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There is now an increasing amount of both observational evidence and
theoretical arguments that regions of partially ionized hydrogen extending
several stellar radii are an important feature of red giant and supergiant
stars. The purpose of this paper is to summarize this evidence and to examine
the implications of the existence of extended chromospheres in terms of the
mature of the outer atmospheres of, and mass loss from, cool stars.

1. Spectroscopic Evidence

1.1. Emission measure in the mid-UV lines of C+

A marvelous marriage between observational astrophysics and theoretical

atomic physics recently occurred when the density-sensitive variation of line

ratios within the five-lined 2325 A multiplet (UV 0.01) of C II was studied in

the spectra of red giants (Stencel et al. 1981). The sensitivity of the boron

isoelectronic sequence to the electron density of lines in the 2s 22p2 P -

2s2p2 4P multiplet has been known for some years. Previous work has concen-

trated on N III, O IV and higher sequence members in the context of the solar

atmosphere. The C II features are sensitive to densities in the 10 7-109 cm-3

regime, inappropriate for the dense solar chromosphere, but valuable in mea-

suring densities in low gravity cool stars. Observations of the C II 2325 A 4

multiplet in the Sun and in the planetary nebula NGC 6572 fix the high and low r

ieosity ratios for three pairs of lines. By iteratively adjusting collision

strengths and A-values, Stencel et al. achieved an optimum fit to the density
extremes, reducing the spread in N  as derived from three line ratios for in-

dividual red giants. The line ratios are relatively insensitive to changes in

Te over the 7000-20,000 K range. More accurate collision strength calcula-

tions are needed, however, and observations of objects nearer the low and high

density limits are being requested, but such observations require long expo-

sures evea with the WEsatellite. The implied electron densities for a Boo

and a Tau are 2-3 x 108 cm -3 ,  in reasonable agreement with upper chromospheric

values in models by Kelch et al. (1978) and Ayres and Linsky (1975).

In addition to the valuable density diagnostic, the ratio of total flux
In the 2325 A sultiplet to that in the 1335 A resonance line multiplet pro-
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vides an independent measurement of Te • This information combined with

Ionization equilibrium estimates and abundances egg lea to estimates of the

hydrogen column density, f NHdh, which is -6 x 10 cm for a Boo. Then
assuming the carbon ionization fractions and the value of N e/NH• we derive a

lower limit to the (C II) chromospheric thickness for a Boo of M2 x 10 12 cm,

which is at minimum comparable to the stellar radius. More precise calcula-

tions for the hydrogen and carbon ionization equilibria and line formation,

including collisional excitation would be valuable. Preliminary calculations

assuming a two-level C+ ion and optically thin line, and the observed values,

suggest that chromospheric thicknesses range from about 6R* in a Boo to 10-15

R* in M giants and supergiants, like 0 Peg and a Ori. It is encouraging that
this same technique predicts a very thin (0.01 R* ) chromosphere for the Sun.

Recent C II observations of the KO III star 0 Gem indicate Ne - 109.1 and a
chromospheric thickness of 0.06 R* • This result is encouraging, because S Gem
exhibits soft X-ray emission transition region emission lines, indicative of

an outer atmospheric structure similar to the Sun, including a geometrically

thin chromosphere. It seems physically appealing that among the red giants

which show no evidence for hot coronae, the chromosphere occupies a volume

homologous to that of coronae in warmer, higher gravity stars.

1.2. Other estimates of chromospheric extent and inner CS radius

The coolest and most luminous red giants are known to be surrounded by an

extensive, cold circumstellar (CS) gas and dust envelope, extending possibly

hundreds of stellar radii (for a Ori several arc-minutes in apparent extent --

Honeycutt et al. 1980). The radius of the inner edge of this CS shell is re-

ferred to as Rmin and its value is important in estimating mass loss rates,
but it also provides an outer limit to the extent of warm, chromospheric ma-

terial near the star. Sutton et al. (1977) employed optical heterodyne inter

-ferometry on the 10 µm silicate feature in a Ori and a Sco, and found that
dust emission ceases within 12 R * , implying an extended warm interior region.

