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FOREWORD
r i,

Hie work described in Chi* report waa performed for rhe Auxiliary

Propulsion Branch of Che Propulsion Division, Structure* and Propulsion

Laboratory, NASA George C. Marshall Space Plight Center under^Contract

NAS8-33974.^The NASA technical monicort were Lee W. Jonaa and T.D. McCay.
^ '- "• ** ** «-
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This report represents Part II of' the Pinal Report. Part I deals with

the evaluation of alternate laser devices as well as alternate propellants

and energy coupling acheaws.
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ABSTRACT

The present atatua of theoretical model* for the laaer heated thruatar

ia reviewed. It ia concluded that exiating modela neither agree with each

Other nor with the limited experimental data available. The requirement*

for an improved laaer heated thruater theoretical model are diacuaaed. The

application of a time-dependent finite-difference Navier-Stokea equation

aolution to the laaer heated thruater problem ia described, along with a

aimple cloaed form aolution »hich waa developed in order to gain inaight

into t'n» difficultie* encountered in the purauit of the numerical aolution.
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1. LASER HEATED PROPULSION MECHANISM

The concept of laser heated propulsion is based on using a laser beam

to remotely heat a working medium in a rocket thruster. Such a scheme

appears to be attractive because it might be possible to generate propellant

gas temperatures which are much highei than those possible in chemical pro-

pulsion devices. In particular, in conjunction with propellants of low

molecular weight, a very high thrust chamber temperature will result in a

specific impulse much -higher than that achievable in combustion driven

rocket motors. Even through the concept ir simple, the attendant high

temperature presents difficult engineering problems.

The use of continuous wave lasers for laser heated propulsion can be

divided into a very high specific impulse, high temperature regime and a

high specific impulse, medium temperature regime. While the first regime

would be realized by utilizing hydrogen as the propellant and a laser

supported absorption wave generated and sustained by inverse brem8Btrahlunn

absorption, in the medium temperature regime laser energy would be coupled

into a suitable propel lane by molecular or aerosol absorption. Details of

these and other schemes are discussed in Part I of this report.

The work described here i.» mainly concerned with an assessment of laser

propulmon fluid mechanics modeling snd simulation requirements for the very

high specific impulse, high temperature regime. Here the essential feature

i* that the propellant gas, which is normally a transparent, non-conducting

medium, becomes ion iced by the laser beam and then strongly Absorbs energy

from the beam (Ref. 1).

If a few free electrons are present in the focal volume, they can gain

•ufficient energy from the beam to produce further ionisation via collisions



t
f with neutral gas particles. Breakdown will occur if the electron density

reaches a critical value despite losses due to diffusion., tttachraent,

recombination and other nechanisas.

I Oner <i plasm/i is.is ho on formrd, it emic>» ruilintion whoso wavelength dis-

tribution depends on the temperature and the density. Mo»t of the energy

f emitted is in the far ultraviolet and is believed to be more readily

• absoibed in the surrounding cold gas rather than in the plasma itself.

Thus, a layer of gas outside the plasms, although transparent to laser

\ radiation, is heated by the plasma radiation, and upon reaching a suffi-

ciently high temperature, will be ionized to such ar. extent that it will

also become absorbing for the laser beam. This layer will then be further

heated rapidly until its temperature beco-aes so high that it in turn will

becone transparent to ultraviolet plasma radiation. By this time a new

layer of plasma nearer the laser will have become absorbing, so the boundary

of the plasma, called an absorption wave, will move toward the laser. If

* tins occurs in a flow of propellant gas, the tlow velocity of which is equal

t in nui^mtodv hut oppoftttr \n tin. ct ion to lltf notion ot the absorption wjv«>,

we have a stationary propellant plasma which can function as the heating

•echanisa for a propulsion device.

Various laner heated prupulnon devices have been conceived and

proposed. Since it would be difficult to discuss the modeling and simula-

tion requirements in complete generality, ona particular configuration for a

laser heated thruster is shown in Fig. 1 (schematically). This is the

arrangement used in the subsequent discussion of modeling and simulation

requirements. In particular, we are interested in describing or modeling

the interaction of the initie'ly cold prop*1lant gas (H.) as it flows

through and around the laser supported plasma region, then mixes and exits

through the subsonic-supersonic nozzle, producing thrust in the process.

i
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Kor lit* .ictvia I J«>sigu of such a device il i« most \nportant Co proJict

the propellant velocity required to achieve a stable plasma as well aa the

cooling requirements for the plasma and mixing chamber walla. Hydrogen ia

of particular interest aa a propellant because it promise* the highest

specific impulse.

