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IIT. Graph Theoretic Definition
of Controllabilityd

Given che general, linear, tims {avaricat
dynanicsl systea described by equstion (1), re-
peated hera as:

X » AX + BU (16)

the pair [A,B] is controllable 1if and only if:

g B8]
o o

where Ap,Bg are tha Boolesn equivalents of the
matrices A and B, respectivaly; znd

(2) 311 states in the system are reschable from
at least one input in the digraph sence.

(1) the tarm raak of n

The two terms,term rank and reachability, ars
axplained here.

Term rank {s tha maxizum rzok a catrix can achieve
dus to the locations of the noa zZero, non fixed
eleconts of the catrix rathar than dus to ths
numericsl values of the elexents. A complete dig-
cussion of this concept is provided in the Appen~’
d

Reackabilicy., If one draws a digraph for the ex-
tended squara matrix [A g] and finds ths input-

00

state reachsbility matrix as explained in the
Appendix, there oust be at leaszt one non zero
eatry for every row of the gubmatrix (R') in the
reachability matrix, R, fornsd from the row and
column indices 1 to n, and o+l to o+, respectively,
as shown in equation (17) whare n %3 tha nuubar

of states iIn the systex and o is the nucber of

actuators. -
1 .15.321 odmi 1
X o e o
P R
Rel . Qa7
X . . . x
[,
a+l
i Jane

IV. Controllability of Systems
with Inharent Dampin

The dynaaics of large space systems with in-
herent dsoping can be vritten as (repeating equa-~
tion (9) with che notation defined in equat ioa
(10))

1 e
.
o
(o
e I

0
D’ + s T (18)

The digraph for the systea matrices I. B caa be
drawva in general as shovn in Fig. X.

Tha elemaats of A(1,14n), 1o1,2,...,0 ~{.e.
those elements of A appearing in tha {dentity
DatTix - are roprezented in tha digraph by tha
(e014d) lines joining the nodes (i+4a) to { whore
i=1,2,...,0. Tha elements of A(i+a,i), {=1,2,..q,
3=1,2,...,0 {i.e. those elements of X appearing
in A are represcated in the digraph by the (dashed)
lines joining the jth node to tha (i+n)th node.

The elements of A(itn,jtn), i=1,2,...,:, j=1,2,..n
i.e. those clemantas of A apperriang in D' are Tepre~
seated in tha digraph by the (Zotted) lines con-
nacting the (j+n)th node to tha (i+n)th node.

—  The elenents of 3 [the lower half of B =

B3 (i4a,)], B,(1,4), 1=1,2,...m, §=1,2,...n, are
represented in the digraph by the (double eolid)
lines joining the JCb actuator [che (2n+f)eh
node, here} to tha ({+n)ch noca.

From the rezchability condition, iz 1s ob-
served that tha lines in the &igraph due to the D
merir czn supplexcnt those lines due to the B
catrix. For exacple zuppose that due to the agmc-
ture of D, there {s a directed (dotted) line from
voda (n+3) to node (n+2) in Ffz. 1. Suppose that
the oth actuaror represented by node (2n+m) can
directly iniluence code (z+3). Then it is clesr
ths actuators number 2 and 3 (Teprezeated by node
2042 aad 2n+3, regpectively) nead not be preseat
in ordar to influence nodes o+2 zad n+3. Thus
the damping matrix can allow & greater flexi-
bility in thisselection of the sctuator locations.
Although based on this argunent cne could construe
that the D matrix {nfluences the nusder of sctus-
tors (that could be removed), it should be remea-
bered that tha minirum nucher of sztuators required
is dictated from the term rank condition vhich will
tow be discussed.

For tba system reprascated by equetion (18)
to be controllable, tha term rank (as explained
in the Appendix) of tha Dooleszm catrix, x

[ o : 0]
5 | D'l By «n a9)
0 0 OJ

must be 2n. Kote that tha dinensionality of the
gtate vector in equation (18) £s 2n. If A has
ternz rank less than n, then the term rank of the
(2a4m)th order Baolean zmatrix f= equation (19) can
only be augmented due to the preseace of By, gince
the Det {Az] = - Dat {Az]. Thuz, D3 can not be
used to augment ths term rank of the Eoolesa equi~
valent of tha state matrix A in equation (18),

In suzrary, the dsmping watrix, D, has an
effect oo the locztion of tha zctuators, while the
matrix A has an impact on the location as well as
the nuzber of actuators.

3.3




e}

o, W e,

AT e

R

V. __Numerical Examples

The use ¢f graph theoretic techniques in the
deternination of coutrollability and the amsunt
of information about tha location of the zctuators
and ths number of actuators noeded {s decoastrated
using the mdel of an orbiting challow spherical
shall in crbiz with and without the stabiliring
dumbbell (Fig 2).6

7 The Boolean Equivalomnt of the system catrix
(4)! for a shallow spherical shell is givea in

‘Fig. 3. The digraph is given in Fig. 4. From the .

digraph 1z cen be seen that t's nodes zay be
subgrouped as:

10 11 12 13 16 18 16} 17| 18

1 2 3 4 5 6 7 8 9

To ceach all tha 18 states fron at least one

input, control actuators ciet directly influence
the following nodes: (a) (10 or 11); (b) at
least one of tho nodes, (12-15);(c) (16); (3) (1D);
and (e) (18). The system macrix, A, has z term
rank deficiency of 1 (note the presance of only
zeros in the first coluem, Fig. 3) and, thus, one
actuator is required for controllability. This

actuator must be placed such that the above gea-
tioned states are directly influsnced.

The model of s shsllov spharical shell with
& stabilizing durbbell®*? s comeidered as azother
exasple for controllahility constidaracions. The
Booleszn equivalent of the 229d ordered system
matrix A is give: in Fig. S and ths diguaph is
sbown in Fig. 6. From the digraph i can be geen
that the totsl states can be subdivided into
two groups

< Q) > e (2) e}
12 16 17 i8 19 20 21 22| 13 14 15

1 5 6 7 8 9 10 1112 3 4

The control actuators must directly influence one
or mre states {rom group (1) and one or oors
states from group (2). The system matrix here
has full term rank and,thus one sctuator is suffi-
clent to establish controllabilicy.

The two practicel execples considered in this
eection to this poiat do not specificrlly 11lus-
tzate the independance betwsen the nucher of
actuators required and tha dicping matrix. To
illustrate this effect an exzcple of sixth order
is crested and analyzed.

