
•

NASA Contractor Report 165975 NASA-CR-165975
19820026253

Evaluation of Automated
Decisionmaking Methodologies
and Development of an
Integrated Robotic System
Simulation

Study Results

J. W. Lowrie, Dr. A. J. Fermelia, D. C. Haley,
K. D. Gremban, J. Van Baalen, and R. W. Walsh

Martin Marietta Aerospace
Denver Aerospace
P.O. Box 179
Denver, Colorado 80201

Contract NAS1-16759
Septem ber 1 982

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

U-.NGLCY RSSSARr.H CENTER
Ll3e<f'RY. N:'I,SA

H/,:.:?TCN. VIRGINIA

111
NF01886

NASA CR-165975

Study Results

r

September 1982

EVALUATION OF AUTOMATED
DECISIONMAKING METHODOLOGIES
AND DEVELOPMENT OF AN
INTEGRATED ROBOTIC SYSTEM
SIMULATION

Prepared by:

James W. Lowrie
Dr. Alfred J. Fermelia
Dennis C. Haley
Keith D. Gremban
Jeff Van Baalen
Richard W. Walsh

This work was performed for NASA
Langley Research Center under
contract NAS1·16759.

MARTIN MARIETTA AEROSPACE
DENVER AEROSPACE
P.O. Box 179
Denver, Colorado 80201

FOREWORD

This document covers the work performed on contract NASl-l6759, Evaluation
of Automated Decision-Making Methodologies and Development of Integrated
Robotic System Simulation, for the Langley Research Center of the National
Aeronautics and Space Administration. It was prepared by Martin Marietta
Aerospace in accordance with the contract, Part II, Statement of Work.

The final report for this study consists of three volumes:

I NASA CR-l65975 - Study Results

NASA CR-l65976 - Appendix A, Software Documentation

NASA CR-l65977 - Appendix B, Derivation of Requirements Tool Dynamics
Appendix C, Derivation of Simulation Tool Dynamics
Appendix D, Derivation of Requirements Tool Control Law
Appendix E, Simulation Methodologies

Comments or requests for additional information should be directed to:

Jack Pennington
Mail No. l52D
Contracting Officer Representative
Langley Research Center
Hampton, VA 23665

ii

or James W. Lowrie
Mail No. 0570
Martin Marietta Aerospace
P.O. Bolt 179
Denver, CO 80201

c

CONTENTS

1.0
1.1
1.2
1.3

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.0
3.1
3.2
3.3

4.0
4.1
4.2
4.3
4.4
4.5
4.6

5.0
5.1
5.2

6.0

Introduction •
Background •
Contract Objectives
Report Organization

Decision-Aiding Techniques
Decision Tree Manipulators •
Problem Solvers
Rule-Based Systems •
Logic Programming Languages
Representation Language Languages
Development Tools
The Expert System-Expert System
References

Robotic Simulation •
System Definition
Analysis Tool Set
Post Processing

Manipulator Control Techniques •
Introduction •
Problem Description
Approaches to Servo Control
Predictor Model Control and Equation Error Parameter Estimation.
Conclusion •
References •

ROBSIM Support for ROSS
Introduction •
Approach •

Conclusions and Recommendations

iii

Page
1-1
1-1
1-2
1-3

2-1
2-3
2-4
2-6
2-7
2-8
2-9
2-10
2-12

3-1
3-3
3-8
3-40

4-1
4-1
4-2
4-4
4-8
4-11
4-12

5-1
5-1
5-3

6-1

FIGURES

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13

3-14

3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27

4-1
4-2
4-3
4-4
4-5
4-6

5-1

TABLES

3-1

5-1
5-2

6-1

ROBSIM Top-Level Structure • • • • • •
Typical Hinge Joint • • • • •
Typical Swivel Joint • • • • • • • • • • • • •
Typical Sliding Joint • • • • • • • • • • • • •
Graphics Representation of Puma-600 Manipulator
Simplified and Detailed Graphics Representations •
ROBSIM Analysis Tool Structure • • • • • • • • • • •
Functional Flow of Requirements Analysis Tool
Joint Torque Plots in Inertial Coordinate System • • • • • •
Joint Torque Plots in Joint Coordinate System
Sample Dynamics Output, Initial Conditions •••
Sample Dynamics Output • • • • • • • • • • • •• ••••
Martin Marietta SOS Manipulator Depicted in a Laboratory
Environment • • . • • • • • • • .
Martin Marietta SOS Manipulator in Space Structure Assembly
Environment •••. • . . • • . • • • • • • • • • .
Closed-Loop Simulation Tool Structure • • • • • •
Joint Model . . • . . • . . . • • • • • . •
Typical Component Model ••••••• • • • • • •
System-Level Block Diagram of Joint Model and Kalman Filter •••
N-Joint Model Structure • • • • • • • • • • • • • • •
Example Servo System • • •
Amplifier Dynamic Model
DC Motor Model • • •

.
Load Dynamic System • • • • • •
Joint Model Response for Gain = 20 • • • • • • • •
Joint Model Response for Gain Values of 5, 10, 15, and 20 ••••
Control Error Without Kalman Filter Feedback • •
Control Error Using Kalman Filter Feedback •••••••

Generic Manipulator System •
Inverse Control ••••••
General Adaptive Controller
General Parameter Estimation •
Equation Error Parameter Estimation
Adaptive Control Flow Diagram

Simulation: A Foundation for the GCSC

.
.. .

Values Used for Closed-Loop Transfer Function

Technology Issues •••••••••
Man-In-The-Loop Simulation Activity

Simulation Considerations

iv

3-2
3-3
3-4
3-4
3-6
3-7
3-8
3-10
3-14
3-15
3-17
3-18

3-19

3-20
3-21
3-23
3-24
3-30
3-31
3-32
3-33
3-34
3-35
3-37
3-37
3-39
3-39

4-2
4-4
4-6
4-6
4-9
4-10

5-6

3-36

5-2
5-5

6-3

1.0 INTRODUCTION

1.1 BACKGROUND

During the last decade, the need for automation technology in NASA
advanced missions has become apparent. This trend has been driven by many
factors including the following:

Cost of Ground Support - Current ground operations are reliant on large
teams of specialists to perform functions such as fault detection, fault
isolation, failure mode workaround, command processing, and tracking
processing. It is becoming less feasible to maintain these large cadres
of technical people during flight operations due to economic limitations.
Furthermore, these individuals in a typical operation scenario are under
utilized until a failure occurs. With the maturing of decision-aiding
techniques such as expert systems, it is becoming feasible to supplement
individuals with aids that more effectively extract information from the
ever-increasing volume of data. This, in turn, will enable the large
cadres of individuals to be significantly reduced while increasing the
ability of operators to make decisions effectively.

Man Support in Hazardous Environments - The cost of supporting man in the
hostile space environment is necessarily much larger than that of
supporting an unmanned system. Manned vehicles must incorporate costly
life support systems which decrease vehicle payload capacity. The quality
of components and level of redundancy for manned vehicles must be higher
than those for unmanned missions. However, human problem solving capa
bilities are still required for many applications. For some near-term
applications, it will be feasible to automate the control process in order
to remove man from the vehicle. For more complex operations, problem
solving abilities may be remotely incorporated through telepresence and
remote man-in-the-Ioop control. As the state of the art in automated
problem solving advances, the individual can be removed from the control
loop and will become a supervisor over an automated system.

Non-Optimal Human Control - Laboratory studies have shown that if good
models of the system dynamics and appropriate control laws can be
developed and implemented in real time, an automated system provides more
optimal control than does a man in the loop. This has been demonstrated
during physical simulations of rendezvous and docking but applies as well
to other areas such as manipulator control.

Pyschological Considerations - When placed in a highly-repetitive, mundane
environment, humans have a tendency to become lackadaisical and make
mistakes. Many of the tasks inherent in space operations and ground
support have this quality. Decision aids in this environment would reduce
the repetition and provide a means to quickly evaluate the volumes of
data, provide a synopsis of the data, generate recommendations, and allow
the human to use the inherent powers of reasoning more effectively.

Limited Strength - For many application scenarios such as payload
retrieval, limited human strength becomes a negative factor. Furthermore,
human dexterity is significantly reduced by the cumbersome life support

1-1

equipment required in space. With the state of the art in actuators and
materials, it is possible to develop mechanisms that deliver more torque
with faster response times than a human counterpart.

The current state of robotics is limited to relatively-simple, pre
programmed tasks with little or no machine intelligence and very
restricted sensing of environments. For the more complex and dynamic
environment associated with space applications, it is still necessary to
incorporate man in the control loop. In order to achieve the ambitious
goals of the space program in areas such as space station and long-life
reserviceable spacecraft, it is essential to reduce direct human control
of the robotic systems. This reduction can most naturally occur over a
four-phase development process.

The first phase is to develop the required system with man in the loop to
provide control and problem solving functions. The second phase of
robotic system evolution is to extract the man from the primary control
loop to assume a supervisory role. In this role, the operator will
perform the functions of planning out a sequence of tasks to achieve a
specific goal. The robotic system will perform the tasks of trajectory
planning, obstacle avoidance, and joint control. In the third phase, the
individual will be extracted one more level. In this phase, the operator
will perform the function of establishing intermediate goals for the
robotic system. The robotic system will perform the functions associated
with breaking down the specific goals into individual tasks to be per
formed. The final phase of robotic evaluation is the development of a
fully-autonomous robotic system.

1.2 CONTRACT OBJECTIVES

This contract supports an effort:

1) to bring within NASA, machine intelligence methodologies in automated
decision making, and

2) to develop an integrated robotic system simulation as a testbed for
applying and extending this technology.

Specifically, the purpose of this investigation is to provide a basis for
the development of a robotics simulation (ROBSIM) computer program by:

1) Identifying and evaluating applicable artificial intelligence
techniques;

2) Defining the framework of the simulation--the structure of the
software, dynamic equations, algorithms for control and decision
making, etc.;

3) Developing mathematical models of manipulator components;

4) Developing a gr~phics display.

Development of the complete simulation software system is not within the
scope of this contract.

1-2

1.3 REPORT ORGANIZATION

This document covers the work performed on Task 1 through Task 7 of
Contract NASl-16759, "Evaluation of Automated Decision-Making Methodology
and Development of Integrated Robotic System Simulation," for the Langley
Research Center of the National Aeronautics and Space Administration. It
Was prepared by Martin Marietta Corporation in accordance with the
contract, Part II, Statement of Work.

This document consists of six sections and five appendices. Section 1.0
provides an introduction. Section 2.0 contains the results of Task 1 and
Task 2 activities regarding artificial intelligence techniques. Section
3.0 provides a description of the robotic simulation tool developed under
this contract and covers work done under Task 3, Task 4, Task 5, and Task
7. Section 4.0 discusses robotic control techniques (Task 6). Section
5.0 presents a short discussion of future use of the robotic simulation in
support of the Remote Orbital Servicing System (ROSS). Section 6.0
provides conclusions and recommendations for further work. Sections 1.0
through 6.0 make up Volume I of the Final Report.

Appendix A contains descriptions of the software routines developed under
this contract and is contained in Volume II, Part I, of the Final Report.
Appendices B through E are contained in Volume II, Pa~t 2, of the Final
Report. Appendix B contains the derivation of the dynamic equations for
the force/torque requirements analysis tool. Appendix C contains the
derivation of the simulation tool nonlinear and linear dynamics equa
tions. Appendix D contains the derivation of the coordinated rate control
algorithm. Appendix E contains a discussion of simulation methodologies.

It should be noted that the results of the work performed under Task 8
were previously submitted asa separate report, "Remote Orbital Servicing
System (ROSS) Final Report," MCR-82-533, dated April, 1982.

1-3

2.0 DECISION-AIDING TECHNIQUES

Artificial intelligence (AI) is the branch of computer science con
cerned with developing programs that perform functions people consider
intelligent. These include interacting with people in a manner natural
to them, adapting to changing environments, driving automated systems,
and assisting in the process of making complex decisions. The last of
these has become especially important because of the computer's extra
ordinary ability to process large volumes of information. As the tech
nological state of the art progresses, computers are being relied on
more and more heavily to assist in decisionmaking. In these roles,
computer systems must "understand" global situations, explore hypothe
tical alternatives, and adjust priorities as situations warrant.

There are several domains where it has become necessary for computers
to playa more active role in decisionmaking. One such area is in tac
tical decision aids. In this environment, the U.S. and its NATO allies
are faced with unfavorable force structure ratios compared to the War
saw Pact countries. The U.S. depends heavily on superior tactical com
mand, control, communication, and intelligence (C3 I) systems to
counter the extensive jUantitative lead of its potential adversaries.
Decision aids in the C I environment must do more than just collect,
process, and display data. They must begin to perform many decision
making functions because of extremely high data rates and the need for
nearly instantaneous reaction in the C3I environment.

Another area in which computers must become reliable decision makers is
in applications of autonomy, such as automated weapons systems and
deep-space probes. Future unmanned weapon systems cannot afford to
rely on teleoperator control due to the many issues accompanying sur
vivability. Therefore, it is important to understand the automation
requirements of such systems. Automated weapons systems must navigate,
recognize potential threats from a deceptive adversary, and recognize
friendly situations. Making these kinds of decisions requires an in
telligent decision maker. Deep-space probes must also be autonomous.
As they travel further from the Earth, they must be increasingly self
sufficient because monitors on the Earth can no longer react to unknown
situations in a time-critical manner due to the communication delay
involved.

As the complexity of functions such as these escalates, traditional
algorithmic approaches to software systems become inadequate. In some
cases this results from inefficiency and in some from the difficulty of
specifying an explicit algorithm, as for example in the case of threat
assessment or the medical diagnosis of disease.

AI has evolved to fill this gap. Many of its techniques capture fuzzy
nonalgorithmic reasoning processes and, more importantly, heuristic
reasoning principles for decision making and problem solving that can

. be used to address situations not anticipated in the original design of
a system. AI's action- or goal-oriented approaches allow a higher
level of control, which greatly enhances efficiency and permits a more
ready coordination of subtasks en route to the desired goal. AI's use

2-1

of natural languages such as English significantly eases user interac
tion and certain of its techniques can be used to reduce system devel
opment time.