I
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7. REVIEW OF EXISTING MODELS

2.1 ABSORPTION WAVE MODEL !

]

Although much ha* been achieved in modeling the physio of Che laser *,

heated thruster, much oust be done toward obtaining agreement with experi-

ment if these mathematical models are to serve as useful tools in the design j

of laser heated propulsion devices. Most of the existing models deal with
!

absorption waves in air and have numerous simplifying assumptions in common. ;

Verv little work so far has been done with hydrogen as the propellant.

Experimental data for absorption waves in hydrogen are also very sparse.
1

The first model to appear in the literature was that of Raiser (Ref. ;

2). His model is based on the assumptions of one-dimensional flow at

constant pressure with heat conduction considered to be the principal heat

transfer mechanism. The plasma is considered to be optically thin to its

self-radiance, and in thermal equilibrium. This allows the electron density

to be determined from the Saha equation. Also, the absorption coefficient j

for the absorption of laa*r radiation via inverse brrmsstrahlung as well as i

an approximate function for the overall radiation losses can be specified as

functions of temperature and pressure.

Finally, in orUer to arrive at an analytical solution, the absorption

coefficient as well as the ratio of specific heat to thermal conduction are

assumed constant. The neglectiun of radiation losses limits the applic-

ability of the solution to small plasma volumes (diameters less than a few

millimeters at p - 1 atm).

With the goal to improve upon the analysis by Raiser, Jackson and

Nielsen (Ref. 3) presented a model which includes the mechanism of radiative

FL2827
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transfer into Che ambient gas (air). Apart from this, other assumptions

made are basically the same as thosa invoked by Raizer. Jackson and Nielsen

derive an analytic solution, the evaluation of which is performed by iterat-

ing en the value of the radiative loss function. The authors point out

several shortcomings of their analytical solution: (1) interferograms taken

of absorption waves show clear evidence of radial flow, rendering the prob-

lem two-dimensional, and (2) their calculated propagation velocity of the

absorption wave as a function of incident laser intensity does not agree

with experiment.

Shortly following the analysis of Jackson and Nielsen, Batten and

Keefer (Ref. 4) presented a two-dimensional generalization e»l Raizer'a

analysis for the subsonic propagation of laser spaiks in «ir. To b« pre-

cise, Batten and Keefer combined a one-dimensional flow velocity description

with a two-dimensional temperature field description, retaining Raiser's

assumption of ordinary thermal conduction as the principal propagation

mechanism, with plasma radiation serving only as an energy loss mechanism.

The importance of this two-iimensional temperature field model is that it

provides insight into the effect of boundaries on spark propagation in a

channel. Other assumptions such as constant pressure, constant ratio of

specific heat to thermal conductivity are also retained. The absorption

coefficient was assumed to be piecewise constant, sero in front of the

absorption wave, and non-c«ro within the pla«aa region. An analytic solu-

tion in terms of Bessel functions was obtained to evaluate the relationship

between laser intensity and spark propagation velocity.

Batten and Keefer found that their calculated propagation speeds are

roughly an order of magnitude lower than those obtained experimentally,

while the maximum temperature in the wave as calculated matched that of the

experiment. The authors suggest that this is due to considering thermal

conduction only as the primary propagation mechanism. They essentially

argue tnit plasma radiation, caumng ion tat ion and additional laser energy

absorption via inverse bremsstrahlung in front of the absorption wave must



be included in Che model Co achieve realistic prediction* of the propagation

velocity as a function of laser intensity.