It {3 assunad that the system matrix is
given by

[0 0 o 1 o o
A= 6 0 o0 1 0 (20)
000 o o0
10 0} 10 2.0 3.0
0 0 0] -10.0 5.0 6.0
00 o] 7.0 8.0 9.0J
L A )
The digraph is drawva as shown ia Fig. 7

~ 3.4
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From tha digraph the reachability condition for
controllability is satisfied if any one or more
of the states: 4,5,6, arc directly influeaced by
the control actustors. The term rznk of Ag has

a deficiency of two and thus two sctustors aze
required for concrollability., Even 1f the dzacping
eatrix D=0, tha same number (2) of actuators is
needed for controllability and, thus, it {s shown
that damping has no effect on the raquired nucber
of actuators. But, if the dsoping catrix D=0,
then the location of the gctustors must be changed
such that the staces 4,586 can ba directly in-
fluenced by tha control actustors. In order to
emphasize tha point, when D=0 the dotted lines
should be removed froa the digraph showmn in Fig. 7.

VI. Conclusions

The definition of controllability as
applied to general linear tinma invariant dynanics
gystems and larga space systems is reviewed.
The special nature of tha coupled matrix secoad
order differentisl equations thsat are used to
degcriba large space systecs is uged to arrive at
specific controllability conditions. The graph
theory approach is employed to define conctrollabi-
14ty in terms of the terc rank and {npuc-state
reachability concepts. This zpproach is used to
find the effect of inhereat dazping preseat in
large cpace systecs on tha numbar of tha sctuators
and thair locations. It 13 obsarved that tha
damping does not effect tha miniomm number of .
actuators required, but does provide greater flex-
ibility in the possible locations of the actuators.
Ths nuzbar of actuators reqired depends on tha
term rank of tha generalired system (stiffnaszs)
matrix. The stiffnass catrix slso influences the
location of ths sctuators. *
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Appendix

A. Term Rank of a Matrix

The term rsnk of a squara patrix of dizoen-
sion nxn is lees than n if and cunly 1if the matrix
has a zero submatrix "“0" of dimensioun rxx' vith
rxx'>n. The term rank is differeat from the nu-
merical rank in the following sense. If a square
eatrix of order n has two columns or rows that ara
dependent on each other, then its tera rank is not

reduced while its numerical rsak is reduced by one
for each pair of columns of rows that are depend-
ent., For large space systems, tho determination
of the aumarical values of the elezcnts for the
syster matricaes are oot exsact, and thus the prob-
abtlity that two colutns or rovs would be {dea-
tically equal, or that one row is a constaat tices
soother 1is very c=all. If such a dependeacy exists
that oust be detected before subjecting it to the
term rank tests for establishing the controllabi-
lity of largs space systems.
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B. Input-Scate Reachability Matrix

Tha augmented sdjacency matrix for the systea
matrix pair [A,B] cza be written as

-n - -

2 & By

& - |—T——
o om Im

whers ead B, sre the zdjacency matrices of
A and B, regpectively.

The states can be resched from any of the in-
puts and cen not be of leagth more than n. So
can be raised to the power n and thus the augnented
systea reschability watrix is given by

nel ,0e2

Pul BN OV LR VIR L

(.-. 115) o

): 3¢
0 0

vhers Ryg 18 the lnput-state reachsbility matrix
For all che states to be reached from at least one

input, every rovw of x.ls cust bave at least one non
zerv entry.

Fig. 1. Digraph of [A,B] macrix patr,

3.5
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{}3 3. location of noo-zero alemcats in the system matrix of the
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Fig. 4. Digraph of the shallow spherical shell system matrix.
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Fig 5. location of mon-zero elements of the system wmatrix of the

shell with the duzbbell in orbirt.
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IV. EFFECT OF SOLAR RADIATION DISTURBANCE ON A FLEXIBLE BEAM IN ORBIT

IV.1 INTRODUCTION

Proposed future applications of large space structures require control
of the shape and orientation of the structure in orbit. The principal
environmental disturbance acting on these structures at the proposed opera-
tional altitudes are due to the solar radiation pressure. Therefore, it
is necessary to evaluate the solar radiation pressure effects on the large
space structures in orbit in order to provide control of their shape and
orientation. As a specific example of a basic structure, a long flexible
beam constrained to move only in the orbital plane is considered in this
study.

The equations of motion for a long flexible beam oriented along the
local vertical were obtained previously.l Later, the work of Ref. 1 was
extended to consider the mot;on and stability of the beam about a nominal
local horizontal orientation. This system includes a rigid dumbbell used
for gravitational stabilization that is connected to the center of mass of
the beam through a gimballed passivé damping device.z The control aspects
of such a beam using point actuators were also considered in Ref. 3. The
effect of solar radiation pressure on the dynamics of these two types of
beam structures is studied here, and go the authors' knowledge represents
the first time that solar disturbance torques acting on large flexible
space systems have been treated.

The force and mpment expressions obtained by Karymova are used to
develop the solar rudiation disturbance model for a beam by considering
the individual mode shapes of the free-free beam. The transverse elastic
displacements are assumed to be small so that the shadowing of the beanm

due to any deflected part of the beam can be neglected.

4.1
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IV. 2 DETERMINATION OF SOLAR RADIATION FORCES AND MOMENTS ACTING ON
A FLEXIBLE BEAN

Let the direction of the incident solar radiationm, ?, in the body

coordinate system be denoted as
T= aoiéb°j+cok (4.1)

and, let 2 be the outward unit vector normal to the surface, ds, of a
body of arbitrary shape exposed to solar radiation (Fig. 4.1). Then, the
solar radiation force acting on a completely absorbing surface, Fa’ and that

acting on a completely reflecting surface, Fr’ can be obtained asl‘,

F,=hT £ Ten ds (4.2)
- - =2
and F. --2ho S n(t *n) ds (4.3)
8

where, ho = 4.64}(10-61“/1'&2 is a consta'nt: for earth orbiting spacecraft and
the integration over an area, s, is bounded by the condition

Ten>0 ‘ %.4)
The corresponding moments fo;: a completely absorbing surface, ﬁa’ and

for a completely reflecting surface, Nr' respectively, can be developed as[‘,

ﬁa = ho?x sfi‘(?-ﬁ)ds (4.5)
— — e e - 2
Nr = Zho gan(t *n) ds (4.6)

where R is the position vector of ds with respect to the center of mass.
For a a surface with an arbitrary reflection coefficient, € the force

' 4
and moment expressions become :

F,=F, * er(Fr'Fa) “%.7
N_=N + er(Nr-Na) v (4.8)

be2
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The forces ana moments due to solar radiation pressure acting on a free-
free flexible beam can now be obtained by considering the shape function
of the beam, ¢, (Fig. 4.1, only the first anti-symmetric mode is depicted).
The beam is assumed to vibrate in the transverse direction only so that

the normal at any point i; given by
0= ($"1-k)/ VIR (4.9)

where ¢' = do and £ is the nondimensionalized longitudinal coordinate
dg

of the beam with the elemental length,

ds = devi+e'2 ’ , (4.10)

