
•

..

NASA Contractor Report 165976

Evaluation of Automated
Decisionmaking Methodologies
and ,Development of an
Integrated Robotic System
Simulation

Appendix A. Software Documentation

J. W. Lowrie, Dr. A. J. Fermelia, D. C. Haley,
K. D. Gremban, J. Van Baalen, and R. W. Walsh

Martin Marietta Aerospace
Denver Aerospace'
P.O. Box 179
Denver, Colorado 80201

Contract NAS1-16759
September 1982

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

L·:··, "'~

l.J.\,._._, ;,_,,::'~,;;'-; i CE:~JT::~

. .,

111
NF01885

NASA CR-165976

Appendix A­
Software
Documentation

September 1982

EVALUATION OF AUTOMATED
DECISIONMAKING METHODOLOGIES
AND DEVELOPMENT OF AN
INTEGRATED ROBOTIC SYSTEM
SIMULATION

Prepared by:

James W. Lowrie
Dr. Alfred J. Fermelia
Dennis C. Haley
Keith D. Gremban
Jeff Van Baalen
Richard W. Walsh

This work was performed for NASA
Langley Research Center under
contract NAS1-16759.

MARTIN MARIETTA AEROSPACE
DENVER AEROSPACE
P.O. Box 179
Denver, Colorado 80201

FOREWORD

This document covers the work performed on contract NASl-16759, Evaluation
of Automated Decision-Making Methodologies and Development of Integrated
Robotic System Simulation, for the Langley Research Center of the National
Aeronautics and Space Administration. It was prepared by Martin Marietta
Aerospace in accordance with the contract, Part II, Statement of Work.

The final report for this study consists of three volumes:

NASA CR-165975 - Study Results

NASA CR-165976 - Appendix A, Software Documentation

NASA CR-165977 - Appendix B, Derivation of Requirements Tool Dynamics
Appendix C, Derivation of Simulation Tool Dynamics
Appendix D, Derivation of Requirements Tool Control Law
Appendix E, Simulation Methodologies

Comments or requests for additional information should be directed to:

Jack Pennington
Mail No. l52D
Contracting Officer Representative
Langley Research Center
Hampton, VA 23665

ii

or James W. Lowrie
Mail No. 0570
Martin Marietta Aerospace
P.O. Box 179
Denver, CO 80201

1.0

2.0
2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.1.4
2.1.1.5
2.1.1.6
2.1.1. 7
2.1.1.8
2.1. 2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.2.4.1
2.1.2.4.2
2.1.2.5
2.1.2.5.1
2.1. 2. 6
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.4.1
2.2.1. 4. 2
2.2.1.4.3
2.2.1.4.4
2.2.1.4.4.1
2.2.1.4.4.2
2.2.1.4.4.3
2.2.1.4.4.4
2.2.1.4.4.5
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.5

CONTENTS

INTRODUCTION

ROBSIM - EXECUTIVE PROGRAM
System Definition Function Driver (INITDRVR)
CREATE
BASE
JOINT •
LINK
TOOL
OBJECT
GRAPH
CNTROL
PRGOPT
BLDDAT
CYL •
RECT
TRISTR
ORIENT
MAT •
MATVEC
DRAW
ESMAT
DBASE
Analysis Tools Function Driver (SIMDRVR)
REQUIR
LDCOM •
GRAFIX, MATINT
SEGMNT
CNTRLR
SETUP
POUTC
WROUT
DYNAMICS
TQBASE
CABSM
FORCE
TORQUE
DYNOUT
Postprocessing Function Driver (POSTDRVR)
MOTION
GENPLT
RDPLT
LOGO
ROBSIM Utilities
ERRMSG
RDSIM
SETLU
WRTSIM
ZERCOM
Math Utilities

iii

AI-I

A2-1
A2-2
A2-4
A2-6
A2-8

A2-10
A2-12
A2-13
A2-15
A2-17
A2-19
A2-21
A2-23
A2-26
A2-29
A2-31
A2-32
A2-33
A2-34
A2-35
A2-37
A2-38
A2-39
A2-41
A2-42
A2-46
A2-47
A2-49
A2-50
A2-51
A2-53
A2-54
A2-55
A2-56
A2-57
A2-58
A2-60
A2-61
A2-62
A2-65
A2-66
A2-67
A2-68
A2-69
A2"':'70
A2-71
A2-72
A2-73

CONTENTS (cont)

Page

2.5.1 CC1M A2-73
2.5.2 SLVLIN, GAUSS A2-74
2.5.3 MATMPY A2-76
2.5.4 SKEW A2-77
2.5.5 CE1M A2-78
2.6 Evans and Sutherland Graphics Routines A2-79
2.7 DISSPLA plot Routines A2-8l

_. 3.0 IN'lMOD - HAIN PROGRAH A3-l
3.1 General Joint Model Routines A3-s
3.1.1 INPUT. A3-s
3.1.2 INIT, PTINIT A3-7
3.1. 3 UVEC, COMPD A3-9
3.1.4 XNOISE A3-11
3.1. 5 COMPC A3-l2
3.1. 6 SENSOR A3-l3
3.1. 6.1 HCOMP A3-l4
3.1.6.2 ZNOISE A3-ls
3.1. 7 PRT A3-l6
3.2 Controller Hodel (CONTRL) A3-17
3.2.J COMPM A3-l9
3.2.2 LOADR • A3-20
3.2.3 PHIC A3-2l
3.2.4 THETAC A3-22
3.2.5 CONTC A3-23
3.2.6 CNOISE A3-24
3.3 Amplifier Model (AMP) A3-2s
3.3.1 PHIA A3-27
3.3.2 THETM A3-28
3.4 Motor Model (MOTOR) A3-29
3.4.1 PHIM A3-3l
3.4.2 THETAM A3-32
3.5 Power Train Model (P\-lRTRN) A3-33
3.5.1 PHIP A3-3s
3.5.2 THETAP A3-36
3.6 Load Hodel (LOAD) A3-37
3.6.1 PHIL A3-39
3.6.2 PHETAL A3-40
3.7 Kalman Filter A3-4l
3.7.1 KFINIT A3-42
3.7.2 BLDZAL A3-43
3.7.3 BLDPHI A3-44
3.7.4 BLDTHT A3-45
3.7.5 BUILDH A3-46
3.7.6 KAlMAN A3-47
3.7.6.1 BUILDG A3-48
3.7.6.2 PRTKF • A3-49
3.8 plot File Routines A3-s0
3.8.1 PLTSET A3-5l
3.8.2 LDVALU A3-52

iv

3.8.3
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.10

Al-l
Al-2
Al-3
Al-4
Al-5
Al-6
Al-7
Al-8
Al-9
Al-IO
AI-II
Al-12
Al-13
A2-l
A2-2
A2-3
A2-4
A2-5
A2-6

, A2-7
A2-8
A2-9
A2-l0
A2-11
A2-l2
A2-13
A2-l4
A2-l5
A2-l6
A2-l7
A2-l8
A2-l9
A2-20
A2-2l
A2-22
A2-23
A2-24
A2-25
A2-26
A2-27

CONTENTS (cont)

WRTHDR
Matrix Math Routines
MATADD •••• • • • •
MA1MPY ••••
MATTRN
MATSUB
IMSL Math Package Routines

Figure

ROBSIM Framework ••••• • • • • • • • • •
Top-Level ROBSIM Hierarchy Diagram •• • • •
System Definition Function Hierarchy Diagram
Analysis Tools Function Hierarchy Diagram •
Postprocessing Function Hierarchy Diagram
JN1MOD Program Hierarchy Diagram •••• • • • • • •
Initialization Hierarchy Diagram •••• •
Kalman Filter Initialization Hierarchy Diagram •••
Control Model Hierarchy Diagram • • • • • • • •
Amplifier Model Hierarchy Diagram • •
Motor Model Hierarchy Diagram • • • • • • • • • • • •
Power Train Model Hierarchy Diagram •
Load Model Hierarchy Diagram
VCLR for ROBSIM Executive Program •
INITDRVR VCLR • • • • • • • • • • •
CREATE VCLR • • • • •
BASE VCLR • • • • • • • • • • • • •
JOINT VCLR • • • • • • • • •
LINK VCLR • • • • • • • • • • • • • • • •
TOOL VCLR • • • • • • • • • • • • •
OBJECT VCLR • •
GRAPH VCLR ••••••••
CNTROL VCLR • • • • • • • • • • • • •
PRGOPT VCLR • • • • • • • • •
BLDDAT VCLR •
Cylinder and Cone Shape Coordinate Systems
CYL VCLR •• • • • • • ••••
Rectangular and Trapezoidal Shape Coordinate Systems.
RECT VCLR •
Triangular Cross-Section Beam Coordinate System •
TRISTR VCLR • • • • • • •
ORIENT VCLR • • • •
MAT VCLR • • • • • • • • • • • • • • • • • • •
:MATVEC VCLR • • • • • • • • • • • • • • ••••
DRMV VCLR • • • • • • • • • • • • • • • • • • •
ESMAT VCLR
DBASE VCLR
SIMDRVR VCLR
REQUIR VCLR •
LDCOM VCLR

v

.

A3-53
A3-54
A3-55
A3-56
A3-57
A3-58
A3-59

Al-2
Al-3
Al-4
Al-5
Al-6
Al-7
Al-9

Al-IO
Al-IO
Al-ll
Al-12
Al-13
Al-14
A2-l
A2-3
A2-5
A2-7
A2-9

A2-l1
A2-l2
A2-l4
A2-l6
A2-l8
A2-20
A2-22
A2-24
A2-25
A2-27
A2-28
A2-29
A2-30
A2-3l
A2-32
A2-33
A2-34
A2-36
A2-37
A2-38
A2-40
A2-4l

Figure (cant)

Page

A2-28 GRAFIX VCLR • A2-43
AZ-29 MATINT VCLR • A2-45
AZ-30 SEGMNT VCLR • A2-46
A2-3I CNTRLR VCLR • AZ-48
A2-32 SETUP VCLR A2-49
AZ-33 POUTC VCLR A2-50
A2-34 WROUT VCLR A2-52
A2-35 DYNAMICS VCLR • A2-53
A2-36 TQBASE VCLR • A2-54
A2-37 CABSM VCLR A2-55
A2-38 FORCE VCLR A2-56
AZ-39 TORQUE VCLR • A2-57
A2-40 DYNOUT VCLR • A2-59
A2-4I POSTDRVR VCLR • A2-60
A2-42 MOTION VCLR • A2-61
A2-43 GENPLT VCLR • A2-63
A2-44 RDPLT VCLR A2-65
AZ-45 LOGO VCLR • A2-66
A2-46 ERRMSG VCLR • A2-68
AZ-47 RDSIM VCLR AZ-69
A2-48 SETLU VCLR AZ-70
AZ-49 WRTSIM VCLR • A2-71
A2-50 ZERCOM VCLR • A2-72
A2-51 CCTM VCLR • A2-73
A2-52 SLVLIN VCLR • A2-74
A2-53 GAUSS VCLR A2-75
A2-54 MATMPY VCLR • A2-76
A2-55 SKEW VCLR • AZ-77
A2-56 CETM VCLR • A2-78
A3-1 Typical Model Block • A3-2
A3-2 Joint Model • A3-2
A3-3 JN1MOD VCLR • A3-4
A3-4 INPUT VCLR A3-6
A3-5 INIT VCLR • A3-7
A3-6 PTINIT VCLR • A3-8
A3-7 UVEC VCLR • A3-9
A3-8 COMPD VCLR A3-10
A3-9 XNOISE VCLR • A3-11
A3-10 COMPC VCLR A3-12
A3-11 SENSOR VCLR • A3-13
A3-12 HCOMP VCLR A3-14
A3-13 ZNOISE VCLR • A3-I5
A3-I4 PRT VCLR A3-I6
A3-15 CONTRL VCLR • A3-18
A3-I6 COMPM VCLR A3-I9
A3-17 LOADR VCLR A3-20
A3-I8 PHIC VCLR • A3-2I
A3-19 THETAC VCLR • A3-22
A3-20 CONTC VCLR A3-23
A3-2I CNOISE VCLR • A3-24

vi

Figure (cant)

Page

A3-22 AMP VCLR • A3-26
A3-23 PHIA VCLR A3-27
A3-24 THETAA VCLR A3-28
A3-25 MOTOR VCLR • A3-30
A3-26 PHIM VCLR A3-31
A3-27 THETAM VCLR A3-32
A3-28 PWRTRN VCLR A3-34
A3-29 PHIP VCLR A3-35
A3-30 THETAP VCLR A3-36
A3-31 LOAD VCLR A3-38
A3-32 PHIL VCLR A3-39
A3-33 THE TAL VCLR A3-40
A3-34 KFINIT VCLR A3-42
A3-35 BLDZAL VCLR A3-43
A3-36 BLDPHI VCLR A3-44
A3-37 BLDTHT VCLR A3-45
A3-38 BUILDH VCLR A3-46
A3-39 KALMAN VCLR A3-47
A3-40 BUILDG VCLR A3-48
A3-41 PRTKF VCLR • A3-49
A3-42 PLTSET VCLR A3-51
A3-43 LDVALU VCLR A3-52
A3-44 WRTHDR VCLR A3-53
A3-45 MATADD VCLR A3-55
A3-46 MATMPY VCLR A3-56
A3-47 MATTRN VCLR A3-57
A3-48 MATSUB VCLR A3-58

vii

1. O.~_",'INTRODUCTION
"

1.1

The Robotic Simulation Program (ROBS1M) has been designed to provide a
wide range of computer capabilities in robotic system design and analy­
sis. The program structure is composed of three major functions con­
trolled by a program executive as shown in Figure AI-I. The three ma­
jor ROBS1M functions are:

1) System definition;

2) Analysis tools;

3) Postprocessing.

Each of the major functions is designed in a modular fashion to allow
for easy future expansion.

The System Definition function handles user input of system parameters
and creates a disk file to be used as input to the Analysis Tools and
Postprocessing functions. The Analysis Tools function handles the com­
putational requirements of the RO~SIM program. Currently, a require­
ments analysis tool and a simulation tool are being implemented. Addi­
tional analysis tools are easily included within the program struc­
ture. The simulation tool is being developed outside the ROBS1M pro­
gram structure as a standalone program. The documentation of the simu­
lation tool program is contained in a separate section of this docu­
ment. The Postprocessing function allows for more detailed study of
the results of the Analysis Tools function execution. Current postpro­
cessing capabilities include a playback of the system motion using the
program graphics and generation of parameter versus parameter plots.

DOCUMENT STRUCTURE

The remainder of Section 1.0 provides hierarchy diagrams for the soft­
ware developed to date under the ROBSIM contract and a short discussion
of the visual control logic representation (VCLR) diagrams used to show
program logic flow.

Section 2.0 contains the documentation of the subroutines that make up
the ROBSIM program and presents a description of the ROBSIM executive.
Subsections 2.1 through 2.3 contain descriptions of the routines re­
quired in the System Definition, Analysis Tools, and Postprocessing
functions, respectively; Subsection 2.4, descriptions of several pro­
gram utility routines used throughout the ROBSIM program; Subsection
2.5, descriptions of several math utilities used throughout the ROBS1M
program; Subsections 2.6 and 2.7, short descriptions of the Evans and
Sutherland graphics routines and the D1SSPLA plotting routines used in
ROBS 1M.

Al-l

Existing
Database

to be M~d~i~f~i:ed~lliiilll~~~ . 0
_· Interactive

••. User
, ,
~-.--

Interactive
User

Graphics

System
Definition
Data Base

Postprocessing

Printed
Output

:~: I., •
,_' '''Playback''

tn -~ Graphics

Time Histories
of Simulation
Parameters

lINt Current Contract Partially Addresses These Areas

Figure Al-l ROBSIM Framework

Section 3.0 contains the documentation of the subroutines that make up
the simulation tool program, Joint Model (JNTMOD). Subsection 3.1 con­
tains descriptions of the input routines, the initialization routine,
the print routine, and several routines used in multiple locations in
the JNTMOD program; Subsection 3.2, descriptions of the control rou­
tines; Subsections 3.3 through 3.6, descriptions of amplifier model,
motor model, power train, and load model routines, respectively; Sub­
section 3.7, descriptions of the Kalman filter routines; Subsection
3.8, descriptions of the plot file generation routines; and Subsection
3.9, descriptions of the math routines.

The documentation of each routine in Sections 2.0 and 3.0 contains a
general discussion of the function performed and a VCLR for that
routine.

Al-2

1.2 HIERARCHY DIAGRAMS

2.4.3 I
Set

Hierarchy diagrams for the ROBSIM and JNTMOD programs are given in Fig­
ures Al-2 through Al-13. The numbers associated with each block in the
hierarchy diagrams indicate the section number within this document
containing the description of the subroutine that handles that block
function. Figure Al-2 shows the top-level hierarchy diagram for the
ROBSIM program. Figures Al-3 through Al-5 show the hierarchy diagrams
for the three major ROBSIM functions--System Definition, Analysis
Tools, and Postprocessing, respectively. Figures Al-6 through Al-13
show the hierarchy diagrams for the JNTMOD program.

2.0 ROBS 1M

ROBS 1M
Executive

I
SETLU 2.1 IINIDRVR 2.2 ISIMDRVR 2.3 lpOSTDRVR 2.4.1 I ERRMSG

System Analysis Postprocessing Error
Definition Tools Function Message Logical Function Function Driver Routine Units Driver Driver

Figure Al-2 Top-Level ROBBIM Hierarchy Diagram

Al-3

i::
I

+>-

~,
CQ

~
~
I

\:.0;1

2.1 INIT DRVR
System
Definition
Function
Driver

I
IZERCOM 2.4.2 I RDSIM 2.1.1 CREATE 2.1.2 BLDDAT 2.4.1 -------

Read Create/ Define Error Zero Input Modify Detailed
Common Graphics Message

File Input Routine Data

2.1.2.1 CYL 2.1.2.2 RECT 2.1.2.3 TRISTR 2.1.2.4 ORIENT 2.1.2.5 DRAW 2.4.2 RDSIM

Define Define Define Orient Read Draw Cylinder Rectangle Beam Shape Shape Input
Shape Shape Shape File

2.1.2.6 DBASE 2.1.2.4.11 MAT 2.1.2.4.2IMATVEC 2.4.1 ERRMSG
Load Compute Multiply Error
Data Rotation Vector Message
in Matrix and Routine
Common Matrix

2.1.1.1 I BASE 2.1.1.21 JOINT 2.1.1.3 LINK 2.1.1.4 TOOL 2.1.1.5 OBJECT 2.4.1 ERRMSG 2.6 I 2.1.2.5.~ ESMAT

Define Define Define Define Define Error E&S Compute

Base Joint Link Tool Simple Message Graphics Graphics

Data Data Data Data Graphics Routine Routines Transformation
Data Matrices

2.4.1 I ERRMSG 2.4.1 I ERRMSG 2.4.1 ERRMSG 2.4.1 ERRMSG 2.6

Error Error Error Error E&S
Message Message Message Message Graphics
Routine Routine Routine Routine Routines

2.1.1.6 GRAPH 2.1.1.7 CNTROL 2.1.1.8 PRGOPT 2.4.4 WRTSIM

Draw Specify Specify Write

System Desired Program Input
Motion Options File

2.6 2.4.1 ERRMSG 2.4.1 ERRMSG 2.4.1 ERRMSG

E&S Error Error Error
Graphics l1essage Message Message
Routines Routine Routine Routine

Figure Al-3 System Definition Function Hierarchy Diagram

2.4.4 WRTSIM

Write I

Input
File

2.4.1 ERRMSG

Error
Message
Routine I

i::
I

VI

~
(Q

I-%j
~.

()Q

c: .,
CD

i::
I
~

~
(\)

:t>.
.......
I
~

2.2 SIMDRVR
Analysis
Tools
Function
Driver

RSDIM 2.2.1 REQUIR 3.0 JNTMOD 2.4.1 J
Read Requirements

Simulation Error
Input Analysis

Tool Message
File Tool Driver Routine

Driver

2.4.1 ERRMSG 2.2.1.1 LDCOM 2.2.1.2 GRAFIX 2.2.1. 3 SEGMNT 2.2.1.4Ic ____

Error Load Motion Update Motion
Message Corrunons Graphics Segment Controller
Routine

I
:.2.1.2.d MATINT 2.6 2.2.1.4.1 SETUP 2.5.2 JSLVLIN 2.2.1.4.2 POUTC 2.2.l.4.3JlWROUT 2.2.l.2IGRAFIX 2.5.3 I MATMPY

Compute E&S Solve Perform
Graphics Computations Write Motion Multiply
Transformation Graphics Setup Linear Output Output Graphics Matrices
Matrices Routines System Calculations

I I J I
2.6 2.5.1 CCTM 2.5.4 SKEW 2.5.2.11 GAUSS 2.5.3 I MATMPY 2.2.1.2.1 MATINT 2.6 I

E&S
Compute Form Gauss-

Compute
E&S

Graphics
Complete Skew- Jordan

Multiply Graphics Graphics Transformation Symmetric Matrices Transformation Routines Matrix Matrix Elimination Matrices Routines

2.5.3 MATMPY 2.5.5 I CETM 2.2.1.4.4 DYNAMICS 2.6
Compute System E&S

Multiply Elementary Dynamics Graphics
Matrices Transformation Function Routines

Matrix

2.5.1 I CCTM 2.2.1.4.4.1 ITQBASE 2.2.1.4.4.2 CABSM 2.2.1.4.4.3 FORCE 2.2.1.4.4.4 TORQUE 2.2.1.4.4.511 T

Compute
Transform Compute Compute Compute Write

Complete
to Base Absolute Reaction Reaction Dynamics

Transformation
Coordinates Motion Forces Torques Output

Matrix

I I
- - ~ - - MATMPY 2.5.5 I CETM 2.5.3 MATMPY 2.5.4 SKEW 2.5.3 MATMPY 2.5.4 SKEW 2.5.3 MATMPY 2.5.4 SKEW

Compute Form Form Form
Multiply Elementary Multiply Skew- Multiply Skew- Multiply Skew-
Matrices Transformation Matrices Symmetric Matrices Symmetric Matrices Symmetric

Matrix Matrix _ Ma~r~,,----- Matrix

Figure Al-4 AnaLysis TooLs Function Hierarchy Diagram

j::
I

0'\

~
~

~
:t>.
I
I:.n

2.3.1 MOl1ION
i •

Replay
Motion

1

2.3 POSTDRVR

Postprocessing
Function
Driver

1

,

2.3.2 GENPLT r-T--, i i

Parameter
Plots

1

I Future I
I Capabilities I
L ___ .J

2.4.2 RDSIM 2.2.1.21 GRAFIX 2.3.2.11 RDPLT
, , , i

2.3.2.21 LOGO

Read
Input
File

Motion
Graphics

2.4.1 ERRMSG , ,
Error
Message
Routine

2.2.1.2.11 MATI NT 2.6 1 . ,
Compute
Graphics
Transformation
Matrices

E&S
Graphics
Routines

Read
Plot
File

Figure Al-5, Postprocessing Function Hierarchy Diagram

Draw
Logo

2.4.1 ERRMSG , ,
Error
Message
Routine

\::
I

-...J

~

~
;l::.
I
0)

"%j ,....
()'Q

~
I'i
(!)