The i.ext model, that of Kenp and Root (Ref. 5), in fact does include

the effect of forward plasma radiation in a one-dimensional numerical

model. This model assumes one-dimensional flow at constant pressure in a

constant area channel. Since the equations are solved by numerical integra-

tion, it is possible to treat the thermodynamic properties as well as the

various transport phenomena (absorption, thermal conduction and radiation)

in a much more detailed manner than in the previously discussed analytical

solutions. The solution of Kemp and Root's formulation requires an itera-

tion on the mass flux for specified laser intensity. Only one particular

mass flux value will yield a physically reasonable temperature distribution

in the absorption wave (saddle-point singularity). Calculations are pre-

sented for pressures of 1, 3, 10 and 30 «tm, and for laser powers of 10 kW

and 5 HW. The authors observe a very steep rise in temperature at the

leading edge of the absorption wave and csutio.i that for such conditions the

"radiation conduction approximation," used to consider the heating effect of

plasma radiation on the cold gas in front of the wave, is not really valid.

However, since energy is properly conserved in rhe model, they suggest that

the temperature profile in the wave proper should be qualitatively correct.

No experimental data for absorption waves in hydrogen were available at the

time to confirm the theoretical predictions. Also, the authors realise that

the one-dimensional nature of the model presents serious limitations on the

validity of the result*. It is pointed out that thermal conduction in the

radial direction becomes important for small plasma regions at low pressure.

A very obvioun two-dimensional phenomenon is the focused laser beam. In

this case, the intensity will not only change due to absorption but also due

to varying cross-sectional area. A convergent beam behaves as a higher

intensity beam - relative to a collimated beam of the tame initial intensity

- and requires a higher propel Iant flow velocity to keej> the "plasmatrun"

stationary. Finally, there is the transverse velocity component. It is

suggested that its effects should be less in a confined flow - such as in a



thruster - than in the unco-.ifined case. Since neither theoretical nor ex-

perimental results are available, it is difficult to assess the importance

of two-dimensional flow for absorption waves in a channel.

In concluding this brief discussion, it appears that the modeling of

absorption waves is still in a stage of infancy. In Fig. 2 (adopted from

Ref. 3) we have summarized results for absorption waves in air from the work

reviewed here. Some experimental results are also shown. No attempt has

been made to systematically correlate these results. It is evident, now-

ever, that theoretical predictions are in considerable disagreement with the

experimental data (Rets. t>,7) and with each other, even for similar assump-

tions in the theoretical models.

2.2 THRUSTER AND NOZZLE FLOW MODELS

In order to produce thrust, the heated gas exiting from the absorption

wave must be accelerated through a supersonic notcle which basically

converts thermal energy into kinetic energy. Just as for the absorption

wave, the modeling of this flow can bu approached at different l«vels of

sophistication.

The first of such models to be discussed here is that of Kemp and Root

(R«f. 5). It is a one-dimensional model, obtained by explicitly including

the area term and retaining the momentum equation in th* see of one-

dimensional equations used for the one-dimc>naional absorption wave model by

the same authors. The results of the absorption wave calculations serve as

initial values for the thrunter problem, i.e., the solutl ns ar? joined at

an appropriate location downstream of the wave. The model described in Ret.

!> represents an "inverse method." In Ref. 5, rather than specifying tht>

chruster and nozzle contout, the velocity is specified as a function ot flow

distance. Whil«» this or variations of this procedure are common in order to

avoid the sonic singularity at the tnroat, it means that many iterations mr;

have to be performed until a reasonable or specified noetla contour is

obtained.
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While Che one-dimeneional thruster flow model has the advantage of

simplicity, it cannot properly account for lateral heat condution and radia-

tion to the walls of the thrust chamber. As pointf-d out in Ref. 5, a pre-

cise evaluation of the transverse heat losa due to thermal conduction and

radiation requires a two-dimensional model. Such a model was presented by

the same author (et al.) in Ref. 8. This model is based on the boundary

layer equations and thus includes radial gradients. Added terms for laser

energy absorption, eqjilibrium chemistry and plasma radiation losses

complete the equations. Although this model is an improvement over the

previously mentioned o.ie-dimensional model, it does not contain any terms

for forward energy transport by rauiation or conduction, and therefore

cannot be applied to model the absorption wave. A method to join the one-

dimensional absorption wave calculations to the two-dimensional thruster

calculations is described in P.«f. 9. According to the authors, the two-

dimensional thruster code needs a number of refinements to make it generally

u«eful. Requirt'd are a generalization of the radiation model, more exper-

ience or a rationale to choose the axial pressure gradient to obtain a

desired (low channel contour, ami a variable coordinate grid structure to

concentrate grid points in areas of steep gradients.