One important AI approach that critically depends on decisionmaking is
the expert system. An expert system is a computer program designed to
perform an intelligent task normally done by a human expert--for exam
ple, to assess tactical threat situations, diagnose medical diseases,
isolate faults during satellite or computer system failures, or control
an automated system. Expert systems generally contain an inference
mechanism that drives the actual decisionmaking process and hence coor
dinates the actions of the expert system and the processes the expert
system directs. Because inference engines base their decisionmaking on
their knowledge of the world, how that knowledge is represented is
critical. Representation is, in fact, -one of the prime factors in the
speed, sophisticatioh, adaptability, and complexity of the inference
mechanism, which, in turn, crucially determine the power and range of
the entire expert system.

Decisionmaking systems should ideally incorporate a computationally
simple, yet powerful, technique. This is not always possible, of
course, and speed (reaction time) is generally inversely proportional
to complexity. Systems must thus be appropriately situated on the
speed-complexity continuum weighing the tradeoff in accord with the
system's application. Adaptability--the ability to deal with unantici
pated situations--becomes increasingly necessary as the autonomy of an
application increases. While speed, reaction time, and adaptability
are measures of a system's behavior, sophistication is in part a meas
tire of the robustness of a system's representation.

The degree of robustness often has a direct effect on system behavior.
Two kinds of sophistication must be considered when evaluating a repre
sentation. The first is level of abstraction. For example, represent
ing an electronic device as an organized set of functional circuits
with functions describing input and output relationships is a higher
level of abstraction than representing the device as a conglomeration

~'of integrated circuits, resistors, etc. If the higher abstraction
level is appropriate for analysis, being forced by a formalism to use
the lower level is both slow and cumbersome. Often it is effective to
be able to represent an application at multiple levels and to facili
tate switching between levels in the course of problem solution. The
second type of sophistication involves another form of mUltiple lev
els. In this, a mechanism is provided that supports a hierarchy of
representations. The lowest level contains the application representa
tion; the next level contains a representation of the first level's
organization. This is often called a meta representation. Any number
of levels of metarepresentation can be present in the hierarchy. This
type of structure can be critical if a system must consider its actions
before it performs them.

This chapter discusses a variety of decisionmaking techniques and tools
that have been identified and evaluated by the AI group at Martin Mari
etta Denver Aerospace during the last year as part of the ROBSIM proj
ect. Emphasis was placed on identifying those techniques developed in

2-2

the field of artificial intelligence that could be applied to the
aerospace environment.

2.1 DECISION TREE MANIPULATORS

The first of these techniques is the decision tree manipulator. A de
cision tree is a tree data structure frequently used in gaming situa
tions where the nodes are possible world states and the arcs are opera
tions that cause the world states to change. If, for example, the
domain were the game of tic-tac-toe, a world state represented by a
node would be the configuration of the board after a given number of
moves. The operations represented as the arcs branching from such a
node would be the possible moves available to the player at that point
in the game. Associated with each node is an evaluation function that
determines the relative desirability of the given world state. (These
evaluation functions are generally derived empirically for a given
application.) A system simulates possible actions by generating sever
al levels of a tree in accord with its knowledge of the domain.

Thus, from the start node of a tic-tac-toe application, the system
would generate nine nodes or world states corresponding to the nine
possible opening moves. For the next or third level, it would generate
eight nodes for each of the nine nodes at the second level, since the
second player must choose among eight moves. This third level there
fore has 72 nodes, corresponding to the 72 possible board configura
tions or world states that are possible at the end of two moves. After
generating several such levels, the system would choose the best path
or arc based on the result of the evaluation function. This method of
tree search is highly dynamic--branches of the tree are not generated
until it is time to search them.

Obviously, both the world model and the relative desirability of a
state depend on the domain. Given that both of these problems are
solved, decision trees sometimes provide an effective method of making
decisions. They can be made to be highly sophisticated: a game tree,
one type of decision tree, can represent all possible sequences moves
and end states of a simple game. The tree, however, becomes massive.
For example, the size of a full game tree for tic-tac-toe can be rough
ly estimated by noting, as described above, that the start node has 9
daughters, each of which has 8, etc. Thus the bottom of the tree has
9! or 362,880 nodes. The total number of nodes in the tree is 9!/1! + 9!/2!
+ ••• + 9!/9! or 623,530. Of course, many paths in the tree termi-
nate in end-states at a level shallower than 9 so the actual number
will be somewhat less--but it will still be enormous and the tree would
be computationally intractable.

The ability of decision trees to address complex applications is hin
dered by a lack of both types of sophistication discussed above. This
contributes to the computational complexity of the decision tree manip
ulation algorithm and, consequently, a slow reaction time. A simple
algorithmic approach to tree manipulators is clearly insufficient:

2-3

manipulators must include the ability to incorporate domain-specific
information and heuristics as well as tree pruning heuristics such as
alpha-beta pruning (Ref 1). The latter is used during the dynamic gen
eration and search of the tree, as described above. It is a technique
that determines when it is unnecessary to search entire subsections of
a tree and therefore saves the system the expense of generating them.

The savings such techniques bring, however, will only partially miti
gate the above problems with decision trees. In any case, decision
trees tend to be unadaptable to changes in the environment that could
not be foreseen--to, as it were, branches in the tree that could not be
generated a priori. Finally, it is difficult to display decision trees
and hence to understand their dynamic behavior. Therefore, special
graphics routines must be developed to display trees and to move this
display up and down through different subtrees.

2.2 PROBLEM SOLVERS

A second class of decisionrnaking systems is the first-order predicate
calculus theorem provers. In this deductive method, world knowledge is
represented as a set of axioms and theorems. The system makes deci
sions by proving new theorems. To decide whether a particular goal;
e.g., "Move box u to place p," were possible, it would represent the
goal as a well-fo~med formula (wff) in the predicate calculus:

(3u) [Box(u) AND AT(u,p»). (Ref 2)

This is considered to be a theorem, and the system attempts to find a
proof for it from the axioms and theorems already in the system.

The technique generally used to construct proofs is called resolution
(Ref 3). The basic idea behind resolution is to add to the data base
the negation of the conclusion of the theorem to be proved and then
attempt to find a contradiction in the data base. This is a general
technique and has serious drawbacks. For example, to perform resolu
tion, all axioms and theorems must be in clause form. In clause form,
formulas must appear as a set of clauses connected by "AND" operators,
as in the above example. A clause is a formula with constants, vari
ables, or predicates connected by "OR" operators.

While the translation of arbitrary well-formed formulas to clause form
is relatively straightforward, it obscures the meaning of the original
formula, making reconstruction and explanation difficult. Also, as the
number of clauses in the data base grows, it becomes increasingly dif
ficult to find the correct clauses to resolve in constructing a proof.
The search technique used by these theorem provers for finding such
clauses is guided by general and not particularly effective heuristics,
such as "Only resolve an axiom with a theorem--don't resolve it with
another axiom.

2-4

Several systems have been implemented based solely on theorem prov
ing--including both problem-solving and question-answering programs
(Ref 4), but they are highly inefficient. Again this inefficiency can
be attributed, in part, to this technique's lack of either type of
sophistication. Clearly, when search in these systems is not con
strained, the combinatorial explosion renders them inappropriate for
most applications. One method of limiting search is to incorporate
domain-specific information. Unfortunately, theorem provers by them
selves have no mechanism for doing this: they only manipulate symbols
syntactically. They do not consider the semantics or meaning of an
expression. In fact, a general theorem prover is often used as the
primary deductive component of a larger problem-solving system.
Domain-specific meanings can be included by, for example, integrating
planning techniques such as the means-ends analysis of the General
Problem Solver (Ref 5) and STRIPS (Ref 6). In fact, SHAKEY, one of the
early AI experiments in robotic control, used just that combination
(Ref 7).

Such problem-solving systems generally define a set of states the model
of the world can be in and a set of operators that change the world
model from one state to another. They begin their analysis at the goal
state, working backwards to identify a sequence of actions (i.e., oper
ators) that could get to the final state from the initial state.

Means-ends analysis determines the difference between the initial and
goal states and picks the operator that would most reduce that differ
ence. If this operator can be applied in the initial state, it is. If
the result is the goal state, the search is over; otherwise the differ
ence between this new state and the goal state is found, a new operator
is chosen, and the process continues.

If the original operator can't be used in the initial state, the pre
conditions of that operator are set as a subgoal. The search process
is used recursively in an attempt to find an operator that achieves the
subgoal. If this succeeds, the original operator is then applicable
and the search continues as above. If the subgoal is unattainable,
another operator is found to reduce the difference between the initial
and goal states and the process iterates.

Another primary mechanism for circumscribing search is backtracking.
Here an operator is chosen that, if applied, would attain the goal. If
it can be used in the initial state, it is, and the search is com
plete. If not, its preconditions are established as a subgoal and the
process is used recursively in an attempt to attain the subgoal. This
continues until either a sequence of operators is found that, when
applied in the initial state, leads to the goal, or a state is reached
such that no operator, when applied, would result in that state. In
the former case, the search is finished; in the latter, the search
"backs up" to the state just preceding the blocked state (Le., to the
most recent choice point), a different operator is chosen, and the
search continues in this "depth-first" or "chronological" fashion.

Basic search strategies such as means-ends analysis or backtracking can
be augmented in a number of ways. Backtracking, for example, can be

2-5

not simply to the most recent choice point, but to the one that has
been identified as the reason (or one of several possible reasons) for
failure. In addition to this "relevant" (or "dependency-directed" or
"nonchronological") backtracking, means-ends analysis can be organized
hierarchically so as to focus initially on only the most important as
pects of a situation, leaving the lengthy elaboration of details until
after a full, high-level plan has been formed. Numerous other tech
niques such as plan repair, constraint satisfaction, and goal regres
sion can be incorporated to enhance the efficiency of the procedures
that guide search in a problem-solving system (Ref 8). The reason for
increased efficiency of some of these is partially due to "level of
abstraction" sophistication. If appears, however, that no meta-repre
sentation sophistication is present in any of these techniques.

2.3 RULE-BASED SYSTEMS

Another decisionmaking mechanism developed within artificial intelli
gence is the rule-based system. A rule-based system consists of a
long-term memory, a short-term memory, and a rule interpreter. Long
term memory contains rules, short-term memory contains information de
fining the current state of the world, and the interpreter systemati
cally applies the rules to the world state. Rules are situation-action
pairs: the left side of a rule contains a set of predicates in con
junctive normal form and the right side of a rule contains a sequence
of actions. In conjunctive normal form, an expression is written as '
the conjunction of a set of disjunctions of literals, e.g.,

[R(x) OR T(y,z)] AND P(y) AND [-P(z) OR T(x,z)].

A rule resembles an if-then statement: If the left-hand side of a rule
holds true, then the actions on the right-hand side are performed. A
rule might say, for example,

If

Then

Satellite downlink is off nominal rate,

Advise "Re-tune bit synchronizer center frequency," and examine
rules for satellite-redundant crystal oscillator.

The rule interpreter searches the predicates on the left-hand sides of
rules in long-term memory for a match with some of the "state-of-the
world" predicates in short-term memory. It find,s all the rules whose
predicates all match, i.e., all the rules that accurately describe some
aspect of the current world state. The interpreter uses a conflict
resolution mechanism to determine which of these rules is most appro
priate and then executes the sequence of actions on the. right-hand side
of that rule. These actions normally modify short-term memory--i.e.,
change the state of the world--and perform I/O operations. However, in
some rule-based systems, the actions can also modify the rules them
selves, giving these systems significant potential for adaptability.

2-6

As applications become complex, requlrlng more sophisticated distinc
tions of subtlety, the number of rules may become extremely large and
searches of the rule base computationally expensive. To circumvent
this problem, many rule-based systems allow for meta-rules, i.e., rules
defining the way rules should be searched and applied. The rule base
or long-term memory might be partitioned into sets of related rules
such that any given set would be relevant only in particular situa
tions. When such a situation is identified--i.e., when the predicates
on the left-hand side of some meta-rule are all found to match or be
true in the current world state--the meta-rule would direct the rule
interpreter to confine its search to the appropriate set of rules. One
use of this partitioning is to organize different levels of representa
tional abstraction. Thus, both types of sophistication are provided
for to varying degrees in different rule-based systems.

A prime feature of these partitioning systems is a high degree of modu
larity and extensibility: isolable partitions into which rules are
grouped can readily be added to or transported between systems. Rule
based systems generally have numerous other unique features that can be
advantageous for certain applications. These include Significant
sophistication and adaptability, ease of rule modifications, a natural
parallel to the way human beings often make decisions, an ability to
incorporate judgment into making decisions, a high degree of efficiency
when rules are carefully organized, and the ability to trace the deci
sionmaking process and present it to the human user as part of an ex
planatory justification.

2.4 LOGIC PROGRAMMING LANGUAGES

In addition to specific techniques, several tools of varying generality
have been developed. One such inferencing tool for computer decision
making is a Logic Programming Language (LPL) such as PROLOG (Ref 9) or
LOGLISP (Ref 10). These languages support a technique of programming
that is radically different from traditional programming languages.
Computational specifications in an LPL consist of a set of declarative
sentences that the system attempts to show are true. Thus, the control
structure of a program is handled entirely by the LPL run-time support
system. More specifically, the run-time system, in the process of exe
cuting a program, searches a knowledge base attempting to demonstrate
the truth of statements in the program. Statements comprise both the
program and the knowledge base. Statements in the knowledge base are
referred to as assertions, and statements in the program are called
conditionals. All statements have the same form:

a : -b,c,d

and can be read declaratively as "a is true if band c and d are true"
or procedurally as "to get a, successfully execute b, c, and d." An
LPL acts, in effect, as a theorem prover on individual program state
ments. Unlike a theorem prover acting at a global level, however, an

2-7

LPL's resolution of a program statement can affect any number of deci
sion-related consequences--from the simple branching of control to the
execution of an action or even the alteration of the knowledge base or
inferencing strategy. Because decisionmaking includes a complex form
of knowledge base querying, an LPL is also ideal for knowledge base
manipulation. Since facts in the knowledge base are stored in the
knowledge base, LPLs allow for both "level of abstraction" and meta
representation sophistication. The latter, however, is not encouraged
in the LPL style of programming.

