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Abstract.

This paper describes a finite element formulation

designed to simulate polymer melt flows in which both con-

ductive and convective heat transfer may be important, and

illustrates the numerical model by means of computer experi-

ments using extruder drag flow and entry flow as trial prob-

lems. Fluid incompressibility is enforced by a penalty

treatment of the element pressures, and the thermal convec-

tive transport is modeled by conventional Galerkin and opti-

mal upwind treatments.

Introduction

Process development for polymer melt flow operations has

in the past been largely empirical, due in part to the dif-

ficulty of obtaining closed-form solutions to the governing

equations which satisfy the complicated boundary conditions

encountered in actual equipment. The finite element method

promises a significant advance in our capability to obtain

numerical solutions to these processing problems, in that it

is able to generate approximate solutions for irregularly

shaped boundaries. In an earlier paper (I) this author

described the utility of "penalty" finite elements in pre-

dicting the velocity and stress fields developed in melt

processing, and this paper will describe the extension of

this method to include coupled heat transport effects. It

is hoped that such a capability will help the process
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designer avoid such processing problems as thermomechanical

degradation or improperly sized equipment, and further to

process materials so as to produce optimal microstructures

and properties.

Formulation

The analyses to be reported here were obtained by means

of isoparametric penalty elements developed at MIT and

incorporated within the finite element analysis program FEAP

listed in the text by Zienkiewicz (2). The element formula-

tion will be described briefly here, and the reader new to

finite element methodology is referred to standard texts on

the subject (2,3) for a more extensive discussion of the

various concepts. The description here will be that for

plane flow problems, but the concepts are readily extended

to axisymmetric and three-dimensional formulations as well.

The solution domain of the problem is discretized as an

assemblage of elements along whose boundaries are located

nodes at which velocities _ui and temperatures T i are sought.

(The i subscript ranges over the element nodes, and under-

lining indicates a vector or matrix quantity.) The nodal

values of the x and y components of velocity and the temper-

ature are listed in a vector _ai:

aT = (u v T ) = (_i T )-i i, i, i , i
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The values of velocity and temperature at an arbitrary

position within an element can be approximated by interpo-

lating among the nodal values:

_(x,y) = Ni(x,y ) _i

T(x,y) = Ni(x,y ) Ti

The interpolation functions Ni(x,y ) are obtained from stand-

ardized subroutines and can be selected to provide linear,

quadratic, or higher-order interpolation among the nodal

values. This interpolation is a central concept in finite

element analyses, in that the actual variation of the

unknowns within an element is replaced by a low-order poly-

nomial interpolation.

The rate-of-deformation tensor V can be obtained from
w

the velocity field as:

vT = (_u/_x, _v/_y, _v/_x + _u/_y)

. V = L u = _Ni_ i = _i_i

L = 0 _/_y Bi= Ni,

/9 y _/_ x Ni ,Y Ni ,

In the case of Newtonian fluids of viscosity _, the devia-

toric stresses T can be obtained from V as:
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TT : (TXX ,T T )-- yy' xy

T : D V

D : U 20

0 1

The hydrostatic stress p can be obtained by considering the

volumetric dilation V
V:

Vv : vT_ : _TBi_i

m T I 0)VT : (_/_x, a/_y), : (I, ,

p : %Vv : %mTBiui

Here % is comparable to the fluid bulk modulus, and in the

case of incompressible fluids can be regarded as a parameter

which "penalizes" fluid compressibility. By appropriate

choice of % (generally % is chosen as I07u (4)), incompres-

sibility can be enforced to whatever degree is desired. The

total stress o is then:

_: • + mp

The nodal unknowns a i are to be chosen so as to satisfy
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the governing equations in an integral sense; this can be

done by using a Galerkin weighted residual formulation of

the conservation equations for momentum and energy trans-

port :

Ni(LT_) d_ = 0

Ni(vTkvT + Q) d_ = 0

Here _ is the element area, Q is the internal heat genera-

tion, k is the thermal conductivity, and the weighting func-

tions Ni are the same functions used for interpolation.

Using Green's theorem on the above integrals and substitut-

ing the interpolated expressions for _ and T, one obtains

the matrix equation:

Ka = f

where

K _ + K _ 0 I fu

K = f =

0 KT fT

K)_ f( mTBj Tjk : _- ) x(mTB) dn

jk : B DB k dn
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KT /jk = (vTNj)kVNk dn

fu = /Nit* dr

fT = !NiQ d_

The jk subscripts identify the influence of the velocity (or

temperature) of the kth node on the force (or thermal flux)

!*at the jth node, and the refers to tractions applied to

the element boundary F. In these analyses Q is taken as

arising only from viscous dissipation:

Q : TTv

The FEAP code is configured to cycle through each ele-

ment in turn, evaluating the various K's and f's by Gauss-

Legendre numerical integration and adding each element's

stiffness or loading to the global arrays relating all of

the problem's nodal unknowns (the a's) to the loading terms

(the f's). In the analyses to be presented below, four-node

linear or eight-node parabolic quadrilateral elements were

U
used in conjunction with 2x2 numerical integration on the K

and KT terms. "Selective reduced integration" was used to

evaluate the K k terms; this reduced integration order is

necessary to prevent the large I parameter from driving the

a vector to zero (2,4).