2.3 THERMODYNAM1C AND TRANSPORT PROPERTIES

As compared with other fluid flow problems, the description and

analysis of the flow in a laser-heated thruster is severely complicated by

the large temperature ranges over which thermodynamic and transport phe-

nomena have to be considered. A" a consequence, the early investigations,

in particular thoup that produced analytical solutions, had to employ many

simplifying amnimptiuns (Kfts. 2, 3 and 4), While the qualitative nature of

tin- r i'quits from their .in.ilyses is useful in furthering an understanding ot

(l«> phenomena involved, clip pursuit ot quantitative results probably demands

mimrr ii..i 1 solution* -tiid inucli inof-1 detailed thermodynamic and transport prop-

erties. »uch .in imed by Kemp et al. (Refs. }, 8 and 9). In fact, a substan-

tul portion of the work by Kemp et al. deals with the development, evalu-

ation and assembly of supporting data such ns laser absorption coefficients.

10



as well as thermodynamlc and transport properties (conduction and radia-

tion). It is anticipated that any future modeling effort will rely heavily

on that work.

While all the existing mode I a so far have assumed thermodynamic equi-

librium conditions, it night be necessary to consider nonequiiibrium condi-

tions in the futuie, as pointed out by Batteh and Keefer (Ref. 4) in their

discussion of the discrepancy between observed and predicted absorption wave

propagation velocities. A calculation of radiative properties of nonequi-

libriua hydrogen plasma has been presented by park (Ref. 10) in terms of a

computer code which calculates emission and absorption coefficients from

given electron temperature, electron density, neutral particle density and

intensities of incident radiation. In calculating radiative transport the
n

program shows that there is a large difference between calculated intens-

ities of radiation emitted by a bulk of equilibrium and nonequiiibrium

hydrogen plasma.

11
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3. THRUSTER MODEL REQUIREMENTS

Based on the preceding discussion of existing model* it is now possible

to establish the basic features which an improved laser-heated thruster

model should incorporate. These features are:

1. Axisymmetric, two-dimensional flow so that effects of radial
velocity components can he assessed

2. Axial as well as radial heat transfer, both by thermal
conduction and radiation, and

3. Converging (or focused) laser beam configuration to
determine the required mas* flow more accurately.

Requirement (2) has implications which need further elaboration*. It will

be shown that this leads to additional requirements.

As previously discussed, the propagation of plasma radiation (VUV)

upstream to the front of the absorption wave will likely lead to a non-

equilibrium ionization situation. The reason is that electron* have the

special property that their particle mass is much lea* that of any of ..he

other constituents. Because of the inefficiency of energy exchange in

elastic collisions between particles of disparate mass, the electron temper-

ature may differ appreciably from the temperature of the heavy particle

species (Ref. 11). Additional equations must therefore be included in the

model to account for electron mass and energy conservation.

A second, and probably more serious implication of requirement (2) is

the fact that the inclusion of upstream influences render* the mathematical

problem elliptic. This means that a •olution cannot be attempted using a

single pass forward marching scheme. Instead, the problem ha* to be solved

considering the entire domain in a time-dependent fashion.



The stated requirement* render Che potential model aore difficult to

evaluate than previou models, particularly so if it ia viaualized that the

basic set of equations governing the fluid mechanics (conservation of mass

and energy plus the Navier-Stokes equations for conservation of momentum)

will have to be solved numerically. ]

I )
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4. MODEL FORMULATION, ANALYSIS AND RESULTS

4.1 DETAILED MODEL FORMULATION

A major goal of this effort was to investigate the effect of two-

dimensional fluid mechanics on the conditions in a laser heated thruster by

utilizing the available l.ockheed CIM code (Ref. 12) which numerically solves

the full Navier-Stokes equations (in conjunction with mass and energy con-

servation equations). Using this code we can therefore satisfy requirement

1, and, as far as thermal conduction is concerned, also requirement 2, as

stated in the previous section.