2.5 REPRESENTATION LANGUAGE LANGUAGES

An extremely useful tool for decisionmaking is a representation lan
guage language (RLL) such as the Modifiable Representation System (MRS)
(Ref 11). An RLL is actually a union of the representation formalisms
of a knowledge representation system and the inference mechanisms of a
decisionmaking system. The knowledge representation aspect of RLLs
gives them sensitivity to the kind of information being manipulated.
Different kinds of knowledge are best represented in different ways.
Certain procedural information, for example, might best be captured in
a production rule format. Declarative knowledge about the attributes
of particular items, e.g., connectivity relations among components of
an integrated circuit, might most effectively be stored on the property
list of the individual components or in an associative network. Asso
ciating attribute information so closely with the items themselves
might increase efficiency of computations involving such information.
Information about sets of objects, on the other hand, might be repre
sented in bit vectors for optimum storage and perhaps computational
efficiency.

An RLL has the ability to use different representational modes for dif
ferent kinds of knowledge--all within the same program. This can be
done, if desired, at a level independent of any user program. Programs
can thus treat different kinds of knowledge in a uniform way. The
RLL's inference mechanisms determine what kind of knowledge is being
manipulated, accessed, or stored, .and on that basis decide which means
of representation is most appropriate for the particular instance.
Consequently, the structure of the knowledge base--or even the knowl
edge base in toto--can readily be changed without requiring modifica
tion of anY-user program.

Sensitivity to the external environment is also an important metric for
decisionmaking systems. Some RLLs have a unique approach to external
sensitivity. Because these systems are designed to allow different
types of knowledge to be represented differently, when they are asked
to store and retrieve knowledge, they must first determine how to do
so. This approach is generalized in such a way that before an RLL per
forms an operation, it determines how this operation should be carried
out. Thus, the system inspects its knowledge base, performs inference,
or examines the external environment to determine how to do an opera
tion. The last of these affords RLLs an extraordinary sensitivity to

2-8

the external environment, assuming it has access to the appropriate
sensors. As a simple example, suppose an RLL is asked to do X and the
RLL "knows" two ways to accomplish X. The first is memory efficient
and computationally expensive. The second is memory expensive and com
putationally efficient. The RLL can determine the amount of free mem
ory and decide accordingly which method to use. Constraints in the
external environment can affect an RLL's behavior in the same fashion.

Besides integrating representation and decisionmaking in a single sys
tem, an RLL goes beyond other AI tools in another way: it provides a
meta-representation level in which its own structure is expressed. The
meta-representation exploits the same formalism as the first level rep
resentation. RLLs not only provide meta-representation sophistication
but encourages its use. They also provide for "level of abstraction"
sophistication in a straightforward fashion.

An RLL can thus manipulate a representation of itself in the same way
it manipulates user-defined representations. This allows RLLs to rea
son about themselves and even to modify their organization and infer
ence strategies. To elaborate an earlier example, an RLL might have,
in its representation of itself, explicit knowledge about the methods
of computation and storage it could use and the differential memory and
computational efficiencies of those methods. It might monitor the gen
eral system load to identify the long-term use trend, and on the basis
of this use assessment, the RLL could decide in general what operation
al and representational methods would be best. It could use that deci
sion in future situations and could even restructure its current knowl
edge base and its existing computational procedures accordingly. This
capacity for learning is a prime feature of RLLs. It gives them enor
mous potential for sophistication and adaptability.

2.6 DEVELOPMENT TOOLS

Finally, several specific tools have been created to assist development
of rule-based expert systems, a widespread form of AI decisionmaking
tool. ROSIE (Ref 12), AGE (Ref 13), and EMYCIN (Ref 14) present rela
tively "user-friendly" frameworks for expert system development includ
ing facilities of varying elaboration for such things as documenting
and responding to user requests for justification or explanatio'n. OPS5
(Ref 15) is a substantially more limited tool with certain structural
problems (such as not allowing the evaluation of functions on the
left-hand side of rules) and few or none of the frills for such things
as explanation. AMORD (Ref 16), a rule-based system for problem solv
ing, is one of the only to treat seriously the problems of how adding
new information or rules affects the system's consistency.

Each of these development tools was designed for different purposes and
hence addresses different issues and problems. Of all of them, ROSIE
is perhaps the most flexible and powerful, permitting the user to modi
fy many major components of the system to suit his needs--for example,
to design his own control structure or rule interpreter but not, it

2-9

should be noted, to alter the way rules and knowledge are represented.
Much of its flexibility is due to the authors' attempts to include a
limited form of meta-representation sophistication and a very general
"level of abstraction" sophistication. The former is realized by col
locating the rule set and the knowledge base. This allows rules to
operate on other rules as though they were data.

Yet even ROSIE is limited, allowing only rule-based techniques. A '
mature expert system for robotic control must consist of many compon
ents--it might, for example, have a rule-based reasoner to establish
what needs to be done, a planner or problem solver to determine how to
do it, a component for extracing information from the human expert to
construct the rule base, a component to maintain the consistency of the
rule base and the knowledge base, as well as a natural language inter
face to communicate with the human users and developers.

This is not to say, of course, that these specific rule-based develop
ment tools could not be used to create systems to perform a wide vari
ety of tasks--after all, the simplest Turing machine is sufficient for
any computable task. The problems, however, are along the lines of
efficiency (both computational and representational), flexibility, mod
ifiability, and ease of use. A given application ,may require any num
ber of control structures, inferencing and representational techniques,
and modes of user interaction.

2.7 THE EXPERT SYSTEM-EXPERT SYSTEM

A truly useful development tool would aid in the creation of all these
facets. Such a tool would be an expert system for buildin~ expert sys
te~s--as it were, an "expert system-expert system" or (ES). The
Artificial Intelligence group at Martin Marietta has been investigating
(ES)2 for some time. A primary constituent of this tool will be the
interface component that will help establish the optimal configuration
of natural language (e.g., English), graphics, and special-purpose re
stricted languages (e.g., for limited data base query or command and
control) for system development as well as user interaction. The nat
ural language interface is an especially important aspect of this: it
allows a user to communicate in near-English with a computer program-
to give commands and requests, ask questions, and receive justifica
tions and explanations. This ability is essential for the widespread
use of expert systems.

Given that there is no sufficently-encompassing theory of grammar and
language, current natural language interfaces are developed as special
ly designed programs for particular ~pplications. Thus, in addition to
establishing the configuration for interaction, the interface component
of (ES)2 will be expert at building natural language interfaces. It
will combine its linguistic knowledge with considerations of not only
the intended use and users of a system but also the domain-specific
constraints and the contents of the knowledge base. It will have a
similar capacity for developing graphics aids for the interface and for

2-10

incorporating special-purpose restricted languages to handle those
interactions for which a highly-limited set of options is possible.

One of the most important aspects of (ES)2 involves the transfer of
expertise from human experts to a computer knowledge base. This has
traditionally been a multistep, iterative process in which the AI re
searcher extracts knowledge from an expert, encodes it in inferencing
rules, and tests the expert system with those rules. He then takes the
output back to the expert who determines which parts of the output are
incorrect and is then coerced by the researcher to identify and correct
inaccurate rules. The researcher returns to his program with the new
set of rules, obtains new output, and the lengthy process iterates.

The knowledge transfer component (KTC) of (ES)2 will help automate
and simplify this convergence to an accurate rule base. Knowing the
domain and general intent of the application, it will, in English,
interactively obtain information from the expert. This .information
will be examined for inconsistencies; if any are found, the expert will
be consulted for emendations. The knowledge transfer component will
integrate the information into its evolving model of the expert system
under development. This will be used to determine the logical com
pleteness of the information: again, the human expert will be con
sulted when incompleteness is uncovered. The model will also provide a
basis for the KTC to present scenarios for which the expert describes
the appropriate response or output.

The KTC may also incorporate the traditional iterative process, trans
lating the knowledge into a form for inferencing (e.g., into standard
situation-action rules), running the developing expert system, and
presenting the output and its inaccuracies to the human expert. Once
the expert has identified the inappropriate or incorrect portions of
the output, the KTC can examine the reasoning of the expert system to
pinpoint the rules at fault. The process then iterates as the KTC re
turns to the expert and requests corrections to those rules, i.e., to
those parts of the information supplied by the expert earlier. Using
such techniques as consistency, completeness, and iteration in a user
friendly, English-based interactive environment, will enable the auto
mated transfer of knowledge from the human expert to the knowledge base
of an expert system.

Another constituent of our "expert system-expert system" will handle
structuring and coordinating the knowledge base and inference engine.
As noted above, different representational schemes are appropriate for
different applications and different inferencing techniques and compu
tational procedures prove more effective under different circumstanc
es. This component of (ES)2 will choose among the varied combina
tions of representation, inference and control mechanisms, determining
the configuration most suited for the specific application, or for spe
cific aspects of an application. It will also embody techniques to
adapt and extend existing knowledge bases at any point in their devel
opment and use.

In a similar way, different aspects of a problem might be solved more
effectively via different problem-solving techniques and different con
trol mechanisms. In the example mentioned earlier, determining what to

2-11

do might be best decided by a rule-based system while deciding exactly
how to accomplish it might be handled most effectively by a planner.
Thus, another component of (ES)2 will be responsible for decomposing
the problem tasks and determining the most effective means of handling
each aspect.

The systems developed by (ES)2 will flexibly support any number and
any combination of representational, computational, inferencing, and
problem-solving techniques. An excellent vehicle for doing this is a
representation language language (RLL). An RLL's capacity for choosing
among these varied techniques, depending on the nature of the informa
tion or task, would allow the user to treat not only all data but also
all tasks in a uniform manner, without concern for how the data will be
manipulated or the task carried out.

(ES)2 has been the long-range goal of the Martin Marietta Artificial
Intelligence group since its inception. A crucial factor in creating
and maintaining the flexibility of (ES)2 is the identification and
development of new technologies. Towards this end, the AI group has
established a replete tool base of AI technology, which it is extending
by actively investigating and evaluating research being conducted by
other members of the AI community. The group is further extending the
tool base by pursuing its own primary and applied research toward the
ultimate goal of creating and using (ES)2, the expert system for
building expert systems.

2.8 REFERENCES

1. For a discussion of alpha-beta pruning, refer to Nils Nilsson:
Principles of Artificial Intelligence. Tioga Publishing Company, Palo
Alto, CA, 1980, pp 121-126.

2. This example is taken from Nils Nilsson and Richard Fikes:
"STRIPS: A New Approach to the Application of Theorem Proving to Prob
lem Solving." Technical Note 43, SRI Project 8259, SRI International,
Menlo Park, CA, 1970.

3. C. Green: "Theorem proving by Resolution as a Basis for Question
Answering Systems." Machine Intelligence 4, B. Meltzer and D. Michie
(Eds.), American Elsevier Publishing Co., Inc., New York, 1969, pp
183-205.

4. C. Green: "Application of Theorem Proving to Problem Solving."
Proc IntI Joint Conf on Artificial Intelligence, Washington, DC, May
1969; and C. Green: "Theorem Proving by Resolution as a Basis for
Question Answering Systems." Machine Intelligence 4, B. Meltzer and
D. Michie (Eds.), American Elsevier Publishing Co.~ Inc., New York,
1969, pp 183-205.

5. G. Ernst and A. Newell, GPS: "A Case Study in Generality and Prob
lem Solving." ACM Monograph Series, Academic Press, 1969.

2-12

6. Nils Nilsson and Richard Fikes, op. cit.

7. Ibid for discussion of STRIPS, the driver for SHAKEY. For further
discussion of SHAKEY per se, see Richard Fikes, Peter Hart, and Nils
Nilsson: "Learning and Executing Generalized Robot Plans." Artificial
Intelligence, 3, 1972, pp 251-288; and Richard Fikes, Peter Hart, and
Nils Nilsson: -"Some New Directions in Robot Problem Solving." Machine
Intelligence 7, B. Meltzer and D. Michie, Edinburgh University Press,
Edinburgh, 1972, pp 405-430.

8. For an overview of these and other tactics, see Earl Sacerdoti:
"Problem Solving Tactics." Proceedings of the Sixth International
Joint Conference on Artificial Intelligence, Tokyo, Japan, August,
1979, pp 1077-1085.

9 For a practical introduction to PROLOG, see W. Clocksin and C.
Mellish: Programming in PROLOG. Springer-Verlag, New York, 1981.

10. J. Ro binson and E. Sibert: "Logic Programming is LISP." Rome Ai r
Defense Center-TR-80-379, Vol 1, 1981.

11. Michael Genesereth: "The Architecture of a Multiple Representation
System." Memo HPP-8l-6, .Stanford Heuristic Programming Project, Stanford
University, Stanford, CA, 1981.

12. D. A. Waterman, et aI, "Design of a Rule-Oriented System for Imple
menting Expertise." RandPublication N-1158-l-ARPA, The Rand Corporation,
Santa Monica, CA, 1979.

13. Penny Nii and Nelleke Aiello: "AGE (Attempt to Generalize): A
Knowledge-Based Program for Building Knowledge-Based Programs." Proceed
ings of the Sixth International Joint Conference on Artificial Intelli
gence, Tokyo, Japan, 1979, pp 645-655.

14. W. Van Melle, et al: "The Mycin Manual." Report No. STAN-CS-9l-885,
Stanford University-,-Stanford, CA 1981.

15. Charles Forgy: OPS5 Manual. Department of Computer Science, Carne
gie Mellon University, Pittsburgh, PA, 1980.

16. Johan de Kleer, et al: "AMORD: A Deductive Procedure System."
MIT-AI-Memo 435, MIT,-Cambridge, MA, 1978.

2-13

3.0 ROBOTIC SIMULATION

The development of robotic technology and operational systems in the
near future will require the aid of a number of computer aided tools.
These tools are necessary to pursue research in key technology areas,
demonstrate concept feasibility, aid in system design, and provide an
operations analysis capability. One of the major goals of this
contract was to define the overall structure of a robotic simulation
tool and to develop a framework for that tool.

The Robotics Simulation (ROBSIM) Program has been designed to provide a
wide range of computer capabilities in the areas of robotic system
design and analysis. ~nder this phase of development, implementation
has been in the form of building a framework for the overall ROBSIM
program and a framework for the simulation tool within the ROBSIM
program. These frameworks provide a base upon which to build and
integrate robotics capabilities in a structured and coordinated
manner. Addition of capabilities and models is made easy by the
modular framework developed. This design allows a collection of
capabilities to be built up as needed and will in time result in a
powerful set of design and analysis tools. The ROBSIM program is
expected to be a continually-evolving and expanding set of capabilities.

The overall ROBSIM program structure is composed of three major
functions controlled by a program executive as shown in Figure 3-1.
The three major ROBSIM functions are:

1) System Definition

2) Analysis Tools

3) Post Processing

Each of the major functions is designed in a modular fashion to allow
for easy future expansion.