Iteration must be used if the coefficients in the formu-
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lation (the U, k, Q) depend on the final solution for a. In

the solutions to be given below, the U and k are taken as

constant, and the velocity and temperature fields are cou-

°

pled only through the Q term. Here only two iterations are

necessary: the velocities and viscous dissipation are com-

puted correctly in the first iteration, and the thermal val-

ues in the second.

Although momentum convection is generally negligible for

polymer melt flows (Reynolds' numbers on the order of 10-5),

thermal convection may be significant. The ratio of convec-

tive to conductive transport is given approximately by the

Peclet number Pe:

Pe = UhpCp/k.

Here U and h are a characteristic velocity and length, while

o and Cp are the fluid density and specific heat. Using

typical values for down-channel extruder drag flow of low

density polyethylene (5), for instance, one computes Pe =

5000.

Thermal convection can be incorporated in the finite

element analysis by adding to the KT terms the quantity

KC :/jk NjDcp_TVNk d_

Incorporation of this term is straightforward, since the

velocities u are known after the first iteration. The con-
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vective terms are unsymmetric, however, which requires using

less efficient storage and solution schemes than are possi-

ble for symmetric systems. Even more seriously, inclusion

of convective transport effects tends to produce numerical

instability in the computed results, as will be illustrated

below.

Down-channel extruder flow.

The capabilities of the coupled flow-heat transfer model

will be illustrated first by means of a simulation of down-

channel extruder flow, which may be modeled by the usual

unwound-channel approximation as a straight rectangular

channel containing fluid which is being dragged downstream

by a plate covering the channel top (1,5). This is the

well-known Couette flow problem, and is useful as a model

problem both by virtue of its relevance to extruder flow and

by the availability of theoretical solutions against which

the numerical results may be checked. Figure I shows the

normalized velocity and temperature distributions across the

channel height, where the drawn curves are the theoretical

predictions and the open symbols are the numerical values

obtained using a 4x4 mesh of eight-noded parabolic elements.

The theoretical temperature variation is given as

T* = (Br!2)y* (l-y*)
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Here y is the height from the root of the channel

T*normalized on the total channel height, = (T-T w)/Tw is

the temperature relative to the wall temperature, and Br =

UV2/k is a Brinkman number which provides an indicator of

the importance of viscous dissipation relative to heat con-

duction. The numerical results of figure I were obtained

with Br = 8.

Figure 2 displays the results of a simulation of a

slightly more complicated extension of the problem of figure

I. Here the root and barrel temperatures are different, and

the flow is retarded by the presence of a pressure gradient

which is positive in the downstream direction. This simula-

tion is more typical of extruder operation, in which the

barrel but not the screw is heated and the constriction at

the die produces a pressure gradient.

Entry flow.

Entry flow is a much-studied problem which provides a

more demanding test of numerical codes than does the viscom-

etric Couette flow problem described above. Theoretical and

numerical aspects of this flow have been reviewed recently

by Boger (6), and comparison with these other results pro-

vide a check of at least the flow aspects of the model. A

reservior-to-capillary size ratio of 4: I was selected, since

the flow results become independent of size ratio at this

value or larger. Figure 3 shows the grid of 100 four-node
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linear elements used to model the upper symmetric half of

this problem (273 degrees of freedom), a'nd the portion of

the velocity field near the throat. A fully-developed

Poiseuille velocity distribution was imposed on the entrance

to the reservoir. The velocity distribution in the capil-

lary becomes stable within a few diameters of the entrance,

but the field is perturbed far upstream. Figure 4 shows the

streamlines developed from the flow field by contour inte-

gration along vertical lines through the grid, and normal-

ized so as to be zero along the boundaries and unity along

the centerline. These streamlines are identical with pub-

lished experimental and numerical results, although the grid

used here was not intended to be fine enough to capture the

weak recirculation which develops in the stagnant corner of

the reservoir.

Figure 5 shows the contours of shear stress near the

throat, normalized on the theoretical value expected at the

capillary wall. The shear contours are in agreement with

the isochromatic fringes seen in birefringence photography

of entry flow (7), which is an example of a possible experi-

mental verification of the flow model.