The basic equations for axis/metric flow as used in th« CIM code are:

g •§•?*<•«•«•« (1)

where U, E, F and C each represent four components for the equations of con-

versation of mass, momentum in x- and r-directions and energy •• follows:

U =

E =

p
pu

pv

pu

pu 4- p -

PUV - T
XX

xr
p) - u

(2)

XX

(3)



where
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F =

pv

puv . r

pv2 - r
xr

G =

rr

0

0

IE «. TBQ

br r

- Q

(5)

1 (u2f v2)

and
r0fl = i M < £ ) » A 9

7 > ^ - _ ^H* i JL

(6)

(7)

(8)

(9)

(10)

(U)

The above equation* represent four equations for the four unknowns - p, u, v

and T * if we expreit the prenur* through the equation of ttate a* a func-

t i o n of p and T, i .e . ,

P • PRT (1?)

which )§ valid for a perfect ga§. The term Q in the energy equation (tee

Eq.(5)) denotea the net rate of clergy addition to the flow which it repre-

sented by the difference between Idaer energy absorbed and plasma radiation

emitted. Since a primary goal was to cotnpare out results with those

15



obtained from Che Batteh and Keefer analysis (Ref . 4), we utfe their

formulation to express Q as

Q - aiQ e"**- m k (T - T^ (13)

when' I repreaentH the incident laser energy flux of a collimated beam

and Q is the absorption coefficient. The second tern represents a rather

crude approximation for the energy loss due to plaama radiation, with rhe

form of this term chosen so as to make the Batteh-Keefer anaytical solution

possible (op. ci*..).

At the present time, the CIM code is formulated in terms of constant

theroodynamic and transport properties. The rather wide range of tempera-

tures of interest in the lase* propulsion problem therefore requires us to

select suitably averaged quantities for the specific heat, the thermal

conductivity and the viscosity. In particular, since we want to compare

results with those of Batteh and Keefer, we want to use the same average

vnliic lor the ratio of uprcttic lifat to thermal condurtivity that wan used

in their calculations. For consistency, the same averaging procedure is

applied to the gas constant.

Figures 3 through 5 show the thermal conductivity (Ref. 5), the

specific heat at constant pressure (Ref. 13) and the molecular weight (Ref.

13), respectively, for equilibrium hydrogen at p • 1 atm as a function of

temperature. Integrated averages for c k and the gas constant R are

also shown. From these, we < in obtain, for use in the CIH code calcula-

tions, average values for the ratio of specific heats and the viscosity by

applylug standard relationships such as

and
. I 13 . . ,, /% 5\l

(15)

16
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with che latter taken from Svehla (Ref. 14). Finally, the constant m in the

radiation lost function has been evaluated by Keefer et *1., to be

ia - 14.3 cm (at p « 1 atm).

Before we attempt a numerical solution of the full set of equations

given in this section, it is useful to investigate possible simplifications.

As it turns out, for the contemplated conditions such simpliticat.ins are

possible. With additional assumptions, this leads to an e »ncic analytical

solution which can easily be evaluated. This will be discussed in the

following section.

4.2 A SIMPLE ANALYTICAL SOLUTION

While it is our primary goal to obtain a numerical solution of the full

set of equations presented in the previous section, obtaining such a solu-

tion will be facilitated by some advance knowledge of what that solution

might look like. With this in mind, let us non-dimensional ice the equations

by introducing suitable reference quantities for all relevant variables.

Drfining dimensionltss variables as

P' = P/P0
u1, v' - u, v/uo

*,H = x, y/|, t1 = t UD/< (16)

T' = T/T , ̂ ' -. f/r T
' O C C' VO O

c' = c /c
V V7 VO

k1 = k/k

and introducing these .nto the equations, the equations (with primes dropped

for convenience) take on the following form:



Continuity;
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i a = o (17)

x-Momentum:

*

r -Momentum:

and

£ [
(pv, * puv .

* ̂  [-«-

( IB)

4 [u Ep)

; ( u T f « f v T > -

p c To v oo
(20)



OF POOR QUA1-1/! V

where we have defined

POUQ/
Re = —7; (Reynolds number)

and

Pr =
M c'o vo

E = ~
Due to che non-dimenaionalizing process all flow variable group* are

now of order unity, and we mu«C investigate the order of magnitude of the

dimenaionles* parameter! Re, Pr and E. While Pr it generally of urder unity

for all gases, it can be ahown that, for the condition* in the laaer heated

thruater, the Reynolds number ia also of order unity, while E ia aeveral

order* of magnitude smaller. We can conclude that all terns are of equal

importance in the continuity and momentum equations, but in the energy

equation, however, the pressure terma, all carrying the E a» a multiplier,

will be orders of magnitude smaller than the convection and conduction terms.