Less direct techniques have inferred Rmin for a Ori to lie in the 8-12 R*

range, cf. Bernat and Lambert (1975), Knapp et al. (1980), van der Hucht et al.

(1980), Castor (1981). The radio spectrum reported by Altenhoff et al. (1979)

is . consistent with free-free emission from a 2-3 R* warm region around a Ori.

1.3. Variable He I 10830 A emission

The appearance of variable He I 10830 A emission and absorption among red

giant stars (O'Brien 1980; Zirin 1976) for which upper limits on coronal X-ray

emissions are very small (Ayres et al. 1981a) poses the difficult problem of

line formation that perhaps can be resolved by recognizing that the chromo-

spheres of these stars are probably extended. The existence of emission in

10830 A is easier to understand if it is formed over a region large compared

to the photosphere. This is in contrast to thin chromosphere dwarfs where
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10830 A appears consistently in absorption. More importantlys the nature of
the 10830 A variations themselves has been used by O'Drien to argue for moving
prominence-like material at large distances from red giants. The nature of

these events is far from established, but they strongly imply the existence of

chromt-spherte material at large distances above the stellar photosphere.

Evidence for episodic mass ejections among red giants has also been found by

Nernst (19:1).

1.4. Atmospheric structure in 32 Lyg

High resolution ultraviolet spectra obtained during the recent eclipse of

32 Cyg by Stencel et al. (1982) provide direct measurement of the chromo-

spheric temperature rise with height above the supergiant's photosphere as a

result of the different lines of sight through the K5Ib stellar atmosphere to
the partially eclipsed B5V companion star. Preliminary analysis using Fe I

and Fe II curve of growth indicates an excitation temperature that appears to
plateau at 7200 K above approximately 2 RK.

1.5. Ionisation anomalies

Ramsey (1981) has reported on the ionization balance in G5-M2 giants and

supergiants, using Cs I 6573 A and (Ca I) 7324 A lines. He found an increas-

ing discrepancy between observed and LTE line strengths for Teff < 4250 K.

which he interpreted in terms of increased overionization. This effect high-

lights the inadequacy of radiative equilibrium, LTE atmospheres for such

stars, which could be due in part to a lack of collisional deexcitation in low

density and extended material, or subtle filling of the line core by chromo-

spheric emission. The NLTE effect and core filling both could have substan-

tial impact on attempts to perform abundance analyses of these objects (see

below).

1.6. Ca II K and Mg II k

Chromospheric temperatures and velocity fields can be derived from pro- !

files of the emission cores of the resonance doublets of Ca+ and Mg+.	 Reimers
,-

(1977) has delineated that portion of the HR diagram where cool stars typi-
cally show CS (K4 ) features in their K line cores, thus indicating the pre-
sence of outflowing 3000-7000 K material well above the low chromosphere.

Stencel (1978) and Stencel and Mullan (1980a,b) have studied the statistics of

asymmetries in the doubly reversed emission cores. 	 They find that the Ca II K
line changes from a solar-like (K 2V > K2 R) asymmetry to an outflow (K2V < K2R)

type of asymmetry along a locus in the H-R diagram similar to that proposed by

Reimers for the presence of K4 features, whereas the Mg II k line undergoes a

similar asymmetry change several spectral subtypes earlier, nearly coincident

with the division between stars with and without detected s ft X-ray emission

(Ayres et al. 1981a).	 Effects of interstellar Mg II absorption can affect the

i

139

LA



r	 _

apparent asymmetry (Bohn-Vitense 1981) although to first order, the impact am
be judged by comparing the stellar radial velocity against the "expected'

asymmetry for the stars' location in the N-R diagram.

