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NOISEMEASUREMENTSINWINDTUNNELS-

WORKSHOPSUMMARY

David H. Hickey and John Williams*

Ames Research Center

This paper summarizes the technical content of the NASA Ames Research Center "Workshop on Aero-
acoustics Tunnel Testing Techniques" held in March of 1979. In reviewing the progress made in acoustic
measurements in wind tunnels over the 5-yr span of the workshops, it is evident that a great deal of

progress has been made. New, specialized facilities have been brought on line, special measurement tech-
niques have been developed, and corrections have been devised and proven. This new capability is in the
process of creating a new and more correet data bank on acoustic phenomena, and represents a major step
forward in acoustics technology.

Additional work is still required, but now, rather than concentrating on facilities and techniques,
researchers may more profitably concentrate on noise-source modeling, with the simulation of propulsor
noise source (in flight) and of propulsor/airframe airflow characteristics. Recent promising developments
in directional acoustic receivers and other discrimination/correlation techniques should now be regularly
exploited, in part for model noise-source diagnosis, but also to expedite extraction of the lone source
signal from any residual background noise and reverberation in the working chamber and from parasitic
noise due to essential rigs or instrumentation inside the airstream.

In 1974 and again in 1976, the NATO Advisory Group SUMMARY OF WORKSHOP TECHNICAL CONTENT
for Aerospace Research and Development sponsored work-
shops on the measurement of noise in ground-based facili- The discussions of the workshop will follow the general

ties. These workshops, organized by Professor John Willi- topical outline of the agenda, but will be in a different
ams and Mr. R. Westley, provided a useful exchange of order.

information among the participants and provided material
for AGARD-AR-83 and AGARD-AR-105. The majority of
the discussions at these workshops were on the measure- Facility Development
ment of noise and the simulation of flight effects on noise

in wind tunnels. Facility developments seem to have taken two paths.
In March of 1979, NASA Ames Research Center (ARC) One taken by those who have no wind-tunnel-type facilities

sponsored and organized a subsequent "Workshop on Aero- resulted in new, specially designed open-throat wind tun-
acoustics Tunnel Testing Techniques." This workshop, nels with the test sections surrounded by anechoic chain-
which was organized similarly to the AGARD Workshops, bers. The second approach was to modify existing wind
focused on aeroacoustic wind tunnels and the techniques tunnels (open and closed throat) or anechoic chambers to
used for noise measurements in these facilities. Professor make them acceptable for noise research on the effect of
John Williams chaired the workshop, flight. Most Government agencies (RAE, NGTE, NASA,

This paper will summarize the technical content of the etc.) have followed this second path because of the plethora
ARC workshop and present the important acoustic para- of such facilities at the aeronautical establishments. The

meters of wind tunnels used for noise research. The list of ensuing discussion will examine examples of each approach.
workshop papers is presented in appendix A and a list of New open-throat wind-tunnel facilities - Some examples
attendees is in appendix B. Appendix C is a list of papers on of the new facilities are the French CEPRA 19 and

the workshop subject that have been published since German-Dutch DNW wind tunnels in Europe, and the
AGARD-AR-105 was published. Copies of vugraphs were Boeing, Douglas, and General Electric facilities in the
distributed to the meeting attendees and are available United States. While all designs are different in dimension
from ARC. and detail, the basic concepts are as illustrated in figure 1

(from Paper 15). The noise measurements outside the flow
are one factor that is inherent in open-throat wind tunnels.

i *Royal Aircraft Establishment, Farnborough, tlampshire, Eng- Another factor is the necessity for noise data corrections
land. for the alterations in the signature, due to transmission



through the shear layer. Of course, if the jet is large com- noise. These are, of course, drastic modifications to the
pared to the chamber, the user may choose instream tunnel, but it would still be much lesscostly to correspond-
measurements. (These corrections will be discussed in a ingly modify the 24-ft tunnel than to build a new large
later section.) Reliable near-field measurements well inside facility.
the airstream can also be important (discussed later). One The NASA Ames 7- by lO-Foot Wind Tunnel Circuit is
of the major questions with open-throat wind tunnels is shown in figure 9. Treatment was added to the circuit cross
that of flow quality. Figures 2 and 3 (from Paper 14) show legs to control fan noise, and the test-section walls were
the mean flow velocity profile and the RMS turbulence made removable so that the test section could have closed