"~ If the analysis is restricted to a single plane containing £ and ¢

T te_duces to
T = a°i+c°k 4.11)

using Eqs. (4.9), (4.10), and (4.11) in Eq. (4.2), the total force acting

per unit width of the beam is expressed as
- - — 1 — -— . '—-—
Fy = hot S (a Tre k)« (4'T-)dg
= aocohoI;hOCOZE (for symmetric modes) 4.12)
= -ho(Zaoéo-co)(a°i+cok) for asymmetric modes)

where, 66 - ¢:(0) = deflection at one end of the beam for the nth mode. The
total force per unit width of the beam acting on a completely reflecting sur-

face is obtained after substituting Egqs. (4.9), (4.10) and (4.11) in Eq. (4.3)

as
1 (a_¢'-c )?
Fpom -2 -
r Yo I e (4'T-0as (4.13)
4.3
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The expressions for the moments per unit width of the beam are developed

using Eqs. (4.9), (4.10) and (4.11) in Egs. (4.5) and (4.6) as:

- = : L yTeeE
N = b ‘;fl(aodb —c){(g-3 YT+ek} dE

-h.a c [60-21' ¢(E)d§;] (for symmetric modes) (4.14) !

2h a c f $(£)dE (for asymmetric modes)
0a o0 g

¥ = 2n (a8 )2
r ° 4 W (o' i-k)x{(i- ")1""“\} dg
o on (L (a ¢'-c )2
Zhy [T 2O totere- PI T 48 (4.13)

Eqs. (4.13) and (4.15) involve complicated line integrals. These integrals

can be evaluated using numerical integration methods. For the purpose of

this numerical study a beam of length 100 meters with tip‘deflections of
(1) 0.01% and (ii) 0.1% were considered. Fig. 4.2 shows the variation of
the resultant horizontal and normal force components of a beam with a %

completely absorbing surface as the solar incidence angle, is varied é

04s

from 0 to 90 degrees. Here, ei represents to angle between the normal

%
i
to the undeflected beam and I. The hurizontal and normal force components %
are measured relative to the beam’'sundeflected axes. As expected, for é
small tip deflections of the beam, the resuitant horizontal absorbing . ) i
force component becomes zero for incidence angles of 0 and 90 degrees,

respectively, while the normal component has a maximum amplitude at zero

incidence angle, In Fig. 4.2 and subsequent figures the individual effect

of each mode, with the assumed beam tip deflection as indicated in the figure,

{s illustrated.

4.4 o
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Fig. 4.3 shous the force distribution along the length of the beam deflected
in the first mode due to the solar radiation incideat at an angle of 45°.
The asymmetric nature of the force distribution gives rise to a resultant
moment about the center of mass of the beam. The magnitude of the resultant
moments as the solar incidence angle is varied is shown in Fig. 4.4 for each
symmetric mode and the assumed tip deflection; Large moments can result for
larger deflections whereas these moments would be zero for a rigid beam.
Because the force distr.ibut:ion for an asymmetric mode is symmetric about
an axis passing through the mass center and parallel to the incident solar
radiation, the moments for all asymmetric modes are zero (rFig. 4.3). For
small pitch angle displacements, the moment due to solar radiation pressure
may become greater than the moment due to the gravity-gradient forces as
shown in Fig. 4.5. It is seen that at geosynchronous altitudes, the.moment
due to solar radiation may become predominant even for deflections of the
order of 0.01%.

Figs. 4.6,4.7, and 4.8 show the forces and roments for a completely
reflecting surface, obtained using n_umerical integration techniques based on
Eqs. (4.3) and (4.6). It i seen that the moment for the completely reflecting
case increases with the larger value of the tip deflection. Since the radia-
tion force acts along the normal to the surface for a completely reflecting
surface, and the deflections of the beam are assumed small, the normal force
components are seen to be much greater than the horizontal force componernts
(Fig. 4.6). Further, the resultant force components also depend on the mode
shapes (Fig. 4.7) in contrast to the case of the completely absorbing surace

(Fig. 4.2).

4.5
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Hence, the moments for the reflecting beam also depend on the specific mde
number of the beam incorporated into the model as shown in Fig. 4.8. Because
of symmetric force distribﬁtion about the center of mass the resultant moment
is zero for all asymmetric modes as before. Hence, the moments are zero for
all agymmetric modes regardless of the surface reflectivity. For the higher
symmetric modes of the reflecting beam the resultant moments are seen to
decrease because of the greater scattering associatéd with sharper changes
in the beam slope.

With the aid of these moment diagrams, it is now possible to model the
disturbance torque due to solar radiation pressure, once the number of modes

and the associated mydal deflections are specified. This aspect is considered

in the next section.

6.6
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IV.3 SOLAR RADIATION DISTURBANCE MODEL

A beam nominally oriented along the local horizontal or local vertical

is considered. Such a beam makes one revolution per orbit with respect to

the incident solar radiation. For any symmetric mode and for a given coef-

ficient of reflectivity, €, the pitch torque can be expressed as a function

of the solar incidence angle, 8,, in the form [from Figs. 4.4 and 4.8],

N = Nm sinei,gosﬁi

whete, N = NA + er(Nr -N )

m mam

(4.16)

Na ’Nr = maximum moment per unit deflection for a completely
m 'm  absorbing surface (from Fig. 4.2) and for a completely
reflecting surface (from Fig. 4.8), respectively.

For small deflections, N is proportional to the deflection at one end of the

beam, 6(t), or the nondimensionalized parameter, en(t) =

modal amplitude function.
N(t) = en(t:) Nmf. sinE):L cosei

and 6, 1is given by

i
ei(r,) = mct+6(t)+91(0)

Aq (%)

2

, where An(t) =

(4.17)

(4.18)

where, w_ 1s the orbital angular velocity,and 8 is the pitch angle of

c

the beam.

The effect of the disturbance on the generic mode £fs obtained by evaluating

the integral

E = /% 2 (g). T ds

where, ‘e is the external force.

Eqs. (4.2) and (4.3) are substituted into Eq. (4.19) to obtain

. wTER
, Ena I k¢z {hor (t'n)} ds
- 2 1, (n)

hoco é‘ ¢z dg

4.7

(4.19)

(4.20)
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and Ba = Eb:“)-{-2h0(23332} ds (4.21)

-2hc2 /b ¢§“) 3

00,

After combination of Eqs. (4.19) and (4.20), the generic force is obtained

as E =E +4+c (E_ -E )
’ . n n, ra. o,

= b c2(1+e) S o 4 - (4.22)
o] o 2z

For €. = 0.5 and a tip deflection of 0.012, Eq. (4.16) yields
' - -4
N_ = 2.23x107*40.5(9.4x10™>-2.23x10™")
= 1.58x10-4 N-m
This is the maximum torque that is experienced by the bean for a unit de-
flection equal to lm. in a 100m. length beam at any instant in the orbit.

