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Abstract

The physical metallurgy of near-solidus intergranular cracking

in Inconel 718 welds was Investigated. The data, although incon-

clusive, suggested at least two mechanisms which might explain

intergranular cracking (microfissuring) in the heat-affected zone of

several high temperature alloys. One theory is based on the separation

of intergranular liquid while the other involves mechanical failure of

tiolid liguments surrounded by intergranular liquid. Both mechanisms

concentrate strain in the grain boundaries resulting in low strain

(<l%) intergranular brittleness. The mechanisms reported herein might

also pertain to the physical metallurgy of casting, powder metallurgy

sintering and hot isostatic pressing (111P).
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Introduction

The cracking and subsequent ftallure or rejection of waldments is

the result of various causes. Thusea causes tire primarily dependent on

the welding procedure and materials being welded. Two types of

wcldmelnc failure in nir,,tel.-based alloys tire k:ol..ldif ication cracking and

age: cracking. 1` icrofissuring is a solidification-type crack which

forms in the; heat;-affected zone (IiAZ) adjacent to they weld. These

cracks area intey rgranular and often only one grain diameter its length.

The prose ut metchods for a:limi,nasting micror"isrsuriug are .primarily

procedural- Reduced welding speed and lower wood power bath decrease

mi.crof:isouring tesnde'ucies. 	 A small grain size is also beneficial.

The prooess of finding metallur g ical 'comedies to they microfissuring

problem is hampered duce to ta, lack of understanding concerning the

mol;allurgy of the craebking process. Specific points of contension

concern the affect of chcros.stry, e.spooc ially minor elements and

Impurities, they cracking process, and the physical metallurgy of they

near solidus m1crostruetures.

Studies by leniscavich (1966) 1 , Owczarski, et. al. (1966) 1- and

Weiss e:t. al. (1970) 3 utilized loot ductility tests to provide:

information on a material's susceptibility to microfissuring. These

Investigations all reached d:tfferent conclusions concerning the

moc;hani:sm cif microfi:ssuring using this technique. A study by Savage

et. al.. (1976) 4 , which examined the IIAZ microstructure, arrived at

still a dif Ccrent conclusion concerning the mechanism of micro.fissur-

insg. A complete 11te::r3ture roview on the subjects or solidification



cracking, microfissuring, near solidus intergranular, failure, and

intargranular mechanical failure Is prenented in Appendix A. (This is

an excerpt from progress report number #5). It in obvious from

reviewing this literature s-hat the wicrofissuring phenomena cannot be

understood until the physical metallurgy of the near solidus material

in better understood.

The present microfissuring studies stem from research initiated by

A. C. Nunes 5 at NASA/IlLtntsville (Marshall Space Flight Center

(MSFC)). Dr. Numes has calculated the temperature - strain response of

thus HAZ to a moving heat source. The heat source modeled the electron

beam welding process so that the temperature -retrain response of the

11A7, could be represented by welding parameters. 
In order to predict

when microfissuring would occur it was necessary to know the near

solidus intergranular cracking behavior of the HAZ material. The

cracking behavior had to be known in terms of temperature and strain so

that it could be correlated with the welding parameters. The

Identification of the near ,solidus incipient cracking behavior of IN

718 was the objective of the present study.

It is necessary to investigate the initial cracking stage, or

Incipient cracking, of a material in order to lnvestig,-,te microfissur-

ing. The fracture event Is too far removed from the incipient cracking

event to be of conclusive value for all but a few special cases. A

program to determine near solidus incipient cracking in Inconel 718 was

begun in June, 1979 Linder an ASEE/NAGA summer Faculty Research

2
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Fellowship (contract #NGT 01-008-0210, The data genera. 	 by the above

research necessitated further analysis and hence the present researe.16i

pr;jr.Aram. The information reported herin builds on the provious

resenrch; however, this report is written to he a self-contained

document. The reader does not need the pcovious final report to

appreciate the current analysis.