\::
I

Q'\

3.1.1 INPUT

Input
Routine

3.7.1 KFINIT
'Kalman '
Filter
Initialization
Routine

3.0

3.2 CONTRL

Control
Model

JNTMOD

JNTMOD
Main
Routine

I
3.3 I AMP 3.4 I MOTOR

Amplifier Motor
Model Model

I
See Figure Al-B See Figure Al-9

I
See Figule Al-ll See Figure Al-IO

3.1.2 INIT

Initialization
Routine

See Figure Al-7

3.8.1 PLTSET

Plot File
Ini tialization
Routine

3.1.3

Load
Control
Vector

UVEC 3.8.2 LDVALU

Load
Plot File
Array

3.1.3.1 I COMPD
I i

3.9.2 1 MATMPY

Compute
D
Matrix

Multiply
Matrices

Figure Al-6 JNTMOD Program Hierarchy Diagram

3.1. 7

Print
Joint
Data

3.5 I PWRTRN 3.6 I LOAD

Power Load Train
Model Model

I I
See Figure Al-12 See Figure Al-13

PRT 3.B.3 WRTHDR

Write
Plot File
Header

>
I-'
I

00

~

1
;t:.
......
I
0)

"'""' (')
C)
~
(')
~
'-

I'%j
1-'.

OQ
c::
1"'\
ro

\::
I

C)\

"....
n
0
::l
rt
Q.

'-"

3.0 JNTMOD

JNTMOD
Main
Routine

I
3. 7.2 I BLDZAL 3.7.3 BLDPHI 3.7.4 I BLDTHT 3.7.5 I BUILDH 3.7.6

Build Build Build Build
System Z System System System Kalman
and Phi Theta H Filter
Alpha Matrix Matrix Matrix
Vectors

3.9.2 I MATMPY

Multiply
Matrices

3.9.2 I MATMPY 3.9.1 I MATADD

Multiply Add
Matrices Matrices

3.7.6.11 BUILDG 3.9.2 I MATMPY 3.9.4 I MATSUB 3.9.1 I MATADD 3.7.6.21
Build Print
Kalman Multiply Subs tract Add Kalman
Filter Matrices Matrices Matrices Filter
G Results
Matrix

I
I MATTRN 3.9.2 I MATMPY 3.9.1 I MATADD 3.10. I LGINF

Matrix Multiply Add Matrix
Transpose Matrices Matrices Invert

-
Figure Al-6 (concL)

~
I

\0

~
CQ

t'%j
~
C
Ii
(l)

~
I

......

~
:t:.
\-..l
I

-...;)

3.1.2 - - INIT --

Initialization
Routine

I
3.2.31 PHIC 3.3.1 I PHIA 3.4.1 I PHIM 3.5.1 I PHIP 3.6.1 1 PHIL 3.2.41 THETAC 3.3.21 THETAA 3.4.21 THETAM 3.2.51 THETAP
Initialize Initialize Initialize Initialize Initialize Initialize Initialize Initialize Initia1ize
Control Amp Motor Power Train Load Control Amp Motor Power Train
Phi Phi Phi Phi Phi Theta Theta Theta Theta
~latrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix

3.6.2 TIlETAL 3.2.5 CONTC 3.1. 5 COMPC 3.1.6.1 HCOMP 3.1.3.1 COMPD 3.2.1 COMPM 3.2.2 LOADR 3.9.2 MATMPY 3.1.2.1 PTINIT

Initialize Initialize Initialize Initialize Initialize

Load Control Amp, Motor, Amp, Motor, Amp, Motor, Initialize Initialize
Multiply Print

Theta C Power Train, Power Train, Power Train, Feedback Reference
Matrices Initial

Matrix Matrix and Load and Load and Load Matrix Signal Conditions
C Hatrices H Matrices DM<ltric~~

------ ---

rt-gur'e Al-7 Initialization Hierarahy Diagram

3.7.1 KFINIT
Kalman
Filter
Initialization
Routine

3.7.3 I BLDPRI 3.7.41BLDTHT 3.7.5 BUILDR 3.9.3 JMATTRN 3.9.2 I MATMPY
Initialize Initialize Initialize
System System System Matrix Multiply
Phi Theta R Transpose Matrices
Matrix Matrix Matrix

Figure Al-B Kalman Filter Initialization Hierarchy Diagram

3.2. CONTRL

Control
Model

I
3 • 2 .5 I CONTC 3.2.31 PRIC 3 • 2 .41 TRETAC 3.2.11' COMPM

Compute Compute Compute Compute
Control Control Control Feedback
C Phi Theta Matrix
Matrix Matrix Matrix

,3.2.2 LOADR 3.2.6 CNOISE 3.9.2 MATMPY 3.9.1 MATADD
Load Compute Reference Multiply Add
Signal Control Matrices Matrices
Array Noise

3.10 GGNML
Obtain
Sample
from
Normal
Distribution

Figure Al-9 Control Model Hierarchy Diagram

Al-10

3.1. 5 ICOMPC
Compute
Amp
C
Matrix

3.3.1. PHIA
Compute
Amp
PHI
Matrix

3.1.4 XNOISE
Compute
Amp
Noise

3.3. AMP

Amplifier
Model

3.3.zjTHETAA
Compute
Amp
THETA
Matrix

I

3 .1. 6 SENSOR
Compute
Sensor
Output

3.10 GGNML
Obtain
Sample
from
Normal
Distribution

3.1. 6 .11 HCOMP
Compute
Amp

3.l.6.zlzNOISE
Compute
Sensor
Noise

H
Matrix

3.1OIGGNML
Obtain
Sample
from
Normal
Distribution

Figure Al-10 Amplifier ModeZ Hierarchy Diagram

Al-ll

3.9.2jMATMPY 3.9 .11MATADD

Multiply
Matrices

Add
Matrices

3.9.2IMATMPY 3.9 .1IMATADD

Multiply
Matrices

Add
Matrices

3 .1. slcoMP C
Compute
Motor

3.4.1 PHIM
Compute
Motor
PHI
Matrix

C
Matrix

3.1.4 XNOISE
Compute
Motor
Noise

3.4. MOTOR

Motor
Model

3.4.2ITHETAM
Compute
Motor
THETA
Matrix

I

3 .1. 6 SENSOR
. Compute
Sensor
Output

3.10 GGNML
Obtain
Sample
from
Normal
Distribution

3.1. 6 .1IHCOMP
Compute
Motor

3.l.6.2/ZNOISE
Compute
Sensor
Noise H

Matrix

3.l0IGGNML
Obtain
Sample
from
Normal
Distribution

Figure Al-ll Motor Model. Hierarchy Diagram

Al-12

Multiply
Matrices

Add
Matrices

3.9.2/MATMPY 3.9.1~TADD
Multiply
Matrices

Add
Matrices

3.1. SICOMPC
Compute
Power
Train
C
Matrix

3.S.1. PHIP
Compute
Power Train
PHI
Matrix

3 .1.4 XNOISE
Compute
Power Train
Noise

3.S. PWRTRN
Power Train
Model

I
3 • S .2 I TIlE TAP

Compute
Power Train
THETA
Matrix

3.1.6 SENSOR
Compute
Sensor
Output

3.l0IGGNML
Obtain
Sample
from
Normal
Distribution

3.1.6.JHCOMP
Compute
Power Train
H

3.1.6.2/ ZNOISE
Compute
Sensor
Noise

Matrix

3.10/GGNML
Obtain
Sample
from
Normal
Distribution

3.9.21MATMPY 3 .9 .~MATADD

Multiply
Matrices

Add
Matrices

3.9. 2jMATMPY. 3. 9 .1IMATADD

Multiply
Matrices

Add
Matrices

Figure Al-12 Power Train ModeZ Hierarchy Diagram

Al-13

3.6. LOAD

Load
Model

I
3.1. SICOMPC

Compute
Load

3.6.1. PHIL
Compute
Load

3.6.2ITHETAL
,Compute
Load
THETA
Matrix

3.9.21¥~TMPY 3.9.l/MATADD

Multiply
Matrices

Add
Matrices C

Matrix
PHI
Matrix

3.1.4 XNOISE
Compute
Load
Noise

3.1.6 SENSOR
Compute
Sensor
Output

3.10 GGNML
Obtain
Sample 3 .1. 6.1 HCOMP

Compute
Load

3.1.6.2IzNOISE 3.9.Z/MATMPY 3.9.1/ MATADD
from
Normal
Distribution H

Matrix

Compute
Sensor
Noise

Multiply
Matrices

.3.10 I GGNML
Obtain
Sample
from
Normal
Distribution

Figure Al-13 Load ModeZ Hieroarahy DiagroaJn

1.3 VCLR FORMAT

Add
Matrices

VCLR diagrams present program logic flow that is compatible with struc­
tured programming. The use of VCLR diagrams offers many advantages
over the use of flow charts:

1) Only the standard constructs are used;

2) TIle total scope and impact of the logic can be seen and easily
understood;

3) No extraneous symbols, connections, or notations are used.

VCLR provides visible control logic representation, which is a picture
of a software design. It enables software engineers to express their
thinking visually and stresses the control logic of the design.

Al-l4

Standard constructs in visible control logic representations are the
same as those for pseudo-code: SEQUENCE, IFTHENELSE, DOWHILE, DOUNTIL,
and DOCASE; only the representations differ.

SEQUENCE - A SEQUENCE is simply one standard construct or one single
statement followed by another. If pI and P2 are standard constructs
or single statements, the sequence would appear in a visible control
logic representation as:

pI

P2

IFTHENELSE - IFTHENELSE consists of a true/false test and a path for
each state. The true path appears on the left side, under the "T."
One of the paths may be a "do nothing" or "NULL" path. One or both
paths must consist of a standard construct or of a single statement.
If "CI" is the condition being tested, "PI" is the true path, and "P2"
is the false path, the IFTHENELSE construct would be written as:

T \ Cl L F

pI P2

DOWHILE - The DOWHILE is a loop with these characteristics:

a) The counter or other item to be "incremented" is initialized before
entering the loop.

b) The test is performed at the beginning of the loop. The condi­
tions that must exist for the loop to be executed are the con­
ditions that appear in the DOWHILE test.

c) The item to be executed must be a standard construct or a single
statement.

d) The counter is incremented or other increment-like action is
generally taken (e.g., another line is read) at the end of the loop.

If "CI" is the condition that must exist for the loop to be executed,
and "PI" is a standard construct or single statement, the DOWHILE would
be written as follows:

AI-IS

DOWHILE Cl

Pl

DOUNTIL - The DOUNTIL is a loop with these characteristics:

a) The counter or other item to be "incremented" is initialized before
entering the loop.

b) The test is performed at the end of the loop. The conditions that
must exist to exit from the loops are those that appear in the
DOUNTIL test.

c) The item to be executed must be a standard construct or a single
statement.

d) The counter is incremented or other increment-like action is
generally taken (e.g., another line is read) at the beginning of
the loop.

If "Cl" is the condition that must exist to exit from the loop and
"pl" is a standard construct or single statement, the DOUNTIL would
be written as follows:

I Pl

DOUNTIL Cl

DOCASE - The DOCASE construct is for executing a different set of
statements for each of several different values of a variable. If "CI"
is the variable being tested and if "Cl" may have values of 1, 2, or 3,
the construct appears as follows:

~--~----------------------~--,

T F

F

F

pl

Example A Example B

Example A is equivalent to the nested IFTHENELSE form shown in B.

Al-l6

2.0 ROBSIM - EXECUTIVE PROGRAM

The executive routine controls the program execution through an inter­
active user prompt for the program function desired. Execution of the
requested function is accomplished through a subroutine call to the ap­
propriate function driver. The three program functions and the asso­
ciated drivers are:

1) System definition (INITDRVR);

2) Analysis tools (SIMDRVR);

3) Postprocessing (POSTDRVR).

The System Definition function handles user input of system parameters
and creates a' disk file to be used as input to the Analysis Tools and
Postprocessing functions. The Analysis Tools function handles the com­
putational requirements of the ROBSIM program. The Postprocessing
function allows for more detailed study of the results of the Analysis
Tools function execution. Upon completion of the requested function
execution, control is returned to the program executive. The program
function prompt is then reissued to allow the user to either request
another program function execution or request program termination.

Nonrecoverable errors encountered within any function return control to
the executive program for display of the appropriate error message
through a call to subroutine ERRMSG. Following a nonrecoverable error,
the user may elect to terminate the program or reissue the program
function prompt and attempt further program execution.

Figure A2-l is the VCLR for the ROBSIM executive program.

Initialize Program Mode and Error Flags to Zero

CALL SETLU to Set Logical Unit Numbers for Program I/O

Prompt for Program Mode, MODE

----=:::::r---- DOCASE MODE

1 2 r;-----~ ~
CALL CALL CALL Terminate Null
INITDRVR SIMDRVR POSTDRVR Program
for for for Post-
System Analysis processing
Definition Tools Function
Function Function

DOUNTIL MODE = 4
.

F~gure A2-1 VCLR for ROBSIM Executive Program

A2-l

2.1 SYSTEM DEFINITION FUNCTION DRIVER (INITDRVR)

The System Definition function driver operates in an interactive mode
and prompts the user for the system definition option desired. Valid
options are:

1) Create a new basic data file;

2) Modify an existing basic data file;

3) Specify detailed environment geometry;

4) Specify detailed system geometry;

5) Return to the ROBSIM executive.

Option 1 provides for the input of data describing a robotic system not
previously studied. All data required to describe the system must be
input through terminal responses to interactive prompts issued by vari­
ous routines within the System Definition function. The result of exe­
cuting Option 1 will be a disk file containing all data input describ­
ing the robotic system. No data describing the geometry of the envi­
ronment are requested within the prompts of Option 1. The data used to
describe the geometry of the robotic system for graphics display will
consist of simple cylinder representations. The simple cylinder repre­
sentation was chosen for ease of data point computation, ease of modi­
fication, and acceptability of use as a coarse representation of most
robotic system components.

Option 2 provides for the modification of an existing data file previ­
ously created by the System Definition function. Through interactive
prompts issued by various routines within the System Definition func­
tion, the user selects the data to be modified. As in Option 1, geo­
metric data describing the environment are not input within Option 2.
The use of simple cylinder representations for the robotic system com­
ponents allows the addition and deletion of links for quick study of
various system configurations. Option 2 may be selected for modifica­
tion of an existing data file that contains detailed geometric data de­
scribing the robotic system. However, modifications should be limited
to data not pertaining to the system geometry or configuration of
joints and links. Modifications in these areas will destroy the de­
tailed data and replace it with simple cylinder data.

Option 3 allows the user to describe the geometry of the environment
for graphics display. The data describing the environment are built up
of components that are simple three-dimensional shapes. A data file
generated with Option 1 or 2 must exist prior to selection of Option 3.

Option 4 allows the user to specify a detailed geometric representation
of the robotic system used in Option 1 and 2. A data file generated
with Option 1 or 2 must exist prior to selecting Option 4. Option 4
should be used only when the system configuration is stable because

AZ-2

changes in the configuration require redefinition of the detailed geom­
etry of the entire system.

If Option I is requested, subroutine ZERCOM is called to zero all COM­
MON locations used for data storage during execution of the System Def­
inition function. Subroutine CREATE. is then called to control the pro­
gram flow and the creation of the data file.

If Option 2 is requested, subroutine RDSIM is called to read the exist­
ing data file and load the data into the appropriate COMMON blocks.
Subroutine CREATE is then called to control the program flow and the
modifications of data as required.

If either Option 3 or 4 is requested, subroutine BLDDAT is called to
control the input of the detailed geometric data.

Recoverable errors encountered within subroutine INITDRVR cause an er­
ror message to be written through a call to subroutine ERRMSG followed
by appropriate recovery action. Nonrecoverable errors encountered
within routines called by INITDRVR cause return of control to the
ROBSIM executive program.

Figure A2-2 is the VCLR for subroutine INITDRVR.

Prompt for System Definition Function Mode, IMODE

-r--r--~SE lMO~
1 2 3 4 r-s- Def

CALL CALL CALL CALL Return Null
ZERCOM RDSIM BLDDAT BLDDAT to
to Zero to Read to Define to De- ROBSIM
Common Input Detailed fine De- Execu-
Locat- File Environ- tailed tive
tions ment Robotic

Graphics System
Data Graphics

Data

CALL CALL
CREATE CREATE
to to
Create Modify
New Exist-
Input ing In-
File put

File
.

F'Z-gure A2-2 INITDRVR VCLR

A2-3

2.1.1 Create/Modify Data File (CREATE)

Subroutine CREATE controls the program flow during the creation or mod­
ification of the input data file under the System Definition function.
Upon entering subroutine CREATE, the user turns on or off via interac­
tive prompt the use of the gr~phics package. Subroutine CREATE is
called in one of two modes, creation of a new data file, or modifica­
tion of an existing file. In the create mode, the program logic flows
sequentially through subroutine CREATE requiring input for all possible
data. In the modify mode, the user is prompted to specify which data
are to be changed. Program control is then sent directly to the rou­
tine responsible for those data.

The robotic system geometry and mass properties data are input through
subroutines BASE, JOINT, LINK, and TOOL. The location orientation and
size of the system base are defined in subroutine BASE. The location,
orientation, size, and mass properties of each joint/link combination
are defined in subroutines JOINT and LINK. Subroutine TOOL defines the
location and orientation of the end effector. For the base, each link,
and the end effector, subroutine OBJECT is called to generate the sim­
ple cylinder data for graphics representations. If graphics is re­
quested, each system component is displayed as the data are input. In
either the create or modify modes, the user may iterate on a particular
component until it is correct before proceeding. Subroutine CNTROL al­
lows the user to define a particular motion sequence for the robotic
system. The program start time, stop time, time step, and other pro­
gram option flags are set in subroutine PRGOPT. When all input is com­
plete, subroutine WRTSllf is called to write the data file to disk.

Recoverable errors encountered within subroutine CREATE cause an error
message to be written through a call to subroutine ERRMSG followed by
appropriate recovery action. Nonrecoverable errors encountered within
routines called by CREATE cause return of program control through the
System Definition function routines back to the ROBSIM executive
program.

Figure A2-3 is the VCLR for subroutine CREATE.

A2-4

Prompt for Graphics Flag, IGRAF

~ If Modifications Requested (IMODE = 2) h
Prompt for Modification Category, CALL BASE to Input Base Parameters
ICHNG

CALL OBJECT to Create Simple

~ Graphics Requested h Graphic Data

CALL GRAPH to Initialize I~ Graphics Requested h Graphics and Draw System Null

I CALL Graph to Draw Base Null ---r----- DOGASE ICHNG Z DOUNTIL Base Correct
1 2 ~

Modify Modify
Null

CALL JOINT to Input Joint
System System Parameters
Geometry Motion

CALL LINK to Input Link Parameters and Mass Parameters
Properties ~odify CALL OBJECT to Create Simple

Modify Program Graphic Data
Environment Options

~ h Parameters Graphics Requested

CALL GRAPH to Draw Link I Null

DOUNTIL Link Is Correct

DOUNTIL All Links Defined

CALL TOOL to Input Tool Parameters

CALL OBJECT to Create Simple
Graphic Data

~ Graphics Requested h
CALL GRAPH to Draw Tool I Null

DOUNTIL Tool Is Correct

~ Graphics Requested h
Prompt to Terminate Graphics

CALL GRAPH to Terminate Graphics
Null

CALL CNTROL to Specify System Motion

CALL PRGOPT to Input Program Option
DOUNTIL Modifications Complete Flags

Call WRTSIM to Write Data File to Disk

Figure A2-J CREATE VCLR

A2-5

2.1.1.1 Define Base Data (BASE) - Subroutine BASE interactively
prompts the user for location, orientation, and size data for the ro­
botic system base. The calling argument MOD specifies whether subrou­
tine BASE was called in the create mode or the modification mode. In
the create mode, the user is prompted for all possible data. In the
modification mode, the user is prompted to specify which data category
is to be changed. The user is then prompted only for the requested da­
ta. Following input of the requested data, the modification category
prompt is repeated allowing modification of other base data. Upon com­
pletion of all changes, the user requests termination of modifications
and control is returned to the calling program.

The location of the base is specified as the Cartesian coordinates of
the origin of the base coordinate system given in terms of the "world"
coordinate system. Using the graphics screen as a reference, the
"world" coordinate system is defined with origin at thE;! center of the
screen, x-axis positive to the right, y-axis positive upward, and
z-axis positive out of the screen.

The orientation of the base is specified as a rotation sequence and
corresponding set of rotation angles. This rotation sequence and the
associated rotation angles relate the base coordinate system axes to
the "world" coordinate system axes. Performing the rotation sequence
on the "world" system produces the base system. The base system should
be oriented so that the x-axis points toward the first joint in the ro­
botic system. Orientation of the y-z plane is arbitrary.

The size parameters the user is prompted for in subroutine BASE are
used by subroutine OBJECT to compute the simple cylinder representation
for graphics. The base size is specified as the x-axis end points, the
base radius, and the number of sides desired for the cylinder.

A recoverable error encountered within subroutine BASE causes an error
message to be written through a call to subroutine ERRMSG followed by
appropriate recovery action. There are no nonrecoverable error condi­
tions in subroutine BASE.

Figure A2-4 is the VCLR for subroutine BASE.

A2-6

~ IF Modification Mode ~
Prompt for Modification Category Flag, ICHNG Prompt for Base Location

---r----~E ICHNG / Prompt for Base Rotation
Sequence and Rotation

1 2 3 --z.- -'uef Angles

Modify Modify Modify Modify Null Prompt for Base End Points
Base Base Base Base
Loca- Rotation End Radius Prompt for Base Radius and
tion Sequence Points and Number of Sides

and Number
Rotation of
Angles Sides

DOUNTIL All Modifications Complete

Figure A2-4 BASE VCLR

A2-7

2.1.1.2 Define Joint Data (JOINT) - Subroutine JOINT interactively
prompts the user for the type, location, orientation, and initial state
of each joint in the robotic system. The calling argument MOD speci­
fies whether subroutine JOINT was called in the create mode or the mod­
ification mode. In the create mode, the user is prompted for all pos­
sible data. In the modification mode, the user is prompted to specify
which data category is to be changed. The user is then prompted only
for the requested data. Following input of the requested data, the
modification category prompt is repeated allowing modification of other
joint data. Upon completion of all changes, the user requests termina­
tion of modifications, and control is returned to the calling program.

The joint type is specified as either hinge, swivel, or sliding. Hinge
joints rotate about the joint y axis. Swivel joints rotate about the
joint x axis. Sliding joints move along the joint x axis.

The location of the joint is specified as the Cartesian coordinates of
the origin of the joint coordinate system given in terms of the coordi­
nate system of the previous joint (or base if the current joint is
joint 1). Note that the x axis of a joint coordinate system is di­
rected along the centerline of the link between that joint and the ne~t
joint (or end effector if the current joint is the final joint in the
system). The orientation of the y-z plane is user-defined but is usu­
ally determined by the joint type (i.e., orientation of the axis of ro­
tation) •

The orientation of the joint is specified as a rotation sequence and
corresponding set of rotation angles that define the orientation of the
current joint coordinate system with respect to the coordinate system
of the previous joint (or the base if the current joint is jo{nt 1).
The joint-axis orientation conventions were discussed in the preceding
paragraphs.