The corresponding generic forces on each mode with a tip deflection of 0.012

in the respective modes are obtained (from Eq. (4.22), for the first four

mod ‘s, as -6
E, = 0.159x10°° N
E, = 0.827):10:: N
E, = 0.102x10 -
E, = 0.3%32x1075 y

Thus, the generic forces are seen to be very small and, hence, the modal
excitations due to solar radiation pressure are also small. However, the
magnitude of the solar radiation torques indicate that considerable pitch
rétations can be expected for larger deflections of the bteam. The numerical
values for E, and N, are used in the two examples in the following sections.
In the first example a beam nominally oriented along the local vertical
(Fig. 4.9) is considered. Next, a bean nominally oriented along the local

horizontal and gravitationally stabilized by a rigid dumbbell (Fig. 4.10)

is considered.

&
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IV.4 EFFECT OF SOLAR RADIATION PRESSURE ON A FLEXIBLE BEAM NOMINALLY

ORIENTED ALONG THE LOCAL VERTICAL

The equations of motion for a thin uniform beam in orbit with its
axis nominally along the local vertical (Fig. 4.9) is developed in Ref. 2.
The beam is assumed to undergo only inplane angular motions and deformatioms
and it is‘assumed also that the center of mass of the beam follows a cir-
cular orbit. The beam's elastic motions are considered to be unconstrained
Aa.nd‘t:he longitudinal vibrations of the beam are assumed to be negligible
in comparison with the transverse vibrations. For the case of smﬁll amplitude

pitch oscillations of the beam, the linearized equations of motion are de-

rived as2
6"+30 = V/Ju2
wy 2 = .
“atatn = W ta? .23
nc
where, 6 = pitch motion of the bean

€ = —22- = non dimensionalized modal amplitude

= mode number

n
n
J = pitch moment of inertia of the beam
N = external torque

E

n ™ nth modal force
M o= nth modal mass

w_ = orbit angular velocity

¢
mn = %l- s g = nth modal frequency
c
o d
L —_—
¢l dt

T o= u.t, nondimensionalized time parameter

t = time

4.9
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Only the first two flexural modes of the beam will be included in the
analysis. Using Eqs. (4.17) and (4.22) and the numerical values for No»
El and EZ’ the following three equations of second order result.
" =
6"+36 3.6 & sinei cosei
"y, 2 —~2 2
e tuye = 3.001x10 €, cos ei

eg+m§ez = 1,563x10" %4 €, c08261 (4.24)
The second modal oscillation is seen to be decoupled from the first mode

and pitch motions. Further, the forcing terms in the first and second modes
are very small and can be neglected to first order. Therefore, € and €,

have solutions of the form

€ = clsinwlt+c£coswlr

(1]

€ c,sinw r+c4cosmzr (4.25)

2 3 2
where cl, cz, c3 and c4 are constants to be determined from the initial
conditions. The pitch equation now becomes
8'"+36 = 1.8 (clsinwlt+c2cosmlr) sin26
Assuming 61(0) = 0 and 8(t) very small
ei(t) =ut=rT from Eq. (4.18)
With el(O) = ¢ and ei = 0, c, = 0 and c, = €, and the pitch equation becomes
8"+38 = 1.8:ocasm1t sin2t
= 0.9e°{sin (2+w1)t+sin(2-m1)r} (4.26)
The solution of this equation can be obtained in the form |

- 0.9%0 0.9€0
6(T) cssin/3f+c6cos/3%+ 3pZ sinpt - g sinqt

where, p= 2+ml and q = Z-wl

4.10
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with 6(0) = 0 and el(L) = 0,1 and wy = 10, the pitch response 1is
given by

8(t) = 0.002392sinv37+0. 000638s1n127-0.00147554n87 (4.27)
The response of the beam to the sélar radiation disturbance obtained using
numerical integration of Eq. (4.24) 1is shown in Fig. 4.11. The pitch motion
shown in Fig. 4.11 is identical with the response obtained using Eq. (4.27)

and shows a maximum pitch amplitude of 0.23°. The effect of the disturbance

on the first modal oscillations is seen to be negligible.
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IV.5 EFFECT OF SOLAR RADIATION PRESSURE ON A DUMBBELL STABILIZED FﬁEXIBLE
BEAM NOMINALLY ORIENTED ALONG THE LOCAL HORIZONTAL

The uncontrolied local horizontal orientation of a beam represents
an unstable motion. This unstable configuration of.the beam can be
stabilized by using a rigid ducbbell such that the resulting gravity-
gradient toréueS'provide stabilizatibn. In Ref. 2, the equations of wotion
for a beam with.a dumbbell assumed to be attached at the center’of mass of
the beam (fig. 4.10) through a spring loaded hinge and having viscous rota-
tional damping have been developed. In addition to the assumptions made in
developing Eqs. (4.23), it is further assumed that the dumbbell mass is cén-
centrated at the tips and that the viscous force at the hinge is linear. With
the usual assumptions of small pitch amplitude and dumbbell oscillations and
flexural deformations, the linearized equations of motion in the absence of |

active control and external forces are obtained asz,

— — — - — -_— (n) N
" v o wen Vel ' =
8"4+c0'+(k-3)6=ca Lu+§(cen+ken)gz /Jmé (4.28)
- - - - - - (n)
" ' - ' - ' -
a"+c, ca +(c1k+3)u ¢,c8'-c ko En(cen+ken)clcz 0 (4.29)

en+(wl-3)e - {k(a-8)+c(a'-0") }Cin)(Jy/Hnlzﬂl}; (Eé;-&sm)c(m) |

Z
= En/angl (4.30)
where c(mn) = J C(m)C(n)/H £2; (n,n = 1,2,...) and ¥ = mass of the
z yz 'z n n ,

beam for all n.

T - z'.— =

k k/Jwa, c c/Jymc

k = torsional restoring spring constant at the hinge

c =  viscous damping coefficient

o = angle between the dumbbell axis and the local vertical
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(n)
c(u) - 3¢:__ I
z ax x=0
¢:n) =  bean shape function of the ut:h transverse mode
¢ - Jy/Id I, = pitch mment of inertia of the dumbbell

As before, only the first two modes will be considered. The forcing terms

are the same as for the case of the beam along the local vertical, Eq. (4.24).