The System Definition function handles user input of the robotics
system geometry and mass properties as well as environmental parameters
and geometry. A disk file is created to be used as input to the
Analysis Tools and Post Processing functions. The Analysis Tools
function handles the computational requirements of the ROBSIM program.
The Post Processing function allows for more detailed study of the
results of the Analysis Tools function execution(s). Each of these
areas is discussed more fully in the following sections.

3-1

Existing
Database
to be Modified

System
Definition

ROBS 1M
Executive

Interactive
User

Multiple
Simulation
Results
Files

~' _______ 'r~--____ ~J

"-------"" Postprocessing

Interactive
User

System
Definition
Data File

Graphics

Analysis
Tool
Set

Printed
Output

Interactive
User

Simulation
Results
File

Figure 3-1 ROBSIM Top-Leve~ Structure

3-2

Interactive
User

Printed/
Plotted

Playback
Graphics

3.1 SYSTEM DEFINITION

The system definition portion of the program operates in an interactive
mode and allows the user to define a robotic configuration for
analysis. This definition includes specification of the manipulator
geometry and mass properties, environmental parameters, and graphics
representations for the manipulator and the environment. The types of
joint configurations that may be specified include hinge (Fig. 3-2),
swivel (Fig. 3-3), and sliding (Fig. 3-4). With these three basic
joint types, it is possible to specify a large variety of manipulator
arm configurations.

Figure 3-2 TypiaaZ Hinge Joint

3-3

Figure 3-3 Typical Swivel Joint

Figure 3-4 TYpical Sliding Joint

3-4

Along with the type of joint, the operator must specify the orientation
of the joint with respect to the individual manipulator links. The
links are defined by their physical dimensions and mass properties.
The mass properties include the total mass, the location of the center
of gravity (cg), and the inertia matrix. In the current implementation
of ROBS 1M, joint mass properties are not separated from the link mass
properties but may be accounted for by considering the joint to be a
part of its associated link. For example, if joint 2 of a manipulator
had a mass of 4 kg and link 2 a mass of 10 kg, then the joint mass
could be accounted for by inputting a link mass of 14 kg. The cg
location would be the weighted average of the joint and link cgs, and
the inertia matrix would be the sum of the joint and link inertia
matrices taken from the same coordinate system (see Appendix B for a
discussion of transforming inertia matrices).

A graphics display package was designed and is connected to the system
definition module so that the operator can observe the system as it is
being defined. This allows the operator to gain a physical
understanding of the system and helps to identify potential problem
areas early in the development process. If the operator is not
satisfied with the defined system, any of the input parameters may be
interactively modified. Figures 3-5a through 3-5e illustrate the
graphics display during the definition of a PUMA 600 manipulator arm.

The level of detail by which the manipulator is represented can vary as
a function of the phase of design. For example, during initial concept
definition, the detailed physical dimension of the links is unknown,
and approximations must be used. The system definition program
contains an option whereby any link can be defined by simple
cylindrical elements. The diameter and length of the cylindrical
elements are defined by the operator. Figure 3-6a illustrates a
simplified graphic display of the Martin Marietta SMA manipulator shown
in Figure 3-6b.

The output of the system definition package is a file that contains a
description of the robotic system that can be used as input by the
various analysis tools. This file may be archived so that a number of
different analyses may be performed on the same manipulator
configuration.

3-5

~~
~

+:I
.~

~

N
~
N

N ;:s
() ()
+:I ~
\} ~ N
;:s

~ ~
.~

~

~
())
+:I
())

N N
ft ()

+:I

8 \}
N
;:s

()) ~
.~

j
<::::>

~ <::::>
~

N
~

~ N
;:s

~ ()

~
~
~

()

.-Q ~
()
.~

+:I
\}

+:I
~
())
co
())
N
~

~
co
~
.~

~

fr
G

~ LQ
I

\} N:l
()) ())
N \\) co
~ N \}

;cs P':\
QJ

'Ij
'0

\} ~

3-6

a Simple Representation

b Detailed Representation

Figure 3-6
Simplified and Detailed Graphics Representations

3-7

3.2 ANALYSIS TOOL SET

The analysis tool set has been separated (Fig. 3-7) into a library of
tools that may be used for a variety of studies on the manipulator arm
defined during system definition. Among the tools that will be in the
library are a force/torque requirements analysis tool, a time-domain
dynamic simulation, a frequency-domain simulation, and an
operating-envelope analysis tool.

Force/Torque
Requirements
Analysis
Tool

ROBSIM Analysis Tool Function

Time-Domain
Simulation
Tool

Menu-Driven Selection
of Capabilities

I

Frequency-Domain
Simulation
Tool

• • •
Operating
Envelope
Analysis
Tool

Figure 3-7 ROBSIM AnaZysis TooZ Structure

Future
Expansion

The operating-envelope analysis tool will allow an operator to observe
the operating envelope of the manipulator through the graphics
display. This will allow the operator to efficiently determine whether
the manipulator configuration will be able to perform the necessary
maneuvers in a restricted environment. For example, for spacecraft
refurbishment, a manipulator arm must be able to reach through an
access panel, grab a replaceable component, and extract the component
without colliding with any part of the spacecraft. Joint configuration
is an important parameter in providing the necessary agility for a
specific mission. With the envelope-analysis tool, it will be possible
to observe the entire operating envelope for individual joints and
combinations of joints up to the end effector.

The frequency-domain simulation of a robotic system will enable an
analysis of the stability of the arm about specific operating positions
and will help in developing the control system. This tool will also
enable a careful evaluation of singularity positions and their effects
on the controllability of the system. The output from this tool will
include frequency-domain plots of the arm.

During this phase of the contract, the major portion of the force/
torque requirements-analysis tool and the framework for the time-domain
simulation were developed. These two tools are described in more
detail in the following sections.

3-8

3.2.1 Force/Torque Requirements-Analysis Tool

The force/torque requirements-analysis tool is intended to allow a
designer to quickly identify what the operational force and torque
requirements for a specific system design will be. After identifying
an arm configuration, the system will be tasked to perform a maneuver.
The requirements tool will then calculate the necessary forces and
torques required to produce the maneuver and the resultant forces and
torques acting on the joints and links. A mechanical designer may
efficiently use this information to specify motor capabilities and
material requirements for the joints and links, and to identify the
effect of the motion on the control of the hosting body (i.e., space
craft). A graphics package has been provided so that the operator
may observe the motion of the arm during the analysis. All data is
written to disk file to allow later post processing to obtain plots
of any of the forces and torques that have occurred. Figure 3-8
illustrates the functional flow of the force/torque requirements
analysis tool.

3-9

w
I

f-'
o

Required
Trajectory

Control
Laws

Dynamics e T,F Geometry

- Motion Restrainfs

Graphics

-Singularity Configurations
-Joint Requirements

- Material Requirements
-Motor Specifications
-Joint Requirements

Figure 3-8 Functional Flow of Requirements Analysis Tool

In the current implementation of ROBSIM, a sequence of rate profiles
describes the manipulator trajectory. These rate profiles are
second-order polynomial functions that describe either individual joint
rates or end-effector rates, depending on user selection. Start and
stop times for the profiles are also user options.

If the user requests individual joint rate control of the model, then
for an N-joint arm, the user must input N rate profiles. The rate
prOfiles in this case describe the rate of displacement of each joint
from reference positions. If the user requests end-effector rate
control, then six rate profiles must be input. Each of the profiles
determines one component of the complete end-effector angular and
linear velocity vectors. Six profiles are necessary--three for the
linear velocities along the x, y, and z axes, and three for the angular
velocities around the x, y, and z axes. From the end-effector
profiles, the rates and displacements of each joint at any given time
can be calculated. The equation relating joint' rates to end-effector
velocity is

where

v = Linear velocity vector of the end effector;
w = Angular velocity vector of the end effector;
~i= Rate of displacement of joint i;
J = 6 x N Jacobian matrix.

Given J and the desired end-effector velocities, the required joint
rates can be found by inverting J:

1 v . r] J-l~'
Appendix D describes the derivation of the end-effector rate control
equations and discusses a technique that can be used to find an
approximate solution for that case in which J is singular.

Any motion can be described as a sequence of short, simple motions.
Thus, any manipulator motion can be specified by inputting a sequence
of rate profiles. ROBSIM currently permits the user to define a
sequence of up to 20 different rate profiles.

Equations 3-1 to 3-6 can be used to calculate the forces and torques
acting on a system in motion. The derivation of these equations is
contained in Appendix B.

3-11

Wi = ~i-1 + ~

s. = ~1.·-1 +~. Ih. 1 . + h. 1 .~ -1. -1.- -1.-,1. 1.- ,1.-.1i-1,i . -
~i = ~i-1 + ~i~. + ~i-1gi

1.

a. = _a1.·_1 + ~. 1h . 1 . + 2~. l(h. 1 .j..lt...) -1. -1.- -1.-,1. -1.- 1.- ,1.-'1. 1 . 1.- ,1.

f. = f.+1 + m. [a. + a.h .. - ,,] -1. -1; 1. -1. -1.-1. , 1. .2.

t. = -t1..+1 + h .. +1f.+1 + 1.0.. + h .. m. [a. + a.h .. - .sJ -1. -1.,1. -1. 1.-1. -1.,1. 1. -l -1.-1.,1.

where

x - a coordinate system located at joint i;

s. - the linear velocity of X. with respect to an inertial
-I. -1.

coordinate system;

w. - the angular velocity of X. with respect to an inertial -1. -1.

coordinate system;

,g~ - the angular velocity of !i with respect to !i-l;

a. =w. - the angular acceleration of X. with respect to an inertial -1. -1. -1. .

coordinate system;

a. = s. - the linear acceleration of X. with respect to an inertial -1. -1. -1.

coordina te system;

h .. -

!
i;-fj, h ..

-I.]
is the vector from X. to X.; -1. -] -1.J

m

f. -1.

. i=j, h ..
-1.1.

is the vector from X. to the cg of link i; -1.

- the inertia matrix of link i with respect to the cg of link i;

- the mass of link i ;

- the reaction force acting at X.; -1.

- the reaction torque acting at X. ;
-1;

- gravitational acceleration;

3-12

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

The use of a tilde '',...,'' over a vector has been used to denote the 3x3
ske~symmetric matrix of a vector cross product. That is, if

a = and· b =

then

'ib=axb=

The inputs to the equations are the quantities that describe the motion
of manipulator relative joint displacements, velocities, and
accelerations. The equations are used to recursively calculate the
motion of each joint with respect to an inertial coordinate system and
then the forces and torques acting at each joint. The inputs to the
dynamics routine are obtained by averaging the values of joint
displacement, velocity, and acceleration provided by the control
routine over a single time step. Any error due to averaging is minimal
if time steps are small.

The dynamics routine has the capability of outputing either parameter
plots or printed output. If plots are requested, data representing the
dynamic reactions at each joint at each time step are stored in a plot
file. The user may then select the parameters to be plotted. Figures
3-9 and 3-10 are examples of the types of plots that can be requested.
Note that the parameters can be expressed in different coordinate
systems, and several parameters may be included in the same plot.

3-13

w
I

t-'
.p..

X TORQUE

••••••)C ••••••

TORQUE (KG-M A 2/SEC A 2)

JOINT ONE TORQUES
(INERTIAL COORDINATES)

Y TORQUE

--G---

Z TORQUE

--e--

.. , ,

2~

O~ ~ -~ ~ -"'" .. --.. - ~

)C ••••••••••• K· •••••••••• *)C •••••••••••)C)C •••••••••••)C •••••••••••)(0 ••••••••••

-2~

-.. ~

-61-
&- ____ -$ ____ e- ___ ... - . ~- - e - -~ - -- -e- - - - • - - - -e- - - - ~

-8' I I I I , , , , , ,

0.0 .1 .2 .3!5 .8 .7 .8 .9 1

TIME (SECONDS)

Figure 3-9 Joint Torque Plots in Inertial Coordinate System

W
I

.......
lJ1

X TORQUE

.. ····x· ·

JOINT ONE TORQUES
(JOINT COOROINATES)

Y TORQUE

e

Z TORQUE

--$--

TORQUE (KG-M A 2/SEC A 2)
~, ,

x x· M •••••••••• ·X· •.••••.•••)C ••••••••••• M •.•••••••• ·X· ••••••••• ·X· ••••••••••)(0 ••••••••••

2J-

OJ-

/

-2J-

-<4J-

-8" ___ ._ . __ $_. ____ . __ e- ____ --~--- --- .-.q. - -- -- --(I)- -- -- --~ - - - e- - - - -.- - - - ~

-8' """"
0.0 .1 .2 .3 .<4 .!5 .8 .7 .8 .S i

TIME (SECONDS)

Figure 3-10 Joint Torque Plots in Joint Coordinate System

If printed output of the dynamic analysis is requested, the data
describing the system initial state are immediately written to a print
file. The initial state data for dynamics include a description of
joint configuration, component dimensions and mass properties, and the
control trajectory. At each time step specified, the average values of
joint displacement, velocity, and acceleration are written to the print
file, as are the data describing the forces and torques acting at each
joint. Figure 3-11 is an example of the initial state output from the
dynamics routine. These data were also used to generate the plots
shown in Figures 3-9 and 3-10. Figure 3-12 is an example of the output
at each time step during dynamic analysis.

Because force and torque are vectors, each quantity consists of three
scalars. Each scalar represents the component of force (or torque)
along a coordinate axis. Thus, six scalars are output at each time
step for the dynamic reactions at each joint. If the joint has n
degrees of freedom (n~6), then n of the scalars represent actuator
forces (or torques) that must be applied to drive the system. The
remaining 6-n scalars represent the dynamic reactions that support the
motion; these terms define the structural requirements at each joint.

The force/torque requirements-analysis tool also contains a graphics
interface that can be used to aid in a kinematic analysis of the
manipulator. The graphics display depicts the position of the arm
during a predefined motion. This enables an operator to analyze the
effect of joint constraints on the overall motion of the arm and to
quickly identify singularity points in the arm configuration.

The graphics package also allows the local environment around the
manipulator to be represented by simple geometric solids. Figures 3-13
and 3-14 illustrate the Martin Marietta SOS arm in two different
environments. Figure 3-14 depicts the arm in a large space system
assembly function, which recreates a physical simulation previously
performed with the actual arm.

Kinematic analysis of a design concept can be performed by moving the
model within the workspace and by using the output capabilities of
ROBSIM. Questions concerning manipulator reach and dexterity can be
answered and the model arm modified until the kinematic requirements
can be met.