The initial state of each joint is specified as the initial joint angle
for hinge or swivel joints and the initial length for sliding joints.

A recoverable error encountered
message to be printed through a
recovery action is then taken.
ditions in subroutine JOINT.

within subroutine JOINT causes an error
call to subroutine ERRMSG. Appropriate
There are no nonrecoverable error con-

Figure A2-5 is the VCLR for subroutine JOINT.

A2-8

~ IF Modification Mode ~
Prompt for Modification Category Flag, ICHNG . Prompt for Joint Type

--__ ~ ICUNG / Prompt for Joint Location

I 2 3 ~Def Prompt for Joint Rotation
Sequence and Joint

Modify Modify Modify Modify Null Rotation Angles
Joint Joint Joint Joint
Type Loca- Sequence Variable Prompt for Initial Joint

tion and Ro- Value Variable Value
tation
Angles

DOUNTIL All Modifications Complete
1------ ______

Figure A2-5 JOINT VCLR

A2-9

2.1.1.3 Define Link Data (LINK) - Subroutine LINK interactively
prompts the user for the size, location of the center of mass, the
mass, and the inertia matrix of each link in the robotic system. The
calling argument MOD specifies whether subroutine LINK was called in
the create mode or the modification mode. In the create mode, the user
is prompted for all possible data. In the modification mode, the user
is prompted to specify which data category is to be changed. The user
is then prompted only for the requested data. Following input of the
requested data; the modification category prompt is repeated, allowing
modification of other link data. Upon completion of all changes, the
user requests termination of modifications, and control is returned to
the calling program.

The size parameters the user is prompted for in subroutine LINK are
used by subroutine OBJECT to compute the simple cylinder representation
for graphics. The size of each link is specified as the x-axis end
points, the link radius, and the number, of sides desired for the
cylinder.

The location of the center of mass of the link is specified as the Car­
tesian coordinates of the center of gravity (cg) in the coordinate sys­
tem of the joint at the "base" end of the link. The location and ori­
entation of that joint coordinate system were defined in a call to sub­
routine JOINT immediately preceding the current call to subroutine LINK.

The rema1n1ng link mass properties are specified by the link mass and
the link inertia matrix. The inertia matrix is specified relative to
the joint at the "base" end of the link.

A recoverable error encountered
message to be printed through a
recovery action is then taken.
ditions in subroutine LINK.

within subroutine LINK causes an error
call to subroutine ERRMSG. Appropriate
There are no nonrecoverable error con-

Figure A2-6 is the VCLR for subroutine LINK.

A2-10

~ IF Modification Mode ?
Prompt for Modification Category Flag, ICHNG Prompt for Link

/
End Points

_129CASE ICHNG
Prompt for Link

1 2 3 4 5 6 - Def Radius

Modify Modify Modify Modify Modify Modify Null Prompt for Number
Link Link Number Loca- Link Link of Sides for Link
End Radius of tion Mass Inertia
Points Sides of Matrix Prompt for Loca-

for Center tion of Link
Link of Center of Mass

Mass
Prompt for Link

DOUNTIL All Modifications Complete Mass

Prompt for Link
Inertia Matrix

Figure A2-6 LINK VCLR

A2-11

~

2.1.1.4 Define Tool Data (TOOL) - Subroutine TOOL interactively
prompts the user for the location and orientation of the tool (or end
effector) of the robotic system. The calling argument MOD specifies
whether subroutine TOOL was called in the create mode or the modifica­
tion mode. In the create mode, the user is prompted for all possible
data. In the modification mode, the user is prompted to specify which
data category is to be changed. The user is then prompted only for the
requested data. Following input of the requested data, the modifica­
tion category prompt is repeated, allowing modification of other tool
data. Upon completion of all changes, the user requests termination of
modifications, and control is returned to the calling program.

The location of the tool is specified as the Cartesian coordinates of
the origin of the tool coordinate system given in terms of the coordi­
nate system of the final joint in the robotic system. The location and
orientation of the final joint was specified by the last call to sub­
routine JOINT.

The orientation of the tool is specified as a rotation sequence and
corresponding" set of rotation angles that define the orientation of the
tool coordinate system with respect to the coordinate system of the
final joint.

A recoverable error encountered
message to be printed through a
recovery action is then taken.
ditions in subroutine TOOL.

within subroutine TOOL causes an error
call to subroutine ERRMSG. Appropriate
There are no nonrecoverable error con-

Figure A2-7 is the VCLR for subroutine TOOL.

IF Modification Mode /
Prompt for Modification Category Flag, ICHNG Prompt for Tool Location

----~ICHN~ Prompt for Tool Rotation
Sequence and Rotation

1 2 Def Angles

Modify Tool Modify Tool Null
Location Rotation

Sequence and
Rotation Angles

DOUNTIL All Modifications Complete

Figure A2-7 TOOL VCLR

A2-l2

2.1.1.5 Define Simple Graphic Representation (OBJECT) - Subroutine
OBJECT creates simple cylinder graphic data used by the graphics pack­
age to draw the robotic system. The data created in subroutine OBJECT
are stored in COM}10N block IOBJ. The form of the data as stored in the
common block is dictated by the requirements of the graphics routines.
Data representing a right circular cylinder of the specified size are
computed for each system component (the base and each link). For the
tool (or end effector), data are computed to allow display of the tool
coordinate system axes only.

Two counter arrays are used in subroutine OBJECT and stored in common
to keep track of the number of components and the starting location of
each within the common block. These arrays are NUM and NSTRT respec­
tively. These arrays are used by subroutine GRAPH to locate data in
the common block for the various system components.

The simple cylinder representation used by subroutine OBJECT was chosen
for ease of data point computation, ease of modification, and accept­
ability of use as a coarse representation of most robotic system compo­
nents. The use of simple cylinder representations allows the addition
and deletion of links for quick study of various system configurations.

The computation of the data points defining the cylinder for the base
or each link is performed in two steps. First, the data defining the
vertex points around the two end circles are computed. This is accom­
plished by computing the y and z coordinates around the x axis at one
end of the cylinder. The coordinates for the other end of the cylinder
are then specified by repeating the coordinates of the first end while
replacing the x value with that of the second end. The second step in
defining the data for the cylinder is to define the data required to
represent the sides of the cylinder by connecting corresponding ver­
tices in the two cylinder ends.

The computation of data points to define the tool coordinate system
consists of specifying pairs of points from the origin to a specified
distance out each axis. The distance used for the axis length is twice
the radius of the final link in the system.

Figure A2-8 is the VCLR for subroutine OBJECT.

A2-l3

DOCASE IN i 0 1 to N -1

Compute Coordi- Compute Coordi- Compute Coordinates Nul
nates of Vertex nates of Vertex of Origin and a

Reference Point on
DOUNTIL All Verti- DOUNTIL All Verti- Each Axis of the
ces of End ces of End TooL Coordinate
Considered Considered System

DOUNTIL Each End of DOUNTIL Each End of
Base Considered Link Considered

Select Pairs of Corre- Select Pairs of Corre-
sponding Vertex Data sponding Vertex Data
Points from Each End to Points from Each End to
Represent Side Data Represent Side Data

Figure A2-8 OBJECT VCLR

A2-14

2.1.1.6 System Definition Function Graphics (GRAPH) - Subroutine GRAPH
provides the graphics capability in the System Definition function.
Subroutine GRAPH displays the robotic system using the simple cylinder
representation data computed by subroutine OBJECT. Subroutine GRAPH is
called following definition of each system component (the base, each
link, or the tool) and displays that component for user inspection.
Capabilities exist for replacing modified components and for adding or
deleting components. No provisions are made for displaying environment
data within subroutine GRAPH.

Calling argument IFLAG specifies whether the base, a link, or the tool
is to be displayed. The argument IFLAG also controls the initializa­
tion and termination of the graphics.

Creation and display of base data are controlled by subroutine CREATE
through a sequence of calls to subroutines BASE, OBJECT, and GRAPH. If
display of the base is selected, the graphics is initialized and the
base is displayed in the proper position and orientation. Control is
returned to subroutine CREATE where the user may elect to modify the
base data through calls to subroutine BASE and OBJECT. If the base is
modified, subroutine GRAPH is called to replace the current display
with a display of the modified base data. The user may iterate on the
base until satisfied before proceeding to definition of the system
joints and links.

Creation and display of the data for each link are controlled by sub­
routine CREATE through a sequence of calls to subroutines JOINT, LINK,
OBJECT, and GRAPH. If display of the link is selected, the new link is
added to the display in the proper position and orientation. Control
is returned to subroutine CREATE where the user may elect to modify the
link data through calls to subroutines JOINT, LINK, and OBJECT. If the
link is modified, subroutine GRAPH is called to replace the current
link display with a display of the modified link data. The user may
iterate on the link data until satisfied before proceeding to the next
link or to the tool. The user is allowed to add or delete links even
after the tool data have been defined and displayed.

Creation and display of the tool data are controlled by subroutine
CREATE through a sequence of calls to subroutines TOOL, OBJECT, and
GRAPH. If display of the tool is selected, the tool coordinate system
is added to the display in the proper position and orientation. Con­
trol is then returned to subroutine CREATE where the user may elect to
modify the tool data through calls to subroutines TOOL and OBJECT. If
the tool data are modified, subroutine GRAPH is called to replace the
current display of the tool data with a display of the modified tool
data. The user may iterate on the tool data until satisfied before
terminating the graphics display.

Subroutine GRAPH uses Evans and Sutherland graphics routines designed
for use with the Evans and Sutherland Multi-Picture System.

Figure A2-9 is the VCLR for subroutine GRAPH.

A2-l5

DO CAS E I FLAG

0 1 to N -1 999- Def

Initialize Graphics I~ Modify Lir I~OdifY Tor Terminate Null
Graphics

~difY Basy Mark Save Mark Save
Segment Trans- Segment Trans-

Mark Base Null forma- forma-
Segment Retrieve tion Retrieve tion

Trans- Matrix Trans- Matrix
Open Base Segment forma- forma-

tion tion
Matrix Matrix

Compute Translation Open Link Segment Open Tool Segment
Matrix

Compute Compute
Compute Rotation Translation Translation
Matrices for Matrix Matrix
Rotation Sequence

Compute Joint Compute Rotation
Draw Component Angle Rotation Matrices for

Matrix Rotation Sequence

DOUNTIL All Base Compute Rotation ~ Draw Component
Components Matrices for
Considered Rotation Sequence DOUNTIL All Tool

Components
Considered

Close Segment Draw Component Close Segment

T~OdifY Base/>' DOUNTIL All Link ~OdifY TOO1~
Components

Replace Add Considered Replace Add
Segment Segment Segment Segment

Close Segment

T~OdifY Lin0

Replace Add
Segment Segment

Figure A2-9 GRAPH VCLR

A2-16

2.1.1.7 Define Desired Motion (CNTROL) - Subroutine CNTROL interac­
tively prompts the user for coefficients of quadratic functions of time
that are used to control the motion of the robotic system. The calling
argument MOD specifies whether subroutine CNTROL was called in the
create mode or the modification mode. In the create mode, the user is
prompted for all possible data. In the modification mode, the user is
prompted to specify which data category is to be changed. The user is
then prompted only for the requested data. Following input of the re­
quested data, the modification category prompt is repeated, allowing
modification of other data within subroutine CNTROL. Upon completion
of all changes, the user requests termination of modifications and con­
trol is returned to the calling program.

Subroutine CNTROL prompts the user for control option flag, IHIST,
which indicates whether control of the system motion will be through
time histories or through Evans and Sutherland analog devices. Control
of the system motion through the Evans and Sutherland analog devices is
not currently implemented.

For control of the system through time histories, the user may specify
up to 20 time segments within which the system motion will be speci­
fied. For each time segment, the user is prompted for the segment
start time, whether control is of the end-effector motion or the motion
of the individual joints, and whether the time functions specify rates
or positions, and the coefficients for the time functions. The use of
the time functions to specify position is not currently implemented.
If end-effector control is requested for the current segment, coeffi­
cients must be supplied for functions describing the end-effector
translation along each axis and the end-effector rotation about each
axis. If control of the individual joints is requested for the current
segment, coefficients must be supplied for functions describing the
motion of each joint in the system.

A recoverable error encountered within subroutine CNTROL causes an er­
ror message to be written through a call to subroutine ERRMSG followed
by appropriate recovery action. There are no nonrecoverable error con­
ditions in subroutine CNTROL.

Figure A2-10 is the VCLR for subroutine CNTROL.

A2-17

~ IF Modification Mode ~
Prompt for Modification Category Prompt for Motion Control Option
Flag, ICHNG

----~E ICHNG L ~ Control via Time Histories ~
I 2 ~Def Prompt for Segment Start Null

Time
Modify Print Terminate Null
Motion Segment Modifica- Prompt for End-Effector
Control Par am- tions or Joint Control
Option eters

Prompt for Rate or
Modify Position Control
Segment

~ IF Joint Control A Param-
eters as
Required Prompt for Prompt for

Joint Mo- End-Effector
DOUNTIL All tion Coef- Translation
Segments ficients Coefficients
Considered

Prompt for
End-Effector
Rotation
Coefficients

DOUNTIL All Modifications Complete DOUNTIL All Segments Defined
I

Figure A2-10 CNTROL VCLR

A2-18

2.1.1.8 Specify Program Options (PRGOPT) - Subroutine PRGOPT interac­
tively prompts the user for the program start time, stop time, time
step, and several flags for the control of output and the selection of
some computational capabilities. The calling argument MOD specifies
whether subroutine PRGOPT was called in the create mode or the modifi­
cation mode. In the create mode, the user is prompted for all possible
data. In the modification mode, the user is prompted to specify which
data category is to be changed. The user is then prompted only for the
requested data. Following input of the requested data, the modifica­
tion category prompt is repeated, allowing modification of other data
within subroutine PRGOPT. Upon completion of all changes, the user re­
quests termination of modifications, and control is returned to the
calling program.

Subroutine PRGOPT allows the user to request the generation of an out­
put file from the Analysis Tools function. The file will contain all
data required by the Postprocessing function for further and more de­
tailed study of the results of the execution of the particular analysis
tool requested. The time frequency of output of data to the file is
also specified.

Subroutine PRGOPT allows the user to request printed output during the
Analysis Tools function execution. The content and format of the data
to be printed are provided within each of the analysis tools. The flag
set within subroutine PRGOPT is used only to turn on the print rou­
tines. The time frequency of the printed output is also specified.

Subroutine PRGOPT allows the user to request that dynamics computations
not be performed. This flag is used within the requirements analysis
tool to turn off dynamics computations to greatly speed up the execu­
tion. If the dynamics computations are turned off, no force or torque
data will be available.

A recoverable error encountered within subroutine PRGOPT causes an er­
ror message to be written through a call to subroutine ERRMSG followed
by appropriate recovery action. There are no nonrecoverable error con­
ditions in subroutine PRGOPT.

Figure A2-11 is the VCLR for subroutine PRGOPT.

A2-19

Ii\ IF Modification Mode ~
Prompt for Modification Category Flag, ICHNG Prompt for Execution

~
Start Time

DOCASE ICHNG
Prompt for Execution

I 2 3 -z;- Stop Time

Modify Modify Modify Modify Null Prompt for Execution
Start Time, Output File Print Dynamics Time Step
Stop Time, Option File Computa-
and Time Flag Option tion Flag Prompt for Output File
Step Flag Request Flag

Prompt for Printed
Output Request Flag

DOUNTIL All Modifications Complete Prompt for Dynamics
Computations Flag

,

Figure A2-11 PRGOPT VCLR

A2-20

2.1.2 Define Detailed Graphics Representation Data (BLDDAT)

Subroutine BLDDAT controls the program flow during the creation of the
detailed graphics representation data used to display either the ro­
botic system or the physical environment. The basic input data file
generated by the System Definition function must already exist prior to
calling subroutine BLDDAT. Subroutine RDSIM is called to read the in­
put data file and load the required COMMON blocks. Subroutine DRAW is
then called to initialize the graphics and draw the reference coordi­
nate system. If subroutine BLDDAT was called to define the environment
representation, the robotic system base coordinate system is used as
the reference system. If the robotic system representation is being
defined, the coordinate system for the appropriate section of the sys­
tem is used (base, each joint/link, or tool).

Each section of the detailed representation is made up' of a number of
components, which are themselves simple three-dimensional solid
shapes. The user is prompted for a shape type. Currently, the shapes
include cylinder, cone, rectangular solid, symmetric and nonsymmetric
trapezoidal solids, and a triangular cross-section beam. Additional
shapes can be added as required. Based on the shape selected, an ap­
propriate subroutine is called to prompt the user for the shape dimen­
sions and compute the data points for that shape. Subroutine CYL is
called for cylinders and cones. Subroutine RECT i.s called for rectan­
gular or trapezoidal solids. Subroutine TRISTR is called for the tri­
angular cross-section beam.

Following selection of a shape and the computation of the data points
defining that shape, subroutine ORIENT is called to prompt the user for
the position and orientation of the shape within the reference coordi­
nate system. Subroutine DRAW is then called to display the component
on the graphics screen for user inspection. The user may then elect to
accept the component as defined or change the component. If the user
elects to change the component, the shape selection prompt is reissued
and the component selection and definition process is repeated. Sub­
routine DRAW is then called to replace the rejected component with the
modified component. The user may continue to iterate on a component
until satisfied. Once the user elects to accept a component, that com­
ponent may no longer be modified.

After the component is satisfactory, subroutine DBASE is called to add
that component to the data defining the representation of the environ­
ment or of the section of the robotic system under consideration. The
user then specifies through prompt response whether another component
is to be defined. When defining the environment representation, compo­
nents are defined until the entire environment representation is com­
plete. When defining the robotic system representation, each major
section of the system is defined in turn (base, each link, tool). Com­
ponents for each section are defined until that section is complete be­
fore continuing to the next section.

A2-2l

After all input is complete, subroutine DRAW is called to terminate the
graphics. Subroutine HRTSIM is then called to wri te the new data file
containing the detailed graphics representation data.

A recoverable error encountered within subroutine BLDDAT causes an er­
ror message to be written through a call to subroutine ERRMSG. Appro­
priate recovery action is then taken. Nonrecoverable errors encoun­
tered within routines called by BLDDAT cause return of program control
through the System Definition function routines to the ROBSIM executive
program.

Figure A2-l2 is the VCLR for subroutine BLDDAT.

CALL RDSIM to Read Input File

I~ If Defining Environment Graphics Data ?
NLNK = -1 I Null

CALL DRAW to Draw Reference Coordinate System

Increment Component Counter and Zero Change Flag

Prompt for Component Shape Flag, ISHAPE

DO CAS E I SHAPE /
1 2 3 4 5 6 - Def

CALL CYL CALL CYL CALL RECT CALL RECT CALL RECT CALL TRISTR Nul
for for for for for Non- for
Cylinder Cone Rectangular Symmetric Symmetric Triangular

Solid Trapezoidal Trapezoidal Beam
Solid Solid

CALL ORIENT to Locate and Orient Component

CALL DRAW to Display Component

DOUNTIL Component Is Correct

CALL DBASE to Add Component to Data File

DOUNTIL All Components Have Been Defined

DOUNTIL Environment or Entire Robotic System Graphics Data Definition Is
Complete

CALL DRAW to Terminate Graphics

CALL WRTSIM to Write New Data File to Disk

Figure A2-12 BLDDAT VCLR

A2-22

2.1.2.1 Define Cylinder Shape (CYL) - Subroutine CYL is called from
subroutine BLDDAT during the definition of detailed graphic representa­
tions for the environment or the robotic system. Subroutine CYL is
called if the requested component is a cylinder or a cone.

The user is prompted for the shape diameter, DIAMI (diameter for a cyl­
inder, base diameter for a cone). If the shape is a cone, the user is
then prompted for the top diameter of the cone, DIAM2. The user is
then prompted for the shape length, CLEN.

Using the shape size parameters, the data points describing the shape
are computed. The data defining the shape are computed in a shape co­
ordinate system. Figure A2-l3 shows the coordinate systems used for
cylinders and cones. For a cylinder or cone, the x axis is along the
shape centerline. The shape length is measured from x = 0 to x =
CLEN. The orientation of the y-z plane is arbitrary for the cylinder
or cone shapes. The vertex points for the shape base (at x = 0) are
computed using eight sides and the shape diameter DIAMI. The vertex
points for the shape end at x = CLEN are computed using eight sides and
either DIAMI for a cylinder or DIAM2 for a cone. The data points used
to define the shape sides are computed by selecting pairs of corre­
sponding vertex points.

The data computed by subroutine CYL are stored in the array ARRAY as
Cartesian coordinates in the shape coordinate system. The counter Nl
contains the number of points describing the two shape ends. These
points are connected sequentially by the graphics routines. The count­
er N2 contains the number of points describing the shape sides. These
points are connected in alternating pairs by the graphics routines.

Figure A2-l4 is the VCLR for subroutine CYL.

A2-23

z
I-DIAM1~

- " -" I "'- .--.-y / -- I -----~. I I "'- / '" ~ " -
x

CLEN

CyZinder

DIAm

z

y
~ "' 'I "- - "-t...---

,
I

---- _L

~ I -- "- .J

'" ~

x

CLEN

Cone

Figure A2-1J Cylinder and Cone Shape Coordinate Systems

A2-24

Prompt for Cylinder Diameter (or Cone Diameter at x m 0), DIAMl

~ IF Cone Requested ~
Prompt for Cone Diameter at X = CLEN, DIAM2 I Null

Prompt for Shape Length, CLEN

Set End Radius to DIAMI/2.0

~ IF Second End and Cone ~
Set End Radius to DIAM2/2.0 I Null

Compute y and z Location of Vertex

~ IF Second End ~
X = CLEN I X = 0.0

Store Current Vertex Coordinates in ARRAY

DOUNTIL All Vertices Computed

DOUNTIL Both Ends Considered

Store in ARRAY Pairs of Corresponding Vertex Points from Each End to
Define Shape Side Data

DOUNTIL All Sides Considered

Figure A2-14 CYL VCLR

A2-25

2.1.2.2 Define Rectangular Shape (RECT) - Subroutine RECT is called
from subroutine BLDDAT during the definition of detailed graphic repre­
sentations for the environment or the robotic system. Subroutine RECT
is called if the requested component is a rectangular solid, a symmet­
ric trapezoidal solid, or a nonsymmetric trapezoid'al solid.

The user is prompted for the shape length (x-axis dimension, XO), the
shape width (+y-axis dimension, YO), and the appropriate z-axis dimen­
sions. For a-rectangular solid, the user is prompted for the shape
height (+z-axis dimension, ZO). For a symmetric trapezoidal solid, the
user is prompted for the height of each end of the trapezoid (x = 0 end
z-axis dimension, Zl; and x = XO end z-axis dimension, Z2). For a non­
symmetric trapezoidal solid, the user is prompted for the height of
each end of the trapezoid (x = 0 end z-axis dimension, Zl, and x = XO
end z-axis dimension, Z2).