Since the dumbbell is assumed to be rigid, there is no net moment acting on

. the dumbbell due too solar radiation pressure. The first mode influences

the pitch motion through the forcing function and the second mode affects
the dumbbell motion through coupling. Thus, pitch, dumbbell, and the two
modes of the beam are all coupled to each other and the resulting system of
equat ions aré too compl {cated to yield analytical solutions. These equations
were numerically integrated with initial tip deflections of .0.012 in the
first mode and zero initial displacements in 6,a and €ys respectively
(Fig. 4.12). The steady state response shows pitch amplitudes as high as 2°.
The first modal oscillations are not greatly affected due to the solar radia-
tion pressure. The second mode is excited because of the dumbbell motion,
but the amplitude remains small (maximum lezl = 0.002). The high frequency
oscillatfon in <, and in the pitch acceleration, N/J“’é' are suppressed in
Fig. 4.12 for the sake of simplicity.

.Fig. 4.13 shows the systexﬁ response for ¢ ctiffer beam with w = 20.0
and the same initial conditions and beam parameters as for the case with
w o= 10.0. The maximum pitch amplitude is seen to be about 0.230, cne

order of magnitude less than that for the beam with w = 10.0.

4.13

G i e e, - MAGMERNE I e g |
PR DR ST



- -

NN ey e Sam gy

B R RO,

In this case the higher frequencies in the second mode damp the pitch oscilla-
tion, through the dumbbell motion, more rapidly eo that the pitch amplitudes
do not build up: Once again, > and €, mtions are not affected to first
order because of the solar radiation pressure. Thus, the effect of solar
radiation pressure is seén to affect mainly the pitch motion.

Since, the solar radiaticn incidence angle can change considerably
for synchronous orbits, ;.long time simulation (for about 30 orbits) was
carried out accounting for thke change in the incident angle due to the Earth's
motion around the sun (=1°/day) as shown in Fig. 4.14. It can be seen ;hac
errors in both phase and amplitude can result by not including the annual
variation in the solar incidence within simulations over long time intervals.

The effect of solar radiation pressure on the pitch response for a dif-
ferent set of inital conditions (6(0)= a(0)= 0, 81(0)-62(0)- 0.005) was also
obtained (Fig. 4.15). The solid line shows the pitch response without the
solar radiation disturbance. The pitch response in this case is due to the

coupled motion in €,, @ and 8. Since large amplitude (12°) 1n pitch motion

2

results, the original non-linear equations of motion werc used for this study.2

The pitch response in the presence of solar radiation pressure (dashed lines
in Fig. 4.15) shows a maximum pitch amplitude of about 9°. Thus, as much
as 30 difference can result by not including the solar radiation disturbance
effect for the assumed parameters of the beam in this study.

Fig. 4.16 shows the effect of solar radiation pressure on a beam uhich.
is at a low altitude earth orbit (250 n. miles). The pitch excitation is
seen to be very small (0.005°), as expected, because at the low alitudes the

gravity-gradient torques are predominant (Fig. 4.5).
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Fig. 4.10 Dumbbell Stabilized Flexible Beam Hominally Orient.éd' Along
) the Local Horizontal with Passive and Active Controllers.
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V. HOOP/COLUMN CONTROLS ANALYSES
V.1 DYNAMIC MODEL OF THE HOOP/COLUMN STRUCTURE

The structural model of the Hoop/Column system shown in Fig. 5.1 1is
considered for the control analysis. The hoop is assumed to be constructed
of five rings with each ring having 24 ncdes spaced at 15°, The rings |
are represented by node numbers 1101-1124, 1201-1224, 1301-1324, 1401-1424
and 1501-1524, respectively. Fig. 5.2 shows a detailed nodal representation
of the structure including the mast, (nodes 102-127), feeds, (128-136),
and the solar panels, (99-101). The finite element data of the structure
provided by the Harris Corporation is used for the controls analysis.

The dynamic model of the structure can be represented as:

M + KX = B_U (5.1)

where X is the state vector containing the generalized coordinates of each

‘node and will be of order (nx6) for n number of nodes and all 6 degrees of

freedom. M is the modal mass matrix of crder (6nx6n) and K is the stiffness
matrix of order ‘6nx6én). The control matrix, Bc’ is of the order of (6nxP)
for P number of actuators to be arranged on the structure. The data supplied
by Harris Corporation has.eigenvectors for 112 nodes and, therefore, n=112
for the present model. To decrease the dimensionality of the problem a
modal transformation- is carried out, by defining

X=9q ° (5.%)
where, ¢ is the Qatrix containing the eigenvectors of Eq. (5.1) and is

of the order (6nxm) for m number of modes and q is a vector of ocder (mxl).
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Through diagonalization of Eq. (5.1) the following matrix equation is

obtained.
[646] § + [6TK¢] q = ¢TB_Y
or . L T
Coy Ja+ kg 1 q=¢80 (5.3)
where -
[mi] w m],
™2
LY
A Y
\
n
. m
and - 5
SV Y
Kz\
\\
K
w
Equation 5.3) is rewritten in the state vector form as
al 0 11 [q 0 0
- +
-K
- i o -1,T
q ) 0 q (LT B v

The values of Ki'

The evaluation of

o, and ¢ are available with the finite element model.

the control matrix, Bc’ for selected actuator locations

is discussed in the next section.
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V.2 ARRANGEMENT OF ACTUATORS FOR THE HOOP/COLUMN SYSTEM

The controls analysis of the Hoop/Column antenna system requires
specification of the type of actuators ard their locations and orienta-
tions in the structure. For this study point thrusters and/or torquers
are assumed to generate the control forces and torques. The location
and orientation of these thrusters depend on the mode shapes of the
structure. The first thirteen modes corresponding to data provided by
the Harris Corp. will be included in the controls analysis and, hence,
it is convenient to choose thirteen actuators in the preliminary analysis. .
Each actuator is selected to affect a particular mode, but the same
actuator may help to control a different mode as well. The first six
modes are cocbinations of rigid body rotations and cfanslatioﬁs. Actua-
tors number 5 and 6 are assumed to be ar}anged as shown in Fig. 5.3 to
provide control over translation along the x and y directions, respectively,
and, in addition, also to contrdl the first bending modes (modes 8 anmd .).
Actuator 1l controls translation along the = direction, whereas actuators
8, 12, and 13 control yaw, pitch and roll motions, respectively. Actuators
1, 2, 3, and 4 are selected so that each actuator could provide independent
control of the feed mast torsion (mode 12). Actuators 9 and 10 are se-~
lected to control the second mast bending (modes 11 and 13). Actuator 7
controls surface torsion (mode 10) and is the only actuator assumed to
be mounted on the hoop. The arrangement of these actuators may need

reconsideration for more efficient control performance.
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With the selection of m modes in the model, the dimensions of the
state matrix, A, becomes 2mx2m and the corresponding control matrix, B,
will be 2mxp for p number of actuators. In the present model matrix
B= (0| [mi]-l ¢TBC]T, where ¢T(n,d,n0 respresents the set of m eigen-
vectors of the model and,

n = number of nodes

d .= degrees of freedom

m = number of modes
¢ has a dimension of (112, 6, 13) for the present model and for 13 modes.
fherefore, the control influence matrix, B., will have a dimension of
(112, 6, 13) for a total of 13 actuators. The matrix, B,, results from a
finite element formulation of the load (force and moment) matrix and is
developed as follows. A columm of the matrix, Bc’ represents the effect
of an actuator on the node at which the actuator is located. For example,
actuator 1 located at node 128 (Fig. 5.3) is assumed to provide a force
in the y direction only. Pence, the element Bc(128, 2, 1) is set equal

to one and the rest of the elements in the coulumn Bc(n d,, 1) are set

1* 73
equal to zero for each n, and d,. The torquer number 8 at node, 98, pro-

i J

vides only a yaw moment at node, 98, and so the coulumn B.(n 8) con-

1, dj’
tains all zero élements, except at B.(98, 6, 8) which is set equal to 1.

