
NASA CONTRACTOR REPORT 166383

ApplIcation of Control Theory
to DynamIc Systems SImulation

D. M. Auslander
R. C. Spear
G. E. Young

NASA Cooperative Agreement NCC 2-67
August 1982

NASA-CR-166383
19820026201

NI\SI\ 111
NF02640

NASA CONTRACTOR REPORT 166383

Application of Control Theory
to DynamIc Systems Simulation

D. M. Auslander
R. C. Spear
G. E. Young
UnIverSIty of CalIfornIa at Berkeley
Berkeley, CalIfornIa

Prepared for Ames Research Center under
NASA CooperatIve Agreement NCC 2-67

NI\SI\
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

TABLE OF CONTENTS

Preface

Spatial Effects on the Stability of a

Food-Limited Moth Population

Design of Control Systems with Uncertain Parameters

PARASOL-II: A Laboratory Simulation and Control

Tool for Small Computers

Bibliography of CELSS Reports

Page

ii

1

39

47

61

PREFACE

This report contains 3 papers which consider the application of

control theory to dynamic systems simulation. These articles

contain theory and methodology applicable to controlled

ecologIcal life support systems (CELSS). Discussed are spatial

effects on system stability, desIgn of control systems with

uncertaIn parameters, and an interactjve computing language

(PARASOL-II) designed for dynamic system sImulation,

report-quality graphIcs, data acquisition, and simple real-time

control.

1i

Abstract

Spatlal Effects on the Stablllty of a
Food-L1m1ted Moth Populat1on

D. M. Auslander, Professor
Mechanlcal Eng1neerlng Department
Unlvers1ty of Cal1fornla, Berkeley

Hav1ng obtalned anomolous results In an attempt to cont1nue the

slmulatlon study of moth-wasp 1nteract1on In Auslander, Oster and

Huffaker (1974), attentlon centered on the role of spatlal heterogenelty

1n an env1ronment wlth the moth (Anagasta Kuhnlella) alone. Because of

the probable presence of chaotlc components In the populat1on behavlor

(random appearlng behav10r that lS actually caused by determlnlst1c

1nfluences) a statlstlcally-based parameter sensltlvlty and parameter

ldentlflcatlon method was used. By deflnlng a blnary performance crlterlon

that measured the ablllty of a model w1th a speclflc set of parameters to

malntaln a stable populatlon, the lmportance of spatlal heterogenelty was

conflrmed. In addltlon, the use of Monte-Carlo type slmulatlon stud1es,

comblned wlth d blnary performance crlterlon was demonstrated to be effectlve

for parameter ldentlflcatlon and/or parameter sensltlvlty determlnatlon

of at least some systems wlth chaotlc or nearly chaotlc behavlor.

Acknowledgements

The author would llke to acknowledge the help of Dr. Harold
T. Gordon, Department of Entomology and Parasltology, Unlv. of Callf.,
Berkeley, who supplled lnformatlon used ln the formulatlon of the food
utlllzatlon and development portlons of the model. ThlS work was supported
ln part by NASA, Llfe SClences Dlvlslon, Ames Research Center, Agreement
No. NCC2-67.

-la-

Introduction

In a series of experiments, Huffaker, White and Hassel (White and

Huffaker, 1969 a and b, Hassel and Huffaker, 1969) observed the behavior of

populat10ns of the moth Anagasta Kuhniella under controlled laboratory con

dit1ons. The purpose of the original experiments was to study the effects

of predat10n and parasit1sm in the control of Anagasta population. In this

study, however, the only data used was that drawn from experiments 1n which

the moth population was mainta1ned alone, with no predators or paras1tes

present. These were experiments that were used as controls by Huffaker et ale

The exper1ments consisted of mainta1ning populations of Anagasta 1n

env1ronmentally controlled spaces (about 0.1 m3 1n one set of exper1ments

and about 14 m3 in the other set). Food was available 1n conta1ners located

in the test cell. For the most part, larvae 11ved in these conta1ners.

Measured quantit1es of food were 1ntroduced on a regular bas1s by replacing

old food containers w1th new ones. The primary, and most rel1able, data sets

obta1ned from the exper1ments were b1weekly counts of dead adult moths for

the duration of the experiments (some were as long as three years). Other

data, such as estimates of unused food, estimates of 11ving adults, estlmates

of larval and pupal mortality, were also obtalned in some instances. Figure 1

shows a typical experimental result, the count of dead adults (normalized to

a per day figure) as a function of time. This figure contains almost the

same information as 1n F1g. 3 of White and Huffaker, 1969a, Ecosystem IV-2,

however, it was replotted from Wh1te ' s or1g1nal laboratory records and also

1ncludes 1nformat10n from the early portion of the experlment that was omitted

from the publlshed data.

A common purpose of simulatlon stud1es ;s to test hypotheses concerning

the slgnificant and relevance of certa1n aspects of a system with respect to

-?-

the behavior of that system under speclfied conditlons. The hypotheses are

expressed 1n the form of a model, 1n many cases, a mathemat1cal model.

Validatlon of such a model cons1sts of some form of comparlson of slmulated

results to experlmental results. The results of these stud1es are to increase

conf1dence 1n the predictive abilit1es of the model (if the validat10n was

successful), often with the hope that 1t can ult1mately be used as a POllCy

making aid (as 1n pest management, for example), and/or the suggest10n of new

hypotheses and thus new exper1ments that have the potential of lead1ng to

future 1ncreases in conf1dence. An alternative statement of purpose for

simulatlon/model1ng work 1S that 1t 1S a means of extract1ng the maximum

posslble amount of 1nformat1on from experimental (or f1eld) data. Several

prev10us stud1es are relevant to th1S one w1th respect to the k1nds of hypotheses

that they were test1ng. Hassel and Huffaker (1969) used key factor analys1s

to construct a model capable of predlct1ng generat1on-to-generat1on populat1ons

of the two-spec1es system cons1st1ng of Anagasta and the parasit1c wasp,

Ventur1a canescens. Podoler (1974b) used a slm1lar analytic technique to

produce a model of a slm1lar exper1mental system, cons1st1ng of the moth

Plod1a interpunctella and the same paras1tlc wasp. Auslander, Oster and

Huffaker (1974) used a part1al d1fferent1al equation model to test the hypoth

eS1S that the generatlonal discretizat10n observed 1n the exper1ments could

be predicted from a model based primarlly on phYSlologlcal data concerning

the specles involved.

This study began as an extens10n to the slmulat10n work (Auslander,

Oster, Huffaker) c1ted above. In part1cular, 1t was an attempt to seek

explanat10ns for the populatlon crash that appeared Just before the synchron1zed

host/paraslte generat10ns started. Th1S crash 1S common to the simulated and

laboratory data and the thought was that 1t m1ght somehow be an essential part

- 3-

of the synchronization process. That study, however, is still to be done.

In the course of startlng that work anamolous results were obtained that,

ultimately, led to the present paper.

The same partial dlfferentlal equatlon structure used by Auslander, Oster

and Huffaker (1974) was used in the new study. A major change, though, was

made in the way in WhlCh mortallty was computed. Rather than using a density

dependent larval mortallty, as was used ln the above models, it was postulated

that a more realistic larval mortallty model would be nutrltlon-dependent.

A model was thus constructed in which larval moth mortality was made a functlon

of body welght, WhlCh, In turn, depended on the amount of food available to

the larvae as it grew. This constltuted a delayed, denslty dependent mortality,

but the amount of the delay was strongly dependent on the density also. Using

thlS model, lt was found that no reasonable parameter set would lead to a

Solutlon ln WhlCh the moth, by itself, would reach a stable population. Instead,

as shown by the sample response In Flg. 2, the population osclllated wlldly,

qUlte unlike the behavlor shown ln the laboratory and lllustrated by Flg. 1.

The postulate that spatlal heterogenelty In the populatlon, WhlCh had been

19nored in the prevlOUS models, mlght be lmportant appeared promislng and thus

lead to thlS present study of the factors affectlng the moth populatlon itself.

At the same tlme, questlons concernlng mechanlsms for valldatlng popula

tlon models, or extractlng lnformatlon from experlmental data, were being

consldered In the llght of theoretlcal lndlcatlons that osclllatory population

data could well contaln "chaotlc" components (Oster, Auslander and Allen,

1976). These components have the san~ appearance as nOlse ln data records,

but arlse from determlnlstlc sources. These components call lnto questlon

the usual valldatlon procedure of "ma tchlng" the slmulated and experimental

data because such matching can never be achleved in the chaotic regime. On the

-4-

other hand, if the randomly-appearlng components In experlmental data could

have come from determinlstlc sources, they can contrlbute to the process of

validation or lnformatlon extractlon. For this reason, it was decided to

concentrate model fittlng and valldation procedures on gross behavioral

characterlstlcs of the population and use the Monte Carlo slmulation method

(repeated simulations wlth randomly chosen parameter sets) developed by

Spear and Hornberger (1980) to establish parameter slgnlficance.

Dynamlc Populatlon Model

Model Structure

The model structure used for thlS study follows the pattern set In

Auslander, Oster and Huffaker (1974). The relevant result from that paper

is recapltulated here, and the speclflc adaptatlons made to that model are

glVen in detall.

an{t,~)
at

where n(t,!~)

t

F;.

d~
gl = dt

).1

The generallzed von Foerster equatlon (Eq. 2.6) is

+ L: a~ [gl(t,~) n(t,~)J = -).1(t,~) n(t,~)
1

(1)

lS the populatlon denslty functlon,

lS tlme,

lS a vector of phYSlolog1cal properties (age, body welght length, ..)

lS the growth rate for the l-th property, and

lS the mortal1ty functlon.

For the Anagasta model, the phYSlolog1cal propertles of age and dry body welght

wlll be used. With the deflnitlOns,

-5-

~ = z = age
1

gl(t,~) = gz(t,z,w) = 1 for unlform chronological aging

~2 = w = dry body welght

g2(t'f) = 9w(t,z,w) = weight gain (or loss) function,

then, n(t,~) = n(t,z,w), and Eq. (1) becomes

an(t,z,w) + an(t,z,w) + l [(t) (t)] (t) (t) at dZ dW gw ,z,w n ,z,w = -~ ,Z,W n ,z,w

The blrth process lS the boundary conditlon for Eq. (2) and lS represented

by an 1ntegral over the egg-laying ages,

r
a+y

n(t,z=O,w) = m(t,z' ,w) n(t,z' ,w) dz'
J a

where m is the fecund1ty functlon.

Equation (2) 1S a partlal d1fferentlal equatlon with three independent

vanables, t, z, and w. Slnce there are no convolution-type terms in Eq. (2),

for computational purposes lt lS necessary to retaln a two-dlmens10nal

representat10n of n(t,z,w) In memory, representlng the lnstantaneous population

denslty as a functlon of age and welght. A maJor computatlonal slmplification

can be obtalned If the restrlction that all newly-lald eggs have the same weight

lS lmposed. Because Eq. (2) has no dlsperslve (second-order) terms, If the

proJectlon of the populatlon denslty onto the w-aX1S for z=o lS an lmpulse

functlon (all newly-lald eggs have the same welght), that impulse funct10n

wlll not dlsperse. Thus the projection of the populat10n denslty at any age,

z, wlll also be an lmpulse. A reduction In dlmenslOnallty can be obtalned by

eliminating the w-dlmenslon and, instead, 1ntroducing the variable W(t,z) that

represents the welght of an lndlvldual at time t and of age z. The populatlon

denslty, n(t,z,w) then becomes n(t,z), and Eq. (2) can be written as the

followlng set of coupled equatlons,

(2)

(3)

-6-

an(t,z) + an(t,z) = (t W) (t) at az -~ ,z, n ,z (4)

aw(t,z) + aw(t,z) = _g (t z W) w(t z)
at az w' , , (5)

For computational purposes, instead of retalning a two-dlmensional functlon in

memory, Eqs. (4) and (5) requlre the retentlon of two one-dimensional functions,

the instantaneous populatlon density as a functlon of age, and the lnstantaneous

weight functlon as a function of age. It should be noted that although the

restrictlon that all newly-lald eggs have the same welght has been applied, that

restrlctlon can be relaxed somewhat as long as all newly-lald eggs at any time

t have the same we1ght.

Mortallty

The mortal1ty has been assumed to be related to body weight, part1cularly

for the larvae. Deflnlng a surv1vorsh1p,

s = - ~ = s(z,W) (6)

where p 1S the mortal1ty functlon from Eq. (2), a relatlonsh1p can be postulated

between thesuYVlvorsh1p and normallZed body welght, WNORM. In the absence of

any further definitlve 1nformatlon on the nature of thlS functlon, a two

parameter fam1ly of curves has been used, Flg. 3. The normal1zed body welght

is the actual body welght, ~'J, d1vlded by the we1ght that would have been

attained at that age 1f unl1mlted amounts of food were ava1lable, Wmax(z).

The curves are crudely slgmo1dal 1n shape and are descnbed by the parameters

WNZ, the value at Wh1Ch the curve leaves the WNORM aX1S, and H, the slope.

The curve is llm1ted at the top to a value of 1.

-7-

Body Weight

The rate-of-change of body we1ght is assun~d to be proport1onal to the

excess (or def1ciency) of food consu~d over the metabol1c food needs.

Because only one kind of food was used in the exper1ments (Zoom, a rolled

wheat), it is not necessary to break the food down 1nto more bas1c nutr1t1onal

components. The bas1c body weight model is thus,

(7)

where W is dry body we1ght, mg

f is the food consumption rate per 1nd1vidual, mg/day,

fm 1S the metabolic food requirement for an individual, mg/day,

and bl 1S a constant.

The metabollc food requirement lS assumed to be proportional to the

body weight,

fm = b2 \oJ (8)

where b2 is a constant. Reasonable ranges for the parameters bl and

b2 were selected to be cons1stent w1th data in Waldbauer (1968).

Food Supply and Consumpt10n

The total amount of food ava1lable at any tlme is descr1bed by the

conservation equat1on,

dF = f _ f T
dt s c (9)

where F is the amount of food available, I"'1g,

fs 1S the food supply rate, mg/day,

f T
c 1S the total food consumption rate, mg/day, summed over all

ind1viduals,

where

f T = Ef
c

-8-

f is the food consumptlon rate for an indlvldual, mg/day.

(lo)

The actual food consumption rate lS governed by the nature of competlt1on

among 1ndlviduals, since ln these experlments the larval food supply was

the lim1tlng populat10n growth factor. The assumption made here lS the very

simple one that each lndivldual gets the same percentage of ltS maXlmum

consumption rate, where the maX1mum consumpt1on rate 1S def1ned as the amount

that it would eat 1f unl1mlted amounts of food were ava1lable. This 1S a

competltion model of unlform success as a percentage of demand, w1th the

maX1mum consumptlon rate regarded as the demand. The demand for an individual

1S broken lnto two components, a portlon to support growth, f dg , and a portion

to meet the metabollc needs, f dm ,

where fd lS the food demand for an lndlvidual, mg/day.

As noted ln Eq. (8), the metabollc demand lS assumed proportlonal to the

body we1ght. The growth-related demand lS assumed to be a functlon of age

only,

f dg = f(z)

(11)

(12)

The assumptions of un1form success ln competltlon for food, and growth

related demand equal to a functlon of age alone are extremely s1mplist1c, but

are all that can be Justlfled at present. (In fact, the functlon of age lS

set equal to a constant ln the s1mulations).

The actual consumptlon 1S related to the demand through a saturat1ng

funct1on. A parameter havlng units of time, Tf , is deflned by,

-9-

T = F/f T
f d (13)

where fdT 1S the total food demand rate, mg/day, that is, the food demand

rate summed over all individuals,

(14)

T The total actual food consumpt1on, f , 1S computed by,

(15)

where "a" is a constant. The actual food consumpt1on for an 1 ndi vi dua 1 ,

f, 1S computed from the equa1-percentage-a11ocat1on assumpt1on,

(16)

That 1S, the rat10 of consumpt1on to demand for each 1nd1vidual 1S the same

as the rat10 of total consumpt1on to total demand for the whole popu1at10n.