In pursuit of a simple analytic aolution we now examine steady state,

inviscid one-dimensional flow at constant pressure. With these assumptions,

the governing equations reduce to

Continuity:

_d
dx = 0 (21)

Energy:

^r = Q (22)



Recognizing that (£ * p/p ) represent* the total enthalpy which, for our

case, consists of mostly thermal energy, we ignore the kinetic energy and

write

c ? * j j = H * h = c p T + constant (23)

Knowing that the GIM code presently requires c and k to be constant, the

energy equation reduces to

diT _ PU Cp dT s _ Q
dx k dx k

where, from Eq. (13)

Q = aIQ e'
 x - mk (T - TJ (25)

Of course, this ordinary differential equation for T(x) is almost the same

equation used by Raizer (op, cit.) except tnat we further simplified it by

introducing an integrated average k and by neglecting radial conduction. As

a matter of fact, we can easily include radial conduction in the same manner

as Raizer did by modifying the constant m in the plasma radiation loss term.

We can rewri te the d i f f e r e n t i a l equat ion as

dZT dT _ P -ax _
—2 ' adlT - m T = ' Y e ' mTi < 2 6 >dx*

and a rb i t r a r i l y speci fy that the laser power density P - o 1 obeys

P =0 for x < 0

1- = P for x > 0
o —
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such that x • 0 designates the location of plasma ignition (onset of ioniza*

tior> and laser energy absorption). Solutions are then obtained separately

for x < 0 and x > 0, and the solutions T, and T- .ire joined by requiring

that both T and its derivative match at x • 0. Thus, the boundary condi-

tions take the following form:

X = °: Tl = T2 * TO

dTl „ dTZ

x> T. = T
1 i

d T2uo —r-£ = 0
dx

Standard procedures for nonhomogeneous linear d i f ferent ia l equations then

yield for x < 0:

a+ b

T , ( x ) , (T^-TJ c l * 1, (27)

and for x > 0:

T. (28)

where
aC - . a
 (T .T i

1 b - a - 2 a uo i ' (29)

„ _ , _
b - a - ia o~ i' (30)

4m > 0 (31)



Imposition of the boundary conditions on T_(x) generates an additional

relationship for the laser power density as a function of a, b and a, i.e.,

_
- (a f 2.a) (o V (32)

The above equations show that the aolution has one free parameter, namely

the "ignition" temperature T . Alternatively we could consider the

initial laser power density P as given and determine the ignition

temperature T required to satisfy the boundary conditions.

Results for typical conditions represented by a, Or, and m as used by

K<>efer (Ref. 15) are shown in Fig. 6. The initial temperature, T., was

.Hi-itiiiM'il 10 !»»• 10(1 K, inul lln* ignition femjifi/ilur*1 T WMH taken an 9000 K

representing the onset of ionization for hydrogen at p - 1 atm (see Kig.

5). The temperature distribution through the laser absorptio- wave is in

excellent qualitative agreement with results obtained by Keefer (Ref. 15)

for the sa».e choice of parameter*. Of course, since our results represent a

strictly one-dimensional situation (i.e., radial conduction and finite laser

beam dimensions are ignored), exact quantitative agreement with Keefer's

renults cannot be exoecte-l.

Another point learned trom this one-diaensional exercise is that, with-

out the explicit inclusion ol the radiation loss term in the differential

equation, the differential equation does not have a solution which is able

to satisfy the downstream boundary conditions. Both the temperature and its

derivative will become infinite as x approaches infinity, i.e., the solution

diverges. Even though the full conservation equations used in the CIM code

contain the radial conduction term, and therefore provide an energy loss
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Icrm, tliiti m.iy nol be ol Mullicicnt magnitude lo prevent the temperature

Iron reaching unreasonable values. As can be seen trom the example

presented by Reefer, the power loss due to plasma radiation far outweighed

that due to thermal conduction in the radial direction.

The purpose of investigating this simplified analytical model, although

it duplicates to some degree work previously accomplished, was to provide

insights which should be of help to obtain a solution from the CIM code.

This will be discussed in the following section.

/».} TWO-DIMtNSIONAI. FLUID MECHANICS EFFECTS

The successful use of detailed numerical methods such as those used lit

the (MM code requires caretul planning with regard to grid selection,

initial values and boundary conditions, time step selection and possibly

scaling considerations to accelerate convergence.

