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1. 

INTRODUCTION 

Systems which are overdamped due to the frictional drag of solvent 

have the motion of their" constituents described by the diffusion equation 

as an approximation to the Fokker-P1anck equation (1). Because of the 

frequent occurrence of this condition, diffusional models are commonly 

used to describe biological, physical and chemical processes including 

heat conduction, mass transport, some aspects of chemical reactions, 

and so on. In order to apply the general diffusion equation to a particular 

physical situation or model, the space in which diffusion occurs must be 

designated and the behavior of appropriate combinations of the particle 

density and its derivatives specified at the boundaries. However, in the 

physical situation in which there is partial or complete absorption 

(capture or reaction depending on the particular problem being modeled) 

at the boundary, it has not been completely clear how to interpret the 

parameters determining the boundary condition. In Ref. 2 in the context 

of the diffusion-collision model of protein folding, two possible 

parameter choices were discussed in detail and a third possibility, 

the one to be outlined below in the present paper, was mentioned without 

proof. Since the third possibility leads to the rates of diffusion

controlled processes having a solvent viscosity-independent part as 

well as a viscosity-dependent part, it has important consequences 

for intramolecular and intermolecular movements in biological systems. 

In addition, recent numerical studies (3) and approximate analytical 

calculations (4) on one-dimensional diffusional systems have lent 

credence to the third possibility. Therefore, the purpose of the 

present paper is to present a derivation of the "radiation" or partially 

absorbing boundary condition (the perfect absorber being a special 

case) for a diffusion-controlled process in which not every collision 
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between a Brownian particle and the absorb~ng boundary results in 

removal of the particle from the diffusion space. The details of 

the derivation are follwed by a discussion of some experiments involving 

intramolecular polypeptide movements in which the solvent viscosity 

was varied, and the implications for diffusion in membranes in which 

localization due to trapping takes place (5,6). 

THE DERIVATION 

To be specific, one-dimensional diffusion will be discussed below. 

The designation of the space determines whether the system is infinite 

or finite, and in the latter case one must specify the length of 

. the space in order to calculate quantities of physical interest in 

absolute terms. 

Consider finite space diffusion first (infinite space diffusion 

will be considered later). Boundary conditions must be specified 

at two boundaries, x = a and x = b with b > a. Let the particle density 

be p(x,t) at position x and time t. The diffusion equation is 

~=Da2g 
at ax a < x < b (1) 

with D the diffusion coefficient (assumed constant). The boundary 

conditions at a and b, which along with the initial value p(x,o) are 

needed to specify p(x,t), are to be linear combinations of p and its 

first derivatives ap/ax and ap/at. In the absence of particle emission 

at the boundaries, ap/at will not contribute to the boundary conditions. 
A 

Since the particle flux is a(x,t) = -Dap/ax ~, which is the net number 

of particles per second crossing a unit area perpendicular to the x-axis, 



a completely reflecting boundary at which no absorption takes place is 

uniquely specified by the condition a = O. Let this boundary condition 

prevail at x = b in the one-dimensional finite space example. Thus, 

op/ox = 0 at x = b. 

At the boundary x = a, let the conditions be such that partial 

absorption takes place. That is, some fraction of the Brownian particles 

that reach the boundary at x = a are not reflected and no longer diffuse. 

This general case encompasses the limits of perfect absorption and 

perfect reflection as well as all intermediate situations. For partial 

absorption, the reflected flux at x = a will be smaller than the incident 

flux by the number of particles per second being absorbed, that is 

0+ • yo_, 0 ~ y ~ 1, where 0_ is the magnitude of the flux toward 

the boundary at x = a and d+ is the magnitude of the reflected flux 

at x = a (that is, the portion of the net flux at x = a going in the 

positive x direction). In the spirit of kinetic theory, one may write 

.o%(a,t) = <v>%P%(a,t) where P±(a,t) are the reflected (+) and incident 

(-) particle densities and <v>± are "average" values for the reflected 

and incident particle velocities at x = a derived from the mean value 

theorem of the calculus. If the absorption mechanism at the boundary 

is independent of velocity, then <v>+ = <v> = <v>. This will be 

assumed as the simplest possibility. In many situations the boundary 

will be due to a potential energy barrier whose height sets a minimum 

value for the kinetic energy of the incident particles in order to 

be absorbed at x = a. Nevertheless, if the approach to a Maxwell

Boltzmann velocity distribution is fast on the diffusion time scale, 

3. 