level in the Boeing Wind Tunnel. The flow quality and tur- hard walls, closed acoustically absorbent walls, or three
bulence levelsof open-throat wind tunnels are not quite as walls open. This modification is not as drastic as the modi-
good as for the best closed test section wind tunnels used fications to the RAE 1.5-Meter WindTunnel, but the origi-
for aerodynamic investigations. They are adequate, how- nal NASA Ames wind-tunnel background noise level was
ever, provided the effects of unsteady flow at very low lower than the originalRAE wind-tunnel noise level. Figure
frequency are of no concern. 10 showsthe effect of the circuit treatment on the in-stream

Another basic parameter in acoustic wind tunnel per- noise with the hardwall test section. Thisbackground noise
formance is the background noise. Figure4 (from Paper 14) level is expected to be less with a treated test section wall.
shows a requirement based on specificengine performance, Figure 11 shows the background noise level with the test
but this levelis rather high and would limit the type of test- section open, along with similar data from two smaller
ing that could be done in the facility. Figure 5 (from Paper anechoic wind tunnels. The measurements arena in the 7-
16) shows what can be done by very careful design of a by 10- is not treated whereas they are treated in the other
wind tunnel for noise research. With the background noise two wind tunnels. It appears that the 7- by 10- will be
shown, research on a low-levelnoise contributor such as air- reasonably competitive with other acoustic wind tunnels.
frame noise should be practical. The turbulence level in the 7- by 10- is shown in figure 12

It is apparent from the workshop that a number of high with open and closed test sections and the 40- by 80- levels
quality, open-throat wind tunnels for acoustic testing have are included for comparison. The modifications do not
been or are about to be brought on line since the last appear to haveseriously hampered the flow quality.
AGARD Workshop. These facilities have test airstreams as These two cases of wind-tunnel modifications show that
largeas 8 m square and include national facilities such as the aerodynamic wind tunnels can be modified into facilities
DNW tmmel and the industry-owned facilities such as the acceptable for most noise measurements. However, the
G.E., Boeing,and Douglastunnels. The ability to test small- modified tunnels are not likely to be as good as new
scale acoustic models has taken a quantum leap in these last custom-built facilities such as the NSRDC facility because
few years, stimulated by the previous exchanges on aero- of the lower contraction ratio, higher circuit speedpast the
acoustic techniques provided by the AGARD Workshops. acoustic treatment, lack of ground insolation, etc., common

to the older wind tunnels.Modified wind tunnels - Some of the facilitiesmodified
for acoustic and wind-tunnel testing include the NGTE
Anechoic Chamber, RAE 24-Foot and 1.5-MeterWindTun-
nels, the Boeing9- by 9-Foot WindTunnels, and the NASA MeasurementTechniques
V/STOL, 7- by lO-Foot Wind Tunnel, and 40- I_y80-Foot

Wind Tunnel. Since some of the recent and most thorough Noise measurement in wind tunnels may be either in the
work has been done on the RAE 1.5-Meter Wind Tunnel flow or out of the flow. It is in principle a simple procedure
and the Ames 7- by 10-Foot Wind Tunnel, the character- to correct the measurements for the flow effects with the
istics of these two facilities will be discussed, microphone in the flow. But the effect of the noise trans-

Figure 6 (from Paper 20) shows the circuit of the RAE mission through the shear layer of an open-throat wind
1.5-Meter (5-ft) Wind Tunnel before internal modification tunnel to a microphone outside the tunnel flow is a com-
to simulate a possible practical solution for modifications plex problem involving refraction of the sound wave and
of the RAE 24-Foot Wind Tunnel, and figure 7 shows the correction for different frames of reference. Much research
circuit after the modification. The drive system with a new has been devoted to the development of suitable correc-
quiet fan was moved from near the test section to the back tions. The workshop results on problems of inflow noise
leg to provide more distance from the test arena and space measurements will be discussed first, then progress on cor-
for the splitters to control fan noise propagation. Figure 8 rections for noise transmission through shear layers will be
shows that the alterations to the 1.5-Meter Wind Tunnel reviewed. An adequate signal-to-noise ratio is necessary to
reduced noise as much as 25 dB and 15 dB over the practi- make quality noise measurements. Whenthe signal-to-noise
cal frequency range for the same speed. Alternatively, this ratio is not adequate, methods of improving this ratio must
provides double the test speed for the original background be applied. These techniques can often be used to locate