Although certain grids using the penalty formulation are

known to develop a pathology known as "checkerboarding" in

which the computed pressures oscillate from element to ele-

ment (4), this grid is free of that troublesome (but fixa-

ble) result. Figure 6 shows the profile of computed pres-

sures along the elements adjacent to the centerline,
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normalized on the value expected in the reservoir in the

absence of entry or exit pressure losses. As is well known,

the development of the flow field at the entrance to the

capillary produces an additional pressure drop which must be

accounted for in capillary viscometry by means of a "capil-

lary correction factor". The correction factor, defined as

he entrance pressure drop &Pent divided by twice the capil-

lary wall shear stress, is given by Boger as 0.589 based on

the numerical and experimental work of several workers. The

value computed from the data of figure 6 is 0.594, which is

within I% of Boger's value.

As described above, the temperature field is computed

using the finite element formulation of the heat conduction

equation, with the viscous heat generation being computed

from the stress and velocity fields obtained during the

first iteration of the problem. The temperature contours,

normalized on the maximum centerline temperature Tc = _V2/3k

expected for capillary Poiseuille flow, are shown in figure

7. A hot spot is noted just upstream of the entrance, due

to the combination of increased dissipation and greater dis-

tance from the cooler boundaries at this position. This hot

spot leads to higher temperatures both upstream and down-

stream than woul.d have been expected in simple Poiseuille

flow, due to conductive heat transfer from the hot region.

The temperature map of figure 7 is for Pe = 0, the case

for which convective terms are not included in the heat

transport calculations. Whereas all convective terms vanish

-12-



identically in the Couette flow described in the previous

section, convective terms are present in the entry flow

problem, and these might be expected to be significant for

many real problems in the flow of polymer melts through

dies. Figure 8 shows the profile of temperatures along the

centerline for several values of Peclet number (Pe based on

the capillary half-height and the maximum velocity). It is

seen that increasing convective transport serves to carry

the cooler upstream particles downstream so as to diminish

both the magnitude of the hot spot and its ability to con-

duct heat upstream. As Pe increases, the influence of the

entrance region is compressed into a smaller and smaller

boundary layer at the throat, leading to numerical difficul-

ties associated with the inability of the fixed mesh to c_p-

ture effects which occur in the smaller region. At Pe = 10,

the values computed by the conventional Galerkin process

(solid lines) suffer from noticeable instability, and by

Pe = 100 the Galerkin solution has degenerated completely to

meaningless values.

The instability associated with convection analyses has

plagued both finite difference and finite element analyses,

and in recent years several ad hoc treatments have been pro-

posed for obtaining stable and nonoscillatory results in the

presence of strong convective terms. One of the most popu-

lar of these treatments is "upwinding", in which the

upstream portion of the interpolation is weighted more heav-

ily in an attempt to smooth out the high local downstream
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gradients which cause the problem in convective flows. The

dotted lines in figure 8 were obtained using a convenien_

"optimal" upwinding formulation suggested by Hughes (4), in

which the upwind weighting is obtained simply by relocating

the integration point at which the element shape functions

are evaluated. The position of the upwind point is deter-

mined for each element based on its local Peclet number, so

that optimum results may be obtained. Figure 8 shows that

the upwind solution for Pe = 10 is considerably smoother

than the Galerkin result, and that the results for Pe = 100

in which the upstream temperatures are carried well into the

capillary are captured in a smooth and reasonable manner.

The reader is cautioned, however, that the use of these

upwinding procedures is still controversial, and is directed

to a provocative paper by Gresho and Lee (8) in which the

drawbacks of this approach are detailed.

Conclusion.

This paper has described an analytical tool which can

predict velocities, stresses, and temperatures in noniso-

thermal flow situations of the sort encountered in many

polymer melt processing operations. Such a model cannot be

expected to replace the experience and intuition which pro-

vide the basis for most process design today, but it is

hoped that this inexpensive and easily implemented model can

provide a means by which the process designer's intuition

-14-



might be expanded. Properly used, it can be a valuable

additional tool at the process designer's disposal.

Development of this model is continuing in our labora-

tory, and among the aspects still under development are

capabilities for transient flows, reactive fluids, free sur-

faces, and wall slip. Although incorporation of fluid elas-

ticity is desired due to its importance in many polymer melt

flows, such a development has proven elusive to a number of

well qualified groups in the past several years. At pres-

ent, it seems prudent to let the theoretical aspects of

elastic effects be developed further before attempting their

incorporation in a general process model.
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Figure I - Normalized velocity and temperature distrib-

utions in Couette flow.
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Figure 2 - Couette flow with imposed pressure gradient,

and with different root and barrel temperatures.
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Figure 3 -Finite element mesh and computed velocity field

for 4: I entry flow.
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Figure 4 - Entry flow streamlines.
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Figure 5 - Shear stress contours for 4:1 entry flow.
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Figure 6 -Normalized pressures along centerline.

-19-



T==0

Figure 7 - Temperature contours for 4:1 entry flow,

Pe = O.

Figure 8 - Centerline temperatures at various Peclet num-

bers.
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