Experimental Procedure and Results

The experimental plan was to plastically strain Inconel 718 at

various temperatures near the material's solidus temperature. The

plastic strain was varied between that needed to cause fracture and the

strain needed to initiate a few small cracks. This was done at several

temperatures do that the degree or cracking could be plotted against

the plastic strain for each temperature of interest. This plot was

used to extrapolate the degree of cracking to the incipient cracking

strain. The incipient cracking strain thus obtained was plotted

against temperature to give 
an incipient cracking envelop in

strain-temperature coordinates. This plot can be used as a predictor

of microfissuring when avaluated in conjunction with the Nunes analysis

of HAZ strain and temperatures

Unlaxial tensile tests of Inconel 718 were used to evaluate

cracking as functions of strain and temperature. The specimen dimen-

sions were 0.635 cm x 2.54 cm x 60-96 cm. These rectangular bars wc,re

heated and strained in a vertical jacket furnace without a protective

atmosphere. Table I gives information on the test temperature, maximum

plastic strain, and whether or not failure occurred during straining.

3



A temperature profile nlong the specimen determined that a 7.62 cin zone

of uniform maximum temperature uxiaLed along the specimea 10"Stli. Tills

zone was used Cor analysis of cracking tendencies at various mnximum

temperatures. Plastic utraiti wau maisurud, by a uerics of indontations

which were mensured before and after straining. 
One 

consequence of

this strain measuriuS technique 
was 

to give strain at discrete

locations no opposed to homogenious, material strain. This becomes a

source ot discussion, whon analyzing the data. Thu measurement of

strain marks was made with a machinist's microscope. Typical plots of

phasic aLraili along Lite 8pecillien lungth are given 
in 

Figure 1.

Cracking data was gathered by motallographic nlly observing the

centerline cross-seat ion of Lhe tensile speciman. By examining

successive layers or, the specimen evons-section It was determined thex

cracking originated at the ceatecIlue and that the ceuterline also

contained the 'Largest cracks. The centerline SOCLioll, Of each Specimen

was polished and otchod lightly to capon the cracks find delineate the

grain boundaries. All cracks were measured using a 1,eitz metallograph

with micrometer eye piece. An arbitrary cracking parameter (N,) was

menuured for each specimen by taking the length (Lc) times the width

(14c ) of each crack and summing, over all the cracks.

X

N	 4 (LO.Wdi
1-1

(Note; cracks with a width smaller than 0-Q0l Filar units were too,

small to measure and arbitrarily given a value of 0.001.)

4



Typical plots of cruaking along the specimen are shown in Figure 1.

(Each crack number given in Figure, I In the sum of all cracks over a 4

min distances.) The extrapolation to the incipient cracking strain is

shown for all specimens In Figure 2. The incipient cracking envelop as

functions o4 temperature and strain in shown in Figure 3.

I
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Discussion

The primary function of the present study was to quantify the

incipient intergranular cracking behavior of Inconal 718. Figure 3

does this within the limitations of 
the 

experimental procedure. The

greatest of these limitations was imposed by the strain measurement

technique. The strain measurements were sensitive to local crack

opening displacements as evidenced by Figure 1. The discreteness of

the strain measurement marks proved a disadvantage since large crack

opening displacements caused considerable scatter in the strain data.

This is analogous to comparLig the strain in the necked-down region of

a tensile specimen to the strain in the unnecked region of the same

specimen. This problem is manifested 
in 

the extrapolation to incipient

cracking strain. A method is presently being considered which might

enable the crack-opening displacement contribution to strain to be

ellminatod. The crack widths will also be normalized to a single value

so that the data might be re-evaluated.

Due to the scatter in the strain data, the curve/curves of Figure

3 present some ambiguity in interpretation. Figure 3 may be taken to

show a single, smooth c-curve indicative of a single cracking

mechanism, or, it might be taken to show a double nose characteristic

of two competing crack mechanisms. It seems appropriate now to discuss

these possible interpretations of Figure 3 and provide supporting

evidence.