Similarly, the other 11 columns of the influence matrix, B., are obtained

c
as shown in Fig. 5.4 in which the matrix, B., is arranged as a'two-dimen-
sional matrix of order (672, 13). Since there are 13 actuatcrs in this

model, only 13 of the (112x6x13) elements of matrix B, are seen to be non

zero.
For 13 actuators located as shown in Fig. 5.3 and Table 5.1, the
T .
matrix [¢"B.] is given in Table 5.2. The calculation of the ¢TBC was faci-

litated by the use of a tape containing the ¢T elements provided by NASA-LK.
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V.3 CONTROLLABILITY

To control the finite-element hoopfcolumn model with 13 modes
in the model, the minirunm required number of actuators is found using
graph theory.

Equation (5.3) can be cast into s.andard state form as:

q 0 I q 0 0
= — - + —_— 5.6
had of - L4 T
q 4 o0 q (478, ] lu
Q. ~~
A B

The pair [A,B] in equation (5.4) is controllable if and only if the pair
(. ;?' 1, E¢Tbc]] is controllable. ! From the reachability condition
and th: digraph shown in Fig. 5.5 for controllability, all the states
must be 1nf1uénced by the inputs directly. .

The matrix ["xi/mi ] has a defficency of 6 in 1ts term rank, as
it has a term rank of 7, To augment the term rank, [¢T§c] must have
at least six linearly independent non-zero columns, indicating a minimum
of six properly placed actuatqrs are necded. A possible get of actuators
are (1,2,3,4,5,12) selected from Table 5.1 or Fig. 5.3. On the contrary,
tﬁe six actuators (1,2,3,4,6,7) from Table 5.1 are not enough to control
the thirteen modes in the system as states 14,15 and 26 in the digraph

of Fig. 5.5 can not be reached from any of the above six inputs (under

the assumptfon that any eiement in the ¢TBC matrix which 1s less than 10-5

is treated numerically equal to zero).
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Pitch (rotation about y axis)
Roll (rotation about x axis)

Fig. 5.3 Proposed Arrangement of Actuators - Hoop/Columm
Antenna System

Mast bending
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VI. DEVELOPMENT OF ALGORITHM TO EVALUATE HOOP/COLUMN COUPLING COEFFICIENTS

The generic mode equations and the equations of rotational motion of
a flexible orbiting body contain Eoupling terms between the rigid and flexi-
ble modes and terms due to the coupling within the flexible modes that are
agssumed to be sméll and, thus, are usually neglected when a finite element
analysis of the dynamics of_the system is undertaken. In this Chepter
a computational algorithm that permits the evaluation éf the coefficients
in these coupling terms in the equations of motion as applied to a finite
element model of the Hoop/Column system is developed.

Using a Newton-Euler approach, one-can express the equations of motion

of an elemental mass of the system, in the frame moving with the body, as1

{;cm+ %+2w+r+mxr-hnx (wxr) }pdv = {E+e+L(q)/plpdv (6.1)

where fp = mass per unit volume,

L
(]

external forces per unit mass,

o
"

elastic transverse displacements of the
element of volume.

]
[]

force due to the gravity on the unit mass, and

L = the linear operator which when applied to E'yields
the elastic forces acting on the element of volume

considered.
T = position vector of element dv
@ = inertial angular velocity of the body frame

6.1
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VI.1 EQUATIONS OF ROTATIONAL MOTION

The equations of rotational motion of the body are obtained by taking
the moments of all the external, internal and inertial forces acting on

the body, {.e., from Eq. (6.1)

. o .

STx [Zcm + T + 2uxr + wxr + ox(wxr)]pedv

= J Tx[L(@) /p+ E + e]pav | (6.2)
one can obt:in the following form for the equaticns of rotational
motion.

B+ 2@+ 29®™ G+ 18 +C (6.3

n=1 n=1 n=l

‘where R = {’[;ox(mx;o) - (?o'a) (ZJ-X‘T-_‘O)] pdv

£ () _ I x:é+2; x(wxq)+r_x(wxq)+qx (wxr )
n=1 v o o o o
-_(?o w) (Wxq)-(q*w) (Bx?o)] pdv
5™ = T pavx@a -E) + § w2A S Tx3® pav
a=l v em o n=l n, o
ER =/ 'r'oxn?o pdv

¥ ¢ @ o s[T oigigedit 1 edv
n-l v [o] (o]

C = frxe pdv
v

-;-._ _.
r r°+q

M = matrix opetatorl which when applied to T yields gravity-gradient forces

)
ool

o acceleration of the center of mass

?o = force/mass due to gravity at the undeformed center of mass

— (n)= modal shape vector for the nth mode

<

w, = frequency of the nth mode

An = time dependent modal amplitude function

6.2
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VI. 2 GENERIC MODE EQUATIONS

The generic mode equation is obtained by taking the modal components

of all internal, external and inertial forces acting on the body, i.e.,

15, (3 +Remtorrtax(@xr) ] pdv ;
v . cm '
« r3®@ . L (@/0)+E+e] pav (6.4)

v

The generic mode equation is obtained in the following form:
A Hwla + + ¥ = ¥ \
AumnAn (’E:mn m‘;lcgman [8n+m‘;18m+gn+bn]/.nn : (6.5)
where (Ff = f [E(n) owxr +9 (n) cax(oxr )] pdv
n oy o o

'fl& on ™ s [23(n) suxqt+ @ (n) uxq+ @ (m) cwx(oxq) ] pdv
o= v

- 130T pavs T o = ST ™ ogedv;
gn Opv mlgm v “qpv

PV

B, = 1% Soav and 0] = 17 Moave @ E).