3-16

w
I
~
.......

nYN~MICS TEST

NUMBER OF JOINTS IN MANIPULATOR • 1

SIMUL~TION STARTS AT T • 0.00
SIMULATION STOPS AT T. 3.00000
SIMULATION STEP SIlE IS DT = 0.50000

JOINT/LINK !NITIAL VALUESI

JOINT 1 IS A HINGE JOINT

LINK DIMENSIONS (X,V,Z)I

LOCATION OF LINK C.O.G. (X,Y,Z),

MASS OF LINK ::

cO,OOOOO 0,00000

1.52400 0.001)00

10.00001) /).oonoo

0.7b200 0,00000

10.00000

T~~ LINK INERTIA MATRIX lSI 20.00000 0,00000
0.00000 12010,00000
0.00000 0,00001)

Figure 3-11 Samp~e Dynamics Output~ Initia~ Condition

0,00000 INCHES

0,001)00 METERS

0,00000' I NCI·iEt

0,00000 METERS

0,00000
0,00000

12010,00000

w
I

00

JOINT/L.INK I

ANGULAR DISPLACE~ENT • 0.52300 RADIANS
30.00001) DEr.REES

INERTIAL LUCATION ex,Y,z) ~ .0.00000

CURRENT TRANS. MATRIX.

LINK VECTOR (INCHES)

(METERS)

REL. ANG. VEL. (R/SEC)

REL. ANG. ACC. (H/SECfZ)

TOTAL ANG. VEL. (R/SEC)

TOTAL ANG. ACC. (R/SECtZ)

TOTAL LIN. ACC. (t/SECta)

o.ooono

0.00000
-0.6bon3
-0.50000

X

bo.oaooo
1.521100

0.00000

o.o~ooo

-Ai'.ZlIb70

-2.08'107

0.00000

o.onooo

1.00noo
0.00000
0.00000

0.00000

0.00000

0.00000
-0.50000

0.8boO]

JOtNT COORDINATES
Y

0.001100

0.00000

0.5Z3bO

o.oOnoo

Z

It-<CHES

METERS

0.00000

n.ooooo

0.00000

0.00000

0.00000 0.110000

0.00000 o.noooo

("'/SECt;?)

REACTION FO~CE (KG-I/S~Ct2)

(KG-H/SECt2)

REACTION TORQUE (KG-Ita/SECtz)

(KG-MtZ/SECt2)

0.00000 -0.00012 0.00000

0.01l000 0.00000 0.00000

. INERTIA MATRIX zo.ooooo 0.00000 0.00000

o.oooon 12010.00noo 0.00000

0.00000 o.ooono 12010.00000

* '" * ". ". ..

~ANIP. TOOL LOCATION (INERTIAL COORDINATES).

* .. * '" .. * '" ..
* * * .. * *

Figupe 3-12 Sample Dynamics Output

X
INERTIAL CDDRDINArE8

y Z

0.00000 -51.9~lS2 -JO. 00000

0,00000 -1.:'1982 -0.7~200

0.523~0 0,00000 0.00000

0.00000 0.00000 0.00000

0.523bO 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 Tt .un4 41.U3n

0.00000 1.80911 1.04453

-o.ooou 0.00000 0.00000

0.00000 0.00000 0.00000

12010.00000 -0.00039 -0.00021

-0.000]9 3011.50000 -5191.82227

-0.000~3 -51!1.12227 9012.50000

.. • * •

0.00000 -1Il.hlli -30.00000

.. *
• .. • *

3--19

Figure (3-11

Martin Marietta SOS Manipulator 1.--n Space S-tructure Assembly Environment

3-20

3.2.2 Time-Domain Simulation Tool

The simulation tool is intended to ultimately provide a realistic
computer simulation of a manipulator composed of actual or proposed
components. Using models of manipulator components, such as
amplifiers, motors, power trains, etc, along with a complete system
dynamics formulation, the simulation tool will provide a realistic
testbed for control technique studies, incorporation of artificial
intelligence technology within manipulator capabilities, and general
study of manipulator system and component performance. Within the
current development phase, the simulation tool structure has been
defined and implementation begun. The simulation tool has been
designed using closed-loop methods and state variable formulation.
Appendix E is a discussion of closed-loop versus open-loop methods as
well as a justification for using the state-variable approach. Figure
3-15 presents a block diagram of the closed-loop method. The work
performed within the current development phase has been restricted to
developing a single joint model using the state-variable formulation.
Placed within the context of Figure 3-15, all current work has been
within the a priori block. The adaptive methods will be addressed in
future expansion of the simulation tool capabilities.

Disturbance
Identification

Ltimated
Forces a priori

Data Base
Actual

System Equations
and Parameters

Predictions
Uncertainty

Adaptive
+) Methods - ,

Forces
J Test Cell L Model with

Measured Data Quantified
Error Confidence

Levels

Figure 3-15 Closed-loop Simulation Tool Structure

It should be noted that the work performed under the current contract
used a linear state variable approach to simulation modeling. The
software structure of modular components with well-defined interfaces
is not limited to a linear state variable application. A non-linear
state variable approach (or any modeling approach) can be used. The
linear state variable approach taken allowed easy modeling of the
single joint system and easy application of the Kalman filter to that
system.

Implementing simulation tool capabilities within the current
development phase has consisted of designing, coding, and testing a
computer model of a single manipulator joint using the state-variable
formulation. Figure 3-16 shows the basic joint model design. The
computer model design is modular with well-defined interfaces between

3-21

blocks to allow flexibility in defining the configuration of components. Each
block within the model uses the state-variable formulation. Figure 3-17 shows
a typical component block diagram illustrating the state-variable approach.
The basic equations in the state variable formulation can be written as:

x(k+l)
y(k+l)
z(k+l)

= ¢(k+l,k)x(k) + 8(k+l,k)~(k) + w(k)
C(k+l)x(k+l)
H(k+l)~(k+l) + v(k)

where

u = control array
x = state variable array
y = observable array
z = sensor output array
w = process noise array
v = sensor noise array
¢ = dynamics matrix
8 control matrix
C = observability matrix
H = measurement matrix

(3-7)
(3-8)
(3-9)

The equations that define the operation of the component must be placed
in state variable form, i.e., Equation [3-7]. This process defines the
control array, u, and the state-variable array, x, as well as the
required ¢ and 8 matrices. The observability matrix, C, must be
defined in a manner that will convert the state variable array, x, to
the actual !omponent output array, y. Sensor modeling is handled by
defining an appropriate H matrix to convert the component observable
output array, y, to the sensor output array, z, as shown in Equation
[3-9]. Figure 3-i6 shows that the control array, u, is constructed
from system observable data through the pre specified component D
matrix. The equation representing this procedure is

Figure 3-16 also shows that sensor data are combined and modified
appropriately by the M matrix to compare sensor data with the

(3-10)

pre specified reference signal, r. The error resulting from this
comparison is the input to the control box. The current computer model
handles the computations for each component exactly, as depicted in
Figure 3-16 using Equations [3-7] through [3-10].

3-22

w
I

N
W

T
11 I
I DA I DM I I Dp I

u Yc UA YA b.. Y ~ ~ Power Control - '--- Amplifier r- Motor ~
Train

+

Sensor Sensor I
zA zM

r0-
e

M 1
a

Notes: Y
""--

1. All blocks are in state-variable formulation.

2. Configuration is flexible, i.e., it has unlimited block linkage.

Figure 3-16 Joint ModeZ

11
I DL I

Yp UL YL r- "-- Load I--r--

Sensor I Sensor I
zp zL

Component Model r---------
w(k)

u(k)1 e + + x (k+l)

I
L ___ _

Legend: Sensor Model

u Control array r-
x State-variable arraYt
Y Observable array

---,
I
I
I
I

_ _--1

y(k+l)

z Sensor output array I
w Process noise array
v Sensor noise array v(k) -----

L ___ _
Figure 3-17 Typical Component Model

z(k+l)

3-24

Also, a Kalman filter for the entire joint model has been implemented.
The Kalman filter formulation requires the development of the system of
equations representing the entire joint model. Using Equations [3-7]
through [3-10], the set of equations required to represent the entire
joint model can be written as

xC(k+1) = ~C(k+1,k)xC(k) + 8C(k+1,k) [r(k) + M~(k)]

xA(k+l) = ~A(k+1,k)xA(k) + 8A(k+1,k)uA(k)

~(k+1) = ~M(k+1,k)~(k) + 8M(k+1,k)~(k)

xp(k+1) ~p(k+1,k)xp(k) + 8p (k+1,k)up (k)

~ (k+1) ~L(k+1,k)xL(k) + 8L(k+1,k)uL(k)

YC(k+1) = Cc(k+1)xc (k+1)

y A (k+l) = CA(k+1)xA(k+1)

YM(k+1) = CM(k+1)~(k+1)

Yp (k+1) cp (k+ 1)xp (k+ 1)

YL (k+1) CL (k+1)xL (k+1)

ZA(k+1) = HA(k+1)yA(k+1) + vA(k)

zM(k+1) = ~(k+1)YM(k+1) + vM(k)

zp(k+1) = Hp (k+1)Yp(k+1) + vp(k)

zL(k+1) = ~(k+1)YL(k+1) + vL(k)

uA(k) = DA y(k)

~(k) = DM y(k)

up(k) = Dp y(k)

~(k) = DL y(k)

3-25

+ wc(k)

+ wACk)

+ wACk) (3-11)

+ wp(k)

+ wL(k)

(3-12)

(3-13)

(3-14)

In matrix form, Equations [3-11] through [3-14] can be written

Xc <PC Xc 8
C

(r+Mz) Wc
xA <PA 0 xA 8A 0 uA wA
x

M
= <PM ~ + 8M ~ + wM

xp 0 <Pp xp 0 8p uL wp
(3-15)

xL <P xL k 8L up wL

Yc Cc Xc

YA CA 0 xA
YM CM ~

(3-16)

Yp 0 Cp xp

YL C xL

zA IH
I A 0 YC vA

zM
,

~ YA
v

M
0 I + (3-17)

zp , Hp YM vp
I 0

~ zL I Yp vL -
YL

uA DA YC

~
D

M
- YA

up Dp YM
(3-18)

uL
D

L
- Yp

YL

Equation [3-15] can be rewritten as

Xc <PC Xc 0 8C
8CM

[:] Wc
8
A

- - - - -
xA o/A xA

uA
wA

~ = <PM ~ + 8M ~ + + wM _0 0
(3-19)

xp <Pp xp 8p up wp

~ k+1-
<PL xL 8L

uL
wL

k

3-26

Examining only the second term in the right-hand side of Equation
[3-19] and using Equations [3-16] and [3-18], the following equation
can be written

0 0 Cc
8A uA 8A DA -1 8M

- - - -
~ 8M DM ,

I = - - - -

= J
8p up 8p Dp

8L 8L
- - - -

~ DL
-. '-

Equation [3-19] can now be written as

x(k+l) = 1> (k+l,k)..!(k) + 8 (k+l,k)~(k) + w(k)

where

¢C
¢A

¢M

0

8
C

; 8
C

M

-0- - 0 -
8 0 0

o 0
o r, 0

0

+
¢p

¢L

0 DA
- - - - -

8A 0 DM
8M - -D; - -

8p
0 8L DL

3-27

Xc
CA xA

CM ~
Cp xp

CI:J xL
-

(3-21)

-C i
0 C _ 1. _

,~ C
A 0

,I CM
0 ! C

o P C
L

(3-20)

The system sensor equation can be written using Equations [3-16 and
[3-17] •

~(k+l) H (k+l)~(k+l) + ~(k)

where

lH C I 0
1 A _Col - - - -
t l\t 0 ICA 0 1

Hp
I

H = I CM 0
0

11. 0 Cp
0

CL

The Kalman filter equation for the system can now be written as

i(k+l/k+l) ~(k+l,k)i(k/k) + 8(k+l,k)~(k)

(3-22)

(3-23)
+ G(k+l)[~(k+l) - H(k+l)~(k+l,k)!(k/k)]

where ~,8,H,~, and ~ are defined for the system Equations [3-21]
and [3-22] and

A

X the Kalman filter best estimate of the system states and the
filter G matrix is defined by the following equations:

P(k+l/k) = ~(k+l,k)P(k/k)~T(k+l,k) + Q(k)

P(k+l/k+l) = [P(k+l/k)-l + H(k+l)TR(k+l)-l H(k+l)]-l

G(k+l) = P(k+l/k+l) H(k+l)TR(k+l)-l

3-28

where 2
(J

vA
2 0

(J
vM 2

R(k+l)
(J

vp
2

0 (J
v

L

2
(J

we
(J

2 0
wA 2

Q(k)
(J
wM

2
(J

0
wp

2
(J
wL

2
Xc

cr 2 0
xA

2 (initially set to
P(k/k) (J large values)

~
2

(J

0
xp

2 a.
xp

Figure 3-18 shows the system-level block diagram for the joint model
and Kalman filter as defined by Equations [3-21], [3-22], and [3-23].
The implementation of the Kalman filter in the computer model includes
the switching logic shown in Figure 3-18. This allows the user to
select either the joint model sensor estimate array, z, or the Kalman
filter sensor estimate array, Z , in the feedback loop.

3-29

W
I

W
o

w

r

v

Joint Model I Kalman Filter
I

A

~(k+l)

Figure 3-18 System Level Block Diagram of Joint Model and Kalman Filter

The next step in developing the simulation tool will be the expansion
of the single-joint model to a two-joint system. Problems associated
with multiple-joint systems will be identified and addressed at the
two-joint level before attempting to expand the model to handle an
N-joint system. The most apparent problem associated with expanding
from a single-joint model to a multiple-joint model is the need to
consider the dynamics (or load block) problem on a system basis,
instead of for individual joints. In simplified form, the mUltiple
joint-model is shown in Figure 3-19. The dynamics equations required
for the two-joint case have been developed within the state variable
formulation. Appendix C presents the two-joint dynamics.

Joint 1 Applied
T orques

Control TI
Amplifier

Positions Motor
Power Train Velocities

Sensors

Joint 2

Control T2 System
Amplifier Dynamics
Motor (Load)
Power Train
Sensors • • • • • : Joint N • •
Control T

r--- Amplifier
n

Motor
Power Train
Sensors

• -
• System
• Control +

r Reference TraJecto y

Figure 3-19 N Joint ModeL Structure

3-31

S
e
n
s
0

r
s

3.2.3 Single Joint Simulation Example

Implementing the single-joint model and Kalman filter provided a
computer capability using the state variable approach. The computer
model allows demonstration of the basic concepts of component modeling
as well as some of the state-variable formulation concepts that will be
required to implement the adaptive methods in future simulation tool
enhancements.