Assume Figure 3 represents a single-nosed c-curve. Also consider

Figure 4, which shows the plastic strain at failure as a function of

temperature for Inconel 718. There are three distinct regions which
	

r.
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are laboled single intergranular crack growth, multiple intergranular

crack growth and crack closures. Thu transition from crack closure to

multiple crack growth appears to coincide with the initial loss of

ductility an the toast temperature increases. The transition from

multiple crack growth to single crack growth a<ppeaar y to coincide with

the complete loss of ductility. The apparent dependence of the grain

boundary cracking node on temperature could reflect micros tructural

changes over this temperature range. For instance, the fracture

surface of specimens fractured at 2350"F gave an obvious indication of

bulk solidus melting (Figure 5). The fracture surface at 2200°F also

gave some indication that intergranular lignid was prese w., at fracture

(Figure 6). If this were interpreted similar to Yenisc,avich, then thethe

transition to single crack growth would correspond to complete grain

boundary melting. The region of multiple crack growth, at temperatures

between crack closure andand single crack growth, would correspond to

various degrees of partial grain boundary melting (Figure 7). In terms

of Figure :3, there would be a single mechanism of cracking. The

mechanism would be one of increased grain boundary wetting by

intergranular liquid. The minimum in incipient cracking strain would

correspond to complete grain boundary wetting by as very thin liquid

layer. The temperature at which this thin liquid layer forms would be
t

slightly below the bulk. solidus of the material. The incipient

cracking strain would actually increase as bulk-melting begins because

the liquid is allowed to flow under strain. This flowing behavior was

seen at fracture temperatures of 2350°F. Figure 8 shown as typical

change in cross-section when this occurs.

7



AssuLao now 
that 

Figure 3 uhows a double ► osed, met of c-curvano

Two cracking mechanisms must be formulated to explain this situation,

The most convenient mechanisms are a purely mechanical cracking

mechanism for the low temperature t,--curve and a grain boundary malting

mechanism for the higher temperature c-curva. The author finds this

situation more difficult to accept. Via mechanical cracking mechanism

would have to account for the change in mechanical cracking mode which

occurs at the transition from intergranular crack closure to multiple

intargranular cracking. The two mechanisms model would also have to

account for the temperature of transition from mechanism one to

mochnnism two.

It Ls planned in the near futara to examine the fracture surfaces

of the specimens in the multiple-crack, growth region. If indicationq

of intargranular liquid could be found on these fracture surfaces it

would support a single cracking mechanism, i.e., a single-nosed c-Curve

for Figure 3.

8



Conclusions

1. The atrala moasuroment technique used in the present 
study is, by

Itself, inadequate for characterizing the plAotic strain suffered

during tensile testing. A hattar approach would be, the present

technique used in conjunction with techniques which average the

strain over as larger. Sago seatton.

2. The naar solidus intargranular cracking behavior. of Inconal 718

exhibits several distinct phases. Thase ore interAranular crack

closura at approximately 120 * C below the bulk soliduu, multiple

intergranular, crack 8row • h between 90% nod 40°C below the bulk

solidus, single inwrgranular crack growth 40% below the bulk

solidus, and fluid t1ow at and above the bulk solidus.

3.
The 

machanism of HAZ microfisouring is not conclusively defined In 	
i.

cite present program.

The :incipient: cracking strains presented In this paper should be

reserved for Inconel 718 material with an ASTM grain size of #2 to

A.

9
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There are presently at leak;t three mechanisms proposed to explain HAS,

microfissuring and each would require a different method of metallur-

gical control. None of the three proposed mechanisms has conclusive

experimental evidence either to support it or to disprove the others.

The research program proposed herein would provide evidence of a conclu-

sive nature on the role of intergranular liquid u HA7. microfissuring.

The program results could then be used to ;identify solutions to the `

microfissuring problem.

4.0 Literature Review HAZ Microfissuring

4.1 Hot Ductility 'Pests (Cleehle)

4.11 The hot ductility test is used to evaluate HAZ micr:ocracking. It

involves high strain rate xracture at temperatures up to the bulk

solidus of the material. A thermal. cycle is imposed on the metal to

simulate the RAZ of a given welding process- 425 The metal is fractured .

at a predetermined point in the thermal cycle to test the mechanical

response: ot: the HAZ microstructure. A typical result of such testi.ng6

is given in Figure 2.