Fecund1 ty

Podo1er (1974a) has shown that the number of eggs per female in the

Ind1an neal-moth (P1od1a Interpunctella) is a funct10n of the adult body

weight. Fo11ow1ng this observation, the number of eggs per female, m, is

taken as a product of funct10ns based on body weight, age, and a maximum

feasible egg-1aY1ng rate,

" where W = W/W 1S the norma11zed body we1ght. The body-weight function max
1 S taken as a power-l aw form,

f (W) = wP
1

(18)

-10-

The curve shapes for p less than one, equal to one and greater than one are

shown in Fig. 4. Values of p greater than one are lndlcated by Podoler's

data (1974a, Flg. 5). The age-dependent function, f 2(z) was taken equal to

one for all females of egg-laYlng age.

Development T1me

The amount of time required for development from egg to adult can vary

considerably (Auslander, Oster, Huffaker, 1974), with crowdlng glven as a

maJor factor In 1ncreaslng the required development time. Introduction of

vary1ng development t1me 1n a rigorous manner would d1ctate the add1t1on of

second-order terms to the bas1c populat1on equatlon, Eq. (2), to account for

dispersion in the population. To avo1d the large increase in comput1ng

effort and memory that would be necessary for slmulat10n of the second-order

equat10n an approx1mat1on to true d1sperslVe behavlOr was employed. In this

approximatlon, the trans1t1on between the larval and pupal states 1S assumed

to be a funct10n of body we1ght, larger larvae Igraduat1ng" earl1er. The

body welghts of the pupal cohorts thus formed are taken to be the average

of all those larvae that went to form the cohort. A two-parameter fam1ly

of curves 1S used to determ1ne whether or not a glven lnd1v1dual will become

a pupa. A tYP1cal curve is shown in Flg. 5. The curve cons1st1ng of the

slop1ng line plus the segments of the W = 1 and W = 0 as shown form a trans1tion

boundary. The transit10n zone of N days 1S the per10d at the end of the

larval stage dur1ng WhlCh trans1tlon 1S poss1ble. The trans1tion boundary

lnd1cates the weight requ1red for graduatlon and 1S a decreasing functlon of

age. That 1S, as larvae get older they become el1g1ble for the translt10n to

pupae at a lower body weight. The two parameters describlng the curve are

WSL, the slope of the curve (a pos1tive WSL 1mpl1es a negat1ve slope) and

WZ the ordlnate corresponding to N/2.

-11-

Physical Environment

The food containers used to supply new food were not explicitly con

sidered in any of the preVlOUS simulation studies of this population. These

food contalners were lntroduced periodically, full of fresh food, to replace

the containers that had been ln the controlled space the longest. Replace

ments were done once a week; one set of experiments worked on a 25 week

cycle (that is, contalners were replaced after being ln the system for 25

weeks) and the other worked on a 17 week cycle. The model used of this

enVlronment \'Ias that the eggs, larvae and pupae were completely restncted

to the container that they were born into. Larval mobillty was neglected.

Adults were assumed to have equal access to all contal ners for egg-l ayl ng

(and equal preference). The complete model, 1ncludlng the spatial heterogeneity

due to the discrete food containers, conslsted of one repllcation of the model

discussed above for each container or set of contalners. The model components

were completely non-lnteractlve except for the coupling due to egg-laying,

WhlCh was assumed equally dlstrlbuted over all conta1ners.

Monte Carlo Slmulatlons

The Monte Carlo simulatlon method descrlbed by Spear and Hornberger (1980)

can be used to determlne the sensitlvlty of a certain system behavior to

given parameters and, for those parameters for which a slgn1ficant sensltivity

1 s found, 1 t can be used to determ1 ne the expected range of the parameters.

It can alsobe used to flnd mult1vanate sensltiv1ties, that 1S, system behavioral

patterns that are affected by two or more parameters changing together. The

separation of parameter sets lS based on the application of a binary performance

crlterion to the simulated system behav1or. Each free parameter in the system

1S character1zed by a d1stributlon giving ltS llkely or poss1ble range of

-12-

values. By free parameter 1S meant any parameter that is to be tested. In

some cases, sens1tiv1ty 1nformat1on m1ght be des1red for some parameter

that is reasonably well known from a priori 1nformat1on, while, in other

cases, a probable range of values is desired for a more-or-less unknown

parameter. It thus serves as a comb1nat1on of parameter 1dent1f1cation and

sens1tivity determ1nat1on method. For each simulation, a value 1S picked

for each parameter from its specif1ed distr1bution and the simulated behavior

is computed.

The select10n funct10n 1S the key to use of this Monte Carlo method.

It 1S appl1ed to the set of slmulation results to separate 1t 1nto two

sets: a set of results that exh1b1t a pre-def1ned behav10r (that set is

called B) and a set of results that does not exhib1t that behav10r (called

NOT-B, B). By analyz1ng the parameter sets assoc1ated w1th Band S, 1nforma

t10n can be obta1ned about correlat1ons between areas 1n the parameter space

and the probab1l1ty of produc1ng B or B. Where correlat1ons are strong,

1nferences can be made about the role of the part1cular parameter or comb1na

t10n of parameters 1n determ1n1ng the behav10r of the model be1ng studied.

Weak correlations imply e1ther that the behav10r of the model 1S not sensit1ve

to the para~eter (or combination) or that the coverage of the parameter space

was not dense enough. Acceptance of the null hypothes1s (no influence) 1n

exam1n1ng the Band B sets thus leads to a subJect1ve judgement as to whether

the or1glnal Monte Carlo experlment was adequate.

Ideally. a study of th1S sort would be conducted by defln1ng the model.

includlng the d1stributions for the parameters; deflnlng B; spec1fYlng the

number of trlals and statistical procedures; performlng the experiments; and

analyzing the data. In practlce. this is usually 1mposslble because not

enough 15 known about the model's behav10r to keep the number of trlals

-13-

required (and thus the cost) of the study to a reasonable level. Since the

des1gn of subsequent experiments draws on the results of preV10US ones,

independence, and thus conf1dence in the sign1ficance of the results, is

increas1ngly lost. As w1th all mode11ng/simu1at1on projects, care must be

taken to avoid produc1ng self-fulfilling results.

The stat1stical tests used are pr1mar11y non-parametric tests to

determ1ne whether or not distribut10ns separate. Spear and Hornberger (1980)

used the Kolmorov-Smirnoff test; because of the discrete nature of some of

the parameters used, the ch1-squared test 1S used here. The bas1c separation

test determlnes the un1varlate propert1es of the system, that 1S, the role

played by 1ndividual parameters 1n determ1nlng the nature of the model's

response. Parameters can act ln comb1nat1on, however, and such mu1tlvariate

dependence is harder to determ1ne. For example, 1n a process contain1ng two

chemlca1s that can react, the concentrations of the two chemlcals w1ll

only affect the product when they are present together. Un1variate statist1cs

would show llttle lnf1uence for each of the speC1es, but b1var1ate stat1st1cs

would show a strong lnfluence when both are present. In this study, 11near

b1var1ate dependence is tested by comput1ng all possible corre1at1on coefficients.

Linear high-order dependence can also be tested, although it has not been done

in this study. Nonllnear dependencies are much harder to f1nd.

A maJor hypothes1s 1n the development of this parameter sens1t1vity/

1dentlf1cation method is that many systems of 1nterest can be characterized

by behavior criteria that are re1at1vely simple. In fact as the system gets

more complex, 1t may be eaSler to characterlze it wlth a bwary performance

cr1ter1on, part1cularly 1n h1ghly-evolved, natural systems. It 1S the

abll1ty to use a binary performance cr1terlon that makes the method economically

attract1ve.

-14-

Selectlon of Test Behavlor and Free Parameters

The orlginal motivation for this study. the lnabllity to achieve stability

in the first modellng efforts, provided the major behavlor criterion: stability.

The quantitative definition of stabillty used was the ratio of the root-mean

square of the deviation of the adult populatlon from the mean to the mean

population. The evaluation was carried out over the simulated tlme period

correspondlng to the tlme perlod for which stable populatlons were observed

in the experiment. Further limltation was placed in deflnlng B by putting

bounds on acceptable values for the mean - thlS was most important in

elimlnating cases for whlch the populatlon crashed givlng a mean of zero.

The free parameters were selected from a combination of hypothesis

testlng and parameter ldentlfication concerns. The prlme hypothesls arising

from the lnltlal round of simulatlon experiments was that spatlal heterogenelty

was a maJor determ1nant of dynamic behavior 1n the orlg1nal experiment. The

parameter characterlz1ng the system's spatlal properties 1S the number of food

contal ners. By makl ng the number of food contal ners a free parameter. the

sensltlvity of the system behavlor to the number of contalners can be tested.

As a veriflcatlon of the reasonableness of the model, the range of values

lndlcated as leadlng to stable behavior should lnclude the value actually used

in the experiments.

The other free parameters were selected from the model parameters descrlbed

above. Most of these parameters were unknown, so the Monte Carlo procedures

were used to perform parameter ldentiflcatlon. Wherever possible, reasonable

ranges for parameters were obtalned from the blological llterature. For

computational slmpliclty. all parameters were descrlbed by unlform dlstributions.

-15-

Resu1 ts

The general procedure used in performing the Monte Carlo test runs was to

start with wide parameter variations to get a feeling for areas in the parameter

space that show promise of yieldlng interestlng solutions. In many instances,

after examlning the response curveS for regions suggested by the initial Monte

Carlo runs, portions of the model were restructured. The distributions used

for the parameters and the number of trlals were successively readjusted until

results with statistlcal signiflcance were obtained. Throughout this process,

a perslstent characteristlc of the responses of the model was observed for

virtually all parameter comblnations that resulted in solutions wlth any

modlcum of stability. This was an oscillatory component of the solution with

a period of 6 to 8 days. Flgure 6 is a typical response showlng this component.

It was initially felt that thlS Solutlon component might be an artlfact of the

Solutlon method or model structure. Changes were made flrst in discretization

intervals for the numerical solution, then the sharp corners in the mortality

functlons were modlfied, all to no avail. Finally, a spectral analysis was

made of the original Whlte data using a discrete Fourler transform (FFT),

givlng the spectrum shown in Fig. 7. The peak at 7 days is distinct.

Cautlon must be observed in lnterpreting that lnformatlon, however, because the

origlnal data was obtalned by sampllng the populatlon only twice a week, usually at

alternatlng 3 and 4 day lntervals. In order to get a data set sUltable for the FFT

program, Whlte1s data was interpolated to give a data set with even spacing of samples.

The partlal dlfferential equations descrlbing the population evolution

were solved by dlscretlZing the age dlmenslon into cohorts and discretizing

time (see Auslander, Oster, Huffaker, 1974). The tlme discretizatlon interval

and the age dlscretization interval were equal. Spatial heterogeneity was

lncludedbysolvlng IInll such sets of partial differential equations simultaneously,

-16-

to account for "n" feeding t1ns. The equations were coupled only through the

birth process. The computation time 1ncreases w1th the square of the inverse

of the discret1zation interval because the number of time steps per unit time

increases with the 1nverse of the d1scretization interval and so does the

number of cohorts. The amount of memory requ1red 1S proportional to the

inverse of the di screti zati on i nterva 1. Both computati on ti me and memory

requ1rements 1ncrease in proport1on to the number of feeding tins.

Most of the simulations were done using a d1scret1zation interval of

two days. This was a comprom1se used to increase the efficiency of the Monte

Carlo process because of the square-law dependence of comput1ng time on

discretization interval. Smaller intervals made some changes in spec1fic

simulat10n responses, but made no signlflcant changes ln the test behav10r

function.

The f1nal denslty distrlbut10ns and the ranges of values used for the free

parameters are shown in Fig. 8. The two questions associated with these results

are: 1) are the separations statistically slgnificant, and 2) do the simulated

results obtal ned by USl ng parameters drawn from the "passed" regi on of the

parameter space match the actual experimental results (i.e., has the f1ttlng

procedure been successful in the conventional modeling sense). The statlstlcal

results are shown in Tables I and II. A most important result is the separation

shown for the number of feeding tins, verifying the original hypothesls that

stability was dependent on spatlal heterogeneity. Variables with low values

for the chl-squared statistlc probably have relatively llttle lnfluence on the

nature of the solut1on wlthin the range of values studied. The qualification

is added to that statement because the possib1lity always eXlsts that there is

a very strong, very narrow influence that was completely missed because not

enough trials were made. Table II gives all possible correlatlon coefflclents.

-17-

None of the correlation coefficients is high enough to warrant further

1nvestigation of bivariate or higher-order dependencies at th1S point.

The second question, the match of the simulated and experimental responses,

1S addressed in Figures 6 and 9. These figures are based on models with

pararre~ers selected from inside the IIpassed ll areas. The simulated results

reproduce several important salient features of the experimental results

shown in Fig. 1. In part1cular, the responses begin with a v10lent transient

and then settle down to stable behavior with a high frequency oscillatory

component. The exper1mental results also exhibit low frequency osc1llations

that are not usually present 1n the s1mulated results.

Of the parameters examined here, half were found to have a strong

influence on stab1lity, and the other half had little or no influence. In

particular, the parameters Hand WNZ used to define the mortality relation

had the strongest influence. Referring back to Fig. 8, the passed regions

favored h1gh values for H (the slope) and low values for WNZ (the starting

point of the rise in survivorship, see F1g. 3). PhYS1olog1cally, this

indlcates that, based on the model presented here, survival remains relatively

h1gh until the body we1ght gets to be much lower than normal, at which p01nt

survival drops off rapidly. The next h1ghest influence came from the parameter

p, used to determine the shape of the birthrate/body weight curve (Fig. 4).

As pred1cted by Podoler, values of p greater than one were favored. Finally,

as noted above, stability was associated with large numbers of food tins.

The parameters relating to body we1ght, b1 and b2, and the parameters

descr1bing the laval/pupal transit10n (WZ and WSL) had relatively little

lnfluence on population stability.

Some further ins1ghts on the role of various parameters in determining

key aspects of the system response can be made by calculating correlat1on

-18-

coefficients between the various system parameters and the mean of the

population for "passed" cases. These results are also shown in Table II.

Conclusions

First, the results indicate that the spatial arrangement w1th1n the

experimental environment played a very strong role in the determinat10n of

the dynamic behavior of the moth population. The conclusion, based on model

studies, 1S significant because it arises from complex 1nteract1ons among

system variables and cannot be deduced from qual1tative or 1ntultlve analysls

of the system. It is not even apparent that a correct qualitat1ve judgement

could have been made as to whether the introduction of spatial heterogeneity

in this system tends to stabllize or destabilize it. Further study is

required to determine if the strong role played by the spatlal arrangement

carrles over to the predator/host and paraslte/host sltuatlons studied by

Wh1te and Huffake~ for WhlCh the moth-alone systems were the controls. In

any case, the concluslon reached here should be considered in the design of

future experiments of this type and in the interpretation of past experiments.

For example, the experiment descrlbed by Podoler (1974a,b) provides an

environment with much greater larval mobility than the Huffaker/White experi

ments. Although no control (moths only) experlments were reported for that

study, the results reached here indicate a strong likelihood that the responses

would not have reached a stable behavlor if the larvae were able to take

advantage of the barrler-free enVlronment.

The second concluslon concerns the utility of the Monte Carlo method

with a binary dec1sion function as a technique for parameter ldentification and

sensltivity analysis. The role of the number of food tlns has been inferred

with a reasonable degree of confidence even though, in the conventlonal modeling

-19-

sense, no simulated response was ever produced that could be quantitatively

compared to the experimental results on a point-by-po1nt basis. G1ven the

complexity of any system involving llving organisms, and given the uncertainty

as to the role of stochastic influences (because of the possibilities of

chaotic behavior), it seems likely that no such point-to-point comparison

could ever be achieved. The use of a statistically-based 1dentif1cation/

sensitivity method is essential in such problems, and this particular case,

the method used worked effectively. A further observat10n, however, 1S that

the type of 1nformation obta1ned from this technique gives a much stronger

feeling for applicable parameter ranges than either identification procedures

or sens1tivity analyses based on point-by-point compar1sons and could be an

effective adJunct to such techn1ques 1n problems to which they can be applied.

-20-

References

1. Auslander, D. ~1., G. F. Oster, C. B. Huffaker (1974), "Dynamlcs of
Interacting Populations," Journal of the Frank11n Instltute, 297,
345-375.

2. Hassel, M. P. and C. B. Huffaker (1969), "Regulatory Processes and
Popu1atlon CyC11City in Laboratory Populations of Anagasta KUhnle11a
(Zeller) (Lepidoptera: Phycitidae) II. Parasltism, Predatlon, Competltion
and Protective Cover," Res. Popu1. Eco1 XI, 150-185.