Using the shape size parameters, the data points describing the shape
are computed. The data defining the shape are computed in a shape co­
ordinate system. Figure A2-15 shows the coordinate systems used for
rectangular or trapezoidal solids. The x axis is along the shape cen­
terline. The shape length is measured from x = 0 to x = XO. The rect­
angular and symmetric trapezoidal solid shapes are symmetric about both
the y axis and the z axis. The nonsymmetric trapezoidal solid is sym­
metric about the y axis but not the z-axis. The vertex points for the
shape base (at x = 0) are computed using +YO and either +ZO, +Zl, or 0
and -Zl for the rectangle, the symmetric trapezoid, or the nonsymmetric
trapezoid, respectively. The vertex points for the shape end at x = XO
are com- puted using +YO and either +ZO, +Z2, or 0 and -Z2 for the
rectangle, the symmetric trapezoid, or the nonsymmetric trapezoid,
respectively. The data points used to define the shape sides are
computed by select- ing pairs of corresponding vertex points.

The data computed by subroutine RECT are stored in the array ARRAY as
Cartesian coordinates in the shape coordinate system. The counter Nl
contains the number of points describing the two shape ends. These
points are connected sequentially by the graphics routines. The count­
er N2 contains the number of points describing the shape sides. These
points are connected in alternating pairs by the graphics routines.

Figure A2-16 is the VCLR for subroutine RECT.

A2-26

z

y

~~--~~4-------------------------1--t-t--------~X

~------------x~------------~~

a RectanguLar SoLid

z

y

~~+-~~~-------------------------t~~------~x

zl

~-----------x~------------~

b Symmetric TrapezoidaL SoLid
z

~----------x~------------~~

c Nonsymmetric TrapezoidaL SoLid

Figure A2-15 RectanguLar and TrapezoidaL Shape Coordinate Systems

A2-27

Prompt. for Shape Length, x4>

Prompt for Shape Width, y4>

~ IF Shape is Rectangular Solid ?
Prompt for Shape Height, z4> Prompt for Trapezoid Height

at x '" 0, zl

Prompt for Trapezoid Height at
x '" x4>, z2

Using Shape Size Parameters, Compute Coordinates of Each Vertex

DOUNTIL Both Ends Considered

Select Pairs of Corresponding Vertex Points from Each End to
Define Shape Side Data

DOUNTIL All Sides Considered

Figure A2-16 RECT VCLR

A2-28

2.1.2.3 Define Triangular Beam Shape (TRISTR) - Subroutine TRISTR is
called from subroutine BLDDAT during the definition of detailed graphic
representations for the environment or the robotic system. Subroutine
TRISTR is called if the requested component is a triangular cross-sec­
tion beam.

The user is prompted for the length of the base (also used as the tri­
angle height) of the triangular cross section of the beam, TRIL. The
user is then prompted for the length of a segment of the beam, SEGL.
Finally, the user is prompted for the number of segments in the beam,
NSEG.

Using the beam size parameters, the data points describing the beam are
computed. The data defining the beam are computed in a shape coordi­
nate system. Figure A2-l7 shows the coordinate system used for beams.
The beam length is measured along the x axis from x = 0 to x =
NSEG*SEGL. One side of the triangular cross section lies on the y axis
from y = -TRIL/2.0 to Y = +TRIL/2.0. One vertex of the triangular
cross section lies on the line defined by x = 0 to x = NSEG*SEGL, Y =
0, and z = -TRIL. The vertex points for a triangle;are computed at the
base (x = 0) of the beam and at the end of each segment along the beam
length. The data points used to define the beam sides are computed by
selecting pairs of corresponding vertex points from the two ends of the
beam.

z

y

---------;--~~~------~~~------~_4--------.. x

Figure A2-1? Triangular Cross-Section Beam Coordinate System

A2-29

The data computed by subroutine TRISTR are stored in ARRAY as Cartesian
coordinates in the shape coordinate system. The counter NI contains
the number of points describing the triangles along the beam and at
each beam end. These points are connected sequentially by the graphics
routines. The counter N2 contains the number of points describing the
beam sides. These points are connected in alternating pairs by the
graphics routines.

Figure A2-18 is the VCLR for subroutine TRISTR.

Prompt for Length of Side of Triangular
Cross Section

Prompt for Length of Segment of Beam

Prompt for Number of Segments in Beam

Compute Coordinates of Vertices of
Triangle at Segment End

DOUNTIL All Segments Considered

Select Pairs of Corresponding Vertex
Points from Each End of the Beam to Define
the Beam Sides

DOUNTIL All Sides Considered

Figure A2-18 TRISTR VCLR

A2-30

2.1.2.4 Orient Component (ORIENT) - Subroutine ORIENT is called from
subroutine BLDDAT during the definition of detailed graphic representa­
tions for the environment or the robotic system. Subroutine ORIENT is
called to position the current component properly within the reference
coordinate system.

The user can request input of a rotation sequence via prompt response.
If rotations are required, the user is prompted for an axis of rotation
and corresponding rotation angle for each desired rotation. After all
rotations have been defined, subroutine MAT is called to compute the
total rotation transformation matrix corresponding to the requested ro­
tation sequence. Each set of coordinates in ARRAY is then transformed
from the shape coordinate system to the reference coordinate system
through calls to subroutine MATVEC using the rotation transformation
matrix.

The user is then prompted for a translation vector to position the ori­
gin of the component within the reference coordinate system. This
translation vector is then added to each set of coordinates in ARRAY.

Figure A2-l9 is the VCLR for subroutine ORIENT.

Prompt for Rotation Requirement

~ IF Rotations Required ?
Prompt for Axis of Rotation Null

Prompt for Rotation Angle

DOUNTIL Rotation Sequence Complete

CALL .MAT to Compute Total Rotation Transfo~a-
tion Matrix

CALL MATVEC to Multiply Data Point coor1
dinate Vector by Rotation Transformation
Matrix

DOUNTIL All Data Points Transformed

Prompt for Translation Vector

Add Translation Vector to Data Point
Coordinates Vector

DOUNTIL All Data Points Considered
.

F~gure A2-19 ORIENT VCLR

A2-3l

2.1.2.4.1 Rotation Matrix (MAT) - Subroutine MAT is called from sub­
routine ORIENT to compute the total rotation transformation matrix de­
fined by the input rotation sequence and angles.

The rotation sequence and corresponding angles input from subroutine
ORIENT describe rotations from the reference system to the desired com­
ponent system. The transformation matrix desired from subroutine MAT
is from the component system to the reference system. Therefore, the
transpose (inverse) of the normal x, y, and z-axis rotation matrices
are used.

For each rotation in the input rotation sequence, the axis rotation ma­
trix is loaded and premultiplied with the current total transformation
matrix. The axis rotation matrices used are:

For x-axis rotation

1.0 0.0 0.0

0.0 cos(ang) -sin(an1)

0.0 sin(ang) cos(an3)

For y-axis rotation

cos(ang) 0.0 sin(anij)

0.0 1.0 0.0

-sin(ang) 0.0 cos(ang)

For z-axis rotation

cos(ang) -sin(ang) 0.0

sin(ang) cos(ang) 0.0

0.0 0.0 1.0

Figure A2-20 is the VCLR for subroutine MAT.

1 2

DDCASE Rotation Axi~
3 Def

Compute Rotation Compute Rotation Compute Rotation Null
Matrix about Matrix about Matrix about
x-Axis y-Axis z-Axis

Compute Updated Total Transformation Matrix

DOUNTIL Entire Rotation Sequence Considered

Figure A2-20 MAT VCLR

A2-32

2.1.2.4.2 Matrix/Vector Multiplication (MATVEC) - Subroutine MATVEC is
called from subroutine ORIENT to provide matrix! vector multiplica­
tion •. Input Vector A is multiplied by input matrix TRANS to produce
output Vector B.

~(l)

B(2) =

B(3)

TRANS(l,l) TRANS (1, 2) TRANS (1, 3)

TRANS (2,1) TRANS (2, 2) TRANS (2, 3)

TRANS (3,1) TRANS(3,2) TRANS (3, 3)

Figure A2-2l is the VCLR for subroutine MATVEC.

IMultiPlY Input Vector by Input Matrix

Fi~ure A2-21 ~TVEC VCLR

A2-33

A(l)

A(2)

A(3)

2.1.2.5 Draw Component (DRAW) - Subroutine DRAW is called from sub­
routine BLDDAT to provide graphics display during the definition of de­
tailed graphic representations for the environment or the robotic sys­
tem. Subroutine DRAW is called to display each successive component as
it is defined.

Input argument IFLAG controls the routine logic. A value of IFLAG = I
indicates the start of a new definition section. Sections are speci­
fied by input argument H. If the current section is the first section
considered (M = 1), then the graphics system is initialized and sub­
routine ESMAT is called to compute transformation matrices for all sec­
tions that will be required. The reference coordinate system for the
current section is then drawn.

A value of IFLAG = 2 indicates that the component under consideration
be displayed for the first time. The current component number is spec­
ified by input argument NC. A new display segment is opened, the com­
ponent is drawn, and the segment is added to the current display.

A value of IFLAG = 3 indicates that the component under consideration
has been modified and the modified version is to be displayed. The
component display segment is marked for update, the segment opened, and
the component drawn. The segment is then replaced in the current
display.

A value of IFLAG = 4 indicates that all display is complete and termi­
nation of the graphics is requested.

Figure A2-22 is the VCLR for subroutine DRAW.

DOCASE I FLAG

~ 1 2 3 4

~:rF First call~ Retrieve Trans- Retrieve Trans- Terminate Null
formation Matrix formation Matrix Graphics

Initialize Null for Current Link for Current Link with E&S
Graphics with Routine
E&S Routines Open Segment for Mark Component MPINIT

Current Segment for
CALL ESMAT Component Update
for Trans-
formation Set Color Set Color
Matrix

CALL D3DATA to CALL D3DATA to
Store Draw Component Draw Component
Matrix

Close Segment Close Segment
DOUNTIL all
Links Add Segment Replace Segment
Considered

Draw "Reference
Coordinate
System

Figure A2-22 DRAW VCLR
A2-34

2.1.2.5.1 Graphics Transformation Matrix (ESMAT) - Subroutine ESMAT is
called from subroutine DRAW to compute the transformation matrix from
each system section coordinate system to the graphics coordinate sys­
tem. The environment data have only one section. The environment is
defined in the robotic system base coordinate system. The robotic sys­
tem has section coordinate systems for the base, each joint/link, and
the end effector.

Subroutine ESMAT uses Evans and Sutherland graphics routines to con­
struct the required transformation matrices. Input argument K speci­
fies which system section is under consideration.

A value of K = 1 indicates the robotic system base or the environment.
The transformation matrix is composed of a translation matrix based on
the base location and rotation matrices constructed using the base ori­
entation parameters.

A value of K from 2 to the number of links in the system (N) plus I
(N+I) indicates the (K-I)th joint/link. The transformation matrix com­
puted by each call to subroutine ESMAT is automatically concatenated to
the previous matrix, thereby forming the total transformation from the
current section coordinate system to the graphics coordinate system.
The joint/link transformation matrix is composed of a translation ma­
trix based on the joint position, a rotation matrix based on the ini­
tial joint angular displacement, and rotation matrices'constructed us­
ing the joint orientation parameters. Joint position and orientation
are specified relative to the coordinate system of the previous joint
(base if the current joint is the first joint in the system).

A value of K = N+2 indicates the end-effector system. The transforma­
tion matrix for the end-effector is composed of a translation matrix
based on the end-effector position and rotation matrices constructed
from the end-effector orientation parameters. The end-effector loca­
tion and orientation are specified relative to the coordinate system of
the final joint in the system.

Figure A2-23 is the VCLR for subroutine ESMAT.

A2-35

DOCASE K

~ 1 2 3

Compute Translation Compute Translation Compute Translation Null
Matrix for Base Matrix for Current Matrix for Tool

Link

Decode Rotation Convert Current Joint Decode Rotation
Axis Sequence Angle to Graphics Axis Sequence

Units

Convert Rotation Compute Rotation Convert Rotation
Angles to Graphics Matrix for Joint Angles to Graphics
Units Angle Units

Compute Rotation Decode Rotation Compute Rotation
Matrix for Third Axis Sequence Matrix for Third
Rotation of Sequence Rotation of Sequence

Convert Rotation
Compute Rotation Angles to Graphics Compute Rotation
Matrix for Second Units Matrix for Second
Rotation of Sequence Rotation of Sequence

Compute Rotation
Compute Rotation Matrix for Third Compute Rotation
Matrix for First Rotation of Sequence Matrix for First
Rotation of Sequence Rotation of Sequence

Compute Rotation
Retrieve Total Matrix for Second Retrieve Total
Translation- Rotation of Sequence Translation-
Rotation Rotation
Transformation Compute Rotation Transformation
Matrix Matrix for First Matrix

Rotation of Sequence

Retrieve Total
Translation-
Rotation
Transformation
Matrix

Figure A2-23 ESMAT VCLR

A2-36

Set Size

I~

2.1.2.6 Load Graphics Data to COMMON (DBASE) - Subroutine DBASE is
called from subroutine BLDDAT during definition of detailed graphics
representations for the environment or the robotic system. Subroutine
DBASE is called to load the data for a component into the appropriate
graphics data COMMON. Input argument lMAN specifies whether the com­
ponent data are part of the environment or part of the robotic system.

If the component is part of the robotic system, the data are loaded in­
to COMMON/ IOBJ /. The parameter NUM contains the number of components
that make up the current robotic system section. The parameter NSTRT
contains the locations within COMMON/IOBJ/ at which the data for each
component start.

If the component is part of the environment, the data are loaded into
COMMON/ENVIRN/. The parameter NUME contains the number of components
that make up the environment data.

The manner in which the data are stored in the COMMON blocks is dic­
tated by the data format used in Evans and Sutherland graphics routine
D3DATA. It should be noted that the graphics routines require
INTEGER*2 data.

Figure A2-24 is the VCLR for subroutine DBASE.

Factor Parameter

If Defining Environment Graphics Data ~
Update Number of Components Counter Update Number of Components Counter
for Environment for Current Link

Load into COMMON/ENVIRN/All Data Store Starting Location of Current
Points for Current Component That Component Data within COMMON/IOBJ/
Are to be Connected Consecutively
by Graphics Load into COMMON./IOBJ / All Data Points

for Current Component That Are to be
Load into COMMON/ENVIRN/ All Data Connected Consecutively by Graphics
Points for Current Component That
Are to be Connected in Alternating Load into COMMON/IOBJ/ All Data Points
Pairs by Graphics for Current Component That Are to be

Connected in Alternating Pairs by
Graphics

Figure A2-24 DBASE VCLR

A2-37

2.2 ANALYSIS TOOLS FUNCTION DRIVER (SIMDRVR)

The Analysis Tools function driver operates in an interactive mode and
prompts the user for the analysis tool option desired. Currently valid
options are (1) requirements analysis without graphics; (2) require­
ments analysis with graphics; and (3) return to the ROBSIM executive.

The requirements analysis tool is the only analysis tool currently im­
plemented within the ROBSIM program. The simulation tool has been de­
veloped outside the ROBSIM framework and is documented in Section 3.0
of this appendix. Additional analysis tools will be added as program
capabilities are expanded.

If Option 2
execution.
erated that
function.

is selected, the system motion is displayed during program
An output file of joint variable time histories can be gen­
allows replay of the system motion in the Postprocessing

The requirements analysis tool allows the user to specify a desired
system motion and computes the forces and torques necessary to produce
that motion. The motion may be specified as individual joint rates or
as desired end-effector rates. If end-effector rates are given, the
requirements analysis tool computes the corresponding individual joint
rates required.

If either Option 1 or 2 is selected, subroutine RDSIM is called to read
the input file created by the System Definition function. Subroutine
REQUIR is then called to perform the requirements analysis.

A recoverable error encountered within subroutine SIMDRVR causes an er­
ror message to be written through a call to subroutine ERRMSG. Appro­
priate recovery action is then taken. Nonrecoverable errors encoun­
tered within routines called by SIMDRVR cause return of control to the
ROBSHI executive program.

Figure A2-25 is the VCLR for subroutine SIMDRVR.

Prompt for Analysis Tools

1 2

CALL RDSIM to CALL RDSIM to
ead Input File Read Input File

Return to
ROBS 1M

~--------------4-----__________ ~Executive
CALL REQUIR to
Perform Re­
quirements

alysis with­
out Graphics

Figure A2-25

CALL REQU1R to
Perform Require­
ments Analysis
with Graphics

SIMDRVR VCLR

A2-38

2.2.1 Requirements Analysis Tool (REQUIR)

Subroutine REQUIR controls the program logic flow for the requirements
analysis capability. Subroutine REQUIR is called from subroutine
SIMDRVR within the Analysis Tools function.

If printed output is desired, the user is prompted for the name of the
file to be opened for printed output. The requested file is then open­
ed. If dynamics computations are requested, the user is prompted for
the name of the file to be opened for the dynamics output. The re­
quested file is then opened. If a data file for postprocessing is de­
sired, the user is prompted for the name of the file to be opened for
postprocessing data. The requested file is then opened. Subroutine
LDCOM is then called to load the COMMON parameters required by subrou­
tine CNTRLR, which handles the motion and dynamics computations. If
graphics are requested, subroutine GRAFIX is called to initialize the
graphics system and the display.

Subroutine REQUIR executes a time loop from the specified start time to
the specified stop time using the user-requested time increment. With­
in the time loop, subroutine SEGMNT is called to load the proper coef­
ficients specifying the required system motion. Subroutine CNTRLR is
called to compute the system motion and dynamics for each time step.
The calls to the graphics routines are handled by subroutine CNTRLR, if
required.

After completion of the time loop, any open files are closed. If
graphics were requested, subroutine GRAFIX is called to terminate the
graphics display.

Figure AZ-26 is the VCLR for subroutine REQUIR.

A2-39

~ Printed Output Requested />
Prompt for File Name for Printed Out- Null
put File

Open Printed Output File , Dynamics Computations Requested /I
Prompt for File Name for Dynamics Out- Null
put File

Open Dynamics Output File

~ Data File for Postprocessing Requested/r

Prompt for File Name for Postprocess- 1. Null
ing Data File

Open Postprocessing Data Output File

CALL LDCOM to Interface Common Structure for
CNTRLR

~ Graphics Requested ~
Initialize Graphics and Display Null

Set Time to Start Time

Time Equals Time Plus Time Step

~Motion Control via Time Histories /r

CALL SEGMNT to Load Proper Motion Null
Coefficients

CALL CNTRLR to Compute System Motion
from Time Histories

DOUNTIL Stop Time

~ Printed Output Requested />
Close Printed Output File Null

~ Dynamics Computations Requested
/r

Close Dynamics Output File Null

~ Data File for Postprocessing Requested
/r

Close ~ostprocessing Data Output File Null

~ Graphics Requested /r
Terminate Graphics Null

Figw>e A2-26 REQUIR VCLR
A2-40

2.2.1.1 Load COMMON (LDCOM) - Subroutine LDCOM is called from subrou­
tine REQUIR to load COMMON parameters used by subroutine CNTRLR, which
handles motion and dynamics computations within the requirements analy­
sis tool. The data considered in subroutine LDCOM come from the COMMON
structures used to store the data input from the file created in the
System Definition function.

The data include joint type, location, and initial joint angular dis­
placement. Some program option flags and similar data are also loaded.

Figure A2-27 is the VCLR for subroutine LDCOM.

Load Joint Location Array

Load Initial Joint Variable Array .

Load Joint Type Array

DOUNTIL All Joints Considered

Load End-Effector Location Array

Load Number of Joints Variable

Load Logical Units Variables

Load Output Options Flags

Load Stop Time and Time Step Variables

F~gure A2-27 LDCOM VCLR

A2-4l

2.2.1.2 System Motion Graphics (GRAFIX) - Subroutine GRAFIX provides
the motion graphics capability in the Analysis Tools and Postprocessing
functions. Subroutine GRAFIX displays the environment and the robotic
system motion within the environment. Input argument IFLAG controls
the logic flow in subroutine GRAFIX.

If IFLAG = 1, the graphics system is initialized and the environment
and robotic system are displayed in the initial condition. If IFLAG
2, the display is updated to the current time step condition. In the
update mode, the environment and the system base are constant and
therefore, are not updated. If IFLAG = 3, the motion is complete and
the graphics display is terminated.

Evans and Sutherland graphics routines are used to provide all graphics
capabilities.

Figure A2-28 is the VCLR for subroutine GRAFIX.

A2-42

~ Update System Display (IFLAG = 2) ~
!Mark and Open System Segment Null

~ Initialize Display (IFLAG = 1) /r
Initialize Graphics Null

Open Base Segment

Compute Translation Matrix for Base

Compute Rotation Matrices for Base Rotation
Sequence

Prompt for Environment Data Display

~ Display Environment ~
Draw Component Null

DOUNTIL All Environment Components
Drawn

Draw Component

DOUNTIL All Base Components Drawn

Close Base Segment

Add Base Segment to Display

Open System Segment

Open Link Segment

Close Link Segment

DOUNTIL All Link Segments Nested in System
Segment

Close System Segment

Add System Segment

Mark System Segment for Update

Open System Segment
-

Figure A2-28 GRAFIX VCLR

A2-43

I~Initialize or Update Display (IFLAG = / 1 o{ 2)

Open Link Segment Null

Compute Translation Matrix for Link

Compute Joint Angle Rotation Matrix

~ Initial Pass (IFLAG = 1) ~
CALL MATINT to Com- Retrieve Ro-
pute and Store Ro- tation Matrices
tation Matrices for for Link Rota-
Link Rotation tion Sequence
Sequence

Compute Total Transformation Matrix
for Link

/Draw Component

DOUNTIL All Link Components are Drawn

l:,Close Link Segment

DOUNTIL All Links Displayed

Open Tool Segment

~ Initial Pass (IFLAG = 1) ~
CALL MATINT to Compute Retrieve Rota-
and Store Rotation tion Matrices
Matrices for Tool Ro- for Tool Rota-
tation Sequence tion Sequence

Compute Total Transformation Matrix for Too

I Draw Component

DOUNTIL All Tool Components are Drawn

Close Tool Segment

Close System Segment

Replace System Segment in Display

I~ Terminate Graphics (IFLAG = 3) L<
Terminate Graphics Null

Figure A2-28 (concZuded)

A2-44

~
Decode

Convert
Units

Graphics Matrix Initialization (MATINT) - Subroutine MATINT is called
from subroutine GRAFIX to provide initial computation of certain con­
stant matrices, which are then stored for later use by subroutine
GRAFIX. The computation and storage of the matrices decrease execution
time for system display.

Subroutine MATINT is called once for each joint/link in the robotic
system and once for the end effector. In each case, the matrix repre­
senting the total of the translation and the rotation sequence defining
the location and orientation of that part of the robotic system is com­
puted.

Evans and Sutherland graphics routines are used to perform the matrix
computations and concatenations.

Figure A2-29 is the VCLR for subroutine MATINT.