4.12 An area of controversy exists in explaining the rapid loss of

ductility well below the bulk solidus temperature. Another area of

debate exists In explaining the nilTducti.lity temperature. There is,

however, good agreement that the nil-strength temperature corresponds to

bulk intergranular welting at the solidus. There is also a good correl-

ation between hot ductility data and sensitivity to HAZ microfissurinb 6,7

"et, there is no way of knowing what parr, of the hot ductility curve

corresponds to HAZ microfi suri.ng. Estimates I ' s of the maximum strain

:suffered by the HAZ are approximately !%. This would indicate that the

PRECEDING PAGE BLANK NOT FILMED

	
4	 t

r



inciptatm Crack mUML form nt or 
below 

about 1% strain. Thin value of"

strain doom not corrospoud directly to ho-ft ductility fractum atraiii

bovauso tho fracture tent in not nocamnarily ,in accurate wdicator of

incipient cracking. Tourn on Lncipimit craekiag 9 endear conditionu

approaching equilibrium 
do 

provide womQ Insight 
an 

thsa ralationship
	 I \

betwooti hoc ductility tam-m and aticrof imou ring, Tliese tests (Ifigura 3)

IndlCntQ that at SLVANS of I'Ot, LiAciptant crackn do not form until the

mrarial approacheu the nil-ductillLy tomper ►ture,

4.2 Thuorien oC Nil-Ductilitv

4-2.1 Weinn, Orotite .and Sticklad otucliad the hot: ductility response

of laronel. 600. Thoy suggamted that tho rapid heating of Ernin boulldnry

pravipttates s%%ppr(%vvvd diffuslon, 'resulting to procipith-ta iwlt^.ng-

They ftirchor SUjjgQUL0d that tho, liquid immedintuly wett the boundary.

Thu ticluLd U.1111 LIACOP-110138 wnm Onvisioned to imroase, with Lemporature

Lrom 210A at t1w initial. lour; Lu ductility 
to 

50ON at the nil-ductillty

0.Wp(2,r.'►CU

Zeuiscav:Lsh l Couvid good wrralation batween hot duccility

behavior and I1111 wicrofJssuftng. He suggented ckaL Al-ductility was

Initiated by low ineltimg grain boutidary ellmn. Thesa eilms ware

iuggescod to be aucacticw Cormod by high coitconLraviotis of alumunts such

an sulfuc it% the grain boundacLus. 
8,10--12. 

This multan outactic wwi

belilm'd to exist as tow as 3000  batow the built 3oliduo of the inuta.L.

The. ImLergranulat, malting was unvLSIOAtid to jx,,)jtn at Isolated poaltions

thus, caustnp, Lnitial losu of ductility. The ductility decrensed with

temperatur(^ au the Uqtiid ►pro-ad until oil-ductility m.mil.ted due to

excessive graill houndary Wetting.

5
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4.23 Gwczarski 13 and Duvall and owczarsk16 suggested that a

11quid intergranular film was not necessary for HAZ microfissuring.

They suggested that the initial loss in ductility was caused by a change

in deformation mode from transgranular to intergranular fracture.* They

*Whether or not the initial loss in ductility coincides
with the onset of intergranular fracture is open to debate.
The authors 6 2 10 disagree on this point.

in turn suggested that HAZ microfissuring could occur by a solid state

deformation mechanism. Although these author,s 6 observed intergranular

precipitate melting in a number of alloys, they did not find that the

melting necessarily corresponded to HAZ microfissuring.

4.24 A summary of the literature gives the following theories for HA?.

microfissuring as interpreted from hot ductility tests:

1. Eutectic melting of the grain boundaries due to elements
such as sulfur.

2. Liquid ,grain boundary films due to the melting of inter-
granular precipitates.

3. Solid-state deformation concentrated in the grain boundaries
such as grain boundary sliding.

Note: More recent works by Savage and Nippes with
Miller, 14 Szekeries 15 and Goodwin 16 have also addressed
HAZ microfissuring. These studies involved constitutional
liquation of sulfide inclusions and unidentified spherical
inclusions, eutectic melting of grain boundaries, grain boundary
liquid distribution, and the effect of liquid- solid surface
tension on grain boundary wetting. None of this work, however,
was done in the spirit of the hot ductility test upon which the
present proposal is based. It is hoped that the ;proposed
research will contribute to the interpretation of the above
studies and help relate their results to previous and future
works.