3. Oster, G. F., D. M. Auslander, T. T. Allen (1976), "Determlnistlc and
Stochastlc Effects In Populatlon Dynamics," Trans. ASME, Journal of
Dynamlc Systems, Measurement and Control, 98, 44-48.

4. Podo1er, H. (1974a), "Effects of Intraspeclflc Competltlon In the Indlan
Meal-Moth (Plodla Interpunctella Hubner) (Lepldoptera Phycitldae) on
Populatlons of the Moth and ltS Paraslte Nemeritls Canescens (Gravenhorst)
(Hymenoptera: Ichneumomdae)," J. Amm. Ecol.

5. Podo1er, H. (1974b), "Analysls of Llfe Tables for a Host and Paraslte
(P10dla-Nemeritis) Ecosystem," J. Amm. Ecol.

6. Spear, R. C. and G M Hornberger (1980), IIEutrophlcatlon In Peel Inlet-II.
Identlflcatlon of Crltlcal Uncertalntles Vla Genera11zed Sensltlvlty
Analysls," Water Research, Vol 14, pp. 43-49.

7. Wa1dbauer, G. P. (1968),"The Consumptlon and Utl1lZatlon of food by
Insects," pp. 229-288, v 5, Advances In Insect PhYSlOlo y (edlted by
J. W. L. Beament, J. E. Treherne and V. B. Wlgg1esworth .

8. Whl te, E. G. and C. B. Huffaker (1969a), "Regu1 atory Processes and
Populatlon CYCllClty In Laboratory Populations of Anagasta KUhnlella
(Zeller) (Lepldoptera: Phycltldae) 1. Competltlon for Food and Predation,"
Res. Populo Ecol. XI, 57-83.

9. Whlte, E. G. and C. B. Huffaker (1969b), "Regulatory Processes and
Popu1atlon Cycliclty In Laboratory Popu1atlons of Anagasta Kuhnlel1a
(Zeller) (Lepidoptera· Phycltldae) II. Parasltlsm, Predation, Competltlon
and Protectlve Cover," Res. Populo Ecol XI, 150-185.

-21-

Table I - Chi-Squared Statistics (degrees-of-freedom = 9)

Parameter Pass/Fail Pass/All Fail/All
chi-sq confldence chi-sq confidence chi-sq confidence

bl 8.2 0.5 3.5 0.03 2.1 0.01

b2 10.2 0.6 4.3 0.07 2.6 0.01

H 90 0.995+ 39 0.995+ 24 0.995+

WNZ 76 0.995+ 33 0.995+ 21 0.98

p 52 0.995+ 24 0.99 13 0.8

NGH 45 0.995+ 19 0.96 12 0.7

vJZ 14.7 0.9 6.1 0.2 3.9 0.05

~JSL 7.2 0.3 3.0 0.02 1.9 0

-22-

Table II - Correlatlon CoefflClents

All Trlals Passed Falled

2 4.380E-02 8.934E-02 1.265E-02
3 -8.893E-02 -1.100E-01 -7.690E-02
4 8.520E-02 6.351E-02 9.897E-02
5 1.730E-02 1. 504E-01 -5.408E-02
6 -6.497E-03 -3. 376E-02 1.895E-02 Codes for Parameters:
7 2.729E-02 9.464E-02 -2. 146E-02 1 b1
8 -1.585E-02 -8.586E-02 3.480E-02 2 b2

1 9 4.168E-01 5.987E-01 3.706E-01 3 H
2 3 1. 274E-03 -2.276E-02 7.719E-02 4 WNZ
2 4 -2.503E-02 3.943E-02 -1.289E-01 5 p
2 5 -6.780E-02 -6.916E-02 -3.052E-02 6 NGH
2 6 1.776E-02 -3.691E-02 9.611E-02 7 HZ
2 7 5.745E-02 -1.835E-02 8.864E-02 8 WSL
2 8 -9.295E-02 -7.613E-02 -1.054E-01 9 Populatlon mean
2 9 -2.079E-01 -2.282E-01 -1.619E-01
3 4 -1.191E-01 9.316E-02 9.200E-03
3 5 9.720E-03 5.954E-02 -2.320E-01
3 6 7.334E-04 -4.867E-02 -1.745E-01
3 7 -2.376E-02 3.163E-02 4.790E-02
3 8 7.403E-02 8.227E-02 7.565E-02
3 9 4.750E-01 2.933E-01 4.379E-01
4 5 1.132E-02 1.231E-01 1. 51 OE-O 1
4 6 7.753E-02 2.379E-01 1. 884E-0 1
4 7 6.894E-02 1. 128E-0 1 -5.841E-02
4 8 6.004E-02 8.764E-04 1. 168E-0 1
4 9 -4.749E-01 -3.844E-01 -3.669E-01
5 6 4.328E-02 -2. 117E-0 1 6.797E-02
5 7 -9.451E-03 8.948E-02 3.194E-03
5 8 -6.610E-03 4.745E-02 -4.839E-02
5 9 1. 184E-01 1.451E-01 -1.380E-01
6 7 1. 447E-02 4.023E-02 7.358E-02
6 8 -3.271E-02 1.754E-02 -7.599E-02
6 9 -6.897E-02 -2.146E-01 -2.235E-01
7 8 -5.860E-02 2.095E-02 -1.198E-01
7 9 -1.444E-01 -4. 159E-02 -1.324E-01
8 9 3.598E-02 -3.729E-02 1. 119E-01

J)
e
~ n
s

~
r
d
a
y

-23-

~o

o~--~------------~--______________ ~_
o 500

llme (days)

ilgure 1. ~hlte and Huffaker (1969a) Data
for £cosystem IV-2

1000

-24-

1,0 ,...

u
e
='
t:.
h

100 s I-

r
e
r

d
a 50 ~
y

.r J \ III
,00 10JJ

11I"1C (days)

Flgure 2. Response of Prellmlnary Model

-25-

S

01-... ____ -'----------"-
o WNZ

WNORM = W / Wmax(z)

Flgure 3. Survlvorshlp Functlon

-26-

---- p =

A

W

Flgure 4. Fecundlty-Body Welght Functlon

-27-

A

W WZ

o~------~~----~------------~

Transltlon Zone (days)

Flgure 5. Crlterlon for Larval/Pupal Transltlon

-28-

50
t t

D
c
a
t:.
h
s

p
e
r

d
<J

Y

o~~--------------~----------------~-o SuO 10JO

llme (days)

Flgure 6. Slmulated Model Response

-29-

0.1

Frequency (1/days)

F1gure 7. Spectral Analysis of Wh1te's Data

-30-

.".,
--"

o 0.5

bl (parameter ln body welght)

Flgure 8. Density Dlstrlbutlons
(passed - SOlldj falled - dashed)

-31-

o 0.05

b2 (parameter ~n body we1ght)

r1gure 8. Dens1ty D1str1but10ns (con't)
(passed - solLdj fa11ed - dashed)

0.1

-32-

o 4

H (parameter 1n mortality)

F1gure 8. Dens1ty D1str1but1ons (con't)
\passed - SOlld; fa1led - dashed)

8

-33-

",.-

o O. 1 0.2

WNZ (parameter In mortalIty)

F1gure 8. Dens1ty D1str1butlons (can't)
(passed - SOlldi failed - dashed)

0.3

0.5

--"
"

-34-

"'--
-".

1 • 5

p (parameter in fecund~ty)

F~gure 8. Dens~ty D~str~but~ons (con't)
(passed - so]~d; fa~led - dashed)

2

-35-

-

10 15 20

Number of food tins

Flgure 8. Density Distrlbutions (con't)
(passed - SOlld; falled - dashed)

25

-36-

J"', ___ " -

0.2 0.4 0.6

WZ (parameter In transltl0n)

Flgure 8. Denslty Dlstrlbutl0ns (con't)
(passed - SOlld; fal1ed - dashed)

o

-37-

,.---- -

WSL (parameter in transitlon)

Flgure 8. Denslty Dlstrlbutlons (con't)
(passed - SOlldj falled - dashed)

2

-38-

50

L'
e
3
t:,
n
s

p
e
r

0
C1

Y

o~~~~~----~~~------------------~--o ~oo 10.)0

Jlme (d::1Ys)

FIgure 9. SImulated Model Response, parameters

In passed zone.

.. ,

Deslgn of Confrol Systems wlth Uncertaln Parameters

by

DnVld M. Auslander
Robert C. Spear
Gary E. Young

ABSTRACT

A deslgn method for control systems with uncertaln parameters is presented.

The method utillzes a generallzed sensltlvity approach WhlCh separates the

parameter space lnto regIons WhlCh produce a system response that satisfles

glven deslgn crlterla and reglons WhlCh do not. Nonparametrlc statlstlcs and

confldence llmlts for the blno'illal dlstnbutlon are used to determine degree of

parameter sensltlvltv and to locate reglons In the parameter space which maXl-

mlze the probablllty ~f produclng a desirable system response. In an example

1 t 1 s sho\oJn that a glVen pa t'allieter may have to be known to a 1 esser degree of

u~certalnty to be able to speclfy a satlsfactory deslgn.

-39-

11; TROD:' CTI 0'.

W~th increased interest in the des~gn of non
l~nea, control s)ste:s anc control s)ste=~ with un
CertaIn para~eters it is des~~able to have a desIgn
m£t~od or strategy ~~lC~ do£s not depenc upon the
Iln~arIt\ of the svste~ Co,,\ventlonal control design
strategIes, however, ar~ aFollca~le only to llnear
s\st('r~ or to s\ste":s ",'IC), have beer llnearlzed In
one "'a' or another For the case of uncertaln para
neters: the system response ~l:l no longer be deter
Lln:stIc and must be ~nterpreted In some sort of
probablllstic manner

Here, we advocate the idea of cocblnlng statis
tICS and 6.m~latlon for the ar~lysIs and/or deslgn of
11near or nonlinear d)~a~c s)stems with uncertaIn
parameters

TI~arl and Hobble [1) used thlS concept to ana
lyze an aquatlc ecosystem The, asslgned Gaussian
probablllt) dlstrlbutl0ns to all uncertain parameters
of their system model and then us~d a simulatlon pro
cedure to obtaln the sa:ple means and standard devia
tions of the variables of Interest as functIons of
time As was pOlnted out ~n thelr paper, the results
~ere quite dlffereot than those obtalned by uSlng the
~ean values of the uncertaln parameter dlstrlbutl0ns
and perfor~ng only one 'deterroln1stlc' simulation

Spear (2) used nonpara~etrlc statlstlcs to In
vestlgate the stablllt) of a monopropellant rocket
engIne model in wtllch the dv"\a~lc parameters were un
certain He randomly selected values from a-priorl
parameter dlstrlbutlons and dIrectly calculated the
~lnlmum negatIve real aX1S crossIng of the frequency
locus in the Nyquist plaoe The cumulatIve dlstrlbu-

-40-

tlon of the mlnlmum negatlve real aAlS crosslng ~as
obtalned and Kolmogorov-RinYl statlstlcs applled to
thlS resultlng dlstributlon Thus, given the un
certalntles of the dynaclc parameters, a measure of
conf~dence that the rocket engIne model would be
stable was acquired

Spear and Horn~erger (3) studIed a model of an
ecosystem ~lth uncertaln parameters using a general
lzed sensltlVlty analysls Fu"\da~ental to thelr ana
lVS1S ~as the concept of a problem-deflnlng behavlor
This behavlor, denoted B, IS a pattert of state
varIable response that ~mIcked the qualItatIve be
haVlor of the real ecosystem they were stud)lng In a
gIven manner Uniform probablllty dlstrlbutions were
assIgned to all uncertaln paraneters A randorr.lv
selected set of paraDeter values, called a paraoeter
vector, ~, was then used to slmulate the syste~ The
resultlng re~ponse elther dld exhlblt the behavlor or
d~d not exhiblt the behaVIor, B. A new set of para
meters was then selected anc the process repeated
SInce only the parameter vector, ~, d~ffered froIT one
slmulatl0n run to the next it was possible to conduct
a serles of runs and to accumulate two sets of para
meter vectors, those WhICh gave rIse to the behaVIor
and those WhICh dId not. Nonparametrlc statlstics
were then used to determlne if the dlstrlbutlOns of
the parameters In these parameter vectors separate
under the behavioral classlflcation. Thus, for the
given model, to what extent the behavior, ~, was sen
SItIve to each of the uncerta~n parameters could be
determlned.

In thlS paper we lnvestlgate the use of slmula
tlon and statlstlcs as a tool for control syste~ de
Slgn In partlcular, we explore the utlllty of thlS
slmulatlon-based approach In the deslgn of conven
tional control systems As eApected, It will be seen
that thls approach has Its greatest utlllty ln deslgn
Ing systems for WhlCh conventional methods fall, 1 e ,
for nonl~near systens w~th uncertaln parameters Ho~

ever, it w~ll be shown that thlS approach also has
advantages over conventlonal technlques In des~gnlng
linear control systems wlth fixed parameters

-41-

The method will be exa~lneo In the followlng
sectior Two exa.,,,les are glve"'} for ",.;.!~! conven
tlo~al des1gr tech-~ques are cDerared WIt the SlCU
latlo"'}-base~ method II" these e~a-?les the plant
paraceters are ass~ced kno~n and f1xed

In the last sectlon we cons1der the deslgn con
trol systems for WhlCh conventional technlques are
not appllcable. The method 15 illustrated through an
e~a-ple of the deslgn of a cortroller for a contin
uous-st1rred tan~ reactor Two of the reactor para
meters assoclated wlth the react10r rate are treated
as unkno~~ with knoon bounds We also d1SCUSS the
results obta1ned fro~ th1S exa~?le "'hen the para
meters are consldered flxed in any reglon wlthln the
orlginal bounds.

METHOD FOR FIXED PLA...\'T PARA.."1ETERS

Classical design techniques, such as the Root
Locus Method, car be used to deslgn control systems
Wh1Ch are Ilnear wlth fixed plant parameters. Design
crHeria are generally given in te~ of a damp1ng
ratlo (dampIng per cvcle) and e1genvalue placement.
Ho"e.er, these are Ind1rect des1gn crIterIa ~~at is
of prime interest 1s the time response of the con
trolled s)stem Unless we are able to solve for the
motion, kno.ledge of pole placement and dampIng ratio
does not give us knowledge of thlS tlme response

If ve are to speclf) the deslgn criterIa by some
measure of the time response then we must be able to
ver1fy thelr satlsfactlon (or no!"-satlsfactio~) for
given values of the control paraceters Here we pro
pose uSlng simulatlon as an experlmental method for
determlning satisfaction of the desig~ criteria.

For a control syste~ with fi~ed plant para.,eters,
the o"'}l, uncertain para~eters are t~e COMClnatio!" of
controller gains which will slnultaneousl\ meet the
deSIgn criterla. Thus, the tas~ of the desIrner IS
to locat~ r~glO",}S In the pa-amerer space where these
condlt.ons "'111 be satIsfled

Using thIS simulatIon-based approach, the proce-
dure 1S as follows

1 Asslgn pro~abllit) dlstrlbutlons to all
of the unknown control galn parameters If
there IS no Informatlon to IndIcate other
Vlse, take these dIstrlbutlons to be unlform
The deslgner vlll usuall, have at least an
order of magnitude estlmatL as to what the
proper range of the control galns should be
If this is not the case a few slculatlons
uSlng 'extreme' values for the galns wlll
deter~ine a range such that comblnations of
extreme values produce undesirable system
response.
2. Randomly select a set of controller para
meters from the a-prlorl d1strlbutions
assigned in Step 1 and simulate the system
Record values of the parameters and the sub
sequent measure (or measures) of the system
response at the end of each 'run.'
3 Repeat Step 2 to obtaIn a slgnlficant
numb~r of trials For this case, 'slgnifl
cant IS subJectlve. In hlS search for
reglons in the parameter space yieldlng
satlsfactory system response the deslgner
must always compromlse between deslred den
Slty coverage of the space (wh1ch IS inflnite)
and allowable computation time.
4 After the slmulation runs are complete,
for each crlterion, separate the controller
parameters into two groups, those WhlCh pro
duced a systerr response that passed the

crlterlo!" and those WhlCh dld not
5. DIS,la) the results of the two groups
for eac' crlterlon. To determlne statlsti
cal slg!"lflcance of the results first 015-

pIa) the tvo groups in the form of cumula
tlve dlstrlbutlons. Then use a no~-paramet
r~c statlstlc, such as the KoloQogrov tvo
sample test statistlc, to determlne If the
dlstrlbutlons are distinct for each of the
crlterla. Determlne if a common reglon
exlSts such that all deslgn criterla are
sa ns fled siQultaneously. If this is not
the case, the deslgner has several options.