Several bona-fide "discrepant asymmetry" (Ca II K f VC II k) stars have

been isolated by Mullan and Stencel (1982). including a Boo (KZ III), a Tuc
(K3 III). a Oph (K 3 II), x Her (K3 II). 56 Psg (KO II + wd). Several others

are suspected of having discrepant asymmetries (e.g.. % IIMs. C8 II). although

Interstellar Mg II absorption may interfere. In contrast. the C giants and K

giants tend to have asymmetry agreement. It is significant that when the

discrepancy is found. it is always in the sense that Ca II shows V > R while

Ng II k shows the opposite &sysmetry. This "preferred parity" must be phys-

ically meaningful, unless a reliable counter example can be found.

At the time of this writing there is no definitive explanation for this

phenomenon, although several hypotheses have been advanced. Our attempts to

simulate discrepant asymmetries numerically using plane parallel, hydrostatic

equilibrium (HSE) model atmospheres and comoving frame multilevel NUE calcu-

lations including PRO have not been successful; the formation regions of Ca II

K and Mg II k overlap to a great extent (cf. Fig. I of Vernazza at al. 1981)

and unphysically steep velocity gradients would be required to produce the

discrepant asymmetries. There is no reason to believe that the high pressure

chromosphere models of Isaliunas et al. (1979) would do any better. There are

two possible solutions: we could adopt very nonsolar Ca/Ng abundance ratios to

separate the Ca II and Mg II formation regions; or we could assume that the

chromosphere is extended and inhomogeneous. The latter option seems prefer-

able. Spectral synthesis calculations are needed for the following models:
(1) one component, geometrically extended chromospheres (Tmax 8000 K); (2)

extended chromospheres, including stellar prominences (T..x - 10,000 K), and

(3) "double valued" chromospheres (Tmax initially rising to 10 5 K, then drop-

ping back to -8000 K). None of these models can assume HSE, a point we'll

return to later.

For a one-component chromosphere without a high temperature corona at its

upper bounds the Mg II k formation region will extend well above that of Ca II

K, such that it should be possible to produce discrepant asymmetries, with

plausible radial velocity gradients. In the stellar prominence model an

upward moving layer, which is optically thick in Mg II k but thin in Co II K.

overlies a static chromosphere, and adds absorption and emission components to

the symmetric underlying profile in any desired proportions. Such models are

highly nonuntqur however. Finally, the model based on temperature distribu-

tions proposed for other reasons by Hartmann and MacGregor (1980) may have

merit in the pr sent case. Above an initial chromosphertc rise is a high

temperature (10 K) transition region (TR) above which lies an extended,

cooler chromosphere. For this model the Ca II K core emission could be pri-

marily formed in an interior deceleration zone, while most of the Ng II k
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could be formed exterior to the Tt, is an eapamsioa some. Again, rsdletive

transfer calculations in spherical geometry need to be carried out to demon-
strate the feasibility of this appealing idea. This model does predict that
TR emission lines would exist in proportion to Tmmx , and the TR thickness.

i	 stringent limits to the mission measure of TR features mot be borne in mind
(e.g., a Boo), despite the existence of "hybrids- and their possible TR lime

variability. Actual differences in the amount of TR material in K giants and
bright giants may relate to intrinsic age and evolutionary differences, much
as may be the case for the G-type giants whose range of X-ray lurinceities
suggests this possibility (Simon et al. 1982). Finally, it should be remem-
bered that a complete statistical sample based on simultaneous observations is
far from complete, although the suggestion of discrepant asymmetries mmat mean
either extreme variability or unique physical circumstances for such chromo-
spheres.

1.7. Additional spectroscopic indicators

Subordinate emission lines, such as those appearing in the wings of the
Cs II H and K lines (Stencel 1977) and those in the mid-4N spectra of may red
giants (Stencel et al. 1980), tend to lack counterparts in warmer, high grav-
ity, coronal-type stars. In part this could be a matter of contrast with the

photospheric continuum distribution, but their appearance in stars only above
the asymmetry dividing line for Ca II K (Stencel 1978; Hagen et al., this
volume) suggests that they maybe useful in studying extended chromospheris.