4.3 Hot Tensile Test

4.31 This nuthor 2 + 3 evaluated the incipient intergranular crack-

ing behavior of Inconel 718. The study was designed to determine the

i

r
l

a

e
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incipient cracking behavior as a function of both total plastic strain and

temperature. During these tests, a fracture curve ( pigurres 2 and 3) was

generated similar to the hot ductility curve. Unlike the hot ductility

test where R.n exacting thermal cycle is imposed on the metal,, the hot

tensile test allowed the metal to approach equilibrium. This was done

by a slow heat-up followed by holding the specimen at a predetermined

temperature for approximately five minutes before fracture. It is

apparent that Inconel 718 exhibits all the characteristics of the hot

ductility test even when given a long heat-up and Moak time at she frac-

ture temperature. This suggests that the rapid thermal cycling, as used

in the bot ductility test, may not be as critical to evaluating HAZ

mi.crot,*fissuring as currently believed.

5.0 Literature Review - Analysis of Theories

5.1 if HAZ microfissuring occurs due to partial or complete melting of

grain boundaries regions, then it can be considered as a type of solidi-

Eication cracking. Several of the theories associated with solidifica-

tioci cracking in welds and castings are helpful in interpreting HAZ

microfissuring due to grain boundary liquation. A primary consideration

iu theories of solidification cra6'kdng is the distribution of the liquid

phase. 
17-19 

Since these theories concern deformation above the hulk

solidus of the metal, it would be imprudent to extend them directly to

HAZ microfissuring which is thought to occur below the bulk solidus,

However, the following analogies seem appropriate and of some value in

understanding hot grain boundary Failure near the solidus. Be:,j,r in mind

that theories of sub-soiidus and super-solidus cracking diffet primarily

in the volume of liquid ;resent in the grata boundaries.

7
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5.21 Taniscavish 
7,10 postulated that liquid was partitioned on the grain

boundaries and gradually woc the boundary 
as 

the temperature approached

ththey bulk. solidus. Much work1915 has been done on then
	
oe

intergranular liquid partaining to solidification cracking. Smith"

showed that Interfnciol, energ3.es should control the measurable dihedral

angle (0) according to:

YSL/yb - ^ coo 0/2

where '(SL Is the solid-liquid surtace tension and 'yb is tho grain

boundary surface tension. Sinith acrd W" l lisms	 showed that the dis-

tribution, of liquid on th y: grain faces wars dependent onySL/yb and

corratntable to 0. 
The 

d1lindral an8le hns boon shown to correlate with

'1 7, 28-3, " 4	 -
cracking .14 and be a fuuction of topijj^-ratare, )	stress,	 and

trace ele"jents.23 The studies of liquid distribution land credence

to Yaniscavishs model or, increased intergrat^alar wetting by as liquid

phase with Increasing temperatura - Howevac, experimental evidence to

sunport 
the 

eutectic melting cal. 	 boundary regions is open to

question. This theory could be dispvoved if it could be ttihown that

Initial bulk soltdu3 malting, at the grain boundary, (lid not* completely

wet, the boundary.

5.3 Wei s, et al.) postulated that constitutional liquation of

tntergranular precipitates resulted W inuediate wetting of 
the 

grain

boundary. The resulting grain boundary Ulm was uxpected to increase in

volume with incre- tsinI	 g temparritore. Several stud
	 .9-32
ies	 of solidifica-

Lion erneking have involved film stage analysis. Savoilro 
29 postulaced
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that the thickness of the film was directly related to the film strength

in a manner similar to Waiss of al - 9 Experimental evidence 619,13

supports i.ntergranular precipitate melting In the 11AZ. however, there

La not conclusive experimental evidence to support complete wetting of

the grain boundaries by initial precipitate melting. Nor is there any

evidence to explain why this film thickness tahould grow with increasing

temperature below the bulk soliduo. Dihedral angle measurements should

differentiate if melted precipitates wet the boundary or remain

isolated.