Flrst, he can relax one or more of the
crlterla and regroup the data. Since no
slmulatlon is Involved (onl) a regrOJPlng of
results alread} obtalned) the computation
time requlred IS negllgible Step 5 IS then
repeated.

Second, if the design criteria cannot be
relaxed he can obtain a more dense sampllng
of the parameter space llkely to lead to
satlsfactor) response ThlS is accompllshed
by startlng agaln at Step I above, but with
greatl) reduced ranges on the para~eter dlS
trlbutions. Information fror the prlmary ana
lYSlS IS used to focus attentlon only In the
reglons vhere deslgn satisfaction seems likely

Flnally, the possiblllty exists that the
structure of the controller used to control
the system IS not capable of provldlng deslr
able system response In thlS case another
controller must be chosen and the design pre
cess repeated from Step 1. A seleCtlOn pro
cedure of controller structures wlll not be
consldered in thlS paper.

As an lllustratlon of the above method,
tvo exa~ples are glven The first IS strlct
ly a llnear control proble~ for which the
results can be compared wlth those obtained
by a classlcal approach The second 1S a
nonllnear proble~ In this case the results
are compared with the results obtalned from
linearizlng the system uslng the Describing
Function Method.

Example 1. PI PosHion Control with Delay_
~e wish to deslgn a Proportional plus

Integral (PI) controller to control a second
order system wlth a delay. A schematlc of
the s)stem IS shown in Flgure 1

-.. ~.s
~ Kct~..L) e
R - ($ +/) (5+.3) ~.s

Flg 1 Schematlc of Control System

From initlal quiescence and for a unlt
step input, R, the design criter1a are as
follows' (1) A maximum of 20% overshoot wlll
be tolerated. (2) The controlled posltion
viII be wlthin ± 5% of the deslred position
for all tlme greater than or equal to 3 sec
onds (the settling tlme crlterion). (3) The
integral of the error squared, f (R_y)2 dt, 2
will be less than or equal to 0.75 (dlstance)
seconds.

::

s e

I

The controller ga1ns ~c and T1 are the

only uncerta1n parameters of th1s s\stem
Thus, our tasK 1S to select Kc ane '1 such

that the above des1gn cr1ter~a are s1m~lta
neousl) met (1f th1s lS poss1ble) The a
priorl d1strlbutlons on the uncertaln para
c~ters ~ere taken as unlform, ~ from 0 to

c
20 and Tl from 0.1 to 5. The above systet:l

was slmulated 500 times on a PDP-ll/60 mlnl
co~pute, The control galn5 were obta1ned
each 'run' b) randoml, select1ng values from
the correspondlng dlstr1butlons After each
slMulation, the values oi the deslgn para
meters and the gains Wh1Ch produced those
values were recorded After the 500 slmula
tlons, for each deslgn crlterlon, the values
of t~e galns were separated lnto those WhlCh
produced a response wh1ch passed the crl
ter10n and those WhlCh dld not Denslt'
graphs of the gain-palrs wh1Cr. produced
'passes' are sho~~ 1n F1gures 2-4

5 e
I

~ 0~ ~ e·
I I

3 e~ :I e·
I I

:
2 e· 2 e~

I
I e· I 0·

e , , e
e s ~ Ie e '5 e 2Z e e 5 e Ie e 15 e

~: ..::
2Z e

F1g 2 Overshoot crlter-
10n Pass, test
point E 20:'

Flg 3 Sett11ng time
Pass, test pOlnt&
3 0 sec

s e
I

I
~ e·

I
3 e·

:: I
2 e·

I

I :i
e 6 e Ie e IS e 2e e

..::

Flg 4 Integral Crlterlon
Pass; Test pOlnt &
o 75

The computer time necessary to perform
the SlmUlatlons, regroup the data, and ob
tain the above graphs was approx1mately one
hour As can be seen in the above graphs,
a small reglon in the Kc' Tl plane lS common

to all design criterla. Thus, if we choose
a Kc' Ti-palr from thlS reg10n of the para-

meter space our deslgn task lS complete To
better determlne thls common reglon (slnce
we only have four passes fro~ the settl1ng
tlme cr1ter1on) th1S process could be repeat-

-42-

ed but wlth the range of the 3-pr10r1 dis
trl0ut10rs on kc and T1 greatl) reduced

A convent10nal method sucr as the Root
Locus technique ~ght be usee to tr) to so.ve
th1S problem. For T1 = 1 we have pole-zero
cancellatlon and the root locus for the syste~
is shown 1n F1gure 5

F1g 5 Root Locus for S)sterr of
F1g 1 with T1 & 1.

It appears that the opt1mal pole-place
ment 1S as 1nd1cated b) the tr1angle (F1gure
5) For thls case, kc = 2 25 However,

while these ga1ns produce a respo~se which
meets the f1rst rwo crlter1a, the thlrd one
lS not met Frow Flgures 2-4 ~e see that
T1 c I and Kc • 4 wlll satlsf) all deslgn

criterla
If Ti ; 1 (tare Ti - 1.05) pole-zero

cancellatlo~ no longer eXlsts and the root
locus lS drastlcall\ altered Fror the re
sult1ng root locus, 1t 1S uncertal~ that an)
value of ~c wlll sat1sf) the settllng tlrne

criter10n a~ the slowest elgenvalue appears
to be slower than that requ.red to produce
the des1red response As stated earller,
the problem stems from the fact that classi
cal methods of controller deslgn provide In
d1rect results. To obta1n the 1nforrr~t10n
spec1f1ed by the des1gn criterla llsted above
from these methods we must solve for the
motlon For any but the most triv1al ex
am?les, thlS lS 1mpractlcal.

Example 2 Response of a Nonlinear Syster
to a Dlsturbance

It 1S deslred that the nonllnear systeM
shown 1n Flgure 6 respond to a unit step dis
turbance such that the follow1ng crlterla are
met (1) A maXlmu~ of 20~ overshoot wlll be
tolerated (2) The output v~rlable, y, wlll
be wlthln + 10k of tl, un1t disturbance for
all tlme greater than or equal to 5 seconds
(3) The absolute value of the stead) state
error must be less than or equal to 5% of
the dlsturbance Our task 1S to choose k
such that these criter1a are sat1sfled

The s1nus01dal-input Descrlb1ng Function
Method w1l1 be used to help determine the
range of k. The negatlve lnverse of the
descr1blng functlon, N(a), for the relay wlth
dead zone and the transfer functlon for the
llnear blocks, G(l~), were plotted ln the
N)qU1St plane To avold a 11mlt cycle k

must be chosen such that 0 465 k or

k < 0 676 (6 and H are sho~~ 1n Flgure 6)

>-

However, this me~ho<l dO(;:5 not help us deter
rrine if the above crlterla can be n~t or
what valu~ of k < 0.676 we shou:~ ~se if
the) ca~ be met In accltlor, the descrlb
lng funetlon cet~od leads us to belleve that
If k < 0 676 the syster. wlll be asymptou
cally stable. ThlS IS deflnltely not the
case.

0-

FIg. 6 SchematIC of ~onllnear Control
System.

VSlng the simulatlon-based approach the
above system was Slmulated 200 tlmes obtain
Ing eacn run by rando~lv selectIng a value
for k from the assumed u~forc dlstrlbutlon
For each criterlo~ the gaIns were then grouped
into those whIch dId and dId not produce a
response whIch sat:sfled the crIterion The
ga.ns whIch produ~ed 'passes' are sho_T in
FIgures 7-9 on th~ horIzontal a~lS versus
the frequenc) of occurrence in an Interval
of range 0.01

To sallsfy
taneousl) it IS
close to zero

the deslg~ crIteria simul
seen that k must be chosen
Thu~, the deSIgn is co=?lete

12--------------------~ le--------------------~

I
e-

I

~ lS-

I'
~ 4~ ,

~ I' \'

2~ \',J: ~
I \

e ' 1
eel e 2 e 3 e • e s e f

I(

2~ V
I VI

e~I-J ____ _L~ ____ ~ __ ~
eel e 2 e 3 e 4 e 5 e 5

I(

Flg 7 Overshoot criter
lon Pass. Test
point - 20%.

FIg 8 Settllng Tlme
Pass, Test Point-
5.0 sec

Flg. 9 Steady State Error'
Pass, Test Point c

0.05

-43-
METHOD FOR l':,CERTAIN PLM'T PA.R;..."!ETERS

.. 'hen pl.:lrt parameters are uncertalt', In ger,eral,
we are no longer 100~ confIdent that a speclfled set
of controller gains will or 101111 not leae to Satls
faction of deslgn crlterla. In t~lS cas~, it is th~
Job of the deSIgner to maXlmlze tne probabilit' of
success gIven the uncertalnty in the plant para=ete'!'s.
Here, uncertaIn plant para~eters pertaIns to uncer
talnt) In the Input varlables and In the Initlal
state as well as In the syste: parameters.

The procedure is as follolols:
1) Asslgn probablhty dlstrlbuuons to all
of the unknown plant parameters as well as
control gains. Agaln, If there IS no infor
matlon to indicate othe~~se, take these dis
tributlons to be unifo~.
2) Randoml) select a set of plant parameters
and controller galns fo~ the a-prlorl dlS
tributlons asslgned in Step 1 and SImulate
the system Record values of the variables
and the subsequent measure (or measures) of
the system response at the end of each 'run.'
3) Repeat Step 2 to obtain a slgnlficant
nur.ber of trlals Here, use the Kolmogorov
statlstlc [2] ano the deSIred level of con
fldence to help determIne the minImum nurrber
of slmulations that must be performed.
4) After the slmulatlon runs are co"plete,
for each crlterlon, separate the parameters
into two groups, those w~lch produced a
system response that passed the crlterion
and those whieh did not
5) Display the results of the two groups for
pach criterlon In the form of cumulative dlS
trlbutlons and use nonparanetrlc statistlcs
(such as the Kolmogorov two-sa~ple test
statlstlc) to determIne If these dIstrIbutions
are dlSt Inct. Look for regIons in WhlCh there
is a hIgh probabl.hty of 'passes' (or a 10101

probabllit) of 'fails')
If such reglons exist, choose the con

troller galns to maximIze the estlmate of
the probablll.ty of a satlsfactory system res
ponse ThlS rna) not be posslble at thlS pOlnt
50 the deslgner has several optlons.

First, he can relax one or more of the
criteria and regroup the data. As s;ated
prevlously, no slmulation IS involved and the
computatlon time to perform thlS step is
negllgible. Step 5 is then repeated

Second, if the design crlteria cannot
be relaxed this may indlcate that one or more
of the plant parameters must be known to a
smaller range of uncertalnty to be able to
specify a deslgn The cumulatIve dl.strlbu
tions are used to determlne WhlCh plant para
meters are sensitive to satlsfactlon of the
deslgn criteria.

Finally, the possibl.llty exists that the
structure of the contro~ler used to control
the system IS not capable of provlding desir
able system response. In thlS case another
controller must be chosen and the deslgn
process repeated from Step 1.

As an illustratlon of the above method,
we present the followlng example.

Example 3 PID Control of a Contlnuous
Stlrred Tank Reactor

It 1S deslred that a PID controller be
used to control a contlnuous-stlrred tank

reactor (CSTR) about its unstable equlll
brlU~ pOlnt, T = 400 0 K, C = 0 5 g-~~:e/[,
\ohere these symbols are def:..ned bel.:>\o.
The re~ctor lS operatln~ at nonln~l condl
tlons ,"~en there is a sudden decrease ln
ter.perature in the reactor of 5 degrees
Kel'l~ The deslgn crlterlon for the con
trc::ed syste~ lS as follows (1) A maXl
mur of SOl overs~oot \0111 be toleratec.
(2) Tne controlled temperature wlll be
wlthln • 2°l of the deslred temperature for
all tlm" greater thar. or equal to 1 mlnute
(3) The nunber of set pOlnt cross~ngs shall
not exceed 2.

The dynamlc equatlons gIven In [4] and
[5] are

where

dC
V dt - q(Co-C) - VR

V C ..!!!..q C (1 -T) + l.H VR - V (T -T
A

)
p dt p 0

R ~ k
o

C e>-p(-Q/T)

and where

c - concentratlo~ of the reactant of
Interest

C
o

- feed concentratlon of the reactant
of interest

C • heat capaclt) per unlt volume of
p the flowlng ~aterials as well as

the contents of the reactor
~ • molar heat of reactIon, ass~~ec

exotherr:;!c
ko • frequency factor

q • lnfluent flo\o rate
Q ., ratlo of the Arrhenius activation

ener&) for the reactant co the gas
constant

T - absolute temperature of the reactlon
mixture

TA • average coolant tenperature

To - feed temperature

U ~ overall heat transfer coefficlent,
In units WhlCh Include the area
of the transfer surface

V • constant reaction volume

The heat removal term InvolVIng (T-T
A

)
is modeled as is glven ln (6)

where

., 2QcCpc
F u

C • heat capaclty per UDlt volume
pc of the coolant
C

1
., constant

-44-

vol~etrlc flo," rate of the
coolant

Tw C Inlet coolant temperature

The relatlonshlp between the flo," rate
of the coolant ane the controller output lS
shown In Flgure 10 The fractlon controller
output IS glven by

G - G mIn
C • -=-G--=--=-=c:'--

may min

where G • C
2
Y + C

3
(C

2
, C

3
constants). Y is

the output of the PID controller whose trans
fer funcnon is

K
c

1 + 1S
+ _1_ +

T s
1

WhlCh is glven In (7)

lea

I 8a.

i I
63-

%:

i "-

-= ~2-
u I 0

20·

el
I! I e

Fig 10 Control Valve
Characterlstic

Nu~erical values (nominal) for the re
actor paraneters were taken from [5) and [B]
A few of the constants assocIated wlth the
controller were taken from [6]. These values
are as follows

rna
C2-0.l06B""k

cal
Cp .. 100 i_o", C3 - 15 76 rna

cal
Cpc - 1000 i_OK G

max

C1

llH
C

p

k
o

Q

• 1357 cal/(mln-OK)
(.t/min) 1/ 3

_ 200 -,.-_o..:..:K_-:-::-:
(g-moleli)

-1 = exp(25) min

.. 20 ma

Gmin - 4 ma

T .. 350 OK
o

T .. 350 0.,.
W

or ., 0.05

V .. 50 i

The two parameters assoclated with the
reactlon rate, R, wlll be treated 8S uncertain
The frequency factor, k , is assumed to be
wlthln + 5% of ltS nomlgal value glven above
"'hlle Q-: the ratlo of the Arrhenlus activation

energy to the g:ls cons t:lnt, lS assu-ned to
be wlthln + 0 6% of lt5 no~inal value Un i
forn pro~a7~lit\ dlstributlons wll: be
assl£nec to botr 0: these paraneters

Before e>a~lnlng th~s case, however, lt
is interestlng to conslder the case where
the plant paraceters are f1~ed at thelr
nO~lnal values Here, on I} the control galns
Kc' T1 , and Td capable of produclng a de-

slrable s)ste~ response are unkno~n.
For reasons of econorr\ onl) selected

results obtalned for the second d~slgn
crlterlon (settllng tlme crlterlor) w11l be
presented. The procedure lS ldentlcal for
all other deslgn criterla

The above syste~ was slmulated 200 times,
rando~l\ selectlng a 'set' of control galns
from a-prlorl uriform dlstrlbutions for each
run The galns were then separated lnto two
groups, one WhlCh producec a response WhlCh
passed the settling tlm~ crlterlon and one
WhlCh dlC not The cumulatlve dlstrlbutlons
of the two groups for each galn are shown In
Flgures 11-13 Using the Kolmogorov two
sa~?le test sta:lstlc It appears that at the
99~ confldence level the 'pass' and 'fall'
dlstributlonS separate only for the galn Kc'
However, there lS a reglon about Td ~ 5 where

no 'falls' occurred Separatlng the control
actions, 1 e., de:lnlng Td' • KcTd and