2. Direct Evidence

2.1. Narrow-band speckle spectroscopy

A very significant advance in the study of red giants and supergiants
occurred with the discovery of a large increase in the apparent diameter of
a Ori when viewed in the light of Ha (see Hege et al., this volume). They re-
port that the diameter increases from about 50 milliarsec (mas) in continuum
light to over 250 mas in the Ha t 3 A core, suggesting chromospheric emission
extending to at least 5 R * , consistent with the previous discussion. In prin-
ciple, it should be possible to resolve time-dependent chromospheric struc-
tures and possibly stellar rotation. Several groups are busy planning how
best to exploit this technique; narrow band observations are being planned for
a variety of strong lines. The results are guaranteed to be exciting and
fundamental.

2.2. Narrow band observations of occultations

Similar efforts involving narrow band occultation observations have also
Indicated extended chromospheric emission among red giants. White at al.
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(19x1) found that 119 Tam (M2 lb) is at least twice its Contiowm diameter in

hha light. Similarly, Radick and African (1981) found suggestloms of a small

Increase in angular diameter of a Tau (K5 III) when viewed in a 7 l hn= fil-

ter that had the Ca II $542 A line sear one edge of the bemdpass. Estimates

that correct for light loss, etc., suggest a larger angular diameter mmla to

found with the filter centered on the chromospheric line. Hhite et al. sug-

gest that several bright cool stars, and all M supergiants with I(104) <

may be suitable targets for such observations.

3. Discussion

3.1. Failure of hydrostatic equilibrium (HSE)

Dimensional arguments indicate that extended chromospheres are orders of

magnitude )arger than their isothermal pressure scale heights (RT/µg). The

average chrosospheric den4ittes implied by the C II diagnostics for a Boo and

a Ort are 
1Ott33 

and 10 cm respectively. The isothermal pressure scale

heights in 104 K chromospheres are 10 and 10
11
 cm. These are 50 and 250

times smaller than the dimensions implied by 5 R; chromospheres for these

stars. It appears that hydrostatic pressure alone is incapable of supporting

these chromospheric extents.

Another source of pressure in red giant atmospheres is due to turbulent
and expansion velocities. The averaged pressure, pchr- implied by_pgRchr is

sufficiently large that rms turbulent velocities of 70 and 50 km s 1 would be

required for a Boo and a Ori, respectively, to support it. While for a Boo,

70 km s-1 is consistent with the transient Ca II K 4 feature displacements
-1

reported by Reimers (1977) for similar stars, 50 km s seems a factor of 3 or
more above chromospheric or expansion velocities derived for a Ori (Bernat

1981). A plausible alternative to hypersonic veiocites would be the Support

due to a modest magnetic field energy density (B /8R). Assuming an r
ZZ 
diver-

gence, the surface (I R,*) field required is only 9 and 2 gauss, respectively.

These field strengths are comparable to those assumed by Hartmann and

MacGregor (1980) in their Alfven wave heating model for red giants. However,

the magnetodynamic support arises in the tangential component of the field

( B x V x B), and if small Alfvenic perturbations on a stronger, fixed radial
field are required, the total energy in the support field over large dimen-

sions must be enormous. The Alfven wave heating theory is probably appropri-

ate to describe the stellar wind in the far-field limit, but an alternative

may be necessary in the near-field. Mullan (1981) has discussed the stability

of emerging flux loops in stellar atmospheres, and argues from analogy with

solar helmet streamers that below a certain mass-to-radius ratio (i.e. log g -

2), such loops will not find stable configurations, and must evolve to open

topology. Reconnection near the base may pinch off magnetically confined

S
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plasms ballets which are propelled apmards, in effect driving the mw lees

(see comments by Martska and Soria in this volume). The idea is appealing is

that it explains the observed episodic mature of mass loss, but it has got yet

been supported by realistic calculations (laeuman 1"0.