5. 4 owczarski 13 has suggested that HAZ microrissuring results from

solid-state deformation initiated by the transition from transgranular

to int:ergranular failure. This is suggestive of the equicohesive

temperature developed by Jeffries: 53 The mechanistic cause of the

equiconesive temperature is ill.-defined. it appears that studies

involving hot creep rupture offer better models from which to evaluate

FIAZ microcrackina due to solid-state deformation. Ashby 54,35 has

developed a method of expressing deformation processes, accommodation

processes, and typical engineering tests on a deformation snap as a

function of stress, strain rate, grain size, and temperature_. The hot

ductility test would gall in a region of power-law creep controlled by
 6'

'Lattice diffusion. other active mechanisms would be grain boundary

sliding and dynamic reerystallization. The deformation maps presented

by Ashby are not all inclusive. Consideration must also be given to

grain boundary sliding mechanisms described by GiEkins^ b and grain

boundary dislocation mechanisms discussed by Hirth 37 .	 R

9	 t



ORIGINAL PAC*,!, Is
OF POOR QUALITY

5.5 tf it waro, possible to eliminate into cgranular liquid thaorias of

11,^Z microfisn"ring by dihedral angle studios, then attention would be

directed toward daLurmiritng Lhe active deformation made In hot ductility

too tn - Howt-vur, bocatime of the evidence for tntergranular precipitate

meLttng, the intergraim"r liquid thooritn o should 
be 

investigated first.

6.0 A New Theory of 11AZ MicrotisHu ring	 4

6.1 None of thu present thaorieu for HAZ microcvackin% giva an accepta -

ble description of hot ductility behavior jt,wt below the bulk- solidus.

Thost-, theories do havai their strong poiiits and by combining theist 	 riev

theory can be pre.Hented.

6 .,^  Exparimental vvidenne z3hows t1ML intargranuLar precipitatna welt: in

the IL,%Z	 it in poHrulauad that: the lniti;U melting oC llwhmola inter-ranu-

lar prealpt-Catos corresponds Lo the initial dea-rease in ductility during

tIM tint dtieLility LOWL. "Mie initial melting is aharacrerized by a large

dihadral au to (0 s 900 ). As the temperature oC the test is increased,

the d1hadral angle 
of 

the melted precipitatei inareason as showit for

.6
other system$ (90 0 .^, C> 0 0 ).	 This results in at gradual loss of

ductility its the temperature Inareages. 
The 

n1.1—disccility temperature

to characterized by completa or near, complocn, grain boundary wetting

(0 4 0) (Figure 4).

6.3 The proposed modul could help explain several uhn roe torts ties of

the hot ducttlity test and 11AZ microftssuring. Tha various suseepti-

htlities of diffarunL alloy.,; to 11A7. microf issu ring cotiLd be e:<plained by

the Lnfloorice, of bulk and/or precipitate Oiemistry on the balance of

surtaca tensions. 04"he balance, 
of 

surtaCe tensions (~ontrola the

10
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Mw

TABLE I

Hot Tensile Data

Specimen	 Test	 Maximum	 Number of Cracks
Temperature,	 Strain (% Ep)	 large Medium Small

7If) 5 2000 40	 % non-f racturo
6 1p4 2000 10	 % non-fractura
83 2100 45	 % non- fracture
1194 1-7100 17	 p non-fracture

20 2100 5	 % non-fracture
22 2100 14H n n^f acturu

^rac13 2150 26	 % ure

18 2150 4.5% non-fracturo
19 2150 1. 90 n n-F actura

Fracture14 2175 11	 %

16 2175 5.6% non-fracture
17 2175 4	 w non-fracture
2.1 2175 1.70 n n-fracture
Al 2200 Q	 1 racture

9 2200 3 Fractur€
15 2200 0.7;; Fracture

10 2300 0 Fracture
2 1 23 0 #.'°j Fracture

11 2;160 3 Fracture
12" 2350 ? Fracture

1. cross head displacement rate - 2 inches/minute

2. fracture occurred 2 inches from nearest strain mark
3. small cracks found 'nside grains resulting from grain

boundary migration
4. metallography for cracks not performed Oue to difference

in strain rate
5. cross head displacement rate W 0.5 inches/minute

.	
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