T ' • K /T it is clear that these dlstribu-
1 c i
tlO~ do lndeed separate and that a deslgn
eXlsts sucr that the settllng tlne crlter~o~
can be satlsflec If we obtal~ the probabl
Iltv dls:rlbu:lo' (~ore a~curatel), the fre
quenc\ dls:rlbu:lon) fro~ the curLlatlve
dlstrlbuClon for Td' we see In Flgure 14 for

example that if ~c anc Td are chosen such

that 44 ~ Td' ~ 56, the estlrnate of the pro

bablllty is 1 that the settllng tlme cri
terlon ~111 be ~et (23 passes out of 23
sa~ples) USlng the confldence llrr~ts for
the blnomial dlstrlbutlon [9) we can say
that at the 95: confldence level lf p =
proba~lllty of passlng the settllng time
crlterion, 0.84 < P ~ 1

I e------------------~~ I e __ --------__________ ~
I : I

1/ 8- e e.
I ""/~ i

I! 6· \-- ,- e 6-

--
~ ,~ I

) , 2 9 ~r' i / ,.ASS

e 2- e 2-

1,-"
~L---~~S~I!-----I-e~e-----,~s e

KC

I!~=-----~--------~

Fig. 11 Cummulative D1S
trlbutlons for Kc'
Settllng tl.me

I! S I! Ie ~

TI

Flg 12 Cumulative
Dlstrlbutlons
for T

i
, Set-

tllng time

If 34 ~ Td' ~ 70 the estlmate of the pro

bab~llt) ~s 55/57 ~ 0 Q65 of success Slnce ln
th~s reglon there are only 2 falls and 55

-45-

I e
i
I

9 8-
I
I

e 5-
;; I
v I ... e ~-

I ,
e 2l/

e
5 e Ie 2 e
Tv iD

Fig 13 Cumulatlve D1S
tributlons for
T d' Settllng

F~g. 14 'Probabllit)'
Dlstrlbutlons
for rd" Set-

time. tling tlme

passes. Again, using the confidence li~;ts
for the binomlal dIstrlbution, at the 95,.
confldence level we can say that 0.93 < p <
o 99

If it is desired to obtaln a better de
termlnatlon of the confidence limits, Td'

should be restricted to the deSIred reglon
(say 44 < T ' < 56) and more samples should

- d -
be obtained fro~ thlS restricted region

Assunlng that the orlglnal sarrple Slze
of 23 lS lncreased to 100 and stlll no falls
occurred, we would be 95~ confident that
0.96 < p < 1

No~ we conslder the plart parameters ko
and Q to be unce~tain to the degree stated
above ThIS systec was simulated 400 tlmes,
agaIn separatlng the parameters Into cwo
groups accordlng to the blnary deslgn crl
terlon The 'pass' and 'fall' currnulatlve
dlstrlbutio~s for T lS shown in Flgure 15

Although the d~stributions for the galn
Td do separate at the 994 confldence level

it is not apparent what value of Td should
be chosen such that the settllng tlme crl
tenon would most likely be satlshed. In
fact when the control actlons are separated

, f T' the 'pass' and 'fail' distrlbutions or d
do not separate Obtalnlng the 'probab~
litv' dlstributlon fro~ the cun~ula:lve dis
trlbutlon for Td' (Flgure 16) we see that

there is no reglon in which the probablllty
of success seems likel}

I 9

1
I e.

I
I! 5 L

~ I
~ 0 ~r

I! 2

51! lie lSI!
TD

Fig 15 Cumulative Dis
trlbutlons for
for T d' Se tthng
time

Flg. 16 'Probablllty'
DlstnbuClons
for Td" Set-

tling tlme.

-46-

The cu~ulatlve dlstrlbutloPS for k and
T IndIcate that passlng of the sL~t11n~ tIme

1

criterlon is rather Insensltlve to these
para;;lI:ters for the spec1fled rangE- of un
certalnt) In fact, a correlatlon analysls
be~een each of the varlables shows that the
only 's1gn 1flcant' coe!flclent (r = - 0 525)
1S betwee~ Td and Q for the 'pass' dlstrlbu
tlon

It should be noted that if the plant
para~eters are f1xed ap\~here 1n the region
of uncertainty a deslgp e)1sts for the
settllng tlme crlterion however, when ko
and Q are unknown to ~ 5~ and ~ 0.6~
respectlvely, a design IS not apparent
One way of lnterpretlng thlS IS that in
order to deslgn the PI~ controller Q must
be kn~n to a lesser degreE- of uncertalnt)
ThlS would indlcate that experlmentatlon
shoulc be done to help deter~lne Q more
accurately.

It should also be noted that if one
were to atte~pt a deslgn uslng 'worst case'
anal)SlS that thIS sc\e~~ ~ould fall For
the e~a-ple glven aboye, the worst case is
the cO~lnatlon of ko and Q such that the

reactlon rate, R, 15 elther a re3Alru= OT a
lI'ipil:'~r for a glve~ state of the s\sten

If k and Q are chose~ wIthln tnelT
respectiv~ ra~ges of uncertalnt) such that
R is a maXlmu~ for given C and T, as stated
previously, a controller deslgn exists such
that the settling tlIDe crlterlon is met
Ho.ever, if ko anc Q combine such that the

mInlmu· reactlon rate 15 achleved, this de
slgn ~lll fa.1 the settll"g time crlterlon

Also, if "c' Ti and Td are chose. for

the mlnlmum reactlon rate such that the de
slgn crlterlon IS met, anc 10 and Q com-

blne to produce the maxlmum reactlon rate,
the s\ste~ _111 fall the settllng tlme
crlterlon

CO'<CLt:SIO\S

The proposed deslg~ method helps us solve the
follo~lng problem Glven a d)namlC system (generall)
nonl1near) wlth uncertaln system parameters, Initlal
state, input var1ables, or an~ comblnatlon of these,
locate regions 1n the parameter space whlch lead to a
desirable systell' response ~e have seen that th1s
simulatlon-based method utllizes a generallzed sensl
tlVlt) approach WhlCh separates the paraneter space
into reglons whlch produce a system response that
satlsfles gIven design crlterla and reglons ~hlCh do
not

The method provIdes dIrect results; 1 e for a
fixed set of parameters satlsfactlon or nonsatisfac
tlon of the crlterla IS determlned However, for
systems requlrlng 'large' amounts of tlme for thlS
determination the proposed method may not be practical

Flnally, it was seen that in some cases a para
meter may have to be known to a lesser degree of un
certalnty if a satisfactory deSIgn is to be specifIed
ThlS parameter (or parameters) 15 Identlfled uslng the
generallzed sensltlvlty analysis incorporated Into the
deSIgn method

ThlS r~~,arch _as supported In part b) ~/~;
cooperatlv~ agreement number ~CC 2-67 fro~ the NASr
Ames Research Center

REFERE">CES

1. Tiwari, J and Hobble, J , "Random D;.fier
entlal Equanons as Models of Ecos)stems ~'onte

Carlo Sllllulatlon ApFroa::h," Matherr<ltlcal BIOSC~2n.:"s I

Vol 28, 1976, pp. 25-44
2 Spear, R. C , "The Appllcatl.on of "011'".:>goro\'-

Rem 1 Statistics to Problems of Parameter lIncertaIntv
in SysteM .5 Deslgn," Internatlonal Journal of Control,
Vol. II, No 5, 1970, pp 771-778

3. Spear, R. C. and Hornberger, G M,
"Eutrop'licatlon in Peel Inlet-II Identlficatl.on of
CrItIcal Uncertaintles Via Generallzed Sensitlvit)
Analysls," Water Research, Vol 14, 1980, pp 43-49.

4 Bllous, 0 , and Amundson, N , "Chern.;.cal
Reactor Stabiht) and SensltiVlt)," A. I Ch E
Journal, Vol I, No 4, 1955, pp 513-521

5 Perlmutter, D., Stablllty of Che~lcal
Reactor~, PrentIce-Hall, Inc , ~e~ Jerse), 1972, pp
6, 7, 33.

6 Ramlrez, W. and Turner, B , "The DynalLIc
~odellng, Stabll~ty and Control of a Contlnuous
Sorred Tank Chernca1 Reactor," A 1 Ch E Journal,
Vol LS, ~o 6, 1969, pp 853-860