The discrete, state-space model that was developed in the previous
section is illustrated in this section. A relatively simple system
consisting of an amplifier, armature-controlled dc motor, and an
inertial load is used as an example. The block diagram for this system
is shown in Figure 3-20.

V

Input 1
Command
Pot

{ +
- Amp Motor Load -

Load I Lv Position - Sensor 1
Figure 3-20 ExampZe Servo System

Note that this is an "analog" control system; all individual blocks and
the feedback signal are continuous. Continuous state equations are
easily discreted by considering the nature of the state transition
equation. This determines how state variables transition from one time
point to the next. The discrete state representation is formulated by
determining a suitably small time interval, T, and assuming that the
inputs, u, can be considered to be constant over this interval.
Because T will be chosen to represent a sampling frequency above the
Nyquist rate, the assumption on the inputs is valid.

The discretizing process is illustrated using the continuous system

x = Fx + Gu (3-24)

This has the continuous time solution,

x(t) (3-25)

3-32

Now, the assumption t - to = T leads to the discrete system

x(n+l) = ~x(n) + fu(n)

FT
t = e (3-26)

T
f = J eFnGdn

o

The models for each block are described below. Each model is
"discretized" in the state-variable format described earlier. (The
component values and appropriate constants that are used in the example
have been chosen arbitrarily; they do not correspond to a real system.

Amplifier - The amplifier has been modeled as a first-order system as
shown below.

8.
l. 50

s + 50

e
o

Figure 3-21 AmpUfier Dynamic Model

The voltage input to the amplifier is "ei" and consists of the
difference between the reference signal (8i) and the position feedback
signal (80). The amplifier output voltage is "eo".

The differential equation describing the amplifier is

de (t)
o
~ + SOKeo(t) = 50Kei (t) (3-27)

The amplifier state equations are derived using Equation [3-27]. The
state variable is chosen as eo (t). Therefore,

~A(t) = -50 xA(t) + SOK uA(t) (3-28)

Note, however, that uA (t) is a function of two other variables:8.(t),
l.

the reference input; and 8a(t), the load output displacement.

3-33

However, the load position is an observable variable for the load
subsystem, YIL. This means that the amplifier is actually a two-input,
single-output system. This is shown below in equation [3-29]:

(3-29)

With

8. (t)
1. .

Equation [3-29] takes the form of (3-7) with no noise.

It should be noted that for all blocks in the example, the observability
matrices, C, and the measurement matrices, H, are all set to the identity
matrix, I.

DC Motor - A system diagram for the dc motor is shown below:

R L

f) + T
i m

eO m e
b

Figure 3-22 DC Motor Mode Z

The voltage equation for the motor is

e (t) = Ri (t) + L dim(t) + eb(t) o m __ __
dt (3-30)

The back-EMF voltage (eb) is a function of the armature angular velocity
and the motor back-EMF constant (KB). If the armature angular velocity
is SA ' then the voltage equation is (in Laplace operator notation):

E (s)
o

The output torque of the motor, (Tm) is related to the motor current,
(im) by the torque constant, KT:

T (t) = L i (t) m -L m

(3-31)

(3-32)

3-34

The motor state equations are derived from equation [3-30]. The motor
current, i m, is an appropriate choice for a state variable.

x (t) = -R x (t) - eb(t) + eo(t)
m L m -L- L (3-33)

Note that eo (t) is actually Ya (t) (the observable variable for the
amplifier), and eb (t), as discussed earlier, is a function of other
system variables.

Load - The load dynamic system is shown below:

Tm 'L\ 'L\ \ c..))~ -)-+----,-,-,-,-,--..,.(-- _ II eo
BL J L

Figure 3-23 Load Dynamic System

The load differential equation is

T (t)
m

= J
L

d2 (8
0

(t» + BL d 8o (t)

dt2 dt

In Laplace notation

T (s)
m

(3-34)

(3-35)

The basic load equation is [3-34]. Because this is a second-order DE, two
state variables are required. These are chosen as

e (t)
o

The state description for this system is

T (t)
m

(3-36)

3-35

Digital Control Implementation - So far, the discussion has described the
simulation of a continuous feedback system. However, any control system
can be simulated. Because control variables are handled in a separate
part of the program, control inputs can be altered at any integer multiple
of the update rate of the continuous system. Because the control
subroutine is separate, any control algorithm is feasible.

Numerical Example - The values shown in Table 3-1 were used to develop a
closed-loop transfer function.

L = .2
R 1
J = 1

Table 3-1 Values Used for Closed-Loop Transfer Function

The resulting closed-loop transfer function is

8 (s)
o

8. (s)
1.

250K

s4 + 65s3 + 800s
2 + 250s + 250K

With a gain of K = 20, the characteristic equation becomes

4 3 2
s + 65s + 800s + 250s + 5000 = 0

(3-37)

(3-38)

The values in Table 3-1 were used in the discrete state-space model. The
time interval update used was 0.05 seconds. A plot of the computer model
response for a gain of K = 20 is shown in Figure 3-24. This gain value
was used to compare the performance of the discrete state model to the
continuous system performance. Damped natural frequency and percent
overshoot were used as the comparison factors. The response of the
discrete state model for several different values of gain is shown in
Figure 3-25.

3-36

o
111 .

00
-.-4
~

~o
111 .
o

l11
N

o

o

o
111 .
111
N

. "d ~
§
~o
0 0
u •

r-I
~

::Il11
0.." Q •
HO

.
o

o
~~--~----~---'-----r--~r---~--~r---tr----r-----'
00. 0 0.5 1.0 1.5

Time, s

Figure 3-24 Joint Model Response fop Gain = 20

~-F-----------r----------~----------~----------r----------'-----------' o
0.0 0.5 1.0 1.5

Time, s
2.0 2.5

Figure 3-25 Joint Model Response for Gain Values of 5, 10, 15, and 20

3-37

3.0

Results shown in these figures were obtained
simulation and verified by hand calculation.
to verify the computer model performance and
impl ementa tion.

from the computer
This simple example was

the state-variable

Estimation Example - In Appendix E, a thesis was presented which
implied that modeling of a particular system was impossible if the
classification set was not attainable. In addition, a problem was
postulated that required solving the estimation problem to solve the
control problem. This example will serve to clarify these notions.

Consider the example used previously. For this example, it can be seen
that input to the control box requires feedback from the load box
sensor. To dramatically illustrate the need for estimation, it was
assumed that moderate process noise is propagated and that the
measurement noise on the load cell is extremely high. This corresponds
to a condition characteristic of a broken sensor or an extremely poor
device.

A constant value of 10.0 was the assumed reference input. The
,.ohjective of this demonstration is to show it is impossible to achieve

an output equal to 10 under these noisy conditions without performing
, the estimation function. Figure 3-26 shows a time trace of the error
resulting from the reference signal minus the sensor feedback. As
shown, this resulting error makes it impossible to regulate the output
of the load to approach the desired reference signal. However, by
using the Kalman filter, the noisy feedback signal created by the poor
sensor can be cleaned, producing a modified feedback signal, 2. This
signal can be used to provide the feedback required to compare to the
reference input. Implementation of this scheme results in Figure
3-27. Comparing this figure with Figure 3-26 clearly demonstrates the
improved performance that can be achieved by solving the estimation
problem.

3-38

1-1

o
o
N

o ·

o
1-10
1-1 •
~O

r-f
o
1-1
-IJ
I=l
00 u •

o
r-f
I

o
o
N
I

o

o~-------p------~------~------~------~------~------~~--~
7 0.0 0.5 1.0 1.5 2.0

Time, s
2.5

Figure 3-26 Control Error without Kalman Filter Feedback

o
N
r-f

o ·

o
o

o ·

3.5

~~--------~------~--------~------~--------~--------'--------T--------~ I
0.0 0.5 1.0 1.5 2.0 2.5

Time, s

Figure 3-27 Control Error Using Kalman Filter Feedback

3-39

3.0 3.5

3.3 POST PROCESSING

The postprocessing package is intended to provide the ability to
perform more detailed study on the results of analysis tools
executions. Creation of plot files and other data files can be
requested during the execution of any of the analysis tools. These
files are then available for input to the various postprocessing
capabilities. Implemented postprocessing capabilities include the
ability to replay the system motion graphics from the requirements
analysis tool and the ability to produce parameter plots for requested
data from either the requirements or simulation tools. Eventually,
this package will be expanded so that a number of statistical tools
will be available. Current implementation allows postprocessing on the
results of a single analysis tool execution. Future enhancements will
provide for the study of the results of mUltiple analysis tool
executions to allow parametric studies.

3-40

4.0HANIPULATOR CONTROL TECHNIQUES

4.1 INTRODUCTION

This section addresses the problem of manipulator system control. Task 6
of the Statement of Work proposed definition of a set of control algo
rithms to drive models of the Unimate 600 and Martin Marietta SOS man
ipulators. Two factors limit the feasibility of modeling these specific
manipulators. First, complete physical and mass properties data was not
available for either arm. Secondly, the simulation capabilities of the
ROBSIM program are not sophisticated enough at this stage of development
to allow simulation of these arms to any realistic level. Consideration
of specific manipulators at this time is not required in order to proceed
toward the goal of this contract, which is to develop a general simula
tion capa bUity •

What has been accomplished is an extensive literature survey on the topic
of manipulator control and a general study of control techniques.
Subsection 4.6 contains a large list of current references which are
referred to throughout the following discussions. Implementation and
testing of various control techniques will be carried out in the next
phase of ROBSIM development. What follows is a general discussion of
current manipulator control philosophy.

4-1

4.2 PROBLEM DESCRIPTION

The manipulator control problem is a composite of several individual
problems. The primary problems of interest are introduced by con
sidering a generic manipulator system as shown in Figure 4-1.

Figure 4-1 Generic Manipulator System

In this system two manipulators are shown performing a coordinated
task. This immediately identified one problem of interest:
coordinate~ arm control.

There are three main problems associated with the control of a single
manipulator. The first problem has to do with kinematics, essentially
the geometry of the manipulator. The second problem deals with the
dynamics of the manipulator. The last problem addresses manipulator
performance requirements.

4.2.1 Kinematics

The kinematics problem arises from the fact that a manipulator task is
generally specified in some local coordinate frame. The most natural .
frame for describing a manipulator, however, is in terms of joint
angles. This results in a need for a means of transforming from local
to manipulator coordinates and vice-versa. This has been addressed in
the literature quite extensively. Deriving the basic transformation
equations and the necessary inverse relationships is not difficult.
The problem lies in achieving computational efficiency. This problem
has recently been addressed in [3] and [4].

4.2.2 Dynamics

The central focus of the manipulator control problem is the inherently
nonlinear nature of the associated dynamic equations. These can be
written as, [5];

4-2

[4-1]

!(~)~ + Bi + i(q,q) + I(q) = T

where

!(g) 6x6 inertia matrix

H 6x6 diagonal viscous friction matrix

i(~,~) 6x1 vector incorporating coriolis and
centrifugal terms

I(~) 6x1 vector defining gravity terms

T 6x1 vector of input generalized forces
-

.s. 6x1 vector of joint positions

The nonlinearities represent a severe problem from the standpoint of
control system design in that no unified methodology exists for con
trolling a nonlinear system. This has resulted in many control
approaches that incorporate a dynamic simulation model, [5]-[8], into
the controller. This can be viewed as a form of "model-reference"
control. The widespread need for simulation of manipulator dynamics
has resulted in a continued interest in achieving simplified dynamic
models [9]-[11]. .

Another important area of interest relating to manipulator dynamics is
the modeling of distributed parameter effects (vibrational modes). The
need for this type of research is recent in origin since manipulators
have traditionally been "over-designed". The current trend is towards
lighter weight arms with less inertia. This trend arises both from
performance and economic requirements. Another motivation for studying
flexible arm dynamics comes from the forecasted use of very large arms
in space for the construction of large space structures. A summary of
current work in this area is contained in [13], [14].

4.2.3 Performance Requirements

Any control system design centers on a performance requirement for the
closed loop system. In the case of a manipulator system, however,
there might be several different sets of requirements that govern
performance over a period of time. To perform a typical task, e.g.,
inserting a peg in a hole, the manipulator control system must first
move the peg to the vicinity of the hole. This amounts to following a
displacement-velocity (and possibly acceleration) profile for both
position and attitude of the end-effector. To actually insert the peg,
however, sensed force and torque information must be included into the
controller to account for misalignments, friction, etc. This is
generally referred to as "compliance" based control. Task-oriented
control has been discussed extensively in the literature [16] - [29].

4-3

4.3 APPROACHES TO SERVO CONTROL

As pointed out in the previous section the manipulator presents a
unique challenge for control system design. This stems from the fact
that all classical control design methods (both continuous and digital)
assume that the plant to be controlled is a linear time-invariant
system. An attempt to use unaltered linear approaches to the manipu
lator problem results in system performance that is dependent on
manipulator configuration, joint velocities, etc. This has led to a
series of approaches that attempt to incorporate knowledge of the
nonlinear dynamic system into the control structure.

4.3.1 Inverse Controllers

[4-2J

The idea of the "inverse controller" has permeated the majority of
control schemes that have been proposed in the literature [51 - [81,
[161, [201. The basic idea is that for a required trajectory of the
manipulator, Equation [4-11 can be solved in reverse; i.e., given the
desired joint values, T can be explicitly solved for. Because it is
assumed that there is not a direct match between the model and the
actual manipulator, additional feedback gain terms are necessary to
account for differences in desired and actual system states. In
general these gain terms operate on position and velocity errors.

COHPUTED' q
qd IDEAL TORQUE e ACTUAL q -
qd

qd SYSTEH SYSTEli q

Kl K2

Figuve 4-2 Invevse ContvoZ

The asymptotic stability of this method is demonstrated by exam1n1ng
the equations governing the error term, (~), shown in Figure 4-2.
Defining e as:

4-4

[4-3]

The error differential equation becomes:

Since this is an ordinary differential equation, the path of e is
totally defined by initial conditions, e(o), and the values of kl
and k2 •

This is a totally viable scheme if the exact system dynamics are known
a priori. The problem is that, if a situation occurs in which the load
is unknown, then Equation [4-3] is no longer valid.