Link Data Requested /
Link Rotation Sequence Compute Translation Matrix for Tool

Rotation Angles to Graphics Decode Tool Rotation Sequence -

Compute Rotation Matrix for Third Convert Rotation Angles to Graphics
Rotation of Link Rotation Sequence Units

Compute Rotation Matrix for Second Compute Rotation Matrix for Third
Rotation of Link Rotation Sequence Rotation of Tool Rotation Sequence

Compute Rotation Matrix for First Compute Rotation Matrix for Second
Rotation of Link Rotation Sequence Rotation of Tool Rotation Sequence

Retrieve Total Link Rotation Compute Rotation Matrix for First
Transformation Matrix Rotation of Tool Rotation Sequence

Retrieve Total Tool Translation -
Rotation Transformation Matrix

Figure A2-29 MATINT VCLR

A2-45

2.2.1.3 Load Time Segment Coefficients (SEGMNT) - Subroutine SEGMNT
loads the appropriate coefficients for the time functions that define
the desired system motion. The coefficients were specified during the
System Definition function. A maximum of 20 time segments is allowed
with coefficients specified for each segment. The coefficients are
stored in COMMON/CONTRL/. The coefficients required for the current
time segment are selected from the stored data and loaded into the cur­
rent working array VELPRO.

At each time step, subroutine SEGMNT is called to ensure that the prop­
er coefficients are loaded. If a new segment has begun, the proper co­
efficients are loaded from COMMON/CONTRL/ to array VELPRO.

Figure A2-30 is the VCLR for subroutine SEGMNT.

First Call to SEGMNT

Current Segment Not Final

Time Not within Current Segment

Load Motion Coefficients for Current Null
Time Segment

Figure A2-30 SEGMNT VCLR

A2-46

2.2.1.4 Requirements Function Motion Controller (CNTRLR) - Subroutine
CNTRLR controls the motion of manipulator models during requirements
analysis. CNTRLR is called at every time step and supervises computa­
tions that describe both the position and velocity of manipulator com­
ponents during requirements analysis. CNTRLR also operates on user in­
put to activate the following ROBSIM program options:

1) Print out a detailed file describing the motion of the manipulator
model;

2) Perform dynamics computations to determine forces and torques act­
ing at the joints of the model as a result of input motion;

3) Display a graphics representation of the manipulator model during
motion;

4) Save a file describing the motion of the model for later graphics
display.

CNTRLR can use either of two methods of motion control, depending on
the user's selection:

1) Individual Joint Rate Control - The user inputs a rate profile for
each joint that specifies the rotation rate of the joint as a func­
tion of time. Using this form of motion control, CNTRLR directly
computes the rotation rate of each joint.

2) Coordinated End Effector (Tool) Control - The user inputs a set of
six rate profiles that specify tool velocity as a function of
time. Using this form of motion control, CNTRLR first computes the
specified tool velocity, then calculates the set of individual
joint rates that yield the best approximation to the desired tool
velocity.

Figure A2-3l is the VCLR for subroutine CNTRLR.

A2-47

Set up Internal Constants

~ Dynamics Computation Requested? /, T (IDYN R 1?)

Save Values of Joint Displacements
and Velocities from Current Time Null
Step

Call SETUP:
Calculate Control Variables for Current Time
Step

i

/. I~Individua1 Joint Control?
T (ICNTRL = 2?)

Compute Joint Rates Call INVERT:
from Individual Joint Invert Control Matrix
Rate Profiles and Compute Individual

Joint Rates from End-
Effector Rates

Call CHLIM:
Check Velocity and Acceleration Limits
(Not Yet Implemented)

~Hard Copy Requested?
T (IPRT> 1?) /.
Call POUTC:
Perform Additional Calculations
for Printout

Null

Call WROUT:
Write to Print File

~"" ,"",.",'on .. ,.""d ~~ at Least One Time Step Completed?
T (IDYN = 1 and I > 1?) F

Call DYNAMICS:
Perform Dynamics Computations Null

Do While 1 < IC < N
(Do for Each Joint)

Increment Joint Displacements for
Next Time Step

Reduce Joint Displacements Modulo
21T

Set Joint Variable for Graphics
Display

I~ Simulation File Requested?
T (IS1M = 1?) /,
Write to Simulation File Null

I~ Graphics Requested? /, T (IMODE = 2)

Set Parameters for Grafix

Call GRAFIX: Null

Execute Graphics Display

Figure A2-Jl CNTRLR VCLR

A2-48

2.2.1.4.1 Set Up Computations (SETUP) - SETUP is called at each time
step during requirements analysis and computes quantities needed in
other subroutines under CNTRLR. Hence, SETUP acts to "set up" succeed­
ing calculations.

The quantities computed by SETUP include the following:

1) The transformation matrices between neighboring joint coordinate
systems and between joint and base coordinate systems;

2) The vectors describing tool location with respect to each joint
(the vectors are expressed in joint coordinates);

3) Transformation of vectors representing links into base coordinates;

4) The control matrix used to compute tool velocity given individual
joint rates (see Appendix D);

5) The specified tool velocity from the input rate profiles (only per­
formed when coordinated tool rate control is specified).

Figure A2-32 is the VCLR for subroutine SETUP.

Call CCTM:
Compute Transformation Matrices for this Time
Step

Compute Joint-to-Tool Vectors in Joint Coor-
dinates

Transform Link Vectors to Inertial Coordinates

Calculate Control Matrix

\ Individual Joint Control? I (ICNTRL = 2 ?)

Null
Compute Tool Velocity from Rate
Profiles

\ First Time Step? ;. (TIME = 0 ?)

Compute Initial Position of
Null Tool in Inertial Coordinates

Figure A2-32 SETUP VCLR

A2-49

2.2.1.4.2 Perform Output Calculations (POUTC) - POUTC is only called
if a detailed printout of manipulator model motion data is requested by
the user. If such a request has been made, POUTC performs at each time
step computations of quantities that appear in the printout but are not
required elsewhere in the ROBSIM program. The quantities computed by
pdUTC are:

1) Tool position in base coordinates at the end of the time step;

2) Transformation of all joint-to-tool vectors to base coordinates;

3) Ideal tool position (coordinated tool rate control only);

4) Tool velocity resulting from individual joint rates.

Figure A2-33 is the VCLR for subroutine POUTC.

Compute Current Tool Position

~ Individual Joint Control? / (ICNTRL = 2 ?)

Null
Compute Ideal Tool Position from Input
Rate Profiles

Compute Current Tool Velocity from Current
Joint Rates

Transform Joint-to-Tool Vectors to Base
Coordinates

Figure A2-33 POUTC VCLR

A2-50

2.2.1.4.3 Write out Motion Calculations (WROUT) - WROUT produces a
file to be printed that contains details on the computed motion of the
manipulator model. WROUT is only called if the user requests a printed
output.

On the first time step only, WROUT lists the initial conditions of the
manipulator model. The data output includes:

1) For each joint

- Free axis of rotation,

- Joint rate profile (if applicable*),

- Vector describing location of next joint,

- Initial joint displacement;

2) Tool rate profiles (if applicable*);

3) Analysis stop time;

4) Analysis time increment step size.

On every time step, WROUT lists:

1) Time;

2) Ideal tool velocity (if applicable*);

3) Tool velocity resulting from joint rates;

4) Ideal tool position (if applicable*);

5) Current tool position;

6) Position error as vector and magnitude (if applicable*);

7) For each joint

- Current joint rotation rate,

- Current joint displacement (degrees and radians),

- Current joint-to-base transformation matrix,

- Current joint-to-tool vector (joint and base coordinates),

- Current location of joint in base coordinates.

*This step is applicable only if coordinated tool rate control was used.

A2-51

Figure A2-34 is the VCLR for subroutine WROUT.

Compute Radians-to-Degrees Conversion Factor

~st Time Step Passed?
T (I =1= 1?) /

Do While 1 < IC < N
(Do for Each Joint)

Write out Axis of Freedom

~ndividual Joint Contr~
T (ICNTRL 2 ?) F

Write out Joint Velocity Null
Null Function

Write out Joint/Link Initial
Conditions

~ndiVidU~l J~int Control~
T (I CNTRL - 2 .) F

Null Write out Tool Velocity
Functions

Write out Simulation Stop Time and
Time Step Size

Write out Results for Current Time Step

Figure A2-34 WROUT VCLR

A2-52

2.2.1.4.4 Dynamics Computation Function (DYNAMICS) - Subroutine
DYNAMICS controls the solution of the dynamics equations derived in Ap­
pendix B. DYNAMICS is called only if the user has requested dynamics
output; in this case, DYNAMICS is called every time step.

For input into the dynamics equations, DYNAMICS calculates the average
angular displacement, angular velocity, and angular acceleration for
each joint over an entire time step. Average displacement and velocity
are obtained by averaging values from the beginning and end of each
time step. The average velocities are computed by taking the differ­
ence of the velocities from the beginning and end of each time step and
dividing by the step size.

DYNAMICS then calls the subroutines that perform the following
functions:

1) Computation of transformation matrices for the average joint dis­
placements;

2) Transformation of all quantities to base coordinates;

3) Computation of total velocity and acceleration of each joint/link
system;

4) Computation of dynamic reactions;

5) Writing of results to print file.

Figure A2-35 is the VCLR for subroutine DYNAMICS.

Initialize All Variables to Zero

Average Position and Velocity Over Time Step

Compute Average Acceleration by Differences

Call CCTM:
Compute Transformation Matrices for Average
Position

Call TQBASE:
Transform All Quantities to Base Coordinates

Call CABSM:
Compute Absolute Velocities and Accelerations

Call FORCE:
Compute Reaction Forces

Call TORQUE:
Compute Reaction Torques

Call DYNOUT:
Write Results to Print File

Figure A2-35 DYNAMICS VCLR

A2-53

2.2.1.4.4.1 Transform Quantities to Base Coordinates (TQBASE) - The
purpose of subroutine TQBASE is to transform the vector quantities de­
scribing manipulator motion and the link inertia matrices into base
coordinates.

The formula for transforming vectors from joint i coordinates to base
coordinates is

where

iV = Vector, V, expressed in joint i coordinates;
bV = Same vector V, expressed in base coordinates;
bTi= Joint i-to-base transformation matrix.

The formula for transforming inertia matrices from joint coordinates to
base coordinates is

where

Inertia matrix, I, expressed in joint i coordinates;
Same inertia matrix, I, expressed in base coordinates;
Joint i-to-base transformation matrix.

For a more detailed discussion of the transformation, see Appendix B.

Figure A2-36 is the VCLR for subroutine TQBASE.

Transform Vector Quantities to Base Coordinates

Transform Inertia Matrices to Base Coordinates

Figure A2-36 TQBASE VCLR

A2-54

2.2.1.4.4.2 Compute Absolute Motion (CABSM) - CABSM uses a recursive
technique (see Appendix B) to compute the absolute angular velocity,
angular acceleration, and linear acceleration for each joint/link sys­
tem. CABSM also computes the location of each joint and the tool in
base coordinates.

Figure A2-37 is the VCLR for subroutine CABSM.

Do While 2 < IC < N -(Do for Each Joint from 2 to N)

Compute Absolute Angular
Velocity

Compute Absolute Angular
Acceleration

Compute Absolute Linear
Acceleration

Compute Base-to-Joint
Vector

Compute Tool Location

Figure A2-37 CABSM

A2-55

2.2.1.4.4.3 Compute Reaction Forces (FORCE) - FORCE computes the reac­
tion forces at each joint using the recursive technique derived in Ap­
pendix B. In particular, FORCE implements Equation B-12.

FORCE also transforms the joint reaction forces into base coordinates.

Figure A2-38 is the VCLR for subroutine FORCE.

Set Internal Variables

Do While N < IC < 1 - -(Do for Each Joint from N Back to 1)

Compute T4 = Force Due to
Centripedal Acceleration

Compute T3 = Force Due to
Angular Acceleration of
System

Compute T2 = Force Due to
Linear Acceleration of
System (Includes Gravity)

Tl = Force Transmitted
from Joint IC+l

Force = Tl + T2 + T3 + T4

Transform Force to Base
Coordinates

Figure A2-J8 FORCE VCLR

A2-56

2.2.1.4.4.4 Compute Reaction Torque (TORQUE) - TORQUE computes the re­
action torques at each joint using the recursive technique derived in
Appendix B. In particular, TORQUE implements Equation B-13.

TORQUE also transforms the joint reaction forces into base coordinates.

Figure A2-39 is the VCLR for subroutine TORQUE.

Set Internal Variables

Do While N > IC > 1
(Do for Each Joint from N to 1)

Sl = Torque Transmitted from Joint IC + 1

Compute S2 = 10.

Compute S3 = w x Iw

Compute S4 = Moment of Force Transmitted from
Joint IC + 1

S5 = Any External Torques

Compute S6 = m { r x [w x (x x r)]}

Torque = Sl + S2 + S3 + S4 + S5 + S6

Transform Torque to Base Coordinates

Figure A2-39 TORQUE VCLR

A2-S7

2.2.1.4.4.5 Write Dynamics Output (DYNOUT) - DYNOUT writes a detailed
record of the dynamic input and output to a print file.

In addition to the dynamics output, at the end of the first time step,
before any dynamics output has been written, DYNOUT writes a record of
the model initial conditions. This initial record includes:

1) The number of joints in the manipulator model;

2) The analysis start time, stop time, and step size;

3) For each joint

The joint type,

Link dimensions in inches and meters,

Location of link center-of-gravity in inches and meters,

- Mass of link in kilograms,

- Link inertia matrix.

At the end of every time step, DYNOUT writes a record of the dynamics
input and output. For each joint, this record includes:

1) Joint angular displacement (degrees and radians);

2) Joint location in base coordinates (inches and meters);

3) Link vector (inches and meters, i-joint and base coordinates);

4) Relative angular velocity in radians/second (joint and base
coordinates) ;

5) Relative angular acceleration in radians/second 2 (joint and base
coordinates) ;

6) Absolute angular velocity in radians/second (joint and base
coordinates) ;

7) . Relative angular acceleration in radians/second 2 (joint and base
coordinates) ;

8)

9)

Absolute linear acceleration in inches/second 2 and meters/sec­
ond 2 (joint and base coordinates);

Reaction force in kilogram-inches/second 2 and kilogram-meters/
second 2 (joint and base coordinates);

10) Reaction torque in kilogram-inches 2/second 2 and kilogram-me­
ters2/second 2 (joint and base coordinates).

Figure A2-40 is the VCLR for subroutine DYNOUT.

A2-58

Set Internal Variables

~Total Time = Start Time + Step? /.
Write out Simulation
Initial Conditions

Null
Write out Manipulator
Physical Parameters

Write out Values of Position, Velocity, and
Acceleration Variables

Write out Computed Forces and Torques in Joint
and Inertial Coordinates

Figure A2-40 DYNOUT VCLR

A2-59

2.3 POSTPROCESSING FUNCTION DRIVER (POSTDRVR)

The postprocessing function driver operates in an interactive mode and
prompts the user for the postprocessing option desired. Currently val­
id options are:

1) Replay robotic system motion;

2) Parameter versus parameter plots;

3) Return to the ROBSIM executive.

Additional postprocessing functions will be added as program capabili­
ties are expanded.

If Option 1 is selected, subroutine MOTION is called to provide a re­
play of the system motion computed during the Analysis Tools function
execution. If Option 2 is selected, subroutine GENPLT is called to
provide parameter versus parameter plots of any of the data computed
and written to a plot file during the Analysis Tools function execution.

A recoverable error encountered within subroutine POSTDRVR causes an
error message to be written through a call to subroutine ERRMSG. Ap­
propriate recovery action is then taken. Nonrecoverable errors encoun­
tered within routines called by POSTDRVR cause return of control to the
ROBSIM executive program.

Figure AZ-4l is the VCLR for subroutine POSTDRVR.

Prompt for Postprocessing Function Mode, IMODE

DOCASE IMODE~
I 2 3 Def

CALL MOTION to CALL GENPLT for Return to Null
Replay Graphics Parameter vs ROBSIM

Parameter Plots Executive

Figure A2-41 POSTDRVR VCLR

A2-60

2.3.1 Replay Motion (MOTION)

Subroutine MOTION is called from subroutine POSTDRVR to provide a re­
play of the robotic system motion produced during the Analysis Tools
function execution. The user is prompted for the name of the file con­
taining the data generated during the Analysis Tools function execu­
tion. The file is then opened. Subroutine GRAFIX is called to
initialize the graphics system and display.

The postprocessing data file is read for each time step to obtain the
individual joint displacements. Subroutine GRAFIX is called with the
joint displacements at each time step to update the display producing
the system motion.

Upon completion of the motion display, the postprocessing data file is
closed and subroutine GRAFIX is called to terminate the graphics
display.

Figure A2-42 is the VCLR for subroutine MOTION.

CALL RDSIM to Read System Definition File

Prompt for File Name of Analysis Tool Output
file

Open Analysis Tool Output File

Initialize Graphics and Display

Read Current Joint Variables for System

CALL GRAFIX to Update Display

DOUNTIL All Records Read from File

Terminate Graphics

Close Analysis Tool Output File

Figure A2-42 MOTION VCLR

A2-6l

2.3.2 General Plotting (GENPLT)

Subroutine GENPLT is called from subroutine POSTDRVR to provide parame­
ter versus parameter plots of the data generated during the Analysis
Tools function execution. A plot file must have been requested with
the Analysis Tools function execution.

Subroutine GENPLT provides the capability to plot the data for any
variable on the plot file against any other variable on the plot file.
User interface with subroutine GENPLT is through interactive prompts.
Plotting may be requested on an HP7221 plotter, Tektronix 4010, Tek­
tronix 4014, or Retrographics terminal. Plotting is done using the
DISSPLA plot package.

The user is prompted for the file name of the plot file, which is then
opened. Subroutine RDPLT is called to prompt the user for the vari­
ables to be plotted. The user may then specify a variety of options or
use defaults as desired. The user has complete control of plot for­
mat. Once all plot characteristics are specified, subroutine RDPLT is
called to read the plot file and extract the data to be plotted.

Following plotting of the data, subroutine LOGO may be called to plot
the Martin Marietta logo if desired.

Figure A2-43 is the VCLR for subroutine GENPLT.

A2-62

Prompt for Plotting Device

Initialize Requested Plotting Device

Prompt for File Name of Data File

Open Data File

Prompt for Legend Request Flag

CALL RDPLT to Select Plot Parameters

Prompt for Plot Symbol Frequency

Prompt for Data Smoothing Flag

I~ Legend Requested /r
Prompt for Legend Text Null

Store Legend Text

Prompt for Automatic Scaling

~ Automatic Scaling /F
Null Prompt for Horizontal Data Max/Min

Prompt for Vertical Data Max/Min

Prompt for Horizontal and Vertical
Tick Increments

Prompt for Plot Title

Prompt for Axis Label Option

I~ Specify Axis Label /E
Prompt for Horizontal Use Requested Plot
Axis Label Symbols as Axis Labels

Prompt for Vertical
Axis Label

Prompt for Page Format Option

Figure A2-43 GENPLT VCLR

A2-63

~ Specify Page Format /r
Prompt for Page Dimensions Set Parameters for

Il.Ox8.5 Format

Prompt for Origin Location I~LOgo ReqUire~
Prompt for Axis Lengths

~ Logo Requested Lf Set Logo Null
Parameters

Prompt for Logo Null
Position

Prompt for Logo Size

I~ Automatic Scaling ~
Compute Horizontal Tick Mark Increment Null

Compute Horizontal Axis Max/Min Values

Compute Vertical Tick Mark Increment

Compute Vertical Axis Max/Min Values

Draw Axes

Label Horizontal Axis

Label Vertical Axis

Draw Plot Title

Draw Axes Tick Marks and Label

CALL RDPLT to Read Plot File and Load Plot Data

~ Smooth Data />
Spline Fit Data I Null

Plot Data

.~ Legend Required ~
Plot Legend I Null

~ Logo Requested />
Plot Logo I Null

Terminate Plotting Device
.

F~gure A2-43 (concZuded)

A2-64

I~

2.3.2.1 Read Plot File (RDPLT) - Subroutine RDPLT is called from sub­
routine GENPLT to prompt the user for the variables to be plotted and
to read the plot file and extract the data to be plotted.

The input argument IFLAG is used to specify selection of plot parame­
ters or extraction of plot data. If IFLAG = 1, first the plot file
symbol record is read. The user is then prompted for the symbol of the
parameter desired as the horizontal axis parameter. The symbol record
is searched to locate the requested symbol and determine the position
of the data corresponding to that symbol in the plot file records.
This process is repeated for the vertical axis parameter. The plot
file header record is then read to obtain the maximum and minimum val­
ues for the plot parameters selected.

If IFLAG = 2, the plot file data records are read to extract and store
the parameter values to be plotted. A maximum of 5000 data values can
be stored at one time. If more data than that are required, they will
be plotted in blocks of 5000 points.

Figure A2-44 is the VeLR for subroutine RDPLT.

Select Plot Parameters ?
Read Plot File Symbol Record Read Plot File Data Record

Prompt for Hori.zontal Axis Variable
Symbol Extract Horizontal and Vertical

Parameters Data
Locate Symbol Position in Symbol
Record

Prompt for Vertical Axis Variable DOUNTIL All Data Records Read
Symbol

Locate Symbol Position in Symbol
Record

Read Plot File Header Record

Extract Horizontal and Vertical
Parameters Max and Min Values from
Header Record

Figure A2-44 RDPLT VCLR

A2-65

2.3.2.2 Plot Logo (LOGO) - Subroutine LOGO is called from subroutine
GENPLT to plot the Martin Marietta logo. The logo can be placed any­
where on the plot and can be drawn any size.

Figure A2-45 is the VCLR for subroutine LOGO.

Open Logo Data File

Read Logo Data

Close Logo Data File

l Draw Logo Segment

DOUNTIL All Logo Segments Complete

Figure A2-45 LOGO VCLR

A2-66

2.4 ROBSIM UTILITIES

This section contains the description of ROBSIM subroutines that pro­
vide utility functions and are used throughout the program. The rou­
tines described in this section are:

1) ERRMSG - Searches the error message file and prints the current er­
ror message;

2) RDSIM - Reads the data file created by the System Definition func­
tion;

3) SETLU - Sets logical units for all program input and output;

4) WRTSIM - Writes to disk the data file generated by the System Defi­
nition function;

5) ZERCOM - Zeros all locations in the common blocks used for data
storage in the System Definition function.

A2-67

2.4.1 Error Message Routine (ERRMSG)

The subroutine ERRMSG prints error messages for any errors occurring
during execution of the ROBSIM program. Error conditions have been
defined throughout the program and error messages stored in an error
message file with unique error numbers used to identify each error mes­
sage. When an error occurs, subroutine ERRMSG is called with the ap­
propriate error number. Subroutine ERRMSG opens the error message file
and locates and prints the appropriate error message. The error mes­
sage file is then closed and control is returned to the calling program
for appropriate action.

A recoverable error encountered within subroutine ERRMSG causes an er­
ror message to be written followed by appropriate recovery action. A
nonrecoverable error encountered within subroutine ERRMSG causes an er­
ror message to be written and control to be returned through the se­
quence of calling routines back to the ROBSIM executive program for
further user action.

Figure AZ-46 is the VCLR for subroutine ERRMSG.

Open Error Message File

Locate Text of Message Corresponding to Input
Error Number

Write Error Message

Close Error Message File

Figure A2-46 ERRMSG VCLR

A2-68

2.4.2 'Read Input File (RDSIM)

The subroutine RDSIM reads the data file created by the System Defini­
tion function. The data file is an unformatted file containing the
contents of the following COMMON blocks:

1) COMMON/AMASPR/ - Mass properties data;

2) COlli10N/CONSTR/ - Constraint data;

3) COMMON/CONTRL/ Prescribed motion data;

4) COMMON/ENVIRN/ - Environment graphics representation data;

5) COMMON/GEOM/ - System geometry data;

6) COMHON/ lOBJ / - System graphics representation data;

7) COMMON/IOPT/ - Program options data.