7 Takahashl, RablDS, and Auslander, Control
and D, na-lC Sys tems, Addlson-Wesley Publishlng Com
pany, 1970, p 195

8 Aris, R and Amundson, N., "An Analysls of
CheTt~cal Reactor Stabllity and Control - 11,"
~~~.cal Englneerlng SClence, Vol. 7, 1958, pp 132-
147 

9 Clopper, C J and Pearson, E S, ''The Use 
of Confldenc~ or FIdUCIal Ll~~ts Illustrated In the 
Case of th~ BlnOIual," Blometrika, Vol 26, 1934, pp 
40 .. -413 



PARASOL-II: K Laboratory Simulation and Control Tool 
for Small Computers 

David M. Auslander 
Mechanical Engineering Department 
University of California, Berkeley 

Abst.ract. 

An int.eract.ive computing language designed 
for dynamic system simulation, report.-quality graphics. 
dat.a acquisition. and simple. real-time control is 
described. It.s major features include complet.ely 
general equation definition. including user-defined 
functions and imbedded algorithmic code, sorting of 
algebraiC equations, and totally user-definable 
commands. The underlying interpreter is written 
entirely in the compiled language C. It i~ compact 
enough to run on microcomputers and is portable to 
several popular mini or microcomputers. A command 
set. for sim~lation of differentlal equations and mixed 
differential and difference equations is descrlbed, 
as is another command set for graphics. Sample 
problems are solved using the Simulation and graphics 
capabilities. 

Introduction 

The computing environment described in this 
paper comes from a history of providing computing 
support for a university laboratory involved in 
teaching and research in control and dynamic systems. 
The needs of this lab have included: 

-dynamic system simulation; ordinary differential 
equations, difference equations, and systems 
which combine both differential and difference 
equations. 

-graphics; primarily report quality graphs of 
analytically or experimentally obtained data. 

-control; real-time control of a variety of 
process and servo systems. 

-data acquisition; recordlng of experimental 
data for later analysiS. 

-microprocessor development; teaching of 
microprocessor use in engineering systeMS and 
development of microprocessor-based systems. 

The philosophies guiding this development 
have been, for hardware, that single-user computer 
systems can meet all of these needs an1 are most 
suitabl~ for those t.asks involving real-time 
applications. For software, the transient nature of 
the user population demands easy-to-use and easy-to-learn 
systems, but, at the same time, the diversit.y of jobs 
to be done, even within a single task area, requires 
the flexibility of programmable systems. 

The choice of single-user computers is based 
mostly on considerations of sp~ed and ease of access 
to 1/0 facilities for real-time tasks, extensive use 
of graphics with its high data-rate requirements, 
software s1mplici ty, and the modest sne of most of 
the computing tasks undertdken. The size of a 
single-user computer system is primarily limited by 
the economics of hOh much computing resource can be 

-47-

reserved for the exclusive use of a single individual 
for long time periods (perhaps permanently). In the 
current marketplace (1982), the economics plus 
performance constraints put the target computers for 
this work into the $2,000 to $20,000 range (computer, 
memory, terminal, mass storage; not including additional 
peripherals such as printers, graphic devices, AID, 
DIA ,etc.) 

For the last several years, our software 
needs have been met by a simulation language 
(Parasol[1]), a graphics/data acquisition program, 
and various special purpose programs. The motlvations 
for undertaklng the development of a new computing 
language were the desires to: 1) increase portability 
of the software to a variety of computers, 2) improve 
programmability, 3) introduce programmabillty at the 
command level, and, 4) combine several software 
packages into one. Althou6h these desires are not 
new, recent developments in both hardware and software 
have not only made the project poSSible, they have 
also made it necessary I 

On the hardware side, the middle half of the 
price range cited above is rapidly becoming the prime 
territory for the 16-bit processors. The upper part 
has always been dominated by 16-bit CPU's, but now 
new processors are joining the old ones. On the other 
hand, there is no sign that 32-bit systems will move 
down into that range soon. Memory, both main memory 
and mass storage, is continuing the per-bit reduction 
in cost that has been going on sicce computers were 
first marketed. 

On the software side, the development of 
small computer, high level languages with sufficient 
power and efficiency to be the vehicles for writing 
their own compilers has led to truly portable languages 
that can be marketed for many combinations of processor 
and operating system. In particular, the language 
C[2) combines language elements useful for small 
computer applications, recursive, potentially reentrant 
structure, and commercially available implementation 
for several computer systems. Having the same 
implementation, not Just the same language, is a very 
important fsctor for portability. ihe same power 
that makes these languages' portability possible also 
means that our goals relating to increased 
programmability can be met more easily. 

System Specifications 

Portability, ease-of-use, ease-of-learning, 
programmability, and low development cost all point 
to aD interpretive systen. The compromise in using 
interpretive systems is in execution speed. Some of 
the loss in execution speed, however, can be recouped 
by using semi-compiled, threaded cod~ base on 
reverse-Polish notation (RPN). Threaded code, in 
which all internal references are by address rather 
than be nlllle, can be utilized most effectively if the 



-48-

user-level language is also based on RPN. These 
specifications carryover from previous versions of 
Parasol. Several years of experience in using Parasol 
have shown that the inconveniences associated with 
using RPN were more than offset by added flexibility 
in function calling and the relatively compact, simple 
interpreter that resulted. 

In addltion to the desire for greater 
portability, there were several major extensions of 
Parasol that would extend its usefulness greatly: 
except for the limited inclusion of 1mbedded seque~tial 
code, it was never worthwhile considering any extension 
of further implementatlon of Parasol within its mlxed 
Fortran/assembly language structure. These extensions 
include: 

-User-defined functions at the interpretive 
level; this is very important in generatlng 
compact, readable code. 

-Multiple, interacting simulation blocks: the 
most pressing application of this is for 
discrete-time control of contlnuous-time 
systems. It is also useful for 
multiple-time-scale problems. 

-Integration of full graphics support and 
simulation under the same software umbrella. 

-Hore flexible command structure. 
-Dynamic memory allocation. 

A philosophy that is relevant to meeting these 
goals was dlscussed in the context of Xerox's research 
computer language, Smalltalk[3J. That discussion 
emphasized the concept of "mode-lessness." What this 
means is that tasks at dlfferent control levels are 
all defined and executed b> a common mechanism. This 
avoids many of the usage pitfalls of current computing 
systems that require dlfferent conventions in different 
modes. For example, edltlng,-complling, and runnin~ 

a Fortrdn program all operate according to completely 
different sets of rules. At the run phase, in fact, 
each program usually has a completely different 
structure for interacting with the user. Looking at 
the Wlsh-llSt for t~e new Parasol, and recalling that 
the RPN structure already existed and was to be 
retained, an easy step towards a more mode-less system 
could be made by adopting some of the syntactical 
conventions of Forth(4). The basic idea, as it applies 
to a Parasol-llke appl1catlon, is that the RPN stack 
is accessible to the user via the console. The user 
can really do only two operations: enter values onto 
the stack or cause a functlon to be executed. That's 
alII This mechan1sm is used for all of the usual 
user/computer interaction -- data entry, program entry 
and modificatlon, jnspectlon of internal states, 
command entry, and command definition. In this manner, 
functions and operators used for computational purposes 
(+, -, sin, cos, etc.) are handled in exactly the 
same manner as what are usually referred to as cOMmJnds 
(input, drdw, set, run, etc.) This introdu~es a dpgree 
of mode-lessness into the system in the sense that 
the mechanism used for function definition is also 
used for command def1nition. As in Forth, this 
structure greatly Simplifies debugging be~ause any 
function or command can be exercised directly by the 
user by manually placing the arguments on the stack, 
invoying the functlon, then observing the results on 
the stack. 

Function definition is rrovided thlough a 
define-funct1on function It, however, requires that 
the user input be ipterpreted in a different manner 
than normal input, so use of that function switches 
the user to an input mode. Condi tionals and le.oos 
are implemented within functions, but no specific 

syntactical structure is provided because they are 
also implemented with functions. 

Providing for simulation of systems with 
interdependent, but mathematically distinct sections 
(such as a discrete-time controller and a continuo~s-time 
system) requires the definltion of an entity that can 
be called a simulation block. As long as the syntax 
within a simulation block bears a strong resemblance 
to the previous Parasol syntax, users should have 

little difficulty shifting from old to new. 

This is all that is required in the way of 
general specification for Parasol-II. The next two 
sections deal with the actual 1mplementation, that 
is, the consequences of combining the wish-list with -
the general speCification. The first of these sections 
gives a user's-eye view and the second examines some 
of the internal structure. 

Parasol-II: User's ~ 

Getting Started 

Input to Parasol-II comes through an input 
strea~: text output is sent to an output stream. 
These streams can be set to any file or device, In 
the standard implementation, the input stream is 
initially set to a specific flle, which allows for 
start-up conflguration. The output stream is initially 
set to the console device. On reachlng the end of 
the start-up file, or a close-fil~, the input stream 
reverts to the user console ($lcls; actual function 
names will be given in parentheses following their 
generiC description -- the $ is part of the name). 

To look at Parasol's most primitive 
capabilities, let's assume for toe moment that the 
start-up file is empty. After getting the start-up 
message, the user will get the Parasol prompt, p2>, 
The user can then enter items. An item is a string 
of characters wlth no intervening blanks, tabs, or 
returns. Blanks, tabs, or returns serve to separate 
items from one another. At thlS stage, the item typed 
could be a numeric constant, a primit1ve (i.e., 
predefined) function name, or an item that defines a 
variable. If tne item is a constant, its value will 
be put on the stack. If it is a function, the function 
will be executed. If it lS anythlng else (or if the 
function cannot execute correctly), an error message 
will result. Variable-deflnitton is a spec1al case 
of putting a constant on the stack. 

In m~st implementation, of Parasol, the 
actual console interaction is handled by an operating 
system. Host operating systems pass input information 
to an executing program in complete lines. For that 
reason, a series of items will onl; be lnterpreted 
by Parasol in such a system after an end-of-llne 
indication (usually a return) has been typed. To 
Parasol, however, there 1s no special significance 
to the un1t represented by a line, so it makes no 
difference whether items are typed one per line, or 
several to a line. (The data-input mode, descrlbed 
below, is an exception to this rule.) 

Defining Variables 

Variables have milch the same meaning in 
Parasol that they have in other computlng languages, 
such as ~ortran or Basic. Use of the variable na~e 
(up to five characters) as an item causes the value 
of the variable to be put on the stack. In addition 
to thIs use of a variable name, Parasol provides for 
the prefix IOOdi fier !, which stands for "address-of." 



-49-

When used immediately preceding a variable name, with 
~ intervening spaces, it causes the address identifying 
the variable, rather than its value, to be put on the 
stack. Using this prefix with a variable name that 
has not yet been defined causes Parasol to first 
define the variable (i.e., allocate storage) and then 
to put the address of the newly-defined variable on 
the stack. 

This mechanism can be used to give initial 
values to variables by using the store ($sto) function. 
Ssto first takes a variable's address-off the stack, 
then takes the next value off the stack and stores 
it as the variable's value. Thus the sequence of 
items, 1 &x $sto will define the variable x, if 
necessary, and glve it the value 1. The prefix 
modifier! (for the mnemonic store-at) provides a 
shorthand notation for the store operation, so 1 @x 
is equivalent to the above sequence. 

Use of the address-of prefix is not limited 
to variables. Any type of item can have its address 
placed on the stack. This feature will be very useful 
for a variety of operations. 

Functions and Simulation Blocks 

Define-function ($dffn) is the function used 
to input user-deflned functlons (note that it is also 
a function). The syntax is: 

$dffn fname -body of function- $$ 

The body of the function is any sequence of items; 
fname, the function name, can be up to five characters. 
The S$ terminates the definition. Since Parasol pays 
no attention to ends-of-line (except as an item 
separator), the definition can be spread across any 
number of lines. Whlle Parasol 1s 1n function-definition 
mode, the prompt dffn) replaces the usual p2) prompt 
if more than one line is used. Re-use of a 
define-function with a previously defined function 
name causes the new function to replace the the old 
one. 

Define-simulation-block ($dfsb) provides for 
the input of a set of state equations. The syntax 
of the definition is: 

$dfsb sbname -body of block- endsb 

The body of the simulation block includes equations 
of two types: equations that define state variables 
(dynamic equations) and a~xiliary (algebraic) equations. 
Although In a mathematical sense it Is not strictly 
necessary to allow for the auxillary ~quations, they 
are essential to the efficient simulation of almost 
any reasonably complex system. 

The prefix modifier' is used to mark a state 
variable. Depending on the kind of dynamic equation 
being written, the symbol' can be interpreted as, 
for example, d/dt for differential equations or unit 
time advance for difference eauations. As far as the 
definition of Parasol is concerned, there is no 
particular preferred interpretation of I except that 
it marks a special kind of variable. The syntax for 
definition of a state variable is: 

Isv = -right-hand side of equation- $$ 

The right-hand side of the equation Is any collection 
of items, including conditionals, loops, and store's, 
if desired; ii can also extend across as many lines 

as desired. It must, however, leave a single value 
on the stack when it is done. The differential 
equation dx/dt= -x, for example, could be written as: 
Ix = x $chs $$. The spaces surrounding the "=" are 
necessary, as ar~ the spaces ~urrounding other items. 
$chs is the change-sign function. $$ is the terminator 
for each such state equation. 

The syntax for definition of an auxiliary 
equation is similar: 

av = - right-hand side of equation - $$ 

The differential equation used above, for example, 
could have been written in the form: 

#x=w$$ 
w = x $chs $$ 

The state and auxiliary equations can be 
entered in any order. For the state equatlons, most 
processing algorithms (e.g., a Runge-Kutta integration 
algorithm) are independent of the order in which the 
state variables are defined. The auxiliary variables 
are sorted into their preferred computing order prior 
to simulation. If sorting is lmpossible because of 
circular dependencies (e.g., a=b and b=a) the warning 
"static loop" is issued and slmulation proceeds. 

If the define-simulation-block function is 
used for a simulation block that has already been 
defined, the action of any state or auxillary variable 
equations entered is to ~ those equations to the 
list of equations previousl, defined. unless the 
particular variable on the lefthand side of the 
equation has been previously defined, In whlCh case 
the new equation will replace the old one. 

Initial conditions can be set for any state 
or auxiliary variable in much the same way as values 
for variables are stored, except that the 
initial-condition function ($ic) lS used lnstead of 
store. Limiting (saturation) values can be set for 
any state variable by use of the saturation-limit 
function ($sat). It works by specifying the low 
limlt, high limit and state variable address. For 
example, the state variable xl could be limlted to 
the range -1 to +1 by the following sequence: 
-1 1 &xl $sat. 

Use of Files 
For all but the Simplest problems, it is 

necessary to preserve the user's program on a file, 
using the operating system. This file can be produced 
either by starting with an editor to wr1te the Parasol 
program, or wr1ting the program into Parasol, and 
then using the listing functlons ($lstf for functions 
and $lsts for simulation blocks) to save it. In 
either case, when that file is to be used, it is 
necessary to switch the input stream to the file. 
This is done by calling the function $if11 (for 
input-file). $ifil will then ask the user to enter 
a file name which it will then open as the new input 
stream. 

When the input stream is switched to a file, 
all subsequent input is taken from that file. Thus 
the information in the file is treated in exactly the 
same way as input information that l~ typed directly 
at the console. To make up an input file, use the 
operating system's editing facility to create a file 
that contains the same information that you would 
type when using Parasol interactively. Any material 
from a semicolon to the end of the currect line 1s 



treated as a comment and ignored by Parasol (this 1s 
true for lines that are typed fr~ the console also, 
but, in that case, it is not a very useful feature). 

-50-

An input stream may open another input stream, 
to whatever level of nesting is provided in the version 
of Parasol you are running. When an end-of-file or 
$icls function is encountered, the current input 
stream device or flle is closed and the input stream 
drops down one level. ~e bottom level is the console. 

Host user applications of Parasol make use 
of a library of functions and commands that are 
tailored to a class of problems. These functions are 
written in the normal Parasol user language, but 
provide the abillty to do common tasks easlly. 
Currently defined llbraries lnclude one for simulation 
and one for graphics. Because these Ilbrarles are 
written in Parasol user language, they can be easily 
modified by users to fit special needs. To further 
s1~plify the use of these libraries, the standard 
version of Parasol starts operation with its input 
stream set to a file named startp.p. This file can 
be set to read in whatever Ilbrary 1S needed, to 
customize Parasol for a speciflc application, or to 
make Parasol perform a particular function co~~letely 
dutomatically, with no user interaction at all. 

Output files are created in a si~ilar manner. 
The output stream is initlally set to the con~ole 
terminal. A new output streaM can be opened by using 
the $pfil command Wh1Ch w1ll ask the user for the 
name of the flle to be used for output. All subsequent 
output, except for error messages, will b~cnt to 
the new output device or file. The $pcls conmand is 