noise sources as well. Some methods and their effects on stature in the acoustic research community and the experi-
signal-to-noise ratio will be discussed at the end of this mental approach is generally accepted, even though correc-
section, tion methods may differ from one installation to another.

Of course, good experimental practice dictates that the use
Noise measurements with microphones in tile flow - of large corrections should be minimized or subjected to

With the microphone in the flow, the correction to the extra checks.
measured pressure is a simple correction for the down-
stream convection of the sound wave and a spherical- Discrimhlation against unwanted noise - For low level
spreading correction for the difference in distance. The dis- signalsor where the signal-to-noiseratio is not adequate for
advantage of inflow measurements is that the flow over the quality noise measurements, techniques for discrimination
microphone and its support produces noise which is likely against the noise sources that intrude on the source of
to define the background noise level that the microphone interest may be used. Many of the techniques amount to a
measures at the lower frequencies. Papers 3 and 4 discussed form of directional microphone (microphone arrays, cot-
this problem and paper 3 gave a quantitative idea of the relation microphones, acoustic mirrors, etc.) and thus can
0.63 cm (1/4 in.) microphone noise resulting from the tur- serve the dual purpose of locating noise sources as well as
bulent flow in a tunnel. Figure 13 relates turbulence to discriminatingagainst other noise sources. Figure 19 depicts
noise at 91 m/sec (300 ft/sec) wind-tunnel speed at differ- one such device, the acoustic mirror (from Paper 1).Paper
ent frequencies, though it ignores the effect of turbulence 5 provides figure 20 on the correlation microphone.
scale on microphone response. A value of approximately Another approach to the same problem is to move into the
0.2% in a 1/3 octave band turbulence levelis about as high geometric near field of the noise source of interest and then
as is acceptable for measurements with the microphone in correct for near-field effects (using the multiple sideline
the flow. Figure 14 shows the corresponding effect of tur- techniques described in Paper 6 and fig. 21, for example).
bulence at different wind-tunnel airspeeds. Within the desig- In the years since the last workshop, these techniqueshave
nated -+7dB range of scatter, these results reasonably agree seen considerable use and refinement, and the use of some
with Owen's measurements at RAE, referred to previously of them has become standardized by the developers.The
in AGARD-AR-105, though the RAE results consistently acoustics research community accepts some of these
exhibited the influence of turbulence scale. Additionally, it methods, thus considerable progresshas been made in the
can be strongly argued that the fluctuations v and w in the use of measurement techniques to allow the measurement
lateral velocity components are the major cause of spurious of a particular noise while in the presence of other noises.
noise at the microphone, rather than the longitudinal corn- In the last 3 years, progresshas been made in the use of and
ponent used in the foregoing graphs. Fortunately, having a confidence in these techniques.
microphone in the flow also means that it is nearer to the
noise source and even with the microphone self-noise there

may still be an acceptable signal-to-noiseratio. Even when Scalingand Modeling
the microphone may be in the near field for an extended

source, in a case where microphones must be in the flow A principal problem encountered by many researchers
and noise source is at a low level,discrimination techniques on the effect of flight on aircraft noise is the need to scale
(discussed later) can be used to remove the random pressure selected elements of the noise source rather than work with

fluctuations, the actual engine. This problem is not new; aerodynamicists
Corrections for shear layer transmission - Use of an have had the problem of scaling propulsion systems for