P ]

i e Fadbaa

BRI PRS SN R
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VI.3 CARTESIAN COMPONENTS OF THE DIFFERENT COUPLING TERMS

-

The expressions for R, g, Gqo gla}, <9
L4

Qm, g'n; 9 in Cartesian components are presented in this
section. \
One can express the following vectors in

. their Cartesian component form as .

r°=53;+gyj+gzk; @ =mxi+myj+m=k

(n)_, (M3 (n)¢+¢;n)§

ton = P -(n, - . -
q nilﬁh(t)O- (ro). ) =¢x i+¢y J
=(n) _ o{n)§ (n)3 (2) 5
R A
~(a) _ ()%, ()], eln)h )
and G =Gx1+Gyj+Gz k,

where i, j, k 2re unit vectors along the body principal axes

of inertia in the undeformed state; Ex'. Ey' Ez are the co-

ordinates of a point in the undeforxzed state. |
With the use of the component forms of the

vectors given akove, one can expand the various vector ex-’

pressicns given in Egs. (6.3) and (6.5) cbtain

R = [Jxmx + (Jz-Jy)mymz}

pood

+ [Jy“’y + (Jx-Jz)mzuxI 3

+ [J:J:z + (Jy‘Jx)uxuy] X (6.6)

6.4
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(n) Y (n) _,(n), . (n) .. (n) - gin
Q' = P‘nmyz 'Bzy ) + ZAn[(HYY +H,. ), ny Wy

(n) (n), ..(n), . (n) . (n),.
-H,. uz] + An[zmyy +H, )ux - (Bxy +ny )wy

(n) g(n) - _ (a)_n(n), _ - (n)
= (B He, Ju, zmy“’zmzz Eyy ) “’x“’ymxz,

(n) (n) .. (n) 2 2. ,.(n)
+H, ')+ ""x“’zmxy +ny ) + (uz-wy) (ayz

(n) | :
+sz )1 (6.7)

Gy = (Jz-Jy)Mzsi + (Jx—Jz)M31j + (Jy-Jx)1~121k

(6.8)

(n) . (n) .. (n), _ (n) .. (n)
Gx = An[mBB M22) (nyz +sz ) “521(8::: +Hzx )

(n) ., (n) (n) _.(n)
+ M31mxy "'ny ) + 2M23.(BYY sz 3] (6.9)

P =3

(n) _.,(n) . (n) _,(n) s () _(n)
x(Byz "Ezy ) + “’y(azx Hez ) * “’z(dxy uyx,)

+ mxmy(lig) +Kk(':)) + ”y“’z (H;g, +3é;)) -+ uzmx(xég)

anin), 2, (n)_ .(n) 2, .(n)_.(n)
+sz ) - “’x(HYY +sz ) - my(ﬁzz +Hxx )

- 2@ ® g n), (6.10)

z'Vax T yy

' . (mn) . (mn) (mn) . (mn),
S umtmx(r.yz '=Lag ) + “’y“‘zx -L._ )

(mn) _. (rn) . (mn) _, {mn)
+wz(ny -Lyx )] +Am[wx(Lyz Lzy )

o . (mn) _. (mn) . (mn) . (mn)
+wY(sz sz )‘+uz(ny 'Lyx )

6.5
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: (mn) . (mn) , (mn) _ . (mn)
+ mxmy(ny +Lyx ) + my“z(nyz +L~y )

(B(mn) (mn)) - QZ(L(mn)+L(mn))

+ w_w +
e Lyz x'Cyy zz

2 X 2Z2X

2, (mn) o (em), _ 2 (m0 |
= (L, )+L:§“ ) = wz(L,, ’-x-r.;;‘.")l (6.11)

(n)
9 = IL Hag Mag

9on * Am zg L;gn) MaB
a -

(n) _ (n)y o (mn)_, (@ ,(n). .
where E_g ‘{Eaﬁ’s dm; Lgg {rtba ¢g  dm; and .
a, B=x, y, zorl, 2, 3. When a is x in Hég) or Lézn)
the corresponding value of a in MaB is 1. In a similar

(n) (mn)

way when afis Yy ip Hyg ©F Legg ¢ @ is 2 in Mg and when

e is z in Hég)'or Lé?n?, a is 3 in M g. The same rea-

soniné holds for 3 also.

The expressions for Q(n) and Q(n) are

Y z
obtained by the cyclic permutation of x, ¥y, z in the

expression for Q;P) in Eq. (6.7) and the expressions for
G;n) and Gén) are obtained by the cyclic permutation of

(n)

X, ¥, z in the expression for Gx in Bq. (6.9).

6.6
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For a discretized model the expressions for the volume integrals are

replaced by the following summations:

i . 7o), 6™ (6.12)
aB gy i B i )
@,B = x,y,z)
k
(m) (@) @)
where
k = total number of discrete masses
i = index identifying a4 nodal point

m, = mass concentrated at the ith node.

coordinates of m, in the undeformed state

"
]

6.7
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VI.4 EVALUATION OF COUPLING COEFFICIENTS IN THE EQUATIONS OF MOTION AS
APPLIED TO A FINITE ELEMENT MODEL OF THE HOOP/COLUMN SYSTEM

VI. 4.1 Model Description

The structural dynamié modeling of the Hoop/Column antenna has gone
through many stages before reaching the single surface model which will
be analyzed‘in thié chapter.

Initially, it had 231 nodes distributed as foliowé: 192 nodes on

the 8 support circles including the hoop (24 nodes on each circle spaced

" at 15° intervals); 28 nodes on the mast and the feed mast; and 1l nodes

at the points of location of the solar panels (upper and lower), the

S band reflector, and the feed panels (up-link and down-link)-see Figs.
5.1 and 5.2. -After reduction the number of nodes was diminished to 114
including a total of 96 nodes on the circles: 1100, 1200, 1300, and 1400;
7 nodes on the mast and the feed mast; and 11 nodes at the locations of

the solar panels, the S band reflector, and the feed panels (Fig. 6.1).

6.8
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VI. 4.2 Approximate Mass Distribution

From an unpublished document prepared by the Harris Corporation,2
and submitted by NASA Langley hLesearch Center, it has been possible to
arrivé at the mass distributior shown in Table 6.1, 9803.0 1b. out of
the total weight of the Hoop/Column Antenna (10,070 1b.) were distributed
baetween the fiﬁal grid points. The distribution was done in agreement with
the information found in the Harris Corporacion document. The page numbers
appearing in Table 6.1 refer to particular mass/moment of inertia calcula-
tions in the Harris Corbotation documedi.z

The small (2%) discrepancy between the calculated total mass (9803.0 1b.)
and the stated weight of the system (10,070”1b) is thought to be attributed
to: (1) uncertainties in the weight of specific stringers; (2) uncertainties
inherent with the finite element reduction technique where the initial mass
must be redistributed between a-reduced, final number of grid (node) points;
and (3) other miscellaneous uncertainties, such as the exact weight/location

of the optical instrument, etc.