then the incident and reflected particle velocity distributions will be 

virtually identical. Then, since 

and 

one obtains the boundary condition 

or 

a(a,t) = -(1 - y) 
(1 + y) 

<v> p(a,t) 

~ I = (1 - y) ~ I 
ax- (1 + y\ D P 

a ' a 

Note that with this boundary condition, perfect absorption y = 0 does not 

imply pi = O. However, for perfect reflection y = 1, the condition a 

ap/axla = 0 is found. The consequence of Eq. (5) for several biophysical 

situations have been briefly mentioned by the present author previously 

(2,6,7) without discussion. Below some of the implications and relevant 

experiments are analyzed. 

THE IMPLICATIONS 

4. 

(2) 

(3) 

(4) 

(5) 

Eq. (5) has important implications about the rates of some diffusional 

processes. The rates of absorption in the model outlined above may be 

calculated using an extension of the idea of first passage times (8), as 

shown by a number of authors (9,10,11). This is carried out below for 

the diffusional model considered above by writing the fraction of particles 

absorbed at x = a in terms of the mean absorption time (inverse of the 

absorption rate. 



Let the fraction of absorbed 
b 

n.a ( t) - 1 - f a dx p( x, t ) 

particles be n (t), so that 
a 

5. 

where p is normalized initially to one particle (thus, p may be thought 

of as the relative position probability density). Solution of the 

diffusion equation with the given boundary conditions and an initial 

distribution in which the particles start at x = b indicates that the 

infinite series of decreasing exponential terms which represents the 

(6) 

time dependence of n (t) may be well-approximated by a single exponential. 
a 

That is, 

n (t) a 
III 
= I - exp( -t!-d 

with 

T -
(b-a)2 + (b-a) 

2D <v> 
(I+y) 
(II) 

If the initial particle distribution is uniform rather than concentrated 

at x = b, Eq. (8) is modified slightly be the replacement ?f 2 by 3 in 

the first term. 

Two points are indicated by Eq. (8)~ First, that a measurement of 

the inverse rate should show a linear dependence on solvent viscosity 

(via D) plus a viscosity independent term (the other forms of Eq. (5) 

which are commonly used (2) would have both ~rms in Eq. (8) being 

-1 proportional to D ). Second, that a perfect absorber (y = 0) has a 

viscosity independent term, which can complicate the use of diffusion 

measurements to find D (see below). As mentioned in Refs. 3 and 4, the 

y - 0 perfect absorber situation does not (using Eq. (5» lead to 

(7) 

(8) 

pi - 0 as the boundary condition. It does, however, lead to the boundary a 

condition p(x,t) '"' 0 at x '"" a - 6, 6 > 0 where 6 is a length parameter 

(referred to as the Milne extrapolation length) whose value is 
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fl _ (1+X) D 
(1-X) <v> 

(9) 

Eq. (9~ was found by computing the rate of particle injection at x = b 

needed to have the above diffusional model at steady-state with one particle 

in the region (a,b) in order to compare with the results of Refs. 3 and 4. 

This comparison also allows one to more precisely identify <v> to be 

(a/2)! where a ~ kBT/m with kB the Boltzmann constant, T the absolute 

temperature and m the Brownian particle mass. Note that a is the mean 

square velocity in one-dimension for a Maxwell-Boltzmann distribution. 

Another interpretation is <v> = vM/2 where vM is the most probable 

speed. 