open-throat wind tunnel with microphones outside the scale model testing over the time span of powered aviation,
stream for noise measurements implies that the data must and there are still spirited debates over the advantages of
be corrected for the effect of the transmission through the various techniques. Severalpapers were given at the work-
shear layer and for the effect of the microphones and the shop discussingacoustic experience with this problem.
noise source being in different frames of reference. Figures The consensus of these papers was that, where the noise
15 and 16 (from Paper 10) describe the corrections geo- source was adequately modeled and the data processed to
metrically and figures 17 and 18 (also from Paper 10) give account for all differences, small-scaleresults could givean
examples of the correction. The shear layer correction gives accurate description of jet noise flight effects in particular.
the most difficulty and includes both amplitude and angle For example, figure 22 shows small-scale results with a
corrections. Recent experimental work, shown in Papers 11 simulated JT8D engine in the Boeing 9- by 9-Foot Wind
and 12, has greatly increased the confidence level in the Tunnel compared to a full-scaleJT8D engine whose noise
corrections. Experiments on the acoustic transmission characteristics were measured in the Ames 40- by 80-Foot
through shear layers established that the Amiet correction Wind Tunnel. The agreement, as shown by a comparison of
method is adequate in most cases. The measurements velocity exponents, was excellent. On the other hand,
obtained by these methods thus have gained considerable where results from a clean 15 cm (6 in.) jet nozzle,



obtained in the 40- by 80-Foot Wind Tunnel and an F86 there were some adjustments that had to be made to the
airplane with a J47 engine were compared, they were not data because of different engine models, inlet configura-
similar (fig. 23) in the forward quadrant. This discrepancy tions, and flight conditions. The summary of the compari-
is believedto be caused bylarge internal noise sources in the son is found in figure 27. The agreement is excellent
J47 engine which were not simulated on the model. This regardless of whether the ground-based estimate is done
and other evidence indicate that scale models can and on an incremental basis or an absolute basis. While the

should be used in the estimation of flight effects on figure shows only an EPNL comparison, the comparison is
noise. However, a great deal of care must be taken in inter- correspondingly good for directivity and spectra. It is thus
preting the results and modeling the engine to avoid mis- confirmed that ground-based facilities can give the correct
leading results, particularly in respect to possible installa- answer for flight effects if the model used faithfully repre-
tion effects, sents the flight source. Indeed, this may be the most diffi-

cult problem in applying small-scaleresults to obtain flight
estimates.

Comparisonof Wind-Tunneland Flight-NoiseResults

The title of this session is misleading; the outcome was CHARACTERISTICSOF ACOUSTICWINDTUNNELS
somewhat disappointing because only one paper.dealt with
that topic. The other two papers included a report of work The wind tunnels used for acoustic studies vary from
to modify flow conditions in static facilitiesto more closely small, quiet wind tunnels especially constructed for the
resemble those in flight, and a comparison of model data task, to large wind tunnels such as the Ames 40- by 80-,
from two facilities, that may require special techniques to record the acoustic

Paper 27 compares results obtained from a 7.5 cm (3 in.) data. Since there are so many facilities, it may be possible
model on the Rolls Royce Spin Rig with results from a 6 in. to select a facility best suited for a givennoise measurement
nozzle in the Ames 40- by 80-Foot Wind Tunnel (fig. 24). task. Table 1 is a cross section of wind tunnels in use for
The largest discrepancy in the results is between the conical noise research and development. Whilenot all are included,
nozzles. This is, of course, important because it shows dis- the table presents characteristics of representative facilities.
crepancies in the suppression effectiveness of the nozzles The facilities considered are evident from the table and
between the two tests. For both nozzles, the Ames data reflect the information provided by the workshop attendees
have a lower sound pressure level than the Rolls Royce at the time. A more complete list of aeroacoustic facilities
data, which are in the opposite direction for internal noise, constructed in Great Britain, West Germany, France, and
reverberation, or background noise problems in the Ames the Netherlands has now been prepared jointly by
test rig. The Ames conical nozzle results also agree well RAE/NGTE, DFVLR, ONERA, and NLR under the
with other conical nozzle results; therefore, it is believed auspices of the "Aircraft Noise Section" of the Group
that the problem lies with the spin rig data jet model for Aeronautical Research and Technology in Europe
installation effects. This has since been clarified by work (GARTEur-5).
at NGTE and Rolls Royce.