VI. 4.3 Cartesian Coordinates of all the Nodal Points in the Final
" NASTRAN Output :

Reference 2 contains the cylindrical coordinates of all the nodal points
on the mast, the feed mast, and at the location of the panels and electronics.
It also conﬁains the Z coordinates of the planes which contain the circles
along with their respéctive diameters. Thus, the Cartesian coordinates of
all the nodal points were obtained by a simple transformation from cylindrical

to Cartesian coordinates.

6.9
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vVI.a.A Development of a Computational Algdtithm for Evaluation of

the Coupling Coefficients

After receipt of the tape cqptéining the modal functions, this
information was stored in our IBM 360 in such a manner that when one
calls subroutine,GETMP(2), he can refer to the kth component of the Ith
mode shape vector at the grid point J by VECMP(I,J,K). Based on this,
an algorithm described in the flow diagram, Fig. 6.2, was designed and
tested. As indicated in Fig. 6.2, the avallable data, such asg:  the
Cartesian coordinates of the grid points on the mast, the feed mast and
the ones at the locations on the appendages; and such as the mass concen-
trations at all the nodal points are input into the software routine and
these data will consequently have to be updated according to ahy develop-
ment in the Hoop/Column modeling. The subroutine, DCS, (given the radius
of the circles and the Z component of their centers) computes the Cartesian
coordinates of the nodal points on the circles.

Subroutine GETMP(2), which makes the ¢§fi available,is called and
the values of components of the desired mode shaﬁe vector at the particular
grid point are incorporated into a loop mathematically described by Eqs.
(6.12) and_(6.13). It should be noted that, for reasons of effectiveness,
each coefficient is evaluated separately on the circles and on the other
grid points and then combined to yield the corresponding coupling coefficient
for the entire Hoop/Column system. |

The algorithm has been tested for two modes (the 7th and the gth)
successfully, but only after the evaluation of the coefficients corresponding

to all the 13 modes will one be able to make positive conclusions.

6.10
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Given X,Y,2 (cartesian coordinates of the nodal
points on the mast and feed) and the mass concen-
tration at each nodal point in the system (approxi-

mate mass distribution)

Feed + Mast Appendages

]
Call Subroutine DCS which
computes X,Y, and Z of the
nodal points on the different

circles

Subroutine GETMP (2)
makes ¢§I% available
bl

I = mode number
J = node number -
K = x,y,z component of ¢

l Circles

r

L

(1) (D
“aB fEuch,B MJ

on m n
LaB 2I"(I’J,u.‘isje My

ERETEYSY
LM §Ea¢j,s“3
mn _ m ,n
Lag = % %5,a%5,8 ™

For the total system

(1) mn
Hug’ LaB

{ .
! Fig. 6.2. Flow Diagram Describing the Algorithm Used in

i : the Evaluation of the Coupling Coefficients.
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Grfd Mast Feed lLower Upper Feed S band S band Lower Upper Hoop Sub. Total
po "t: Assemb, | Mast Solar Solar Panels | Feed Reflectod Elec~ Elec- Asgend, | st grid
X 1.b. No. Panels | Parel ] tronics [ tronice | + Mesh |pointa in 1lbs,
: Pape 27 | Pape 85! Page 81 | Page 82] Page 86 | Page 82] Page 84 |Page 84 +Reflecto
98 320.00 30.00 A 350.00
99 320.00 1953.00 2273.00
100 144.50 144,50
101 144,50 144.50
109 320.00 320.00
118 320.00 320.00
127 30.00 327.50 1898.00 2255.50
128 548,13 548.13
o 129 481,87 481.87
=
130 543.13 548.13
13t .481.87 481.87
133 255.00 255,00
134 130.00 130.00
135 327.50 327.50
1100
serice 1027.00 1027.00
1200
series 49.00 49.00
1300
series 49,00 49.00
1400
secics 49.00
150? . 49.00
scries 49.00 49.00

H5Yd TYNIDINO

-
¥

3

ALvnd yood 20

T

" Hoop assembly at grid points 1101, 1107, 1113,

1119; 244,.51bs/point - TOTAL  9803.0

Table 6.1 Approximate Mass Distribution at Final Grid Points (Pounds)




VII. GENERAL CONCLUSIONS AND RECOMMENDATIONS

The widespread use of various computer algorithms required at
different stages for the simulétion of the dynamics and control of
large flexible orbiting systems should be emphasized. Problem areas
are mainly as;ociated with the large order required to model such systems.
The use of graph theoretic techniques can often be used to reduce the
computational effort involved in the calculation of the eigenvalues of
such large ordered systems. Computer generated interacfive graphics
can provide additional insight into the interpretation of the flexible
modal shape functipns of complex systems.

The graph theory approach can also be utilized to define controll-
ability in terms of the term rank and input-state reachability concepts.
This approach can be employed to examine the effects of inherent damping
(usually expected to be present in LSST systems) on the number and loca-
tions of the requifed actuators. It is seen that the damping matrix does
not influence the required number of actuators but offers greater flexi-
bility to the possible locations of the actuators for which the system is
controllabia. . The system (stiffness) matrix term rank deficieaéy dictates
the number of actuators required and also influences the location of the
actu;tors. .

| A mathematical model of the solar radiation forces and moments
acting on a free-free flexible beam in orbit has been developed. For
small pitch angles, it is seen that the solar radiation torques due to
the deformations of the beam can be larger than those due to the grevity-

gradient for orbits near synchronous altitude.
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Inworbic-plane steady state open-loup (uncontrolled) responses for different

initial beam deflections indicate that, in general, the effects of solar

pressure on the modal amplitudes are small, but the magnitude of the

induced pitch oscillations can be relatively larger. Future work could

extend the model to plate and shell surfaces, and also assess the effect

of the solar pressure disturbance on previously developed control lcws,

designed primarily to provide certain transient response characteriscicé.
A preliminary analysis of the finite element dynamic model using

the first 13 modes of the 122m. Hoop/Column antenna system indicates

. that a minimum of six properly placed actuators is required for controll-

ability. Additional wvork is currently underway to analyze transient
resﬁonses and force-impulse requirements for control 1§ws based on dif-
ferent techniqﬁes using ORACLS, and also various cc binations of number
and location of actuators.

Finally, an algorithm has been developed to evaluate the various
coupling terms between the rigid rotational and flexible modes and also
the intra-modal coupling terms in the equations of motion using thie Hoop/
Column mass distribution as provided by the NASTRAN finite elemenﬁ pro-~
gram as an ex~uple. . Such coupling terms are usually not imcluded in

finite element models which are based on the earth-hased wibratic.al and

rigid modes only. Current work is in progress to evaluate the order of

magnitudes of these terms - at least for the first 13 modes that are being

used in Hoop/Column controls analysis.
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