used to return the output stream to the console, and 
to assure that the output flle is closed properly 
(note: if files are not closed, many operatlng systems 
will delete them ~hen the program finlshesl). 

Simulation 
The simulation library package provides all 

of the facilities necessary to simulate sets of lInear 
or nonlinear ordinary dIfferentIal equations, sets 
of linear or nonlinear dlfference equations, or systems 
with both differential and difference equatlons. The 
output from the slmulation can be in graphlc form (If 
a suitable graphlc deV1ce IS available), In tabular 
form, or both. If desired, the tabular output can 
be directed to a file or printer by uSlng the $pfil 
com~and to redirect the output stream. 

The differential equations to be solved must 
be In a simulation block named sys; the difterence 
equations must be 1n a sim~latlon block named cntrl 
The default deflnitlon of these blocks is for an empty 
block. If onl~ one of them is used, the other (which 
1s empty) will be ignored by Parasol. 

The graphics varlables and scales are set 
up with the four functions .~v, .vl, v2, and .v3, 
for the horizontal varlable and up to three vertical 
variables. Each of these functlon puts three \alues 
on the stack when they are called the value of the 
variable to be plotted, its minimum value, aa1 its 
maximum value (for scaling). If the fJnction .hv is 
empty, no plotting is done For example, to plot 
t1me on the horlzontal aX1S and a variable named x 
on the vertical axis, the set-up commands would be: 

$dffn .hv .t 0 .tmax $$ 
$dffn .v, x -, , $$ 

The variables .t and .tmax are defined withl~ the 

simulation package and are the running ti~e and the 
termination time for the simUlation. A function 
called "ti~e" 1s defined for 1n "run" as: 

$dffn ti~e .t 0 .tmax $$ 

for convenience in assigning time as the horizontal 
Variable. 

Tabular output is specified through a function 
called print and a variable named .dtp, which determine~ 
the time interval for printing to occur. The function 
prlnt contains a list of the variables whose values 
are to be printed. For example, to print time, and 
the variables x and v every 0.4 tl~e units, the set-up 
commands would be: 

$dffn print .t x v $$ 
0.4 @.dtp 

A value of zero for .dtp causes printing to occur 
every time step. 

If both the continuous-time, dlfferential 
equation block, sys, and the discrete-time, dlfference 
equatlon block, cntrl, are defined, executlon of the 
discrete-time portion is governed by the varlable 
.tsmp, the sampllng interval. "cntrl" will be run 
whenever the elapsed time since the last tlme it was 
run is equal to or exceeds .tSMp. If the step Slze 
and the sample interval are not even multiples, the 
actual sample interval will contain some dither due 
to round-off but ~ill be correct on the average. 

To run the simulation, the step size and 
maximum time are put on the stack as arguments to the 
"run" command, for example, 

0.' 10 run 

The differentlal eouation integration is currently 
carried out by a fourth-order, fixed step size 
Runge-Kutta integratlon algorithm. A summary of the 
simulation package lS given in appendix IV. Several 
simulation examples are included in appendix III. 

Graphics 

The graphics package provides a set of 
commands and functions for the production of report-type 
graphs from data that are on files or computed in 
user-defined functIons. Tick mdrks, axe~, labels and 
titles can be set up for the graphs, and then clotted. 
Scaling is done between the plotter-oriented varlables 
used by the primitive graphics functlon ($gmov) and 
values that urp in problem-or1ented units. Additional 
scaling can be also be done to accommodate unit changes 
between tne ddta actually on the data file and the 
systE'm of units used fer the graph. 

The general procedure for producing a graph 
from a data file is to load Parasol, load the graphics 
command package (either through the startp.p flle or 
by using the $1fil directly), use the various set-up 
commands In the graphics package to specify the 
phySical layoJt of the graph, locatlons of axes and 
ticks, and labels and titles. (These set-up commands 
all start wi th "st," as in sttck for set-ticks, stlab 
for set-labels, etc. 

Th~ particular graphic device to be used can 
be selected with the $gdev function (2 $gdev sets thE' 
graphics output to deVIce 2). Any set-up that is 
peculiar to the device (and most have several 



_ L. _ ... 

-51-

peculiarities) is done with the special-graphics input 
($gspc: 1 $gspc will give a menu of possibilities for 
the currently specified device). Any file or device 
specifications necessary to connect the graphic device 
to the program can be done with the $gfil command, 
which will prompt the user for a file or device name 
(many graphics devices do not require this). 

The data to be plotted is assumed to be 
organized by lines, each line containing a number of 
data values. Each point on the graph consists of one 
point from the line as the x-coordinate, and one point 
for the y-coordinate. Whioh of the data values is 
used for x and which for y is controlled by the x and 
y plot variables (.xvar and .yvar), which can be set 
to any desired correspondence. 

With all of the set-up completed, the actual 
drawing of the graph can be done by invoking the 
commands to draw axes, ticks, etc., as needed, followed 
by a call to the command "graph" to draw the graph. 
("dgrph" can be used to draw the graph with dashed 
lines or "pgrph" to plot only the data points with a 
marker.) Graph will prompt the user for the name of 
the file that contains the data. 

Any of these functions can be accomplished 
interactively, by typing directly into Parasol, or 
from files by redirecting the input stream to a 
specified file. In many cases, it is desirable to 
put the set-up information and data to be plotted in 
the same file. This can be done by putting a blank 
line after the call to graph. ThlS will cause graph 
to leave the input stream where it is. 

The use of the graph plotting functions is 
illustrated by example 4 in appendlx III, in which 
the data that was produced by the simulation of the 
bouncing ball is plotted. Both position and velocity 
vs time are plotted as is a phase-plane plot of 
velocity vs position. A summary of the graph operations 
is given in appendix V. 

Parasol-II: ~ ~ 

Parasol-II is written entirely in C, using 
the C-compiler produced by Whitesmiths, Ltd. The 
major reasons for choosing the language/compiler 
combination are: 
1) the language supports the data structures and 
operators that make writing an interpreter of this 
sort reasonably effiCient, 
2} the language is recursive, which is critical in 
the evaluation of user-written functions that tccess 
other user-written functions, 
3) Whitesmiths' compiler produces re-entrant code so 
that real-time parts of the system that utilize 
interrupts can be written in C also, 
4) Whitesmiths su~ports several popular processors 
(Parasol is currently running on PDP-11's (RT-11 and 
RSX-11), 8080/8085/Z-80 (CP/M or slave), 68000 (running 
as a slave to RT-ll); VAX/VMS 1s also supported but 
Parasol has not yet been compiled for VAX), 
5) separate compilation of program modules is part 
of the definition of the language, 
6) the data types normally needed for our applications 
are supported (integer, long-integer, floating point, 
and double precision floating), 
7) the generated code is reasonahly efficient so the 
use of an interpreter can be considered, 
8) dynamic memory allocation is supported. 

There are also some disadvantages. C is not 
commonly available on popular mairframe computers 

(IBM, CDC, etc.). The Whitesmiths C library is not 
compatible with the UNIX C library: conversion of 
Parasol to UNIX i~ currently underway. 

The concept of an item is central to the 
function of Parasol. The central programming construct 
1s a data structure that is used to describe the 
features of an item. The types of items currently 
defined are: predefined (primitive) functions/operators, 
user-defined functions/operators, state variables, 
auxiliary variables, value variables, constants, 
simulation blocks, text blocks, link blocks (used 
internally to link non-contiguous sections of the 
item directory), temporarily reserved items, and 
undefined items. As each item is defined, an entry 
is created for it 1n the master directory. That entry 
has five parts, some of which have fixed usage, and 
others for which the usage depends on the type of 
item being defined. The first two parts are item-type 
and the item's name. There is a "link" portion that 
contains a pointer linking the item being defined to 
other items of similar type. The remaining two parts 
are pointers that vary with the type of item. For 
example, for state variables, one pointer is to the 
block where its numerical value information is stored. 
This block contains the current value, initial value, 
right-hand-side value (for use by simulation algorithms), 
and saturation limits. The other pointer links the 
state-variable item to the code for its right-hand-side 
expression. 

All of the C code that represents the total 
Parasol processor revolves around either the master 
directory or the stack. The primitive functlons, 
which are all written in C, have their primary 
connection with the rest of Parasol by getting values 
from the stack or putting results on the stack. Some 
of these functions also use the master directory since 
such operations as function definition and function 
listing are themselves primitive functions. 

The basic structure of Parasol can be seen 
best by following the sequence of events that start 
when it is loaded. The key to all proceSSing is the 
input stream. At the highest level, the sequence of 
events is simply get an item from the input stream 
then process it. If the item is a constant, put its 
value on the stack. If the item is a primitive 
function, call the corresponding C function. If the 
1tem 1s a user-defined function, call the 
function-interpreter. If the function interpreter 
finds another user-defined function, it calls itself. 
During program execution, this sequence constantly 
repeats. 

The only deviation from that sequence is 
when the function being executed diverts the lnput 
stream. This can happen (currently) under three 
circumstances: 1) to compile the equations for a 
user-defined function or simulation block, 2) to treat 
the input stream as a data file in which case end-of-line 
1s treated as a significant event, or 3) to read and 
store text strings which are, in effect, items that 
are delimited br ends-of-line. 

The data input mode is the mainstay of the 
graph processor because data for graphs is located 
according to its poSition on the line (using the 
variables .xvar and .yvar). Text string definition 
1s also used in the graph processor to allow the user 
to enter graph labels and titles. It is also used 
internally to print prompting messages to the user 
under various circumstances. Other possible uses 
include cOllstruction of formatted screeons, putting 



identifying information into data files produced with 
$pfil, etc. 

Each of these input-stream-diverting modes 
is identified to the user by special prompts so there 
is no ambiguity as to the type of input that Parasol 
expects or what is necessary to get out of that mode. 

Graphics. which plays such an important role 
in almost every Parasol application, is normally 
implemented through primitive functions. These 
functions only need to be capable of taking coordinate 
pairs and a "pen" value from the stack and drawing 
straight lines between points, and, if the device has 
character capability, taking a string of characters 

-52-

and printing them on the grapbics device at a specified 
location. Because the demand on the graphics drivers 
is so minimal, it is very easy to add new graphic 
devices to Parasol. 

Summary 

The most important question to ask as a 
summary to a descrlption of a programming language 
is, "what makes it unique?" Parasol combines features 
from many different sources, but appears to have a 
niche of its own. There are three types of computlng 
languages that it must be compared to in order to see 
what it has drawn from each. and where it is different 
from any of them: 

-Interpretive languages (Basic, Forth): Like these 
languages, Parasol is interactive. Unlike them, it 
contains internal structures to deflne state and 
auxiliary variables and simulaticn blocks, as well 
as integration algorithms. Unlike Forth, which also 
allows user definition of command structures, Parasol 
is designed for a computatlonal environMent and, 
although not strlctly llmited to those tasks, is 
specifically designed for simulation, graphics, data 
acqUisition, and machine or process control. 

-Compiler languages (Fortran, C, Pascal, etc.): These 
languages are not interactive. Other than that, the 
above comments apply. 

-Simulation languages (CSMP, CSSL, ACSL, etc.): These 
languages contain the same simulation constructs as 
Parasol (state variables, etc.). Many of them are 
not interactive (they take the simulation input and 
translate it into another language, such as Fortran, 
which must then be compiled). Most are large enough 
to require a very large mini computer (VAX size) or 
a mainframe to run. Those that don't, often have 
more limited abilities. Parasol lS compact enough 
to run in a microcomputer Wlthout sacrificing the 
functional capabilities of the larger simulation 
languages. It also allows the most flexibility at 
the command level, because commands are totally user 
definable. 

References 

1. Auslander, D. M., "A Continuous-Systems Simulation 
Language Designed for 1"::'1 Fconomi os," Mathe'1latics ond 
Computers ~ Simulation, XX, 308-313, 1978. 

2. Kernighan, B. W., and D. M. Ritchie,The £ Progromming 
Language, Prentice-Hall, Inc., 1978. 

3. Smalltalk is featured in a series of ar~icles in 
Byte, ~, 8, McGraW-Hill, August, 1981. 

~. Forth is described 1n a series of articles in 

8yte, 21L ~ M~Lraw-Hill, August. 1980. 

APPENDICES 

Because of" space limitations, only Appendix 
III, examples, is included in this version of the 
~ - --- ---

APPENDIX III. Parasol-II Examples 

Example ~ Two-Dimensional Positioning Table 

We are interested in Simulating and controlling 
the motion of a two-dimensional positioning table. 
For this example problem, we will assume that the 
table obeys simple, linear differential equations of 
motion based on a force input from a motor on each 
axis and linear damping. With xl and vl representing 
position in the x and y directions, and vl and v2 
representing the velocities, we can write the 
differential equations as: 

(d/dt)xl = vl 
(d/dt)vl = (fl - bl • vl)/ml 

and 
(d/dt)x2 = v2 
(d/dt)v2 = (f2 - b2 • v2)/m2 

where f1 and f2 are the force inputs, which 2re 
proportional to the inputs to the motor controllers, 
ul and u2, bl and b2 are the damping constants, and 
m1 and m2 are the table masses. If we assume that 
the table is constructed so that the x-axis motor and 
ways ride on top of the y-axis structure, the mass 
of the y-axiS will have to include the x-axis. 

In this, and in example 3 where we apply 
discrete-time velocity control to this system, we 
will assume that we are trying to make the system 
move through the motlon shown in Figure exl.l. In 
this example, we wlil have to provide a table of 
values for the inputs, ul and u2. 

L-------------------~---+x 

Figure ex1.1 Desired Path 

The program listing is shown in Figure ex1.2. 
The listing was created as a separate file using an 
editor, and will have to be read into Parasol to run 
the simulation. Each of the input lines are identical 
to the lines that would be typed to ente,· the equations 
interactively except thdt Parasol would provlde 
appropriate pr~pts which do not appear on this 
listing. The comments could be typed interactively 
also, but would not be stored anywhere. 



-53-

;Two-Dimensional Positioning Table 
;Parasol-II sample problem. Th1S sample illustrates 
;straightforward solution of sets of different1al equations. 
;Although these equations are 11near, the format and 
;procedures for solving nonlinear problems are ident1cal. 

$dfsb sys 
Ixl = vl $$ 
Ivl = fml bl vl • 
fml = km1 u1 • $$ 

;define 
- ml I $$ 

the position state variable for axis 11 
;velocity state equation 
;force applied to table by dr1ve motor __ 
; u1 is the controlling 1nput. 

;Same 
1x2 = 
1v2 = 
fm2 = 

equations for axis '2 --
v2 $$ :def1ne the pos1tion state var1able for axis 12 

:velocity state equat10n fm2 b2 v2 • - m2 I $$ 
kDl2 u2 • $$ ;force applied to table by drive motor 

; u2 is the controll1ng 1nput. 
;The controlling inputs, ul and u2, will be defined by tables. The 

shape we are trying to draw 1S a corner, Wh1Ch reqU1reS a constant 
; velocity in the x-d1rection and a y-veloc1ty that reverses at 
: the corner. 
:The ability to spread equations over many 11nes 
; will be used in this case to 1ncrease the readabllity of the tables. 

ul : 
o 
9 
10 

.t 3 $fng $$ 

u2 : 
o 
11.9 
5.1 
6 
9 
10 

.t 6 $fng $$ 

endab 

;Input table for x-lnput -- constant until the 
1 t1me to stop the motlon, then ~low down to 
1 ; zero lnput. 
o 

;Complete the definlt10n with lndependent 
;var1able (.t), number of pairs (3) and the 
;call to the functlon generator ($fng). 

;Y-input table. The first entry 1s t1me, the second 
1 : is the value. Spreadlng an equat10n across several 
1 ; 11nes 1S used 1n th1s case to 1ncrease r~adability. 
-5 ;11.9 to 5.1 1S the t1me to rever~e the veloc1ty. 
-1 ;Use large brak1ng force, then tc -1 
-1 :Beg1nnlng of stop reg1on. 
o 

;Complete the def1nit1on w1th the 1ndependent 
:var1able (.t), the number of pa1rs (6), and 
;the call to the funct10n generator ($fng). 

;end of simulat10n block 

:Set values for constants (these values can be changed wh1le running the 
; problem by typ1ng slm1lar 11nes w1th new values), 
1 @m1 ~mass of table 11 
0.2 @bl ;damping coeff1cient -- lncludes friction and damping 

; effects caused by coupllng back througr the motor. 
1 @kml :force produced by motor 11 
2.5 @m2 
0.2 @b2 
1.5 @km2 

;Define variables for plotting -- plot xl vs x2 to get a ~icture of 
:the path. A subsequent run w1Il be used to get the v~locity vs time 
;curves (or that data could be sent to a f~le for later plott1ng). 

$dffn .hv xl 0 50 $$ 
$dffn .vl x2 0 15 $$ 

;honzontal variable i'IJd scale 
;vert1cal var1able '1 (the only ~e in this case) 

;Once this file 1s r~ad in, the U$~r can ln1ti~lize the g~phics device and 
; give the run command 

Figure exl.2 Parasol Program Lisitlng 



-54-

The program starts with the definltion of 
the simulation block. The standard slmulatlon package, 
"run," is set up so that the dlfferential equations 
to be solved will be 1n a simulatlon block named 
"sys." The equations themselves are transcribed 
directly from the equatlons llsted above, with the 
suitable translation into reverse Polish notatlon. 
Following the simulation block definltlon, the function 
$fng is used to define tables for u1 and u2. It takes 
paired inputs and gives either an interpolated or 
non-interpolated output based on the value of the 
specified independent variable, wtnch lS ". ttl in thls 
case for running tlme (.t is a reserved name used by 
tlrun" for tl.me). 

Values for the constants follow. These are 
'11 active statements that cause the indicated value 
~o be stored at the named varlable speclfled. The 
symbol n@" is read, "store-at." Finally, the 
~~ecification for the graphlc output is glven. Graphlc 
v~tput is defined by the functlons .hv (for horizontal 
variable) and .v1, .v2, and .v3 for up to three 
vertical variables. In th1S case, the horizontal 
Jariabl~ is specified as x1, the x-axis pos1tlon, and 
~he vertical variable is x2, the y-axls poslt10n, so 
'he actual path taken by the table Wlll be drawn out. 

The actual console interaction (on a CPIM 
system) necessary to run this system is glven in 
Figure ex1.3. The graphlcs device ln that case was 
a video display system. Figure ex1.4 shows the output 
redrawn using a pen plotter. hote that tre grarh 