Paper 25 described the development of a turbulence
control inlet. The purpose of this inlet was to reduce turbu- CONCLUDINGREMARKS
lence associated with the test site while testing a fan under
static conditions, and thus make the test closely represent In reviewingthe progressmade in acoustic measurements
flight conditions. Some of the sources of turbulence for in wind tunnels over the 5-yr span of the workshops, it is
static testing are shown in figure 25 (from Paper 25). The evident that a great deal of progresshas been made. New,
importance of removing this turbulence is shown in figure specialized facilities have been brought on line, special
26. While the simulation of flight conditions by the turbu- measurement techniques have been developed, and correc-
lence control inlet can be questioned because of different tions have been devised and proven. This new capability is
streamlines and boundary-layer growth in the engines, in the process of creating a new and more correct data bank
control of the turbulenq_ provides a major improvement on acoustic phenomena, and represents a major step for-
and is strongly encouraged for future tests, ward in acoustics technology.

Paper 26 was the only paper in the workshop that Additional work is still required, but now, rather than
covered the very difficult task of comparing flight effects as concentrating on facilities and techniques, researchers may
measured in a wind tunnel with those measured in flight. In more profitably concentrate on noise-source modeling, with
this case, since the "model" was a JT8D engine,most of the the simulation of propulsor noise source (in flight) and of
questions of modeling and scaling were removed and the propulsor/airframe airflow characteristics. Recent promis-
basic question of whether or not the wind tunnel gave the ing developments in directional acoustic receiversand other
right answers could be addressed. As would be expected, discrimination/correlation techniques should now be



regularly exploited, in part for model noise-source diagno- work on problems during the three-year period since the
sis, but also to expedite extraction of the lone source signal last workshop.
from any residual background noise and reverberation in
the working chamber and from parasitic noise due to
essential rigsor instrumentation inside the airstream. Ames Research Center

Most useful was the stimulating exchange of up-to-date National Aeronautics and Space Administration
information on the substantial advances and continuing Moffett Field, California 94035, March 11, 1982
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OPENINGREMARKS........ Dr. Roberts 14. BoeingQuiet Relative Velocity

Paper MEASUREMENTPROBLEMS Facility ................. W.G. Harris
No. ANDTECHNIQUES 15. Evolution of a Forward Motion

1. Noise Source Location Usingthe Simulator for the MDCAnechoic
Acoustic Mirror Technique .... Dr. F. R. Groshe Chamber ................ J. H. Brettnacher

2. A Directional Microphonefor 16. Aeroacoustic Aspects of the
Measurements ............ Dr. R. Schlinker German Dutch Wind Tunnel ... R. Ross

3. Evaluation of Flow Noise Floor 17. Acoustic Features of

Characteristics ............ K. J. Young 40x80/80x120 ............ P. Soderman

4. Contribution from UTIAS ..... Prof. Richarz 18. Jet NoiseTesting Capabilities
at NLR ................. W.B. DeWolf

5. The Correlation Microphone
System of the Measurement of 19. Contribution from UTIAS ..... Prof. Richarz
Airframe Noise ............ Warren F. Ahtye 20. Acoustic Modification to the R._E

6. The Multiple SidelineTechnique 24-Foot and 1.5-MeterWind
for Source Location and Tunnels ................. Prof. J. Williams
Extrapolation of Near-Field a. Workingchamber treatment
Measurements ............ F. G. Strout b. Fan designconsideration

c. Circuit treatment
7. Transducer Microphone

Correlations for Airframe d. Aerodynamic implications
Noise .................. Prof. Meecham

8. Helicopter Noise Testing MARCH 16, 1979
Techniques .............. D. Hoad SCALINGAND MODELING

9. WindTunnel Testing to Determine 21. Comparison of 9x9 WindTunnel
ImpulsiveNoise Characteristics Model and 40x80 Engine Flight
of Helicopter Rotors ........ H. Sternfield Effects Data for the 727/JT8D

10. Open Jet Refraction and Baseline ................ C. L. Jaeck
Scattering of Sound ......... Dr. R. Schlinker 22. Model of Study Underwing Engine