3.2. Energy balance and the hybrid stars.

It has been noted by R. Hammer (private communication) that the intensity
distribution across the extended chromospheres will be indicative of radiative

loss and hence of the heating mechanism. Although the details of the dissipa-

tion remain preliminary, compressional wave heating modes (e.g. acoustic and

slow mode with field equipartition) are much more closely tied to the density

distribution than the noncompressional wave heating modes (e.g. Alfven-caves).

The radiative loss rate as a function of radius then indicates the heating

mode, assuming an exponential density falloff. Considering that if the diner

of isothermal pressure scale heights involved is large, the radiative losses

In Ho then appear essentially insensitive to density, as there is detectable

signal from the extended material. This points toward noncompressional wave

heating as the important mechanism, although the details of its dissipation

await further clarification. The spatial variation of chromospheric line

emission provides an important clue, and needs more careful measurement.

If Alfvenic wave heating is an appropriate description of the outer

atmospheres of noncoronal stars, the thickness and density of their transition

regions determine the visibility of their 105 K emission features in the far

ultraviolet. Again, the statistics are incomplete, but perhaps as many as one

In four of the K giants and bright giants so far sampled are hybrid (Reimers,

this volume; Simon et al. 1982). It is particularly dangerous to draw prema-

ture conclusions for this region of the H-R diagram because it is also oc-

cupied by the Zia II stars, many of which are thought to have white dwarf com-

panions and thereby enhanced transition region emission (Schindler et al. this

volume). If the transition regions of such stars are also extended (2-3 R * in

the MacGregor-Hartmann models), they might be spatially resolved near the star

In speckle spectroscopy of helium or other lines. The suggestions of varia-

bility in TR emission lines (e.g. comparing the Iota Aur and Theta Her at

different epochs) indicate changes in the energy input responsible for the TR

formation, and the mass loss. This may be important in the formation of the

variable He I 10830 A absorption and emission seen among such stars.

3.3. Future prospects.

The concept of a geometrically thick chromosphere surrounding noncoronal

type stars is appealing in that a wide range of observed properties of red

giant stars can be more easily understood. One characteristic of eft ended

chromospheres that distinguishes them from the thin chromospheres of the Sd'n

and G giants, is the fluorescent line pumping that can occur: e.g. 0 I (pumped
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by Ly-p, Haisch et al. 1977), numerous lines of S I (Brown and Jordan 1990)

and OD (Ayres et al. 1981b). Mote that these fluorescent features can be com-

fused with Important TR lines doe to wavelength coincidences, and my hybrid

candidate must be carefully scrutinized with respect to this possibility.

Farther, abundance estimates nay be suspect if the filling in of lime cores by

ehromospheric emission, which reduces line equivalent widths, is overlooked

(e.g. O I and metal lines, Sneden et al. 1979).

Among ttx high priority observations in the nest few years should be

simultaneous X-ray (EXOSAT), far ultraviolet and Mg II ME), Ca II, Ha and

Me 110830 A observations of red Plants, as well as a thorou& exploration of

the immense potential of speckle spectroscopy (section 2.1 above) of such ob-

jects. In terns of calculations, models for line formation and radiative

losses in extended, spherical chromospheres should receive first attention.

Any attempts to comprehensively interpret the outer atmospheres of red giant

stars must take into account the evidence for the extended chromospheres,

their variability and large scale asymmetries (as suggested by the speckle
data — Hege et al. this volume — and by linear polarization work — Hayes

1980).
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Reiner Hammer, Jeffrey Linsky and Dermott Mullan. Unparalleled editorial
assistance was cheerfully provided by Lorraine Volsky, Leslie Haas, and Ovendy

Romey. This research Was supported in part by NASA grants to the University

of Colorado, for which I as grateful.
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