Another practical drawback to this method is the need for
along a complete dynamic simulation of the ideal,system.
the computational complexity involved, simplifications in
are generally made [9]. This also results in error.

carrying
Because of
the dynamics

4.3.2 Stability-Based Controllers

Other approaches to manipulator control that differ significantly from
those described above have viewed the problem from the standpoint of
modern control theory [26] - [27], [30]. These methods describe
controller stability from the standpoint of Liapunov functions. This
is a natural approach, considering the structure of the underlying
dynamics.

As in the case of the inverse controllers discussed previously, this
approach is feasible if it is assumed that the dynamics governing the
system are explicitly known. In the case of [30], for example, the
system Hamiltonian must be known. When knowledge of the system
dynamics is imprecise the control law generated is only an approxi
mation to that desired.

Other researchers have attempted to apply features from modern control
theory to the manipulator problem. In [31] - [32] and [14], linear
quadratic optimal control theory has been applied. In [33], results
from multivariable control theory have been applied to the problem of
"decoupling" the system. This implies either state variable feedback
or a transfer matrix that turns a coupled multivariable system into a
series of single-input, single-output systems.

4.3.3 Adaptive Control

The different approaches to manipulator control that have been dis
cussed all rely on one common assumption: complete knowledge of the
manipulator dynamic state. While the general form of the equations is
well known the coefficients, specifically the inertia matrix, will be
time-varying in the general case. One approach to overcoming the
impact of the time-variations on manipulator performance is to make the
controller adaptive. While the term adaptive has been used loosely
throughout various disciplines the discussion here will center on a
specific definition; the so-called "Parameter Adaptive" controllers.

4-5

A parameter adaptive controller adjusts coefficients of a variable
"filter." A general adaptive controller is shown in Figure 4-3.

UNKNOWN
....

VARYING
..

r ...
PLANT

... PARAHETER ...
r ...

ESTIHATOR

•
CONTROL

LAW

4.
REFERENCE

Figure 4-3 General Adaptive Controller
As shown in the figure, it is assumed that the plant to be controlled
is either initially unknown or time-varying. The parameter adaptive
controller consists of two primary blocks: the parameter estimation
block and the control law block. The functions of each of these is
discussed in more detail below.

The parameter estimation block determines using sensor data, a set of
coefficients that adequately describe the system to be controlled.
This definition is purposefully vague because of the wide variety of
parameter estimation techniques that exist. A typical parameter
estimation block is shown in Figure 4-4.

U BeZ) y
A- • .. yeZ)= -- UeZ) ...-

A(Z)

PARM-IETER ESTIMATION
• t.. .. '" ALGORITID1

r A ,.
~ A(Z) B(Z)

Figure 4-4 General Parameter Estimation

4-6

The parameter estimation algorithm operates on input and output data to
generate an estimate of the unknown parameters - ~(z) and S(z).
Techniques for parameter estimation have been widely studied both for
control and signal processing applications. Algorithms are available
for deterministic and stochastic systems.

The output of the parameter estimation block is then used in control
law formulation. There are many ways of doing this just as there are
many methods for designing non-adaptive controllers. The most general
control form is model-reference control. In this case the controller
functions to make the closed-loop system match a desired transfer
function (or matrix). A special case of this type of control is
"one-step ahead optimal," or, minimum-variance control. This is
discussed in more detail below.

4-7

4.4 Predictor Model Control and Equation Error Parameter Estimation

The adaptive controller formulation presented here was first introduced
in a 1978 Technical Report [34], and then in the IEEE Transactions on
Automatic Control in 1980, [35]. The 1980 paper is widely recognized
as being the first complete proof of global stability for any adaptive
controller.

The adaptive controller has two functional blocks - a control law block
that calculates the inputs to be applied to plant actuators, and a
parameter estimation block that provides a specific set of parameters
that are used in control law formulation. (The structure is similar to
Figure 4-3.)

The control law that is being used is referred to as a "one-step-ahead"
or "deadbeat" algorithm.

When the plant to be controlled can be modeled as:

[4-4] Y (k+l) = a l Y (k)+ ... +an Y(k-n+ 1)+bOlJ(k)+ ... +bmU(k-m)

Then a predictor type control law can be formulated. This assumes that
the reference signal is known one step in advance,. i.e., Y*(k+l) is
known at time k. (This leads, of course, to a tracking delay of one
sampling instant.) The actual control law is derived by setting Y(k+l)

Y*(k+l) in Equation [4-4] and then solving for U(k).

[4-5] U(k) = ~o [Y* (k+l)-a l Y (k) - ... -anY (k-n+l) -b i U(k-I)- ... -bmU(k-m)]

With the a's and b's known, the U(k) calculated will result in Y(k+l)
Y*(k+l). This same formulation can be used when there is a system
delay of more than one, i.e., the output at k+l is a function of inputs
applied two or more sampling instants in the past. It is shown in [36]
that the same basic approach can be used to execute "model-reference"
control. (The formulation in [4-4] and [4-5] leads to what has been
called "inverse control", i.e., the transfer function of the closed
loop plant is a simple delay.) This approach to control law formu
lation is general and flexible and does not unnecessarily constrain the
designer.

The general concept of parameter estimation was introduced in the
previous section. A specific parameter estimation algorithm, recursive
least squares, will be discussed here.

Recursive least squares falls into the family of the so-called
"equation error" parameter estimation schemes. These are discussed
extensively in [36] and [37]. The name "equation error" is derived
from the basic structure of the estimation algorithm, (see Figure 4-5).

4-8

[4-8]

Host parameter estimation algorithms have the form:

\4-6] e(k+l) = e(k) + reek)

In an "equation error" formulation,

[4-7] e(k) = Y(k) - 4>Te (k)

where

4>T [Y(k-I) ,Y(k-Z), ... ,Y(k-n+l) ,U(k-I), ... ,U(k-m-l)]

A

o [al,aZ, ... ,an,bO,bl, ... ,bm]

Equation [4-7] is essentially the same as Equation~-4,

except that parameter estimates are used instead of the

actual parameters. For the true parameters, e(k) = o.

Hence the name "equation error", i.e., how well the

estimated parameters satisfy Equation~-~. For e(k) i 0,

the parameter estimator will continue to update the

estimate.

Figure 4-5 Equation Error Parameter Estimation

The" r" term in Equation [4-6] is what differentiates parameter
"estimation schemes. In the case of recursive least squares r is chosen
as shown below.

a(k)P(k-d-I)~(k-d)
r = l+a(k)~(k-d)lP(k-d-I)~(k-d)

T
_ a(k)P(k-d-I)!(k-d)~(k-d) p(k-d-I)

P(k-d) - P(k-d-I) - I+a(k)~(k-d) P(k-d-I)~(k-d)

(The "d" delay is necessary to retain causality). Simpler schemes are
available but they have very poor stochastic properties.

Using the controller and parameter estimation algorithm described
above, the adaptive controller functions as shown in Figure 4-6.

4-9

"
NEW OUTPUT

MEASUREMENT

AVAILABLE

CALCULATE NEW

PARAMETER ESTIMATE

SHIFT REGRESSION
VECTOR

CALCULATE

NEW

INPUT

I
Figure 4-6 Adaptive Control Flow Diagram

4-10

4.5 CONCLUSION

"

This report has discusses some of the primary approaches that have been
used in manipulator control. Adaptive control appears to be extremely
promising in regard to projected performance since it is one method
that compensates for parameter drift and load changes.

4-11

4.6 REFERENCES

[1] An Overview of the Basic Research Needed to Advance The State of
Knowledge in Robotics. J. R. Birk, R. B. Kelley, IEEE Tran
sactions SMC, Vol SMC-ll, No.8, August 1981.

[2] Issues in Advanced Automation for Manipulator Control.
K. Bejczy, 1976, JACC.

[3] Kinematic Control Equations for Simple Manipulators. R. P.
Paul, B. Schmano, G. E. Mayer, IEEE T~ans., Vol SMC-ll, No.6,
June 1981.

[4] Differential Kinematic Control Equations for Simple Manipu
lators. R. P. Paul, B. Shimano, G. E. Mayer, IEEE Trans., Vol.
SMC-ll,
No.6, June 1981.

[5] Controller for a Mechanical Manipulator. J. Y. S. Luh,
M. W. Walker, AC Theory and Applications, Vol 8, No.1, January
1980.

[6] On-Line Computational Scheme for Mechanical Manipulators.
Y. Y. S. Luh, M. W. Walker, R. P. Paul, Trans. ASME, JDSMC,
June 1980.

[7] Resolved Motion Force Control of Robot Manipulator. C. H. Wu,
R. P. Paul, IEEE Sys, Man. Cyber, Vol. SMC-12, No.5, 1982.

[8] Resolved-Acceleration Control of Mechanical Manipulators.
J. Y. S. Luh, M. W. Walker, P. R. Paul, IEEE Trans. Auto.
Control, Vol. AC-25, No.3, June 1980.

[9] Simplified Robot Arm Dynamics for Control. A. K. Bejczy,
P. R. Paul, 1981,

[10] Development of Equations of Motion of Single-Arm Robots.
R. L. Huston, F. A. Kelly, IEEE Sys, Man. Cyber, Vol. SMC-12,
No.3, 1982.

[11] Efficient Dynamic Computer Simulation of Robotic Mechanisms.
M. W. Walker, D. E. Orin, 1981, JACC.

[12] The Equivalence of Lagrangian and Newton-Euler Dynamics for
Manipulators. W. M. Silver, 1981, JACC.

[13] Modeling of Flexibility Effects in Robot Arms. F. Kelly,
R. L. Huston, 1981, JACC.

[14] Optimal Control of Non-Rigid Robot Linkages. D. R. Fal
kenburg,19. P. Judd, Oakland University, Rochester, MI.

[15] Feedback Control of Two Beam, Two Joint Systems with Distributed
Flexibility. W. J. Book, O. Maizza-Neto, D. E. Whitney, Trans.
ASME, J. DSMC, December 1975.

4-12

[16] Force Feedback Control of Manipulator Fine Motions.
D. E. Whitney, Trans. ASME, JDSMC, June 1977.

[17] Compliance and Control. R. Paul, B. Shimano, 1976, JACC.

[18]

[19]

[20]

[21]

[22]

[23]

Computer-Controlled Assembly. J. L. Nevins, D. E. Whitney,
Scientific America, 1978.

Compliance and Force Control for Computer-Controlled Manipu
lators. M. T. Mason, IEEE Trans., Vol. SMC-ll, No. 6, June 1981.

Joint Torque Control by a Direct Feedback for Industrial
Robots. J. Y. S. Luh, W. D. Fisher, R. Paul, 1981, CDC.

Force Feedback Control. E. G. Gerelle, 8th Int'l Symp. on
Indust~ial Robots, Stuttgart, W. Germany, 1978.

Asynchronous Interactive Control Systems. M. I. Vuskovic,
E. Heer, Trans. ASME, JDSMC, Vol. 104, March 1982.

Issues in Advanced Automation for Manipulator Control.
A. K. Bejczy, 1976, JACC.

[24] Joint Coordination for Manipulator Tracking. T. Turner, 1981,
CDC.

[25] Computer Control of Multijointed Finger System for Precise
Object Handling. T. Okada, IEEE Sys. Man. Cyber, Vol SMC - 12
November 3, 1982.

[26] Simulation and Control SynthesiS of Manipulators in Assembling
Technical Parts. D. Stokic, M. Vukobratovic, Trans. ASME,
JDSMC, Vol. 101, December 1979.

[27] One Engineering Concept of Dynamic Control of Manipulators.
M. Vukobratovic, D. Stokic, Trans. ASME, JDSMC, June 1981.

[28] Hybrid Position/Force Control of Manipulators. M. H. Raibert,
J. J. Craig, Trans. ASME, JDSMC, June 1981.

[29] Quasi-Static Assembly of Compliantly-Supported Rigid Parts.
D. E. Whitney, Trans. ASME, JDSMC, March 1982.

[30] A New Feedback Method for Dynamic Control of Manipulators.
J. Takegaki, S. Arimoto, Trans. ASME, JDSMC, June 1981.

[31] Minimum Time, Sequential Axis Operation of a Cylindrical,
Two-Axis Manipulator. P. M. Lynch, 1981, JACC.

[32] Microprocessor Implementation of Optimal Control for a Robotic
Manipulator System. W. E. Snyder, W. A. Griver, 1979, JACC.

4-13

[33] DYnamic Decoupling of a Remote Manipulator System.
J. S. C. Yuan, IEEE Trans., Vol AC-23, No.4, August 1978.

[34] Discrete Time Mu1tivariab1e Adaptive Control. G.C. Goodwin,
P.J. Ramadge, P.E. Caines, Harvard Univ. Tech. Report, November
1978.

[35] Discrete-Time Multivariable Adaptive Control. G. C. Goodwin,
P. J. Ramadge, P. E. Caines, IEEE Trans. on Automatic Control,
Vol. AC-25, No.3, June 1980.

[36] Adaptive Filtering, Prediction, and Control. G. C. Goodwin,
K. S. Sin, Manuscript TBD, Dept. of Commerce and Electrical
Engineering, University of Newcastle, New Sourth Wales,
Australia.

[37] Discrete Techniques of Parameter Estimation. J.M. Mendel,
Marcel-Dekker, Inc., New York, 1973.

[38] The Application of Model-Referenced Adaptive Control to Robotic
Manipulators. S. Dubowsky, D.T. DesForges, 1979, JACC.

[39] Control of Robotic Manipulator With Adaptive Controller.
A.J. Koivo, T.H. Guo, 1981, CDC.

4-14

5.0 ROBSIM SUPPORT FOR ROSS

5.1 INTRODUCTION

One of the objectives of the Robotic Simulation Tool is to provide
support for the design, development, and deployment of telepresence
systems for in-space satellite servicing and maintenance.

The design of such a system was the subject of Task 8 of the current
contract, Remote Orbital Servicing System (ROSS). The results of Task 8
were documented in a previous report, MCR-82-533.

Specific technology issues must be addressed. These issues will be
related to two segments of the system. These two segments are: 1) the
ground segment and 2) the space segment. Elements associated with the
ground segment are: a) the human operator, b) hardware/software
supporting the man at the control station, c) data processing, and d)
mission assessment. Space segment elements will be: e) the work site
and f) data processing.

Technology issues which require resolution are best defined with respect
to the elements described above. Table 5-1 defines these issues.