The analytical results shown in the previous section (as well as

Kcefer's results) show that we have to deal with very steep temperature

gradients in the laser absorption wave. This immediately suggests a rather

tifcht spatial grid, but how tight? Selecting too coarse a grid can generate

oscillations in the solution; but too fine a grid will be costly it. terns of

computation time and storage.

Using a lime-dependent method tor the computation of subsonic ilow

fields, particular care must be exercised in order to ensure that boundary

conditions remain well defined during the course ot the calculation. tin-

laser heated thruster is modeled as a straight circular duct with vanishing

velocity at the wall, specified uniform velocity at the inflow boundaiy and

an outflow velocity distribution to be determined by the analysis. In order

to keep ttie problem defined, the laser absorption wave must be positioned

far enough downstream from the subsonic inflow boundary such that the latter

is not subjected to changes caused by the upstream influence exerted by the

former. The analytic solution discussed previously shows that, for the
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conditions chosen, the laser absorption wave must be positioned in i

the duct no closer than approximately two cm to the inflow boundary (see j

Fig. 6), assuming that the analytical solution ia quantitatively correct j

with respect to gradients expected in the axial direction. j

Initial conditions, and average values for thermodynamic and transport

properties must be chosen carefully to be representative of the enormous

temperature range that has to be covered (with constant values) and, simul- ;
t

taneously, they must be consistent in representing the parameters used in

the calculations with which we want to compare the CIM code results, vie.

pu c
= a = 5.0 cm"1 (33)

_

2.75. 103 cm sec/g (34)

A consistent set of variables can be selected as follows: According to

Koefer's results wo expect A maximum temperature of around 20 • 10 K.

From Fig. 4 it is found that an integrated average value tor the specific

heat covering this temperature range is c~~ • 110 J/gK. The given ratio of

—_ — — —2c /k then yields k - 4.0 • 10 J/cm sec K, a reasonable value at can be

seen from Fig. 3. While the analytic solutions are determined on the basis

of global parameters such as pu c /k, the CIH code requires specification

of these variables separately. In fact, the Girt code uses Y and R to com-

pute the specific heat. Selecting an integrated average of R • 9.4 J/gK

from Fig. 5, we can compute the ratio of specific heats to be V" 1.094. The

equation of state and Eq. (34) then yield P- 3.593 • 10 g/cm and u •

30.602 cm/sec, Assuming p • I atm and T • 300 K as initial conditions.

The selection of the spatial grid for this problem (21 stations in the

axial direction, 26 points in the radial direction) represents a compromise



between anticipated requirements concerning resolution «nd the limitation*

of the MSFC Univac 1100 system with respect to computational speed and data

storage.

Pure flow calculations without laser energy addition were

fust. Results from these can be checked againat exact (i.e., analytical)

solutions for axisymmetric Poiseuille flow. Initial calculations with a

time increment as dictated by the CFL criterion showed extremely slow

convergence. Much faster convergence was eventually realised by scaling the

problem. Scaling as applied here involves multiplication of key variables,

i.e., the velocity, the viscosity and the thermal conductivity in this case,

by a scsle factor (1 • 10 , typically) such that Reynolds number and

Prandtl number are preserved. This type of scaling does increase the Hach

number. However, because of the rather small velocity, even the scaled Hach

number remains much smaller than unity, and therefor* the basic subsonic

flow character of the problem is preserved.

Typical results sre shown in Figs. 7 and B. As seen in Fig. 7, vh«

initial velocity profile is uniform (over the entire spatial domain) except

for the velocity at the wall which is set to sero. As the parabolic velo-

city profile developea in time slong the channel, its magnitude in the

.Mitt low plane is continually adjusted by mass balance consideratio- •. This

.ij iimtoM'nt causes a feed-back into the interior of the tlow field a.»j

thereby enhances convergence of (he solution. Figure 7 shows the outflow

velocity profile to have tit? proper parabolic distribution with a maximum

velocity on the centerline at roughly twice the value of the average velo-

city (as represented by the inflow velocity distribution) as predicted by

the exact solution. A complete velocity vector plot is presented in Fig. 8

which very clearly shows the contraction and acceleration of the tlow in the

interior of the channel due to the boundary layer Developing along the

channel wall.