The user is prompted for the file name under which the data have been
stored on disk. The file is opened and read, loading all data into the
appropriate COMMON locations. The user is then prompted to specify
whether the file is to be saved or deleted. The file is then closed
with the proper disposition option.

An error encountered within subroutine RDSIM causes an error message to
be written through a call to subroutine ERRMSG. If the error is a re­
coverable error, appropriate recovery action is taken. If the error is
nonrecoverable, control is returned through the sequence of calling
routines to the ROBSIM executive program for further user action.

Figure A2-47 is the VCLR for subroutine RDSIM.

Prompt for File Name of Input File

Open Requested File

Read Mass Properties Data

Read Constraints Data

Read Motion Specification Data

Read Environment Graphics Data

Read Robotic System Geometry Data

Read Robotic System Graphics Data

Read Program Options Data

Prompt for Disposition of Input File

~IF Deletion of File Requested /F
Close and Delete File Close and Save File

Fig'Ur'e A2-47 RDSIM VCLR

A2-69

2.4.3 Set Logical Units (SETLU)

The subroutine SETLU sets the logical units used within the ROBSIM pro­
gram for all program input and output. Default logical units are set
in a DATA statement in subroutine SETLU. The user may accept the de­
fault logical unit assignments or may request modifications. The capa­
bility to modify the default logical unit assignments is not currently
implemented. The logical unit data are stored in COMMON
block/LUNIT/for use by the rest of the ROBSIM program.

Figure A2-48 is the VCLR for subroutine SETLU.

Set Logical Unit Numbers Required for Program
I/O Operations

Figure A2-48 SETLU VCLR

A2-70

2.4.4 Write Input File (WRTSIM)

The subroutine WRTSIM writes to disk the data file created by the Sys­
tem Definition function. The data file is an unformatted file contain­
ing the contents of the following COMMON blocks:

1) COMMON/AMASPR/ - Mass properties data;

2) COMMON/CONSTR/ - Constraint data;

3) COMMON/CONTRL/ - Prescribed motion data;

4) COMMON/ENVIRN/ - Environment graphics representation data;

5) COMMON/GEOM/ - System geometry data;

6) COMMON/ IOBJ / - System graphics representation data;

7) COMMON/IOPT/ - Program options data.

The user is prompted for the file name under which the data are to be
stored on disk. The file is opened and the data from each COMMON block
are written to the file. The file is then closed with a disposition
option of "SAVE."

An error encountered within subroutine WRTSIM causes an error message
to be written through a call to subroutine ERRMSG. If the error is a
recoverable error, appropriate recovery action is taken. If the error
is nonrecoverable, control is returned through the sequence of calling
routines to the ROBSIM executive program for further user action.

Figure A2-49 is the VCLR for subroutine WRTSIM.

Prompt for File Name To Be Used

Open Requested File

Write Mass Properties Data from Common /AMASPR/
to Disk File

Write Constraints Data from Common /CONSTR/ to
Disk File

Write Motion Specification Data from Common
/CONTRL/ to Disk File

Write Environment Graphics Data from Common
/ENVIRN/ to Disk File

Write Robotic System Geometry Data from Common
/GEOM/ to Disk File

Write Robotic System Graphics Data from Common
/IOBJ/ to Disk File

Write Program Options Data from Common /lOPT/
to Disk File

Close File

Figure A2-49 WRTSIM veLR A2-71

2.4.5 Zero COMMON (ZERCOM)

The subroutine ZERCOM zeros COMMON locations used to store the data
that are input during the System Definition function. Subroutine
ZERCOM is called from subroutine CREATE prior to defining a new data
file and zeros the contents of the following COMMON blocks:

1) COMMON/M1ASPR/ - Mass properties data;

2) COMMON/CONSTR/ - Constraint data;

3) COMMON/CONTRL/ - Prescribed motion data;

4) COMMON/ENVIRN/ Environment graphics representation data;

5) COMMON/GEOM/ - System geometry data;

6) COMMON/IOBJ/ - System graphics representation data;

7) COMMON/IOPT/ - Program options data.

Figure A2-50 is the VCLR for subroutine ZERCOM.

Zero Fill Mass Properties Common /AMASPR/

Zero Fill Constraints Common /CONSTR/

Zero Fill Motion Specification Common /CONTRL/

Zero Fill Environment Graphics Data Common
/ENVIRN/

Zero Fill Robotic System Geometry Common /GEOM/

Zero Fill Robotic System Graphics Data Common
/lOBJ/

Zero Fill Program Options Common /lOPT/

Figure A2-50 ZERCOM VCLR

A2-72

2.5 MATH UTILITIES

This section describes several matrix math routines used within the
ROBSIM program.

2.5.1 Compute Complete Transformation Matrix (CCTM)

CCTM is a utility routine that computes the complete transformation ma­
trices needed to transform vectors in the coordinate system of joint i
into terms of either the joint i-lor the base coordinate systems.

CCTM is called at each time step. CCTM multiplies the transformation
matrices resulting from initial orientation and current joint displace­
ment to obtain the transformation matrix between joint i and joint
i-I. The joint-to-joint transformation matrices are then multiplied to
yield the joint-to-base transformation matrices.

Figure Al-5l is the VCLR for subroutine CCTM.

Compute Degrees-to-Radians Conversion Factor

Set All Transformation Matrices to Identity

Do While 1 < IC < N
(Do for Each Joint from Base to Tool)

Set Scratch Matrix to Identity

Compute Transformation Matrix to Joint
IC-l Coordinates Resulting from Initial
Orientation

Compute Transformation Matrix from
Current Displacement of Joint IC to
Initial Displacement

Multiply Matrices to Obtain Complete
Joint IC to IC-l Transformation
Matrix

Multiply Matrices to Obtain Complete
Joint IC to Base Transformation
Matrix

Figure A2-51 CCTM VCLR

A2-73

2.5.2 Solve Linear System (SLVLIN)

Subroutine SLVLIN is a routine designed to solve the matrix equation
AX = B by computing A+ , the psuedo-inverse of A. Details of the cal­
culation of A+, as well as a general discussion of the pseudo-inverse
can be found in Appendix D.

Figure A2-52 is the VCLR for subroutine SLVLIN.

Set Internal Variables Ax = B

IMAX = MAX {No. of Rows, No. of Columns}

Call GAUSS:
Reduce Augmented System to Row-echelon Form

Compute C in A = C . D, a Rank Factorization

Compute Pseudo - Inverse

A+ = Dt (DDt)-l C
t

Compute Best Solution

~ = A+B

Figure A2-52 SLVLIN VCLR

A2-74

Perform Gaussian Elimination (GAUSS) - GAUSS is a routine that performs
Gauss-JorUan elimination with partial pivoting~n an augmented matrix
system to reduce the system to row-echelon form. More on the
Gauss-JorUan method, pivoting, and row-echelon forms can be found in
Appendix D and in Matrices and Linear Transformation.*

Figure A2-53 is the VCLR for subroutine GAUSS.

Set Internal Variables

Do While 1 < I < ACOL
(Do for Each Column)

Find Entry of Largest Magnitude, VALPIV A Magnitude of VALPIV Too s~
T ABS (VALPIV) < Delta?

- F

Null ~irst Time Through GAUSS~

Null I Reduce Rows Above Diagonal

Reduce Rows Below Diagonal

Scale Pivot Row to VALPIV = 1

Interchange Rows to Put VALPIV on
Diagonal

Figure A2-53 GAUSS veER

*Charles G. Cullen: Matrices and Linear Transformations. Addison-Wesley
Publishing Company, 1972

A2-75

2.5.3 Matrix Multiplication Function (MATMPY)

MATMPY is a utility routine that performs matrix multiplication. The
maximum dimension of any of the matrices is IOxIO. When MATMPY is
called, the maximum dimension of the calling arguments must be passed
to MATMPY.

Figure A2-54 is the VCLR for subroutine MATMPY.

Compute
Where

and

C = A • B
A is i x j
B is j x k

C is i x k

F-tgure AJ-54 MATMPY VCLR

A2-76

2.5.4 Form Skew-Symmetric Matrix (SKEW)

SKEW is a utility routine used to form a 3x3 skew-symmetric matrix giv­
en a 3xl vector as input. The resulting skew-symmetric matrix can be
used to evaluate a vector cross product by using matrix multiplication.

Figure A2-55 is the VCLR for subroutine SKEW.

Set Diagonal to Zero

Form Skew-Symmetric Matrix for Cross-Product
Operator

Figure A2-55 SKEW VCLR

A2-77

2.5.5 Compute Elementary Transformation Matrix (CETM)

CETM is a utility routine that is used to calculate the elementary
transformation matrix resulting from a rotation about a single coordi­
nate axis. If is the angle of rotation and T is the resulting trans­
formation matrix, then

T I o o

o cos <j> -sin <j> if <j> is a rotation about the x axis;

o sin <j> cos <j>

cos <j> o sin <j>

= o I o if <j> is a rotation about the y axis;

-sin <j> 0 cos <j>

cos <j> -sin <j> o

= sin <j> cos <j> o if <j> is a rotation about the z axis;

o o 1

Figure A2-56 is the VCLR for subroutine CETM.

Set Matrix to Zero

Do Case (IAXIS - 2)

IAXIS - 2 < 0 lAXIS - 2 = 0 lAXlS - 2 > 0

Compute
Transformation
Matrix for
Rotation
about the About the About the
X - Axis Y-Axis Z-Axis

Figur>e A2-56 CETM VCLR

A2-78

2.6 EVANS AND SUTHERLAND GRAPHICS ROUTINES

The computer-generated motion representations in the ROBSIM program are
produced on Evans and Sutherland (E&S) Multi-Picture System (MPS) line
drawing graphics hardware. Picture System 2 (PS-2) equipment and HPS
FORTRAN callable graphics routines are used. All graphics programming
has been confined to a small number of ROBSIM routines to facilitate
conversion to another graphics package if required. The new E&S Pic­
ture System 300 (PS-300) would be well suited for ROBSIM use. Conver­
sion of the current MPS code would be required to execute ROBSIM on the
PS-300 system.

This section briefly describes each of the E&S MPS routines used in
ROBSIM. Complete descriptions can be found in the Evans and Sutherland
Multi-Picture System Users Manual (document number E&S #901141-052 NC),
Chapter 6, "Multi-Picture System Graphics Software Package."

2.6.1 Initialization and Setup

1) CALL LSPEED - Set line generator refresh speed;

2) CALL MPINIT - Attach MPS Picture Station to user task and
initialize;

3) CALL SINIT - Clear refresh display file and initialize segment
namestack;

4) CALL TINIT - Initialize transformation stack and set Picture Pro­
cessor transformation to identify;

5) CALL n~INDP - Set three-dimensional perspective window;

6) CALL VBOUND - Set viewport boundaries;

7) CALL VINTEN - Set intensity levels.

2.6.2 Segment Control

1) CALL SADD - Add segment to refresh display file;

2) CALL SCLOSE - Close most recently opened segment;

3) CALL SMARK - Mark specified segment for update;

4) CALL SOPEN - Open specified segment;

5) CALL SREHOV - Remove specified segment from refresh display file;

6) CALL SREP - Replace the marked segment in the refresh display file
with the set of outstanding segments.

A2-79

2.6.3 Matrix Manipulation

1) CALL TCON - Concatenate the specified matrix with the current Pic­
ture Processor transformation;

2) CALL TGET - Load into the specified matrIx the current Picture Pro­
cessor transformation;

3) CALL TPOP - Pop the top element of the Picture Processor transfor­
mation stack making it the Picture Processor transformation;

4) CALL TPUSH - Push the current Picture Processor transformation onto
the transformation stack;

5) CALL TROTX - Concatenate with the Picture Processor transformation
an x-axis rotation matrix for the specified angle;

6) CALL TROTY - Concentrate with the Picture Processor transformation
a y-axis rotation matrix for the specified angle;

7) CALL TROTZ - Concatenate with the Picture Processor transformation
a z-axis rotation matrix for the specified angle;

8) CALL TSCALE - Concatenate with the Picture Processor transformation
a scaling matrix for the specified scale values;

9) CALL TSET - Set the Picture Processor transformation to the speci­
fied matrix;

10) CALL TTRAN - Concatenate with the Picture Processor transformation
a translation matrix for the specified translation values.

2.6.4 Line Drawing

1) CALL D3DATA - Process three-dimensional data array according to
line drawing mode selected;

2) CALL LCOLOR - Set line-generator color and saturation values.

2.6.5 Termination

CALL MPSTOP - Detach the MPS Picture Station from the user task.

A2-80

2.7 DISSPLA PLOT ROUTINES

The requirement for x-y type parameter plots is met in the ROBSIM pro­
gram by the use of the Integrated Software Systems Corporation (ISSCO)
DISSPLA plotting package. Conversion to another plot package could be
easily accomplished.

This section provides a brief description of the DISSPLA routines used
in ROBSIM. Complete descriptions of these routines can be found in the
Display Integrated Software System and Plotting Language (DISSPLA)
Users Manual, Version 9.0.

2.7.1 Device Initialization

1) CALL HP7221 - Initialize Hewlett Packard HP7221 plotter;

2) CALL TK4010 - Initialize Tektronix 4010 terminal or Retrographics
terminal;

3) CALL TK4014 - Initialize Tektronix 4014 terminal.

2.7.2 plot Layout

1) CALL AREA2D - Define the subplot area based on input axis lengths;

2) CALL GRAF - Primary graph setup routine that establishes relation­
ship between physical axis length and plot units and draws axes;

3) CALL HEADIN - Write plot heading (title);

4) CALL NOBRDR - Suppress drawing of border around graph layout;

5) CALL PAGE - Set page size in inches;

6) CALL PHYSOR - Define location of origin on page;

7) CALL SETCLR - Set pen color;

8) CALL XNAME - Label x axis;

9) CALL YNAME - Label y axis.

2.7.3 Curve Plotting

1) CALL CURVE - Plot input x and y data;

2) CALL LINEAR - plot data linearly connected point to point;

3) CALL RASPLN - Smooth data with rational spline fit.

2.7.4 Point-t~Point Plotting

1) CALL CONNPT - Draw line from current location to input location;

2) CALL STRTPT - Move to input location.

2.7.5 Legend

1) CALL LEGEND -Draw legend;

2) CALL LINES - Load legend text;

3) Function LINEST - Set line length for legend text.

2.7.6 Termination

·1), CALL DONEPL - Terminate plot device;

2) CALL ENDPL - Terminate current plot.

A2-82

3.0 JNTMOD - MAIN PROGRAM

The basis of what will become the simulation tool within the ROBSIH
program is being developed outside the ROBSIM framework as the Joint
Model (JNTMOD) program. The JNTMOD program models a single typical
joint using the state-variable formulation. The single joint model
allows demonstration of the state-variable concept and will be extended
first to a two-link case and ultimately to an N-link capability. The
joint model consists of controller, amplifier, motor, power train, and
load models. A Kalman filter is also provided.

The basic state-variable formulation equations used in each model block
are:

X(k+l) ~ ~(k+l,k)X(k) + 8(k+l,k)U(k) + W(k)

Y(k+l) C(k+I)X(k+l)

Z(k+l) = H(k+I)Y(k+l) + V(K)

where

U Control function;

X State-variable array;

W Process noise;

Y = Observable array;

Z = Sensor output array;

V Sensor noise.

Figure A3-1 shows a typical model block.

When the individual model blocks are combined to form the joint model,
a system of equations in the state-variable formulation is formed.
Figure A3-2 shows the joint model configuration. A complete discussion
of the simulation tool formulation is given in Subsection IV.C of the
ROBSIM final report. This document describes the individual subrou­
tines that make up the JNTMOD program. It assumes that the reader is
familiar with the notation and equations used.

The Joint Model program main routine, JNTMOD, controls the logic flow
through the program. Subroutine INPUT is called to provide input of
the parameters necessary within each of the model blocks. Most program
options are input through subroutine INPUT as well. Subroutine IN!T
provides initialization for the joint model system. Subroutine KFINIT
is called to handle initialization required if the Kalman filter has
been requested. The remainder of the JNTMOD code is within a time loop
from the user-requested simulation start time to the user-requested
simulation stop time.

A3-1

w

+
u e ~+1 C

Y

+ v
+

+
~ ----. H

Z
tP +

Figure A3-1 Typiaa~ Mode"t B"toak

Figure A3-8 Joint Model,

A3-2

The controller is modeled in subroutine CONTRL using the state-variable
formulation. If plot file output is requested, the controller parame­
ters are loaded in the plot file data record through calls to subrou­
tine LDVALU.

The logic sequence for each of the remalnlng joint model blocks (amp­
lifier, motor, power train, and load) is identical. Subroutine UVEC is
called to load the control array. The appropriate block model subrou-·
tine is then called (AMP, MOTOR, PWRTRN, or LOAD). Each block model
uses the state-variable formulation. If plot file output is requested,
subroutine LDVALU is called to load the block model parameters in the
plot file data record. If printed output is requested, subroutine PRT
is called.

If the Kalman filter is requested, the system sensor output array is
loaded in subroutine BLDZAL. The system phi matrix is constructed in
subroutine BLDPHI. The system theta matrix is constructed in subrou­
tine BLDTHT. The system sensor transform is constructed in subroutine
BUILDH. Subroutine KALMAN is called to perform the Kalman filter cal­
culations. If plot file output is requested, the Kalman filter parame­
ters are loaded in the plot file data record through calls to subrou­
tine LDVALU.

The results of the Kalman filter calculations may be used in the system
feedback loop if requested.

Following completion of the time loop, the plot file header record is
written, if required, and all open files are closed.

Figure AJ-3 is the VCLR for the JNTMOD routine.

A3-3

> w
I

.po.

~

l
p

'i"
""

CALL INPUT to Obtain User Input Data

Set Logical Unit Numbers

Prompt for Kalman Filter Flag, KFFLAG

T' KFFLAG~EQ.I A
Prompt for Use Filter Results in Feed- I Null back Loop Flag, KFFDBK

,

'T, Printed Output Requested A
Open Print File I Null

T-...... Plotted Output Requested /F
Open Plot File I Null

CALL IN IT to Initialize All Matrices and
State, Observable, and Sensor Output Arrays

IT'--...... KFFLAG.EQ.I /F
CALL KFINIT to Initialize All Matrices I Null and State, Observable, and Sensor Output
Arrays for Kalman Filter Computations

TIME = Start Time

TIME D TIME + Step Size

CALL CONTRL to Load the Control Array

I~ Plotted Output Requested /F
CALL LDVALU to Load Plot File Array I Null

CALL UVEC to Load the Amplifier Control Array

CALL AMP (Amplifier Model)

~ Plotted Output Requested /F
CALL LDVALU to Load Plot File Array I Null

iT, Printed Output Requested /F
CALL PRT to Print Amplifier Model I Null Output

CALL UVEC to Load the Motor Control Array

CALL MOTOR (Motor Model)

T, Plotted Output Requested L1
CALL LDVALU to Load Plot File Array I Null

r, Printed Output Requested /F
CALL PRT to Print Motor Model Output

.. -~
Figure A3-3 JNTMOD VCLR

CALL UVEC to Load the Power Train Control Array

CALL PWRTRN (Power Train Model)

IT'-.... Plotted Output, Requested 7F
CALL LDVALU to Load Plot File Array Null

I~ Printed Output Requested A
CALL PRT to Print Power Train Model Null Output

CALL UVEC to Load the Load Control Array

CALL LOAD (Load Model)

fT"-. Plotted Output Requested AI
CALL LDVALU to Load Plot File Array Null

t--... Printed Output Requested A
CALL PRT to Print Load Model Output Null

~ KFFLAG.EQ.I /F
CALL BLDZAL to Build System Sensor
Output Array and System Control Array

CALL BLDPHI to Build System PHI Matrix

CALL BLDTHT to Build System THETA Matrix

CALL BUILDH to Build System H Matrix
Null

CALL KALMAN (Kalman Filter Model)

~ Plotted Output Requested /y
CALL LDVALU to Load Plot File Array I Null

~ KFFDBK.EQ.I /p
Replace System Sensor Output I Null with Kalman Filter Output

~ Plotted Output Requested /""i
Output Record to Plot File Null

DOUNTIL [(Stop Time - TIME) .LE. Step
Size/2j

Plotted Output Requested F

CALL WRTHDR to Write Plot File Header Null
Record

Close Plot File

Printed Output Requested

Close Print File

3.1 GENERAL JOINT MODEL ROUTINES

This section contains descriptions of routines used for input, initial­
ization, and printing. Also described are routines used in each of the
model blocks for loading the control array and computing noise, and for
sensor computations.

3.1.1 Program Input (INPUT)

Subroutine INPUT is called from the program main routine JNTMOD to han­
dle the bulk of program inputs. Input may be totally through program
prompts or a previously created disk file may be read to provide most
of the data describing the system to be modeled.

If manual input of the joint model data is requested, the user is first
prompted for controller data. Dimensions are required for the control­
ler control array, state-variable array, and observable array. The
constants or coefficients required for the controller in use are then
input. The user then selects open- or closed-loop control. Finally.
the user must specify the standard deviations to be used in noise
calculations for each of the controller state variables.

Following input of the controller data. the user must input data for
each of the joint component models (amplifier. motor. power train. and
load). The same data are required for each of the model blocks. First
are the dimensions of the control, state-variable, observable, and sen­
sor arrays. The constants or coefficients required for the model in
use are then input. Finally, the standard deviation for each.state
variable and each sensor output variable are input for use in noise
calculations.

The user may elect to write to disk file the data input defining the
current joint model. This disk file can then be used as input for fu­
ture executions.

Regardless of whether the previous data were introduced manually or
read from disk file. the user is provided the opportunity to modify se­
lected data parameters. The user may modify any of the constants, co­
efficients, or standard deviations for the controller, amplifier. mo­
tor. power train, or load models.

The user is then prompted for a seed value for random number genera­
tion; the simulation start time. stop time, and time step; and print
and plot output flags.

Figure A3-4 is the VCLR for subroutine INPUT.