does not contain any t1ck mark~, labels, etc. The 
normal "run" package does not contaln funCLlons to 
do that i~ order to conserve on ~emory usage. 
Un-notated graphs are usually adequate for deslgn and 
debugging use. When notated graphs are needed, as 
for reports, the usual procedure is to use the "print" 
and "$pf11" funct10ns to prod~ce a data flle wlth the 
results and then to use Parasol's "graph" package tv 
make an annotated graph. Thls is done in exaMple 4, 
where the data p~oduced from example 2. the bouncing 
ball, is drawn (see Figure ex4.2). 

Example ~ Bounclng Ball 

The problem of simulating a mechanical system 
including some sort of bounce, that is, intermittent 
contact, requires the use of dec15ion 10glc because 
the effective d1fferentlal equatlon changes depending 
on whether the object is in contact or not. A simple 
e~ample of this is the bouncing ball. In this example, 
we handle the bouncing ball problem by as~urling that 
there is a very stiff spring located near the ground, 
Figure ex2.1. The different1al equation describing 
this motion is: 

(d1dt)x = v 
(d/dt)v = [fs + fd - fg)/m 

where 
fd = - b v (damping force) 
fg = const (gravity force) 

and 
fs = 0 if x > xz 

k (xz - x) otherwise 

The Parasol program to implement this, Figure 
ex2.2, uses the if-thpn-else construct to simulate 
the intermittent contact. This 1s occanplished wlth 
the Parasol functions $iftr, $else, $ndif. 

Although this program will give a correct 
result, it is highly inefficient because the very 

A>par2 
Parasol-II; last updated 24-Feb-82 

Input stream is in1tially set to file: startp.p 
p2)$lf11 ';tead 1n the equation file 
File' 2d.p 
p2>$gln1 ;lnitialize the graphics 
Godbout Spectrun Graphlc board 
p2>axes 
p2>.1 10 run ;run the simulation, dt=0.1, tmax=10 
p2> 

Figure eX1.3 Console Interaction for Two
DimenSional Motion Simulatlon 

Figure ex1.4 SImulated Response of 
Two-D1mens10nal Motlon 

iT 
I 

II 
Figure ex2.1 A Model of the Bouncing Ball Problem 

stiff spring demands a very small step Size in the 
integration algorithm in order to meet both accuracy 
and stability constraints. In this problem, however, 
that can be overc~~e without using either a 
variable-time-step integration algorithm, or a stiff 
equation algorithm, The step Size can be made a 
function of position and set to a small value when 
the ball gets close to the sprlng. When it moves 
away, the larger step size of free flight can be used. 
This is done in the program by settlng the step slze, 
which is the reserved variable .dt, equal to the 
desired step size, depending on x. 

The definition of the simulation equations 
ends with the "endsb" statement. Following the 



-55-

:Sample Parasol-II Problem 
:Bouncing Ball, showing the use of logic statements within a 
: differential equation definition. 
$dfsb sys 
Ix = v $$ 
Iv = fs fd + fg - m / $$ 
:x is position measured from the ground uP: v is velocity. 
fa = 

;Note that statements can be continued over as many 
;Th1s one will be broken up to allow for comments. 

lines as desired. 

xz x - $dup 
;this puts two 
:distance from 
$iftr ks • 
$else $drop 0 

copies of the value of xz-x on the stack. xz is the 
that ground that the spring becomes active. 

$ndif 

:If xz-x > 0 this sets fs to k·(xz-x). 
;Otherwise, the spr1ng force 1S zero (the $drop 
:gets rid of the extra (xz-x». 
:End the if-clause 
:end of statement defining fs. $$ 

.dt : xz 2 • x - $iftr dtl $else dt2 $ndif $$ ;select the value for the 

fd = b v • $chs $$ 
:Damping force. 
endsb 
, 
:End of simulation block definltlon. 
:Now set values for parameters: 

:t1me step on the bas1s of posltlon 
:relative to the spr1ng. A "buffer" 
:zone is allowed so the contact pOlnt 
;is calculated accurately 

1 &x Sic ;initlal conditlon for position (v(O) = 0) 
1 @m :mass of "ball" 
0.1 @dt2 :step size when in free flight 
0.01 @dtl ;step Slze during "bounce" 
200 @ks ;spring constant 
0.05 @b ;damping coeff1c1ent 
0.1 @xz ;actlve dlstance of spr1ng 
1 @fg ;gravity force 
:Define graphics: 
$dffn .hv .t 0 .tmax $$ 
$dffn .vl x 0 1 $$ 
:Set up tabular output 
$dffn pr1nt .t x v $$ 
$pfil 
bounce.dat 
, 
:Run the simulatlon 

to print on a file named bounce.dat 

;redirect output stream 

$gini axes ;lnitialize graphic device and plot axes 
0.1 5 run 
$pcls :close the output file 

Figure ex2.2 Parasol Program ListIng 



- , 
-56-

differential equations, there is a section in which 
parameter values and initial conditions are assigned. 
Next, the functions that define the graph to be 
produce~ are deflned. The function .hv, for the 
horizontal variable IS set so that running time will 
be the x-axis variable. (The functlon "time" could 
also have been used In place of the explicit reference 
to the predeflned varlables .t for running time and 
.tmax for" the maximum slmulation time.) Only one 
vertical variable (y-axis) IS defined. It is defined 
with the function .v1 and 1s the ball's position, x, 
scaled to a range of 0-1. 

The tabular output is defined with the "print" 
function. The variables .t (running tlme) , x, and v 
will be tabulated. Slnce no print interval is 
specified, the tabular output wlil be done every tlme 
step. The tabular output is directed to the file 
"bounce.dat" by use of the $pfil command. 

Finally, the simulation is actually run. 
The graphic device is inltialized ($glnl), axps are 
drawn, and the simulation is run Wlth a step Slze of 
0.5 and a final time of 5. Note that in this case, 
the step size will be recomputed in the progra~, so 
the specificatlon ~ade In the run command will be 
ignored. At the completlon of the run, the output 
file is closed ($pcls) so that the operatlng system 
will not treat it as a temporary flle and erase it 
when the program is termlnated. The graphlcal output 
is shown 1n Figure ex2.3. No graph labels or tick 
marks are included wlth the "run" package in order 
to conserve memory. These are avallable in the "graph" 
package and can be loaded wlth the run package If 
sufficient memory IS avallable. The tabular output 
will be used as an example of the graphics operation 
of Parasol. 

Figure ex2.3 The Ball's Position v~ Tlme 

The program as shown ~'as run completely from 
a file. When Parasol was IOddpd, 8.5suming that the 
simulation (run) package was loaded from st~rtp"p, 
the input stream was lwmediately dlrected to this 
file with a $ifil command. From then or., t'le operation 
was completely automatic. To run the proble~ 
interactively from the console, the user input would 
be exactly as shown here. The only difference 1n 
appearance would be that Para~ol would prl~t prompts 
to the u~er when it was expectIng input. 

Example 1- Velocitr Control ££ ~ ~men~onal 
Positioning T~ble 

Assume that we have added a microprocessor-based 
control system to regulate the velocities of the 
positioning table of example 1. The control object, 
the table, is simulated by the same differential 
equation as before, but the controller is a discrete-time 
device that should be slmulated by a dIfference 
equation. By making use of the abllity to define 
more than one simulation block, we can simulate both 
simultaneously. 

The "run" package is set up to handle two 
simulation blocks, the one called "sys" that we have 
already seen in earlier examples for differential 
equations, and a second simulation block called "cntrl" 
for discrete-tlme equations. In the dlscrete-time 
block, the operator "0" is defined as "next-value-of." 

The listing for the program is shown in 
Figure ex3.1. The controllers in the block "cntrl" 
use the PI algorithm in the "velocity" or difference 
form. The only other dlfference from the program of 
example 1 is that instead of putting in a table of 
values for the inputs, u1 and u2, they are calculated 
by the controller and the velocity setpoints, vxset 
and vyset, are entered wlth tables. In the section 
where values are set for constants, the varlable 
".tsamp" is glven a value. ThlS is the sample time 
for the dlscrete-tlme controller and is a reserved 
varlable defined in the "run" package. 

The program is run in the same manner as the 
original problem in example 1. The results are shown 
in Flgure ex3.2. 

Figure ex3.2 Two-Dlmenslonal Motion ~lth 
Veloclty Control 

Example ~ Report Grnphics for the Bouncing Ball 

In add1tion to the graph of ball position 
vs time done at the tlme of slmulation (example 2), 
a data file containing time, poSition, and velocity 
for each computed point was also produced. That file 
serves as the basis fOI' the report-type graphs that 
we w1ll do here. 

Each line of the file has time, position, 
and velocity in that order. The variables .xvar and 
.yvar can be set to indlcate which of those values 
should be plolted on the x-aX1S and ~hich on the 
y-dxis. In that way, we will be able to produce three 
graphs, position vs time (a duplicate of the graph 
done in example 2, but annotated), velocity vs tlme, 
and velo~ity vs position (a phase-plane plot). 

Figure ex4.1 shows the listing of the file 
used to make these graphs. As usual, the same commands 
could have been given interactively, if desired. In 
the interactive mode, additional prompts are given 



-57-

;Velocity Control of a Two-Dimensional Positioning Table 

;Parasol-II sample problem. This sample illustrates 
;the use of multiple simulation blocks. In this case, 
tone block, "sys," is a control object (the two-dimensional positioning 
:table of the first example) and the other block, named "cntrl" 
tis the controller. The function "run" is set up to handle 
:two such blocks. The block called "cntrl" is assumed to be 
:a discrete-tlme controller that is active every ".tsamp" tlme 
:units. 

$dfsb sys 
Ixl = vI $$ 
Ivl = fml bl 
ul = mvx $$ 
fml = kml ul 

;define the position state variable for aX1S II 
vI • - ml I $$ ;velocity state equation 

;input comes from the controller 
• fmll $chs fml1 Slim $$ 

;force applied to table by drive motor -
; ul is the controlling lnput. fml1 lS the 

:Same equations 
: limiting value of force that can be applled. 

for axis 12 --
Ix2 = v2 $$ ;define the position state variable for axis '2 
Iv2 = fm2 b2 v2 • - m2 I $$ :velocity state equation 
u2 = mvy $$ 
fm2 = km2 u2 • fm2l $chs fm21 Slim $$ 

;force applied to table by drive motor --
;ul and u2 will be determined by the velocity 
;controller. 

endsb tend of simulatlon block 

$dfsb cntrl 

ervx = vxset vl - $$ 
lervxl = ervx $$ 
ervy = vyset v2 - $$ 
'ervyl = ervy $$ 

;This is the controller block. It is solved 
; as a discrete-tlme dlfference equatlon wlth a 
; sample time of .tsmp 
;x-axis velocity error 
tone sample time delay of ervx; ervx(i-l) 

Imvx = ervx ervxl - kpvx • ervx kivx • + mvx + $$ 
;PI controller, using 
; velocity algorithm 

Imvy = ervy ervyl - kpvy • ervy klVY • + mvy + $$ 
endsb ;End of controller equations 

$dffn vxset 
o 1 
9.5 1 
10 0 

.t 3 $fng $$ 
$dffn vyset 

o 1 
~.9 1 
5.1 -1 
9.5 -1 
10 0 

.t 5 $fng $$ 

" 
;Table for veloclty setpoints 

;Deceleration zone 

;Set values for constants (these values can be ~hanged while running the 
; problem by typlne simllar Ilnes wlth new values). 
1 @ml ;mass of table '1 
0.2 @bl ;damplng coefflclent -- includes friction and damping 

1 @kml 
2.5 @m2 
0.2 @b2 
1.5 @km2 
5 @fmll 
5 @fm2l 
.2 @.tsmp 
~ @kpvx 
0.~5 @kivx 
q @kpvy 
0.~5 @kivy 

; effects caused by coupling back through the motor. 
;force produced by motor '1 

;force limit for actuators 

;sample interval for controller 
;controller gains 

;Define variables for plotting -- plot xl vs x2 to get a picture of 
;the path. A subseQuent run will be used to get the velocity vs time 
:curves (or that data could be sent to a file for later plotting). 

$dffn .hv xl 0 20 $$ 
$dffn .vl x2 0 10 $$ 

:horizontal variable and scale 
jvertical variable II (the only one in this case) 

;Once this file is read in, the Ilser cen initialize the graphics device and 
; give the run command 

Figure ex3.1 Perasol program 11sting 



-58-

:Graph1cs commmands to draw a notated graph for 
: the bouncing ball sample problem. 

:These instructions will put three graphs on a single 
: sheet -- pos1tion vs t1me, veloc1ty vs t1me and 
: velocity vs position. 

8.5 e.hsiz 
6 e.vsiz 
.vofr 7.5 + e.voff 
sttck 
o 1 2 3 II 5 $$ 

o .5 1 $$ 
stlab 
o 
1 
2 
3 
II 
5 

o 
0.5 
1 

stttl 
Time 

Position 

5.06 @.xmax 

$g1n1 
axes t1ck label t1tle 
graph 
bounce.dat 

;set graph size 

;set offset for top graph 
;set the x and y aXiS ticks 
;T1rne goes from 0 to 5 -- ticks are 
: terminated With a $$ Since they are 
; imbedded in a function 
;Pos1tion goes frOM 0 to 
:sett1ng labels uses the text-in mode 

;Each label 1S given on one line. Each group 
;of labels 1S term1nated with a null line. 
;set the titles 

• 
f 

;Each title 1S a line. terminated by a null line. 
; The extra null llne is for the graph t1tle. 
; WhiCh we aren't uS1ng here. 
;x-aX1S scale (the largest value in the file for 
; time is ~.06) 
;In1t1al1ze the graph1cs device 
;Draw axes •••• 
;draw the graph •• the next line is the file name 

;Now do graph of 
.voff B - e.voff 
-1.5 e.ymin 

velocity vs time 

1.5 e.ymax 
sttck 
o 1 2 3 II 5 $$ 
-1.5 -1 -.5 0 .5 
stlab 
o 
1 
2 

1 1. 5 $$ 

;move graph down 
;set y-aXiS scales 



3 
4 
5 

-1.5 
-1 
-.5 
o 
.5 
1 
1.5 

stttl 
Time 

Velocity 

-59-

3 @.yvar ;set the y-axis variable to 13 in the file 
axes tick label tltle graph 
bounce.dat 

;Now do the phase-plane 
.voff 8 - e.voff 

plot, posltion on the x-axis, velocity on the y-axis 
;move graph down 

1 e.xmax 
2 @.xvar 
sttck 
o .5 1 $$ 

;position scale 
;x-axis variable is now 12 
:set ticks 

-1.5 -1 -.5 0 .5 1 1.5 $$ 
stlab 
o 
0.5 
1 

-1.5 
-1 
-.5 
o 
.5 
1 
1.5 

stttl 
Position 

Velocity 

exes tick label title graph 
bounce.dat 

Figure ex4.1 Graphics Commands to Draw Bouncing Dall 
Position, Velocity and Phase-Plane Graphs 
(continued from previous page) 



~60-

to indicate the formats for tick and label inputs. 
The beginning part of the flle sets the graph Slze 
(which, in this case, is different from the standard) 
and moves the graph up to the top of the page so that 
we can fit three graphs on a slngle sheet (the graph 
is being made with a Houston DMP-4 pen plotter). The 
first graph uses the default values of 1 and 2 for 
.xvar and .yvar to get the position vs time graph. 
Ticks, labels, and titles are set with the commands 
sttck, ~tlab, and stttl, the x-aX1S scale is set to 
correspopd to the maximum value in the file (5.06), 
the grapA1cs device is initialized ($gini), the axes, 
etc., are drawn, and, finally, the graph itself is 
drawn wi th the "graph" command. The line followi ng 
the "graph" command specifies the data file. 

The procedure is repeated for the remaining 
two graphs. To run thlS program, Parasol 1S loaded 
with the "graph" package. Any inltlalizing that has 
to be done for the specific graph1c device is then 
done. This file is then invoked with a call to $lfil 
and the graphs are drawn without any further operator 
intervention. The resulting set of three graphs is 
shown in Figure ex4.2. 

c 
a 
~ 

VI 
a 

a.... 

:J'I 
~ 

u 
a 
OJ 

> 

:Jl 
~ 

u 
a 
OJ 
> 

1.5 

1 

.5 

-1 

-1. 5 

1.5 

-1.5-

Figure ex l l.2 

Tlm~ 

Tlm~ 

~ 
l'1.5 

Pasl tlon 
Notated Graph for 
Bouncing Ball S1muliltlon 

1 



Controlled Ecological Life Support Systems (CELSS): 
A Bibliography of CELSS Documents Published as NASA Reports 

1. Johnson, Emmett J.: Genetic Engineering possihilities for 
CELSS: A Bibliography and Summary of Techniques. (NASA Purchase 
Order No. A73308B.) NASA CR-166306, March 1982. 

2. Hornberger, G.M.; and Rastetter, E.B.: Sensitivity Analysis 
as an Aid in Modelling and Control of (Poorly-Defined) Ecological 
Systems. (NASA Purchase Order No. A77474.) NASA CR-166308, March 
1982. 

3. Tibbitts, T.W.; and Alford, D.K.: 
Support Systems: Use of Higher Plants. 

Controlled Ecological Life 
NASA CP-2231, 1982. 

4. Mason, R.M.; 
Support Systems: 

and Carden, J.L.: Controlled Ecological Life 
Research and Development Guidelines. NASA 

CP-2232, 1982. 

5. Moore, B.; and R.D. MacElroy: Controlled Ecological Life 
Support Systems: Biological Problems. NASA CP-2233, 1982. 

6. Aroeste, H.: Application of Guided Inquiry System Technique 
(GIST) to Controlled Ecological Life Support Systems (CELSS). 
(NASA Purchase Order Nos. A82705B and A89697B.) NASA CR-166312, 
January 1982. 

7. Mason, R.M.: CELSS Scenario Analysis: Breakeven Calculation. 
(NASA Purchase Order No. A70035B.) NASA CR-166319, April 1980. 

8. Hoff, J.E.; Howe, J.M.; and Mitchell, C.A.: 
Cultural Aspects of Plant Species Selection for a 
EcologIcal Life Support System. (NASA Grant Nos. 
2404.) NASA CR-166324, March 1982. 

Nutritional and 
Controlled 

NSG-240l and 

9. Averner, M.: An Approach to the Mathematical Modelling of a 
Controlled EcologIcal Life Support System. (NASA Contract No. 
NAS2-10133.) NASA CR-166331, August 1981. 

10. MagUIre, B.: Bibliography of Human Carried Microbes' 
Interaction with Plants. (NASA Purchase Order No. A77042.) NASA 
CR-16630, August 1980. 

-61-



-62-

11. Howe, J.M.~ and Hoff, J.E.: plant Diversity to ~upport 
Humans in a CELSS Ground-Based Demonstrator. (NASA Grant No. 
NSG-2401.) NASA CR-166357, June 1982. 

12. Young, G.: A Design MethodoJoqy for Nonlinear Systems 
Containing Parameter Uncertainty: Application to Nonlinear 
Controller Design. (NASA Cooperative Agreement No. NCC 2-67) NASA 
CR-166358, May 1982. 

13. Karel, M.: EvaluatIon of EngineerIng Foods for Controlled 
Ecological Life Support Systems (CELSS). (NASA Contract No. NAS 
9-16008.) NASA CR-166359, June 1982. 

14. Stahr, J.D.~ Auslander, D.M.: Spear, R.C.~ and Young, G.E.: 
An Approach to the Preliminary Evaluation of Closed-Ecological Life 
Support System (CELSS) Scenarios and Control Strategies. (NASA 
Cooperative Agreement No. NCC 2-67) NASA CR-16~368, July 1982. 

15. Radmer, R.: Ollinqer, 0.: Venahles, A.: Fernandez, E.: 
AJgal Culture Studles Related to a C]osen Rcologlca1 Llfe Support 
System (CELSS). (NASA Contract No. NA~ 2-10969) NA~A CR-166175, 
July 1982. 

16. Auslander, D.M.: Spear, R.C.: and Young, G.F..: Application 
of Control ~heory to Dynamic Systems Slmulation. (NASA Cooperative 
Agreement No. NCC 2-67) NASA CR- 166383 , August 1982. 



1 Report No 2 Government Accession No 3 Recipient's Catalog No 
NASA CR-166383 
4 Title and Subtitle 5 Report Oate 

Appllcatlon of Control Theory to Dynamic Systems 
August 1982 

Simulatlon 
8 Performing Organization Code 

7 Author!s) 

* 8 Performing Organization Report No 

Auslander, D.M., R.C. Spear, and G.E. Young 

10 Work Unit No 
9 Performing Organization Name and Address * T5992 
Departments of Mechanical Engineerlng and Biomedlcal 
and Envlronmental Health Sciences 11 Contract or Grant No 

University of Californla, Berkeley, CA 94720 NeC 2-67 
13 Tvpe of Report and Penod Covered 

12 Sponsoring Agency Name and Address Contractors Report 
Natlonal Aeronautlcs and Space Admlnlstration 14 Sponsonng Agency Code 
Washlngton, D.C. 24056 199-60-62 
15 tpplementary Notet Technical Monitor, Mall Stop 239-10, Ames Research Center, Ro ert D. Mac lroy, 
Moffett Fleld, CA 94035 (415) 965-5573 FTS 448-5573. The 16th in a series of 

CELSS reports. 

16 Abstract 

Thls report contains 3 papers which consider the application of 
control theory to dynamlc systems slmulatlon. These artlcles contain theory 
and methodology appllcable to controlled ecologlcal llfe support systems 
(CELSS). Discussed are spatlal effects on system stabllity, design of control 
systems wlth uncertaln parameters, and an interactlve computing language 
(PARASOL-II) designed for dynamlc system simulatlon, report-quality graphlcs, 
data acqulsltlon, and slmple real-tlme control. 

17 Key Words (Suggested bv Author(s)) 18 Distribution Statement 

CELSS, Llfe Support Systems 
Control Theory 
Dynamic Systems Unclasslfled - Unllmlted 
System Stablilty STAR Category 54 
Slmulatldn Language (PARASOL-II) --

19 Security Oasslf (of thiS report) 20 Security Classlf (of thiS paga) 21 No of Pages 22 Price" 

UnClasslfled Unclasslfied 63 

"For sale by the National Technical Information Service SprIngfield, V,rg,nl. 22161 



End of Document 