These results also demonstrate well the viscous nature of the flow.

Note that the scaling factor applied does not affect the balance between
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viscous and intrtial forces because Che Reynolds number is preserved. W.ieu

ml roiluc inx ll)*-* Healing factor into the equations it can be seen that its

••llr«.t m to increase ihv viscous dissipation terns relative Lu the convec-

tion and conduction terms in the energy equation. This gives the scaling

factor basically the function of a convergence accelerator, particularly 90

since it was shown previously that the dissipation terms are negligible for

very slow flows, and remain so in spite of th# scale factor. Typical calcu-

lations involving a time step of 4t • 1 • 10 sec, and a thousand time

steps to obtain a converged solution require about one hour of Univac 1100

computer time.

All efforts to obtain a numerical solution for the flow with laser

heating were unsuccessful. In order to gain an understanding why solutions

could not be obtained, it is useful to take a closer look at the time step

criteria which must be observed to control the stability of the numerical

calculations. The first one is the CFL condition, which can be expressed as

'CFL 1 lul * a (35)

where 4 is the smallest spatial grid spacing used, and a is the speed of

sound. Th<? second is a thermal stability criterion, which, when specialized

to flows with constant pressure (which is very nearly true for our case),

reads



Specialized to our case for constant properties and grid spacings of

0.2 cm and 4r - 0.05 cm, these criteria become

< 2.25- ID'7 (sec) (37)

(38)

~

It is immediately evident that At^ presents the more stringent criterion,

especially for flows with high temperatures as they are expected in th?

laser heated propulsion problem. Since typical cases, using dt • 1 • 10

(sec) require about one hour to converge on the Univac 1100, a temperature

rise to about 20,000 K will reduce the permissible tine step by nearly two

orders of magnitude. Assuming that the total time required to obtain a

converged solution remains the same as before, we are faced with computer

times of the order of a hundred hours per case. This is clearly an impos-

sible proposition. The only remedy here appears to be a computer such as

Che STAR or the CRAY, both of which can better handle the storsge require-

ments imposed by this problem, jnd both of which work at much (aster compu-

tational speed. Additional computational time savings can most likely be

realized by utilizing a variable time otep to be evaluate*4 as a function of

temperature as given by the time step criteria. This feature is included in

the CIM code version for the STAR computer. Unfortunately, the latter (with

its CIM code version tailored to it) was not available for this study.
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5. CONCLUSIONS

The numerical analysis of two-dimensional fluid mechanics effects in |

the laser heated thruster is characterized by low density, very high temper- <

.1 Cures and extremely large gradients in both variables. Because of subsonic I
i

(low throughout, the governing equations are of the elliptic type and j

require a solution by a time relaxation method with extremely small step j

<?izes in time as dictated by the stability criteria. The first prerequisite 1
i

for a successful solution of this problem therefore is a computer facility .

which can handle the storage requirements and is sufficiently fast so that <

the problem can be solved in reasonable time. The Univac 1100 system does -

not meet these requirements. ;i

Simplified analytical solutions have shown that there exists a partic- >

ular relationship between the gas flow velocity and the laser power which

the flow can absorb and simultaneously satisfy the downstream boundary '

condition of a finite temperature. While this relationship is easily

obtained as part of the analytical solution of the simplified equations, •

morit likely it can only be satisfied in a numerical solution via an j

iterative approach. This implies repetitive calculation* and therefore [

amplifies the requirements for a large and fast computer. •
J

Numerical solutions of subsonic flow problems via time dependent

methods require particular attention to the specification of boundary

conditions at the inflow and outflow boundaries. This is « subject of '

current research. It is not known at present to what extent the lack of

appropriate boundary conditions has contributed to the failure of the

present effort.

The fact that the CIH code version usable on the Univac 1100 syst«;« is

restricted to constant thermodynamic and transport properties should by



if>«'If not prevent a solution. Clearly though, when the temperature vanos

to the extent as it does in the laser heated thruster problem, the use of

temperature dependent properties would appear to be more realistic.

Finally, considering the critical dependence of the permissible time

step on the temperature, any future attempts at solving the flow problems in

the laser heated thruster should use a variable time step methodology in

order to minimize computer time (and cost).
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