A3-5

Set Logical Unit Numbers

Prompt for Input Mechanism-Manual or via Exist­
ing Data File

Manual Input

Prompt for Control Model Data:

• Dimensions for Input, State Vari­
able, and Output Arrays

• Control Model Constants

• Selection of Open or Closed-Loop
Control

• Standard Deviation Values for
Control Model State Noise

Prompt for Amplifier Model Data:

• Dimensions for Input, State Vari­
ables, Output, and Sensor Output
Arrays

• Amplifier Model Constants

• Standard Deviation Values for
Amplifier Model State Noise

• Standard Deviation Values for
Amplifier Model Sensor Noise

Prompt for Motor Model Data:

• Dimensions for Input, State Vari­
ables, Output and Sensor Output
Arrays

• Motor Model Constants

• Standard Deviation Values for
Motor Model Noise

• Standard Deviation Values for
Motor Model Sensor Noise

Figure A3-4 INPUT VCLR

A3-6

Prompt
for
n~
Name

Read
Input
File

Prompt for Power Train Model Data:

• Dimensions for Input, State Vari­
able, Output, and Sensor Output
Arrays

• Power Train Model Constants

• Standard Deviation Values for
Power Train Model State Noise

• Standard Deviation Values for
Power Train Model Sensor Noise

~rompt for Load Model Data:

• Dimensions for Input, State Vari­
able, Output, and Sensor Output
Arrays

• Load Model Constants

• Standard Deviation Values for Load
Model State Noise

• Standard Deviation Values for Load
Model Sensor Noise

Prompt for Input Save Option

~ Save 'Input to Disk Fi'le Option /F
I '" Selected /

Prompt for File name Null

Write Input Data to File

Read
Input
File

Prompt for Modifications to Control Model Data

• Control Constants

• Standard Deviations for Control Model
State Noise

Prompt for Modifcations to Amplifier Model Data

• Standard Deviations for Amplifier Model
State Noise

• Standard Deviations for Amplifier Model
Sensor Noise

Figure A3-4 (Continued)
A3-6a

Prompt for Modifications to Motor Model Data:

· Standard Deviations for Motor Model State
Noise

· Standard Deviations for Motor Model
Sensor Noise

Prompt for Modifications to Power Train Model
Data:

· Standard Deviations for Power Train
Model State Noise

· Standard Deviations for Power Train
Model Sensor Noise

Prompt for Modifications to Load Model Data:

· Standard Deviations for Load Model State
Noise

· Standard Deviations for Load Model Sensor
Noise

Prompt for Random Number Generator Seed Value

Prompt for Start Time, Stop Time, and Time Stop

Prompt for Print Output Frequency

Prompt for Plot Output Frequency

Figure A3-4 (Concluded)

A3-6b

3.1.2 Joint Model Initialization (INIT)

Subroutine INIT is called from the main routine JNTI10D to handle ini­
tialization of the joint model arrays and matrices. The state-vari­
able, observable, and sensor arrays for each of the joint model blocks
are set to initial values. All joint model block phi, theta, C, and M
matrices are computed for the simulation start time. The D matrices
used to develop the control arrays, and the feedback matrix, M, are
set. The reference signal array, R, is loaded with start time values.
Finally, if printed output is requested, subroutine PTINIT is called to
write the system initial conditions.

Figure A3-5 is the VCLR for subroutine INIT.

Zero the State Variable Arrays

ILoad State Variable Array Elements with
Initial Values

Zero the Observable Arrays

Zero the Sensor Output Arrays

Initialize All Matrices at Start Time

I~ Printed Output Requested /F
CALL PTINIT to Print Initial Conditions I Null

F~gure A3-5 INIT VCLR

A3-7

Print Initial Conditions (PTINIT) - Subroutine PTINIT is called from
subroutine INIT to print the joint model initial conditions. First,
the requested simulation start time, stop time, and time step are
printed. Then the initial state-variable, observable, and sensor ar­
rays for the amplifier, motor, power train, and load are printed.

Figure A3-6 is the VCLR for subroutine PTINIT.

Start New Page and Print Page Header

Print Start Time, Stop Time, and Time Step

Print Amplifier Initial Conditions:

State Array

Observable Array

Sensor Array

Print Motor Initial Conditions:

State Array

Observable Array

Sensor Array

Print Power Train Initial Conditions:

State Array

Observable Array

Sensor Array

Print Load Initial Conditions:

State Array

Observable Array

Sensor Array

Figure AJ-6 PTINIT VCLR

A3-8

3.1.3 Load Control Array (UVEC)

Subroutine UVEC is called from the main routine JNTMOD prior to calls
to each of the joint model component routines (AMP, MOTOR, PWRTRN, and
LOAD). Subroutine UVEC loads the control array, U, required for each
model block. The control array is composed of observable parameters
from any of the joint model blocks (controller, amplifier, motor, power
train, or load). The system observable array, CAPY, is loaded with the
elements of the individual joint model block observable arrays. Sub­
routine COMPD is called to compute the D matrix for the requested model
block. The D matrix provides the relationship between the system ob­
servable array and the control array for the requested model block.
Subroutine MAnlPY is called to multiply the D matrix and the CAPY array
to produce the required control array, U.

Figure A3-7 is the VCLR for subroutine UVEC.

Zero the Control Array, U

Load the Total Y Array, CAPY, with:

· Observable Array from the Control Box

· Observable Array from the Amplifier

· Observable Array from the Motor

· Observable Array from the Power Train

· Observable Array from the Load

~ D Matrix a Function of Time ~
CALL COMPD to Compute the Matrix, D, Used Null
to Relate the Combined Observable Output
Array to the Input Array

CALL MATMPY to Multiply CAPY by D and Produce
the Control Array, U

Figu:re A 3- ? UVEC VCLR

A3-9

Compute D Matrix (COMPD) - Subroutine COMPD is called from subroutine
UVEC to compute the D matrix for the requested joint model block (am­
plifier, motor, power train, or load). The control array required as
input to each of the model blocks is composed of elements of the ob­
servable arrays from throughout the system. The D matrix relates the
system observables to the control array for the requested model block.

Figure A3-8 is the VCLR for subroutine COMPD.

Zero the Matrix, D, Used to Relate Combined
Observable Output Array to the Input Array

DOCASE IFLAG

1 2 3

Compute Compute Compute
D Matrix D Matrix D Matrix
for Amplifier for for for

Motor Power Load
Train

Figure A.3-8 COMPD VCLR

A3-10

3.1.4 Process Noise (XNOISE)

Subroutine XNOISE is called from each of the model subroutines (AMP,
MOTOR, PWRTRN, and LOAD) to compute the state-variable noise. The
noise array, W, is first zeroed. Subroutine GGNML of the IMSL math
package is called to compute a normal random value from a Gaussian dis­
tribution with zero mean and variance of one. The state noise, W, is
then computed as the user-specified standard deviation for state noise
times the value obtained from subroutine GGNML.

Figure A3-9 is the VCLR for subroutine XNOISE.

Zero the Noise Array

CALL GGNML to Obtain a Sample from a Gaussian
Distribution with Zero Mean and Variance of
One

Compute Noise Array for the State Variable
~rray (User-Specified Standard Deviation
Times Sample Value)

Figure AJ-9 XNOISE VCLR

A3-11

3.1.5 Compute C Matrix (COMPC)

Subroutine COMPC is called from each model block routine (~IP, MOTOR,
PHRTRN, or LOAD) to compute the C matrix for the requested model block.
The C matrix transforms the state-variable array to the observable array
in the state-variable formulation.

The C matrix is first zeroed. The nonzero matrix elements for the re­
quested block are then set.

Figure AJ-10 is the VCLR for subroutine COMPC.

Zero Fill C Matrix

DOCASE IFLAG

1 2 3

Compute C Compute C Compute C Compute C
Matrix Matrix Matrix Matrix
Elements Elements Elements Elements Null
for for for for
Amplifier Motor Power Train Load

Figure A3-10 COMPC VCLR

A3-12

3.1.6 Sensor Model (SENSOR)

Subroutine SENSOR is called from each of the model subroutines (AMP,
MOTOR, PWRTRN, or LOAD) to compute the sensor output. Subroutine
SENSOR uses the state-variable formulation for sensor output computa­
tions. Subroutine HCOMP is called to provide the sensor transform ma­
trix, H, for the specified model. Subroutine MATMPY is called to mul­
tiply the H matrix with the C matrix for the specified model to produce
the CAPH matrix. The CAPH matrix transforms the state-variable array,
X, to the sensor output array without noise, ZWON. Subroutine ZNOISE
is called to compute the noise array, V, for the specified model sensor
output. The final sensor output array, Z, is produced by adding the
sensor noise array, V, to the sensor output without noise array, ZWON.

Figure A3-11 is the VCLR for subroutine SENSOR.

~ H Matrix a Function of Time ~
CALL HCOMP to Compute the Matrix, H, Used Null
to Transform Observable Array to Sensor
Output Array

I~ H Matrix or C Matrix a Function of Time ~

CALL MATMPY to Multiply C Matrix (Used Null
to Transform State Variable Array to Ob-
servable Array) by H Matrix and Produce
Matrix CAPH

CALL MATMPY to Multiply State Variable Array,
X, by CAPH to Produce Sensor Output without
Noise, ZWON

CALL ZNOISE to Compute the Sensor Noise
Array, V

CALL MATADD to Add V to ZWON and Produce
the Final Sensor Output Array, Z

Figure AJ-ll SENSOR VCLR

A3-13

3.1.6.1 Compute H Matrix (HCOMP) - Subroutine HCOMP is called from
subroutine SENSOR to compute the H matrix for the specified joint model
component (amplifier, motor, power train, or load). The H matrix is
used to transform the observable array into the sensor output array in
the state-variable formulation. The H matrix is first zeroed. The
nonzero elements for the specified model component are then set.

Figure A3-12 is the VCLR for subroutine HCOMP.

Zero the Matrix, H, Used to Transform the Ob­
servable Array to the Sensor Output Array

DOCASE IFLAG

1 2 3 Def

Compute' Compute Compute Compute
H Matrix H Matrix H Matrix H Matrix
for for for for Null
Ampli- Motor Power Load
fier Train

Figure AJ-12 HCOMP VCLR

A3-14

3.1.6.2 Sensor Noise (ZNOISE) - Subroutine ZNOISE is called from sub­
routine SENSOR, which is called from each of the model subroutines
(AMP, MOTOR, PWRTRN, and LOAD). Subroutine ZNOISE computes the sensor
noise. The noise array, V, is first zeroed. Subroutine GGNML of the
IMSL math package is called to compute a normal random value from a
Gaussian distribution with zero mean and variance of one. The sensor
noise, V, is then computed as the user-specified standard deviation for
sensor noise times the value obtained from subroutine GGNML.

Figure A3-13 is the VCLR for subroutine ZNOISE.

Zero the Noise Array

CALL GGNML to Obtain a Sample from a Gaussian
Distribution with Zero Mean and Variance of
One

Compute Noise Array for Sensor Output (User-
Specified Standard Deviation Times Sample
Value)

Figure A3-13 ZNOISE VCLR

A3-15

3.1.7 Print Joint Model Parameters (PRT) - Subroutine PRT is called from the
main routine JNTMOD following the call to each of the system model rou­
tines (AMP, MOTOR, PWRTRN, or LOAD). Subroutine PRT prints all of the
parameters associated with that model. Each call to subroutine PRT re­
sults in a block of output that contains the following data:

1) Current time;

2) State-variable arrays--X, XHOM, XPAR, XWON, and W;

3) Observable array--Y;

4) Sensor arrays--Z, ZWON, and V.

Figure A3-l4 is the VCLR for subroutine PRT.

~ New Time Step /r
Skip to New Page and Print Page Header Null
with Current Time

Print Control Array

Print State Variable Arra)lis Including X Total,
X Homogeneous, X Particular, X without Noise,
and X Noise

Print Observable Array

Print Sensor Output Arrays Including Z with
Noise, Z without Noise, and Z Noise

Figure AJ-14 PRT VCLR

A3-16

3.2 CONTROLLER MODEL (CONTRL)

Subroutine CONTRL models the controller using the state-variable formu­
lation. Subroutine COMPM is called to compute the feedback matrix, ~t.

The sensor output from all model blocks is combined into a system sen­
sor array, CAPZ. If closed-loop control is requested, subroutine
MATMPY is called to multiply the system sensor array with the feedback
matrix to produce the feedback array. If open-loop control is re­
quested, the feedback array is set to zero. Subroutine LOADR is then
called to load the reference input array, R. The ALPHA array used as
input to the Kalman filter routine is loaded with the elements of the R
and CAPZ arrays. The joint model control array, U, is formed by adding
the feedback array with the reference input array through a call to
subroutine MATADD.

Subroutine PHIC is called to compute the state-variable formulation phi
matrix for the controller. Subroutine THETAC is called to compute the
state-variable formulation theta matrix for the controller. Subroutine
MATMPY is called to mUltiply the phi matrix and the current controller
state-variable array, X, to produce the homogeneous state array, XHOM.
Subroutine MATMPY is then called to multiply the theta matrix with the
control matrix, U, to produce the particular state array, XPAR. The
state array without noise is the sum of XHOM and XPAR. Subroutine
CNOISE is called to compute the controller process noise array, W. The
process noise, W, plus XWON produces the updated controller state vari­
able array, X.

Subroutine CONTC is called to compute the controller state-to-observ­
able transform matrix, C. Subroutine MATMPY is called to multiply the
C matrix and the state array, X, to produce the controller observable
array, Y.

Figure A3-IS is the VCLR for subroutine CONTRL.

A3-17

~ M Matrix a Function of Time ~
CALL COMPM to Compute the Matrix, M, Used to Relate Sensor Output Null
to Reference Input Array

Load the System Sensor Output Array, CAPZ, with Sensor Output Arrays
from the Amplifier, Motor, Power Train, and Load

~ .NOT. Open Loop ~
CALL MATMPY to Multiply CAPZ by M and Obtain Feedback Array, U Zero the

Feedback
Array, U

~ R Matrix a Function of Time ~
CALL LOADR to Load the Reference Input Array, R Null

Load Rand CAPZ Arrays into ALPHA Array Used as Input to Kalman Filter

CALL MATADD to Add R to U and Produce the Total Control Array, U

~ Controller PHI Matrix a Function of Time ~
CALL PHIC to Compute Controller PHI Matrix Null

~ Controller THETA Matrix a Function of Time ~
CALL THETAC to Compute Controller THETA Matrix Null

CALL MATMPY to Multiply State Variable Array, X, by PHI to Produce X
Homogeneous, XHOM

CALL MATMPY to Multiply U by THETA and Produce X Particular, XPAR

CALL MATADD to Add XHOM to XPAR and Produce X without Noise, XWON

CALL CNOISE to Compute Control Noise Array, W

CALL MATADD to Add W to XWON and Produce the Final State Variable Array, X

.~ C Matrix a Function of Time £i
CALL CONTC to Compute Matrix, C, Used to Transform X to the Observable Null
Array Y

CALL MATMPY to Multiply X by C and Produce the Observable Array Y

Figure AJ-15 CONTRL VCLR

A3-I8

3.2.1 Compute Feedback Matrix (COMPM)

Subroutine COMPM is called from subroutine CONTRL to compute the feed­
back matrix, M. The M matrix relates the sensor output from all joint
model blocks to the reference input for feedback purposes.

The M matrix is first zeroed. If open loop control is desired, program
control is returned to subroutine CONTRL. Otherwise, the elements are
set within the M matrix as required for the feedback needed in the con­
trol technique defined in subroutine CONTRL.

Figure A3-l6 is the VCLR for subroutine COMPM.

Zero the Matrix, M, Used to Relate Sensor
Output to the Reference Input Signal

~ .NOT. Open Loop Control ~
Compute M Matrix Elements ~l
Figure AJ-16 COMPM VCLR

A3-l9

3.2.2 Load Reference Signal (LOADR)

Subroutine LOADR is called from subroutine CONTRL to load the reference
signal array, R. The reference array is first zeroed. The appropriate
array elements are then set to the reference signal values valid for
the current time.

Figure A3-17 is the VCLR for subroutine LOADR.

Zero the Reference Input Signal Array, R

Set R Array Elements:

Figure A3-17 LOA DR VCLR

A3-20

3.2.3 Compute Controller Phi Matrix (PHIC)

Subroutine PHIC is called from subroutine CONTRL to compute the state­
variable formulation phi matrix for the controller. The phi matrix is
first zeroed. The required elements of the phi matrix are then com­
puted based on the controller equations placed in state-variable formu­
lation form.

Figure A3-18 is the VCLR for subroutine PHIC.

Zero Fill PHI Matrix

Compute PHI Matrix Elements for
Controller

Figure A3-18 PHIC VCLR

A3-2l

3.2.4 Compute Controller Theta Matrix (THETAC)

Subroutine THETAC is called from subroutine CONTRL to compute the
state-variable formulation theta matrix for the controller. The theta
matrix is first zeroed. The required elements of the theta matrix are
then computed based on the controller equations placed in state-vari­
able formulation form.

Figure A3-l9 is the VCLR for subroutine THETAC.

Zero Fill THETA Matrix

Compute THETA Matrix Elements for
Controller

Figure A3-19 THETAC VCLR

A3-22

3.2.5 Compute Controller C Matrix (CONTC)

Subroutine CONTC is called from subroutine CONTRL to compute the ma­
trix, C, which transforms the controller state-variable array to the
controller observable array. Under current implementation this matrix
is always the identity matrix.

Figure AJ-20 is the VCLR for subroutine CONTC.

Zero the Matrix, C, used to Transform the State
Variable Array to the Observable Array

Compute C Matrix Elements

Figure AJ-20 CONTC VCLR

A3-23

3.2.6 Controller Process Noise (CNOISE)

Subroutine CNOISE is called from subroutine CONTRL to compute the
state-variable noise for the controller. The noise array, W, is first
zeroed. Subroutine GGNML of the IMSL math package is called to
compute a normal random value from a Gaussian distribution with zero
mean and variance of one. The controller state noise, W, is then
computed as the user-specified standard deviation for controller state
noise times the value obtained from subroutine GGNML.

Figure A3-2l is the VCLR for subroutine CNOISE.

Zero the Noise Array

CALL GGNML to Obtain a Sample from a Gaussian
Distribution with Zero Mean and Variance of One

Compute Noise Array for the Control Array (User-
Specified Standard Deviation Times Sample Value)

Figure A3-21 CNOISE VCLR

A3-24

3.3 AMPLIFIER MODEL (AMP)

Subroutine AMP is called from the main routine JNTMOD to model the amp­
lifier using the state-variable formulation.

Subroutine PHIA is called to compute the state-variable formulation phi
matrix for the amplifier. Subroutine THETAA is called to compute the
state-variable formulation theta matrix for the amplifier. Subroutine
MATMPY is called to multiply the phi matrix and the current amplifier
state-variable array, X, to produce the homogeneous state array, XHOM.
Subroutine MATMPY is then called to multiply the theta matrix with the
input control matrix, U, to produce the particular state array, XPAR.
The state array without noise is the sum of XHOM and XPAR. Subroutine
XNOISE is called to compute the amplifier process noise array, W. The
process noise, W, plus XWON, produces the updated amplifier state vari­
able array, X.

Subroutine COMPC is called to compute the amplifier state-to-observable
transform matrix, C. Subroutine MATMPY is called to multiply the C ma­
trix and the state array, X, to produce the observable array, Y, for
the amplifier model.

Subroutine SENSOR is called to compute the sensor output without noise,
ZWON; the sensor noise, V; and the sensor output including noise, Z.

Figure A3-22 is the VCLR for subroutine AMP.

A3-25

~ PHI Matrix a Function of Time /F
CALL PHIA to Compute Amplifier PHI Matrix Null

~ THETA Matrix a Function of Time A
CALL THETAA to Compute Amplifier Null
THETA Matrix

CALL MATMPY to Multiply State Variable by
PHI Matrix and Produce Homogeneous State

CALL MATMPY to multiply Control Array by
THETA Matrix and Produce Particular State

CALL MATADD to Add Homogeneous to Particular
State and Obtain State without Noise

CALL XNOISE to Compute Noise Array for
State Variable Array -

CALL MATADD to Add Noise to State
without Noise and Produce Final
State Variable

~ C Matrix a Function of Time ~
CALL COMPC to Compute C Matrix Used to
Transform State Variable to Observable Null
Array

CALL MATMPY to Multiply State Variable Array
by C Matrix and Obtain Observable Array

CALL SENSOR to Compute Sensor Noise and
Sensor Output with and without Noise

FigUl'e A3-22 AMP VCLR

A3-26

3.3.1 Compute Amplifier Phi Matrix (PHIA)

Subroutine PHIA is called from subroutine AMP to compute the state­
variable formulation phi matrix for the amplifier. The phi matrix is
first zeroed. The required elements of the phi matrix are then com­
puted based on the amplifier equations placed in state-variable formu­
lation form. Several types of amplifiers may be modeled. Input argu­
ment ITYPE is used to select the desired amplifier model.

Figure A3-23 is the VCLR for subroutine PHIA.

Zero Fill PHI Matrix

Compute PHI Matrix Elements for
Amplifier Type Requested

Figu:roe A3-23 PHIA VCLR

A3-27

3.3.2 Compute Amplifier Theta Matrix (THETAA)

Subroutine THETAA is called from subroutine AMP to compute the. state­
variable formulation theta matrix for the amplifier. The theta matrix
is first zeroed. The required elements of the theta matrix are then
computed based on the amplifier equations placed in state-variable for­
mulation form. Several types of amplifiers may be modeled. Input ar­
gument ITYPE is used to select the desired amplifier model.

Figure A3-24 is the VCLR for subroutine THETAA.

Zero Fill THETA Matrix

Compute THETA Matrix Elements for
Amplifier Type Requested

Figure A3-24 THETAA VCLR

A3-28

3.4 MOTOR MODEL (MOTOR)

Subroutine MOTOR is called from the main routine JNTMOD to model the
motor using the state-variable formulation.

Subroutine PHIM is called to compute the state-variable formulation phi
matrix for the motor. Subroutine THETAM is called to compute the
state-variable formulation theta matrix for the motor. Subroutine
MATMPY is called to multiply the phi matrix and the current motor state
variable array, X, to produce the homogeneous state array, XHOM. Sub­
routine MATMPY is then called to multiply the theta matrix with the in­
put control matrix, U, to produce the particular state array, XPAR.
The state array without noise is the sum of XHOM and XPAR. Subroutine
XNOISE is called to compute the motor process noise array, W. The pro­
cess noise, W, plus XWON, produces the updated motor state-variable
array, X.

Subroutine COMPC is called to compute the motor state-to-observable
transform matrix, C. Subroutine MATMPY is called to multiply the C ma­
trix and the state array, X, to produce the observable array, Y, for
the motor model.

Subroutine SENSOR is called to compute the sensor output without noise,
ZWON; the sensor noise, V; and the sensor output including noise, Z.

Figure A3-25 is the VCLR for subroutine MOTOR.

A3-29

~ PHI Matrix a Function of Time />
CALL PHIM to Compute the Motor PHI Matrix Null

~ THETA Matrix a Function of Time ~
CALL THETAM to Compute the Motor THETA Null
Matrix

CALL MATMPY to Multiply the State Variable
~rray, X by PHI and Produce X Homogeneous,
PCHOM

CALL MATMPY to Multiply the Control Array, U,
by THETA and Produce X Particular, XPAR

CALL MATADD to Add XHOM to XPAR and Produce
~ without Noise, XWON

CALL XNOISE to Compute the Noise Array, W,
for X

CALL MATADD to Add XWON to Wand Produce the
Final I 'S ta te Variable, X

~ C Matrix a Function of Time ~
CALL COMPC to Compute the Matrix, C, Used to Null
Transform X to the Observable Array, Y

CALL MATMPY to Multiply X by C and Produce the
Observable Array, Y

CALL SENSOR to Compute the Sensor Output
without Noise, ZWON; The Sensor Noise, V;
and the Sensor Output Including Noise, Z

Figure A3-25 MOTOR VCLR

A3-30

3.4.1 Compute Motor Phi Matrix (PHIM)

Subroutine PHIM is called from subroutine MOTOR to compute the state­
variable formulation phi matrix for the motor. The phi matrix is first
zeroed. The required elements of the phi matrix are then computed
based on the motor equations placed in state-variable formulation
form. Several types of motors may be modeled. Input argument ITYPE is
used to select the desired motor model.