11. Aeroacoustic Corrections for Installation Effects on Noise

Testing Small Modelsin an Open Radiation ............... R. Schofield
Jet Anechoic Flow Facility .... Dr. J. Yu 23. The Simulation of Engine Exhaust

12. Experimental Verification of the Noise at Model Scale ........ D. J. Way
Free-Jet Flight Simulation 24. Comparison of F-86 and 40x80
Correction Procedure for Model Data for a Uniform
Acoustic Data ............ Dr. H. Plumbee Flow Jet ................ F. G. Strout

13. Partial Acoustic Treatment ..... M. Falarski COMPARISONOF WINDTUNNEL
AND FLIGHT NOISE

25. An Inflow Turbulence Reduction
Structure for Scale Model Fan

*Vugraphs were distributedat the meeting. Testing ................. E. B. Smith



Paper COMPARISON OF WIND TUNNEL AND FLIGHT

No. NOISE (CONTINUED)

26. Comparison of B727 and 40x80 Noise
Data for JT-8D Engine ....... F. G. Strout

27. Correlations of Acoustic Results

for Reference and Suppressed

Nozzles from Far-Field Spinning
Data and Near-Field Ames 40- by
80-Foot Wind Tunnel Data .... R. A. McKinnon
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TABLE 1.- SOMEWINDTUNNELS USEDFOR NOISE MEASUREMENTS

Test section Working chamber Tunnel circuit

Wind Maximum Turbu- Minimum Comments

Tunnels Size speed, lence, Type Treatment anechoic, Background Type Drive TreatmentNoise
m/sec % ttz

European

RAE 24 ft 7.3 m 50 0.3 open wedges 20C 75 dB (_!I kHz closed electric none Anechoic chamber added only.
diam 30 m/s

RAE 1.5 m 1.5 m 55 0.2 open foam sheet 500 75 dB 6v 1kttz closed electric splitters Modified aerodynamic tunnel, as model for possible
diam 50 m/s 24 ft tunnel conversion.

DN_,V 8x6x20 m 110 -- open wedges - 54 dB (_ 1 kltz closed electric corners Wind tunnel just coming on line, background noise
50 m/s estimated.

CEPRA 19 2 m diam 100 - open wedges 200 - open electric splitters

North American

Boeing9 by 9 Ft. 2.7x2.7x4.3 97 0.14 closed absorbent 200 100dB (_ 1kltz once turboprop panels &
m walls through splitters

Boeing Vertol i.lx6.1x13.7 120 0.09 closed none - 91.5 dB (a! closed electric none Used for measurement of harmonic components
m 1kltz return only.

G.E. Anechoic 1.2 m 140 - open wedges 160 - open jet plant air - Dual flow, heat air capability. Acoustic mirror and
Free Jet Facility diam laser velocimeter available.

Lockheed Open Jet 0.71 m 100 - open wedges 200 58 dB @ 1kHz open jet extensive Optional 0.76xl.07 m rectangular test section
Anechoic Wind diam available.
Tunnel

UTIAS Anechoic 1 m diarn 100 .2-.3 open wedges 180 55 dB@ 1kttz open jet electric splitters
Wind Tunnel 55 m/s

NASA 40 by 80 12x24x24 100 0.19 closed panels on - 86 dB (,!1 kttz closed electric none Full permanent acoustic treatment is being added
m 1/3 test 46 m/s return to test section.

section

NASA 7 by 10 2.1x3x4.3 100 0.26 optional commercial - 62 dBO)1 kltz closed electric panels in Can be operated with closed test section and
m tile open throat, 35 return cross legs acoustically hard and soft walls or open test section.

m/s80 dBclosed
hardwalls (_

1 kttz 56 m/s

NASA ANRL 1.22 m 120 0.25 open wedges 125 42 dB (_;1 kltz open jet electric vanes &
Anechoic Flow diam 45.7 m/s baffles
Facility

NASA V/STOL 4.4x6.6 103 - optional foam panels 250 80 dB (a!1 ktlz open jet electric none
Wind Tunnel m 42 m/s
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Figure 1.- Anechoic acoustic test facilities.
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Figure 27.- Comparison of wind-tunnel and flight-test noise results.
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