Many of the issues given above can be resolved by creating a simulation
tool representing the te1eoperator and robotic system. To answer these
concerns, the simulation must be capable of the following functions:

1) For specific designs, it will allow system evaluation, time1ine
and task planning, operator training, and backup support during
mission operations.

2) Act as a design tool for evaluating various levels of automation,
direct, and supervisory control.

3) Allow evaluation at the system level, advances in subsystem
technology.

4) Allow parametric studies of subsystems and components supplying
guidance as to high leverage areas requiring research at the
technology base level.

5) Allow error analysis and investigation of error recovery and
backup mode operations.

6) Allow investigations of advanced control techniques including
trajectory optimization.

7) Allow investigations of the applications of artificial
intelligence (AI) technology in automated decision making.

8) Allow studies of man/machine interface with remote systems to
develop an educated te1epresence and to enhance man's capability
to accomplish remote operations by increasing his supervisory
capabilities for complex systems.

~l

TabZe 5-1 TechnoZogy Issues

a) Human Operator

b) Control Station

c) Data Processing

d) Mission Assessment

e) Work Site

o Acceptance of Technology
o Number of Operators Required
o Single Operator Time-Constrained

Capabilities
o Human Endurance
o System Response Time
o Perceptual Limits
o Information Assimilation Rate & Capacity
o Cognitive Limits

o Delay
o HW/SW Architecture
o Method of Stereo Vision Display
o Visual Enhancement
o Display Mechanisms
o Command Mechanisms
o Integration of Display and Command

Mechanisms
o Communication of Task Semantics

o Degree of Autonomy
o Servo Loop Stability
o Delay
o Information Bandwidth
o Coordination of MUltiple Effectors
o Collision Avoidance
o Topography Estimation
o Robust Control
o Mistake Monitoring

o Task Plan Definition
o Definition of Performance Measure
o Experimental Verification and Compliance

o Lighting
o Detector Configuration
o Space Qualifications
o Auto-focus and Auto-point
o Number and Configuration of End Effectors

5-2

5.2 APPROACH

In concert with the ROSS program development, development of the
simulation tool will take place under three phases. The'output of the
Phase I level of effort will be the baseline hardware and software
required to support a ground station design for the ROSS. Phase II
simulation will support actual flight hardware and can be used to
validate software models used in the simulation to represent actual
hardware. Information obtained in Phases I and II will be incorporated
to develop a high fidelity simulation that will support the deployment of
the Remote Orbital Servicing System (ROSS).

Activities to be performed under ROSS Phase I are:

1. Define initial configuration of ROSS ground station, procure,
construct, and install equipment.

2. Develop software models of components and subsystems of ROSS.

3. Conduct lab tests of available components and subsystems and
validate software models.

4. Integrate developed models of ROSS into robotics simulation.

5. Initiate evaluation of ROSS.

Completion of these activities will result in initial ROSS evaluations.

Phase II ROSS activities providing gui~ance and evaluation of ROSS
during phase C/D and in evaluation of advanced subsystems are:

1. Continue ROSS evaluations with modifications as defined from
phase C/D and lab tests.

2. Develop models of components and subsystems resulting from base
technology programs. Install in robotic Simulation, validate,
and conduct parametric analysis at systems level to define
benefits and required modifications or improvements.

3. Modification of ground control station to allow reconfiguration
to conduct basic tests of man/machine interface.

4. Final ROSS configuration modification, validation, and operator
training.

5. Research in enhancement to ROSS concept for future missions.

The ultimate goal of the simulation will be accomplished at the
completion of the Phase III level of effort. By completing this phase, a
simulation will exist that has the following properties: 1) validated
simulation which can be used to evaluate the teleoperator and robotic
system and 2) provide a research tool to be used to design, develop, and
deploy man/machine systems used in conjunction with remote manipulators.
Activities to be performed under this phase are summarized below:

5-3

1. Incorporate vehicle dynamics for capture, docking, and
stabilization.

2. ROSS training and mission support.

3. Final validation of ROSS using flight experiment results.

4. Perform research on next generation servicer and space
construction using remote systems.

When properly designed, the simulation can be used to: 1) aid in
requirements analysis and conceptual design, 2) hardware and software
design verification, 3) personnel training, and 4) mission support and
assessment. In performing these activities, the simulation can be used
to define and allocate man/machine functions. The operational mode of
each task function will be designated as being either manual, semi
automatic, or automatic.

Associated with the five activities which support man-in-the-loop
simulations, certain simulation utility tasks will be required. Varying
degrees of fidelity will be required to accomplish these tasks. Table
5-2 presents these relationships.

From heuristic arguments, it can be shown that a simulation provides the
foundation for the ground control station configuration (GCSC).
Examination of Figure 5-1 shows the GCSC evolution from a digital
simulation. As shown in this figure, a digital simulation of the
teleoperator in conjunction with the manipulator dynamics will lead to
the software requirements necessary to support the ROSS mission. In
addition to providing a high fidelity model of the entire system, the
digital simulation will also identify the critical parameters, give an
analytical definition of the system requirements, provide a mechanism for
allocating error budgets, give an upper bound on system performance, and
aid in the design of flight experiments.

Having determined the optimal performance of the ROSS system with the
digital simulation, components of the system can be developed. For
example, the manipulator dynamics would be replaced by the actual
manipulator itself. Also, analog components such as a hand controller
would be augmented with digital components ultimately creating a hybrid
simulation. The output of such a hybrid configuration would be the
hardware and software which would serve to baseline the GCSC.

Payoffs other than the HW/SW requirements of the hybrid simulation are:
1) verification of the digital models, 2) provide a measure of system
component compliance to specifications, 3) provide a measure of the
ability to control a mechanism from a remote observation post, and 4)
provide an aid to the design of experiments to be conducted.

5-4

V1
I

V1

Table 5-2 Man-in-the-loop Simulation Activity

ACTIVITY

Requirements Analysis
and Conceptual Design

Hardware and Software
Design and Development

SIMULATION UTILITY TASKS

o Conceptual Development

o Allocation of Functions
Between Man and Machine

o Feasibility Demonstration

o Analysis of System Performance

o Development of Controls and
Displays

o Development of Flight Experiments

SIMULATION FIDELITY PHASES

o Functional Simulation

o System Modeling

o Subsystem Modeling

o Component-Level Modeling

1----------+-----------------11 ~ - -- .~ - - - - - - --
Hardware and Software
Design Verification

o Functional Verification

o Subsystem Compliance

oMission Timelining

o Development of Procedures and
Checklists

o Breadboard Hardware and
Software

o Prototype Hardware and
Software

1------------+--------------------\- - - - - - - - - - --.
Personnel Training

Mission Support and
Assessment

o Personnel Selection

o Part Task Training

o Full Up Training

o Real-Time Mission Support

o Post Flight Analysis

o Flight-Type Hardware and
Software

DIGITAL
SIMULATION

SOFTWARE

ANALOG

I
I
I HYBRID
I
I

HARDWARE SOFTWARE

GROUND CONTROL
STATION CONFIGURATION

Figure 5-1 Simulation: A Foundation for the GCSC

5-6

TIME

6.0 CONCLUSIONS AND RECOMMENDATIONS

The current phase of development (Phase I) has provided an evaluation
of artificial intelligence techniques, a computer program framework,
some basic capabilities for the ROBSIM program, and study into
manipulator control techniques. Future work (Phase II and III) will
include several study areas as well as enhancement and expansion of
computer capabilities.

Short-range (Phase II) expansion of the ROBSIM capabilities will be
conducted throughout the remainder of FY1982. Four major areas are to
be considered:

1) Investigate trajectory planning modules (collision avoidance,
minimum energy, other constraints);

2) Develop video simulation and image processing modules;

3) Define interactive initialization program modules;

4) Identify benefits and limitations of control laws, including both
classical and modern control techniques.

Several enhancements and. expansions are planned for computer
capabilities. The system definition capability will be expanded to
provide more detailed system component input. A library of parts will
be started to store data describing frequently used components.
Graphics capabilities will also "be expanded. The force/torque
requirements analysis tool will be expanded to provide for external
forces and torques, rate and position limit checks, and multiple arm
capability. The simulation tool will be expanded from a single-joint
model to a two-link model. Complete dynamics for the two-link case
will be added. The two-link case will then be used for control
technique studies. The postprocessing capabilities will be expanded to
handle input from mUltiple analysis tool executions.

Long-range (Phase III) expansion of the ROBSIM capabilities (FY1983 and
beyond) will be directed primarily toward supporting teleoperator and
robotic systems capable of remote space operations, i.e., the Remote
Orbital Servicing System (ROSS) concept. In FY1983, it is proposed to
incorporate software modules for the total simulation of the ROSS
concept into the simulation framework. The simulation framework will
be expanded in the areas of actuator, sensor, and mobility system
modeling; the ability to simulate mUltiple arm configurations; and a
parts library. Mathematical models of the components and subsystems of
ROSS will be developed and incorporated into the ROBSIM framework. The
ROSS subsystems to be modeled will include the vehicle dynamics, the
manipulator system, and the flight sensors. This activity will require
expanding the ROBSIM framework to include multiple arm configurations
and modeling of the host vehicle. For the specific ROSS configuration,
it is anticipated that the models for the manipulator motors, the
sensors, and the end effector are sufficiently different from existing
models to warrant developing new software modules. However, the mass
properties, physical dimensions, and joint configurations can be

6-1

directly incorporated into the existing dynamics models. Also included
under the FY1983 activity, laboratory experiments should be conducted
to validate software modules and to define hardware requirements for
the ground control station for manned control of the ROSS.

The trajectory planning technique defined under the Phase II activity
should be implemented and incorporated into the ROBSIM framework. The
trajectory planning module will perform obstacle avoidance, optimal
trajectory planning, and singularity avoidance. The man-machine
interface, coupled with software-simulated remote systems, would then
be in place to evaluate teleoperator and robotic systems capable of
remote space operations.

Various approaches to autonomous task planning should also be studied.
Task planning is one level of sophistication above trajectory planning
where the system solves the subtle problems associated with task
scheduling to achieve a specific mission goal. Techniques to be
considered include directed graph theory, rule-based systems, and
theorem provers.

Continued development during Phase II and Phase III may be carried out
on virtually any modern digital computing machine of the super-mini and
higher class. However, with the exception of the newest and fastest
machines, the necessary processing will not be accomplished in real
time by a single machirie. Specialized machines with multiple processor
architectur~s will be necessary for the accomplishment of this goal.
Areas such as mechanical configuration optimization, accuracy analysis,
control requirements and stability studies, and work environment
studies may require simulation but not necessarily in real time.

If real-time solutions of the simultaneous simulation equations are
determined not to be necessary, the continued development on the VAX
11/780 is quite appropriate. However, it should be pointed out that
there are several significant downstream requirements pointing to a
need for a real-time simulation associated with a hardware development
program such as ROSS. Some of these are:

1) Realistic Graphics - When the simulation system is coupled with a
graphic display of the computer solutions in real time, the results
are much more realistic.

2) Surrogate Hardware - Properly-simulated hardware may be used to
replace hardware subsystems that have failed or are not yet
available. The remainder of the hardware may be used in the system
as intended. System problems may be isolated by substituting
software modules for suspected failing hardware modules. System
integration may be approached more gradually by bringing hardware
on line one module at a time or as the hardware is available.

3) Real-Time Test Bed for Algorithm Development - Control and
estimation algorithms may be evaluated and optimized using the true
or emulated control computer without the use of scaling within the
algorithms and no potential damage to the existing manipulator
assembly.

6-2

4) Real-Time Research Test Bed for Artificial Intelligence (AI) and
Man/Machine Interface (MMI) - Safe, real-time response to decisions
and trajectory definitions by the AI as dictated by sensor output
and command input through the m11 is very important to these
research areas.

It should be emphasized that in order to achieve the goal of an
operational robotic simulation, a large number of complex areas must be
considered. Many of these areas are already provided for in the ROBSIM
framework; others must be added as required. Table 6-1 provides a list
of candidate areas for consideration. Areas such as sensor
configuration and sensor data processing may present significant
challenges in simulation. Other areas such as control, intelligence,
and man/machine interface are expected to be research oriented and
therefore somewhat fluid. All areas should be represented, even if
only by simplified modules, in order to approach full-scale simulation.

Table 6-1 Simulation Considerations

A. Manipulator Configuration

1. Joint Dynamics
2. Joint Sensors
3. Joint Actuators
4. Manipulator Geometry
5. Inner Loop Control
6. End Effector
7. End Effector Control

B. Sensor Configuration

C. Mobility Configuration

1. Mobility Sensors
2. Mobility Control

D. Sensor Data Processing

E. Control Philosophy

F. Intelligence

G. Man/Machine Interface

6-3

I 2. Government Accession No. 1. Report No.

NASA CR-165975
4. Title and Subtitle

EVALUATION OF AUTOMATED DECISIONMAKING METHODOLOGIES
AND DEVELOPMENT OF AN INTEGRATED ROBOTIC SYSTEM
SIMULATION-STUDY RESULTS

7. Author(s) J. W. Lowrie, Dr. A. Fermelia, D. C. Haley,
K. D. Gremban, J. Van Baalen, R. W. Walsh

9. Performing Organization Name and Address
Martin Marietta Aerospace
Denver Division
P.O. Box 179
Denver, CO 80201

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

15. Supplementary Notes

Langley Technical Monitor: Jack Pennington
Final Report

16. Abstract

3. Recipient's Catalog No.

5. Report Date
September 1982

6. Performing Organization Code

8. Performing Organization Report No.

MCR-82-581 Vol. I
10. Work Unit No.

11. Contract or Grant No.

NASl-16759
13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

A study was performed to evaluate a variety of artificial intelligence techniques
which could be used with regard to NASA space applications and robotics. The
techniques studied were decision tree manipulators, problem solvers, rule-based
systems, logic programming languages, representation language languages, and expert
systems. Another major goal of the study was to define the overall structure of a
robotic simulation tool and develop a framework for that tool. Nonlinear and
linearized dynamics equations were formulated for n-link manipulator configurations.

'A framework for the robotic simulation was established which uses validated
manipulator component models connected according to a user-defined configuration.

17. Key Words (Suggested by Authorls)) 18. Distribution Statement

robotics, artificial intelligence,
simulation, manipulator control, ROSS

Unclassified-Unlimited

19. Security Oassif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

91

22. Price

N-30S For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