SOME RELEVANT EXPERIMENTS 

The "radiation" boundary condition derived above leads to the possibility 

that the rates of diffusion driven processes may not be directly pro-

portional to D and, in fact, may be effectively independent of D for 

small enough x. In this regard, some experiments have been carried out 

to study the intramolecular motion of polypeptide chain segments in 

solvents of different viscosities (since, according to the Einstein 

relation D = kBT/f with f the friction coefficient, varying the viscosity 

ought to vary D in an inverse manner). Haas et a1. (12) investigated the 

kinetics of the fluorescence decay of the energy donor in a homologous 

series of oligopeptides, each containing at its ends a donor and an 

acceptor of electronic excitation decay energy in solvent mixtures of 

different viscosities. With.an assumed theoretical analysis, diffusion 

coefficients were derived which increased systematically upon decreasing 
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the solvent viscosity. The values obtained for the diffusion coefficients 

were about an order-of-magnitude smaller than the values expected for the 

diffusion coefficients of the free chromophores in solvents of comparable 

viscosity, and appear to have a solvent viscosity independent part in 

the derived values of D-I • Although the results obtained for D in this 

experiment are probably model dependent, there is a clear dependence 

of diffusion coefficient on solvent viscosity, as well as the suggestion 

-1 of a viscosity independent contribution to D • In the analysis of this 

experiment the boundary condition p (a,t) = 0 was used rather than 

Eq. (5) with y = o. 

Tsong and Baldwin (13), on the other hand, in their study of the 

kinetics of folding of the two forms of unfolded ribonuclease A (with all 

disulfide bonds intact) as a function of solvent viscosity, by adding 

either sucrose or glycerol, found no dependence on solvent viscosity, 

the rates of the two observed reactions being either unchanged or slightly 

faster in the presence of sucrose or glycerol. In the same system, 

Tsong (14) has recently found a reaction which is strongly dependent 

on solvent viscosity and somewaht faster than the reactions observed 

in Ref. 13. 

The precise interpretation of these experimental results is not 

completely clear, at present, due to the complexity of the systems 

involved. However, it appears that diffusion mediated reactions are 

playing a signfiicant role, and that there are both solvent viscosity 

dependent and solvent viscosity independent contributions to the kinetics, 

perhaps of the kind suggested by Eq. (8) and the subsequent discussion. 

If one assumes that considerations similar to those leading to 

Eq. (5) apply also to the two-dimensional surface of membranes, then 
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localization in such systems due to diffusion-driven trapping (5,6) 

will a!so show the mixed dependence on D of Eq. (B) ,although the detailed 

form will be different (see Ref. 6). In that case, D would not be 

simply directly proportional to the localization rate. This problem 

requires further study. Some approximate results have been obtained 

by Harris (15) for the related problem of steady absorption of Brownian 

particles by an infinite right circular cylinder, corresponding to 

absorption by a circular sink in two dimensions. A modified boundary 

condition was again found by introducing an effective radius of absorption 

corresponding to the Milne extrapolation length in one-dimension. 

The extension of the above ideas to infinite systems leads to 

further interesting results concerning approach to equilibrium effects. 

Consider, as a definite example, a spherically symmetrical infinite 

system of molecules of initial uniform concentration p surrounding 
o 

a target of radius a centered at r = o. The molecules diffuse in 

the infinite space, and their concentration as a function of position 

and time, p(r,t) satisfies the diffusion equation, Eq. (1), within 

the limits a < r < m. Corresponding to Eq. (5), the boundary condition 

appropriate to the infinite space is 

aL ~ I = pi ar a 
a 

where aL will be the three-dimensional analog of (1 + Y)D/«l - Y)<v» 

in Eq. '(5). As r ~ m, p(r,t) ~ p for the other boundary condition. 
o 

The above diffusion problem may be solved, in principle, using 
. 2 a ' 

the Laplace transform method to obtain .4na D ~ la' the time dependent 

rate of association. To proceed further, suppose that the initial 

(10) 



concentration of targets is equal to p also. Then, the theory of o 

von Smoluchowski (16) for colloidal particles may be applied here 

to yield n (t) the probability that a target molecule pair is formed a 

before time t. The result is 

(t/[ (1 + L)TJ) 
°a(t) - 1 + (t/[(l+L)T]) 

where T E 1/(41TaDp ), the "unit" of time appropriate to this physical 
o 

situation. Again, there appears a mixed D dependence in the overall 

rate of association. Harri~ (17) has recently studied numerically 

the related problem of steady-state absorption by a sphere. 

9. 

(11) 
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