Figure AJ-26 is the VCLR for subroutine PHIM.

Zero Fill PHI Matrix

Compute PHI Matrix Elements for
Motor Type Requested

Figure A3-26 PHIM VCLR

A3-3l

3.4.2 Compute Motor Theta Matrix (THETAM)

Subroutine THETAM is called from subroutine MOTOR to compute the
state-variable formulation theta matrix for the motor. The theta ma­
trix is first zeroed. The required elements of the theta matrix are
then computed based on the motor equations placed in state-variable
formulation form. Several types of motors may be modeled. Input
argument ITYPE is used to select the desired motor model.

Figure A3-27 is the VCLR for subroutine THETAM.

Zero Fill THETA Matrix

Compute THETA Matrix Elements for
Motor Type Requested

Figure AJ-27 THETAM VCLR

A3-32

3.5 POWER TRAIN MODEL (PWRTRN)

Subroutine PWRTRN is called from the main routine JNTMOD to model the
power train using the state-variable formulation.

Subroutine PHIP is called to compute the state-variable formulation phi
matrix for the power train. Subroutine THETAP is called to compute the
state-variable formulation theta matrix for the power train. Subrou­
tine MATMPY is called to multiply the phi matrix and the current power
train state-variable array, X, to produce the homogeneous state array,
XHOM. Subroutine MATMPY is then called to mUltiply the theta matrix
with the input control matrix, U, to produce the particular state ar­
ray, XPAR. The state array without noise is the sum of XHOM and XPAR.
Subroutine XNOISE is called to compute the power train process noise
array, W. The process noise, W, plus XWON, produces the updated power
train state-variable array, X.

Subroutine COMPC is called to compute the power train state-to-observ­
able transform matrix, C. Subroutine MATMPY is called to multiply ,the
C matrix and the state array, X, to produce the observable array, Y,
for the power train model.

Subroutine SENSOR is called to compute the sensor output without noise,
ZWON; the sensor noise, V; and the sensor output .including noise, Z.

Figure AJ-28 is the VCLR for subroutine PWRTRN.

A3-33

~ PHI Matrix a Function of Time />
CALL PHIP to Compute the Power Train PHI Null
Matrix

~ THETA Matrix a Function of Time /<
CALL THETAP to Compute the Power Train Null
THETA Matrix

CALL MATMPY to Multiply the State Variable
Array, X by PHI and Produce X Homogeneous,
XHOM

CALL MATMPY to Multiply the Control Array, U,
by THETA and Produce X Particular, XPAR

CALL MATADD to Add XHOM to XPAR and Produce
~ without Noise, XWON

CALL XNOISE to Compute the Noise Array, W,
for X

CALL MATADD to Add XWON to Wand Produce the
Final State Variable Array, X

~ C Matrix a Function of Time ~
CALL COMPC to Compute the Matrix, C, Used Null
to Transform X to the Observable Array, Y

CALL MATMPY to Multiply X by C and Produce the
Observable Array, Y

CALL SENSOR to Comp,ute the Sensor Output
without Noise, ZWON; the Sensor Noise, V;
and the Sensor Output Including Noise, Z

Figure A3-28 PWRTRN VCLR

A3-34

3.5.1 Compute Power Train Phi Matrix (PHIP)

Subroutine PHIP is called from subroutine PWRTRN to compute the state­
variable formulation phi matrix for the power train. The phi matrix is
first zeroed. The required elements of the phi matrix are then com­
puted based on the power train equations placed in state-variable for­
mulation form. Several types of power trains may be modeled. Input
argument ITYPE is used to select the desired power train model.

Figure A3-29 is the VCLR for subroutine PHIP.

Zero Fill PHI Matrix

Compute PHI Matrix Elements for
Power Train Type Requested

Figure AJ-29 PHIP VCLR

A3-35

3.5.2 Compute Power Train Theta Matrix (THETAP)

Subroutine THETAP is called from subroutine PWRTRN to compute the
state-variable formulation theta matrix for the power train. The theta
matrix is first zeroed. The required elements of the theta matrix are
then computed based on the power train equations placed in state vari­
able formulation form. Several types of power trains may be modeled.
Input argument ITYPE is used to select the desired power train model.

Figure A3-30 is the VCLR for subroutine THETAP.

Zero Fill THETA Matrix

Compute THETA Matrix Elements for
Power Train Type Requested

Figure A3-30 THETAP VCLR

A3-36

3.6 LOAD MODEL (LOAD)

Subroutine LOAD is called from the main routine JNTMOD to model the
load using the state-variable formulation.

Subroutine PHIL is called to compute the state-variable formulation phi
matrix for the load. Subroutine THETAP is called to compute the
state-variable formulation theta matrix for the load. Subroutine
MATMPY is called to mUltiply the phi matrix and the current load state
variable array, X, to produce the homogeneous state array, XHOM. Sub­
routine MATMPY is then called to multiply the theta matrix with the in­
put control matrix, U, to produce the particular state array, XPAR.
The state array without noise is the sum of XHOM and XPAR. Subroutine
XNOISE is called to compute the load process noise array, W. The pro­
cess noise, W, plus XWON, produces the updated load state-variable
array, X.

Subroutine COMPC is called to compute the load state-to-observable
transform matrix, C. Subroutine MAnlPY is called to multiply the C ma­
trix and the state array, X, to produce the observable array, Y, for
the load model.

Subroutine SENSOR is called to compute the sensor output without noise,
ZWON, the sensor noise, V, and the sensor output including noise, Z.

Figure A3-31 is the VCLR for subroutine LOAD.

A3-37

~ PHI Matrix a Function of Time /F
CALL PHIL to Compute the Load PHI Matrix Null

I~ THETA Matrix a Function of Time fi
CALL THETAL to Compute the Load THETA Null
Matrix

CALL MATMPY to Multiply the State Variable,
Array, X, by PHI and Produce X Homogeneous,
XHOM

CALL MATMPY to Multiply the Control Array,
U, by THETA and Produce X Particular, XPAR

CALL MATADD to Add XHOM to XPAR and Produce
X without Noise, XWON

CALL XNOISE to Compute the Noise Array, W,
for X

CALL MATADD to Add XWON to Wand Produce the
Final State Variable Array, X

I~ C Matrix a Function of Time /!
CALlJ COMPC to Compute the Matrix, C, Used Null
to Transform X to the Observable Array, Y

CALL MATMPY to Multiply X by C and Produce
the Observable Array, Y

CALL SENSOR to Compute the Sensor Output
without Noise, ZWON; the Sensor Noise, V· , and
the Sensor Output Including Noise, Z

Figure AJ-Jl LOAD VCLR

A3-38

3.6.1 Compute Load Phi Matrix (PHIL)

Subroutine PHIL is called from subroutine LOAD to compute the state­
variable formulation phi matrix for the load. The phi matrix is first
zeroed. The required elements of the phi matrix are then computed
based on the load equations placed in state-variable formulation form.
Several types of loads may be modeled. Input argument ITYPE is used to
select the desired load model.

Figure A3-32 is the VCLR for subroutine PHIL.

Zero Fill PHI Matrix

Compute PHI Matrix Elements for
Load Type Requested

Figure A3-32 PHIL VCLR

A3-39

3.6.2 Compute Load Theta Matrix (THETAL)

Subroutine THE TAL is called from subroutine LOAD to compute the state­
variable formulation theta matrix for the load. The theta matrix is
first zeroed. The required elements of the theta matrix are then com­
puted based on the load equations placed in state-variable formulation
form. Several types of loads may be modeled. Input argument ITYPE is
used to select the desired load model.

Figure A3-33 is the VCLR for subroutine THETAL.

Zero Fill THETA Matrix

Compute THETA Matrix Elements for
Load Type Requested

Figure A3-33 THETAL VCLR

A3-40

3.7 KALMAN FILTER

This section describes all routines related to the Kalman filter imple­
mented within the JNTMOD program.

A3-41

3.7.1 Kalman Filter Initialization (KFINIT)

Subroutine KFINIT is called from the main routine JNtMOD to perform
initialization of the matrices and arrays used in the Kalman filter.

Subroutine BLDPHI is called to compute the system phi matrix element
for the simulation start time. Subroutine MATTRN is called to compute
the transpose of the system phi matrix. Subroutine BUILDH is called to
compute the system sensor transform matrix at the simulation start
time. Subroutine MATTRN is called to compute the transpose of the sys­
tem sensor matrix. Subroutine BLDTHT is called to compute the elements
of the system theta matrix at the simulation start time.

The P, Q, and R inverse matrices are zeroed. The diagonal elements of
the P matrix are set to 100.0. The diagonal elements of the Q matrix
are set to the process noise variance values. The diagonal elements of
the R inverse matrix are set to the reciprocal of the sensor variance
values.

The XHAT array elements are initialized to zero. The H transpose-R in­
verse-H matrix is computed as is the H transpose-R inverse matrix.

Figure AJ-34 is the VCLR for subroutine KFINIT.

CAt!:.. BLDPHI to Compute Initial System PHI

Matrix, <I>

CALL MATTRN to Compute Transpose of Initial

System PHI Matrix, <I>T

CALL BUILDH to Compute Initial System Sensor
Matrix, H

CALL MATTRN to Compute Transpose of Initial

System Sensor Matrix, HT

CALL BLDTHT to Compute Initial System THETA
Matrix, e

Initialize P Matrix with 100.0 along Diagonal

Set Diagonal Elements of Q Matrix to System
Noise Variance Values

Set Diagonal Elements of -1 R Matrix to the
Inverse of the System Sensor Noise Variance
Values

Initialize x Values to Zero

Compute Initial Value of HT R-IH

Compute Initial Value of HT R-l

F'Z-gure AJ-J4 KFINIT VCLR
A3-42

3.7.2 Build System Sensor Array (BLDZAL)

Subroutine BLDZAL loads the system sensor output array ZALL. The ele­
ments of the sensor output arrays from the amplifier, motor, power
train, and load models are combined to form the ZALL array.

Figure A3-35 is the VCLR for subroutine BLDZAL.

Zero System Sensor Array

Build System Sensor Array Using Sensor Output
Arrays from Amp, Motor, Power Train, and Load

Figure A3-35 BLDZAL VCLR

A3-43

3.7.3 Build System Phi Matrix (BLDPHI)

Subroutine BLDPHI loads the system phi matrix needed for the Kalman
filter used in conjunction with the state-variable formulation. The
system phi matrix is constructed using matrices from each of the joint
model blocks as follows:

r
~CIO 0 0 0 0 0 0 0
- --, - - - - - - - - --

I

0 i~A
I

<I> 0 ~H

0 , ~p

0
I
,0
I

where the subscripts

C Controller;
A = Anplifier;
H = Hotor;
P = Power train;
L = Load.

0 8A 0

+ 8H

8p

~L ° 8L

are defined as

DA
- - - ---

DH

Dp

DL

Figure A3-36 is the VCLR for subroutine BLDPHI.

Zero All Output Matrices

Build Script Phi Matrix Using Phi Matrices
from Controller, Amp, Motor, Power Train, and
Load as Block Diagonals

Build Script Theta Matrix Using Theta Matrices
from Controller, Amp, Motor, Power Train, and
Load as Block Diagonals

Build System D Matrix

Build System C Matrix

CALL MATMPY to Compute Product of System D
Matrix and System C Matrix

CALL MATMPY to Multiply Result by Script
Theta Matrix

CALL MATADD to Add Result to Script Phi Matrix,
Producing System Phi Matrix
.

F~gure AJ-J6 BLDPHI VCLR

A3-44

Ccl O 0 0 0
--- - - ---

0 Ic
I A

0

0 CH

0 , Cp
I

0 ,0 CL
I

3.7.4 Build System Theta Matrix (BLDTHT)

Subroutine BLDTHT loads the system theta matrix needed for the Kalman
filter used in conjunction with the state-variable formulation. The
system theta matrix is constructed using matrices from the joint model
controller block as follows:

J -
e C 1 eCH

- - -1- - --
01 0

8 0 I 0

o 0

o 0

where the subscripts are defined as

C = Controller.

Figure AJ-37 is the VCLR for subroutine BLDTHT.

Zero Output Matrix

CALL MATMPY to Multiply Controller Theta Matrix
and M Matrix

Load Elements of Result and Controller Theta
Matrix into System Theta Matrix

FigUY'e A3-3? BLDTHT VCLR

A3-45

3.7.5 Build System Sensor Transform Matrix (BUILDH)

Subroutine BUILDH loads the system sensor transform matrix needed for
the Kalman filter used in conjunction with the state-variable formula­
tion. The system sensor transform matrix is constructed using matrices
from each of the joint model blocks as follows:

OIH
I A o

oj
I11 H

,
J

0) Hp
I

0 1 0
I HL

where the subscripts are defined as

A = Amplifier;

M Hotor;

P Power train;

L Load.

Figure A3-38 is the VCLR for subroutine BUILDH.

Zero Script H Matrix (System Sensor Matrix)

Build Script H Matrix Using H Matrices from
~p, Motor, Power Train, and Load as Block
Diagonals

Figure AJ-JB BUILDH VCLR

A3-46

3.7.6 Kalman Filter Computations (KALMAN)

Subroutine KALMAN is called from the main routine JNTMOD to perform the
Kalman filter calculations. Subroutine BUILDG is called to compute the
G matrix. All other matrices and arrays are available for use. The
matrix equations used in subroutine KALMAN are as follows:

z(k+l) = H(k+l) ~(k+l,k)~(k/k)

~(k+l/k+l) = ~(k+l,k)x(k/k) + S(k+l,k)a(k) + G(k+l){z(k+l)-~(~+l)}
where

z(k+l) is the best estimate of the system sensor output

x(k+l/k+l) is the best estimate of the system state
Subroutine PRTKF is called if printed output of the Kalman filter re­
sults is desired.

Figure A3-39 is the VCLR for subroutine KALMAN.

!cALL B UILDG to Compute Kalman Gain Matrix G

!cALL MATMPY to Compute 4> x

!cALL MA TMPY to Compute Z = H 4> x

[cALL MATSUB to Compute z - Z

!cALL MATMPY to Compute G (z - 2)

[cALL MATMPY to Compute 8 a

~L MATADD to Compute 8a + G(z - 2)

[cALL MATMPY to Compute 4> x

CALL MATADD to Compute 4> x + 8 a + G(z - 2) = x

~ Print File Requested ~
CALL PRTKF to Print Kalman Filter Results /NUll

Figure A3-39 KALMAN VCLR
-

A3-47

3.7.6.1 Build G Matrix (BUILDG) - Subroutine BUILDG is called from
subroutine KALMAN to build the G matrix needed in the Kalman filter
used in conjunction with the state-variable formulation. The following
equations define the G matrix.

P(k+l/k) = ~(k+l,k)P(k/k)~T(k+l,k) + Q(k)

P(k+l/k+l) = {P(k+l/k)-l + HTR-1H}-1

G(k+l) = P(k+l/k+l)HT(k+l)R-1(k+l)

Figure A3-40 is the VCLR for subroutine BUILDG.

CALL MATTRN to Compute ~T

CALL MATTRN to Compute HT

CALL MATMPY to Compute P ~T

CALL MATMPY to Compute ~ P ~T

CALL MATADD to Compute P = ~ p ~T + Q

CALL LGINF to Compute P -1

CALL MATMPY to Compute p-1 H

CALL MATMPY to Compute HT p-1 H

CALL MATADD to Compute p-1 + HT p-1 H

CALL LGINF to Compute (p-1 + HT R-1 H)-1 = P

CALL MATMPY to Compute HT p-1

CALL MATMPY to Compute P HT R-1 = G

F~gure A3-40 BUILDG VCLR

A3-48

3.7.6.2 Print Kalman Filter Results (PRTKF) - Subroutine PRTKF is
called from subroutine KALMAN to print the Kalman filter results. At
each call to subroutine PRTKF, the following parameters are printed:

1) Sensor output arrays--Z, ZHAT, and Z-ZHAT;

2) State-variable arrays--XHAT and SIGMAX.

Figure A3-41 is the VCLR for subroutine PRTKF.

Start New Page and Print Page Header with
Current Time

Print Sensor Output

Print State Variable Output of Kalman Filter

Figur>e AJ-41 PRTKF VCLR

A3-49

3.8 PLOT FILE ROUTINES

This subsection describes the routines required to produce the plot
file. The plot file contains all of the data generated in the joint
model and Kalman filter routines. The contents of the plot file can be
displayed as parameter versus parameter plots using the general plot­
ting routine GENPLT.

A3-50

3.8.1 Generate Symbol Record (PLTSET)

Subroutine PLTSET is called from the main routine JNTMOD to generate
the symbol record for the plot file. The symbol record contains char­
acter symbols in the same location within the symbol record that is oc­
cupied by the corresponding data in the data records. The symbols in
the symbol record allow the corresponding data to be easily located by
routines that read the plot file.

Symbols for all possible plot parameters are stored in DATA statements
within subroutine PLTSET. The symbol record array elements are loaded
from the data in these DATA statements using the system dimension pa­
rameters for the joint system being modeled. After the symbol record
is filled, the plot file is opened as an unformatted direct access
file. A dummy header record is written followed by the symbol record.

Figure A3-42 is the VCLR for subroutine PLTSET.

Set Logical Unit Numbers

Load Reference Parameter Mnemonics into Symbol
Record

Load Control Parameter Mnemonics into Symbol
Record

Load Amplifier Parameter Mnemonics into Symbol
Record

Load Motor Parameter Mnemonics into Symbol
Record

Load Power Train Parameter Mnemonics into
Symbol Record

Load Load Parameter Mnemonics into Symbol
Record

~ Kalman Filter Being Used ~
Load Kalman Filter Parameter Mnemonics Null
into Symbol Record

Open Plot File

Write Dummy Header Record to File

Write Symbol Record to File

Figure AJ-42 PLTSET VCLR

A3-51

3.8.2 Load Plot File Record (LDVALU)

Subroutine LDVALU is called from the main routine JNTMOD to load values
into the plot file record. Subroutine LDVALU loads the values in input
array A into the next available locations within the plot record. The
values of array A are checked against the current maximum and minimum
values corresponding to the array parameters. The maximum and minimum
values are updated if necessary.

Figure A3-43 is the VCLR for subroutine LDVALU.

Load Plot Output Array with Values of
Current Time

Update Max/Min of Values Stored for
each Parameter

Figure AJ-4J LDVALU VCLR

A3-52

3.8.3 Write Header Record (WRTHDR)

Subroutine WRTHDR is called from the main routine JNTMOD after the sim­
ulation time loop is finished. Subroutine WRTHDR writes the header re­
cord to the plot file. The header record contains the maximum and min­
imum values for each parameter in the plot file data records.

Figure A3-44 is the VeLR for subroutine WRTHDR.

Load Header Record Buffer with:

Number of Records Written to Plot File

Max/Min Values in Plot File for Each
Parameter in Plot File

~rite Header Record Out to Plot File

Figure AJ-44 WRTHDR VCLR

A3-53

3.9 MATRIX MATH ROUTINES

This subsection contains the descriptions of the matrix math routines
used throughout the JNTMOD program. The routines documented in this
section are:

1) MATADD - Matrix addition;

2) MATMPY - Matrix multiplication;

3) MATTRN - Matrix transpose;

4) MATSUB - Matrix subtraction.

All matrix routines use variably dimensioned arrays that allow matrix,
vector, and scalar operations.

A3-54

3.9.1 Matrix Addition (MATADD)

Subroutine MATADD adds input matrix A to input matrix B to produce out­
put matrix C. All arrays are variably dimensioned, which allows ma­
trix, vector, or scalar operation.

Figure A3-45 is the VCLR for subroutine MATADD.

IAdd the Two Input Matrices (or Vectors)

Figure A3-45 ~TADD VCLR

A3-55

3.9.2 Matrix Multiplication (MATMPY)

Subroutine MATMPY multiplies input matrix A and input matrix B to pro­
duce output matrix C. All arrays are variably dimensioned, which al­
lows matrix, vector, or scalar operation.

Figure A3-46 is the VCLR for subroutine MATMPY.

Zero the Output Array

Multiply the Two Input Matrices (or Vectors)

Figu.re A3-46 MATMPY VCLR

A3-56

3.9.3 Matrix Transpose .(MATTRN)

Subroutine MATTRN loads the output matrix B with the transpose of input
matrix A.

Figure A3-47 is the VCLR for subroutine MATTRN.

Compute the Transpose of the Input Matrix

Figure AJ-47 MATTRN VCLR

A3-57

3.9.4 Matrix Subtraction (MATSUB)

Subroutine MATSUB subtracts input matrix B from input matrix A to pro­
duce output matrix C. All arrays are variably dimensioned, which al­
lows matrix, vector, or scalar operation.

Figure A3-48 is the VCLR for subroutine MATSUB.

Subtract the Second Input Matrix (or Vector)
from the First Input Matrix (or Vector)

Figure AJ-48 MATSUB VCLR

A3-58

3.10 IMSL MATH PACKAGE ROUTINES

This subsection briefly describes the two math routines used from the
IMSL math package.

1) CALL GGNML - Compute normal random value from a Gaussian distribu­
tion with zero mean and variance of one;

2) CALL LGINF - Compute matrix inverse or pseudo-inverse.

A3-59

I 2. Government Accession No. 1. Report No.

NASA CR-165976

4. Title and SUbtitle

EVALUATION OF AUTOMATED DECISIONMAKING METHODOLOGIES
AND DEVELOPMENT OF AN INTEGRATED ROBOTIC SYSTEM
SIMULATION-APPENDIX A, SOFTWARE DOCUMENTATION

7. Author(s)
J. W. Lowrie, Dr. A. Fermelia, D. C. Haley,
K. D. Gremban, J. Van Baalen, R. W. Walsh

9. Performing Organization Name and Address

Martin Marietta Aerospace
Denver Division
P.O. Box 179

3. Recipient's Catalog No.

5. Report Date

September 1982
6. Performing Organization Code

8. Performing Organization Report No.

MCR-82-581 Vol. II Part 1

10. Work Unit No.

11. Contract or Grant No.

NAS1-16759

~~D~e=n~v~e:r~~.~C~O~~8~0~2~0~1~~~~~~~~~~~~~~~~~~~~~~ 13. Ty~~Report~dh~~Cov~~
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

15. Supplementary Notes

Langley Technical Monitor: Jack Pennington
Final Report

16. Abstract

Contractor Report
14. Sponsoring Agency Code

This report contains Appendix A to NASA Contractor Report NASA CR-165975. Appendix A
contains documentation of the preliminary software developed as a framework for a
generalized integrated robotic system simulation. The program structure is composed
of three major functions controlled by a program executive. The three major function
are: system definition, analysis tools, and post processing. The system definition
function handles user input of system parameters and definition of the manipulator
configuration. The analysis tools function handles the computational requirements
of the program. The post processing function allows for more detailed study of the
results of analysis tool function executions. Also documented is the manipulator
joint model software to be used as the basis of the manipulator simulation which will
be part of the analysis tools capability.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

robotic simulation, software

19. Security Oassif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified

Unclassified--Unlimited

21. No. of Pages

167
22. Price

N-305 For sale by the National Technical Information Service, Springfield. Virginia 22161

End of Document

