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Ate...

We consider the stability to thermal perturbation of static

models of coronal loops. The effects of cool, radiatively stable

material at the loop base are included. The linear stability

turns out to be sensitive only to the boundary conditions assumed

on the velocity at the loop base. The question of the

appropriate boundary conditions is discussed, and we conclude

tnat the free-surtac A condition (the pressure perturbation

vanishes), rather than the rigid-wall (the velocity vanishes), is

relevant to the solar case. We find that the static models are

thermally unstable, with a growth time of the order of the

coLunai cooling time. The physical implications of these results

for the solar corona and transition-region are discussed.
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I. IntrodUgtj2n

Thi linear theory for the thermal stability of static

coronal-loop models has been investigated by a number of authors,

but witn differing conclusions. In his original work, Antiochos

(1979) concluded that the static models were thermally unstable.

Similar results were obtained by Hood and Priest ( 1980).

However, Chiuderi, Einaudi, and Torricelli -Ciamponi (1981), Craig

ano McClymont (1981), and McClymont and Craig (1981a,b,c) have

found that the models are either stable or that the growth rates

for instability are too small to be physically significant. The

reason for this difference in the results of the two sets of

authors is in tneir treatment of the base of the loop models.

Antiochos ( 1979) and Hood and Priest ( 1980) have not included

cool material, T ^ 10 5 K, in their model, for which the form of

radiative loss curve (e.g., Raymond, Cox, and Smith 1976) favors

linear stability (Field 1965). In addition, Antiochos has consi-

dered only perturbations with a vanishing first-order heat flux

at the base. Chiuderi, Einaudi, and Torricelli -Ciamponi; and

Craig and McClymont argue that the growth rates for instability

are very sensitive to these assumptions so that the models can be

effectively stabilised by either including some chromospheric

material or by changing the boundary conditions on the tempera-

ture perturbation; in particular, the models can be metastable

(zero growth rate) if the temperature perturbation, instead of

the heat-flux perturbation, is assumed to vanish at the base.
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It is clear, therefore, that the proper treatment of the

base is critical for determining to what extent the models are

eizi,er stable or unstable. In the next section we discuss the

question of the boundary conditions in detail.

I.L.  P2=12Ari2D fQUAU= And a2unea r Cmdjtj2nA

From the form of the perturbation equations, e.g., Antiochos

(1979 ), Fiel, .'.L965),  it is evident that there are four

independent spatial derivatives in the problem and, hence, only

four boundary conditions can be specified. This is to be

expected since the full nonlinear equations also require four

spatial boundary conditions for a unique solution (e.g.,

Richtmyer and Morton 1967) . Hence, at each end of the loop two

conditions must be specified. One condition generally describes

the thermal prop-, rties of the base; for example, the loop base

may act as a thermal bath so that the temperature perturbation

vanishes there, T lb = 0; or it may act as a 'thermal insulator so

that the perturbation heat flux vanishes there, F lb = 0. The

other condition describes the inertial properties of the base;

for example, it may act as a rigid wail so that the velocity

perturbation vanishes, v lb s 0 1 or a free surface, so that the

pressure perturbation, P lb " 0. Depending on the physical situa-

tion, either of the inertial conditions may be assumed, but

clearly not both. Assuming both conditions is physically incon-

sistent; it implies th,t the loop base is both rigid and free.

Also, it is mathematically incorrect since, along with the

temperature condition, it is equivalent to imposing six indepen-

dent boundary conditions on a problem that admits only four.
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However, previous authors (Antioc:hos 1979; Chiuderi,

Einaudi, and, Tor ricelli-Ciamponi 1980; and Craig and McClymont

1981) have, in fact, imposed both inertial boundary conditions on

the perturbation. In their case, they were able to find

solutions to the overconstrained problem because they considered

only the restricted class of models in which gravity is

neglected; and the loop area and the coronal heating do not have

any spatial variation. Under these simplifications, the static

equations are autonomous, and the equilibrium models are

symmetric about the loop apex. Hence, the solutions to the

first-order equations, i.e., the normal modes of the loop, are

eit' er purely symmetric or antisymmetric about the apex. But,

for the simplified system with no gravity, the only possible

antisymmetric solution to the force equation is that P i vanishes

identically. Hence, all the antisymmetric solutions, irrespec-

tive of their boundary conditions, will also trivially satisfy

the free-surtace conditions; in particular, all antisymmetric

modes for the rigid-wall conditions will satisfy the overcon-

strained problem.

Previous authors have used this result to exclude the

symmetric modes as valid solutions. The argument used is that

the antisymmetric modes are more physical because all the

perturbed quantities, T10 v i , and P l vanish at the boundary.

But it is evident from the discussion above that this argument is

spurious since, in general, no mode can satisfy all these condi-

tions. For a realistic equilibrium model that has no special

symmetry properties, the modes will be neither symmetric nor
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antisymmetric. Instead, there will be two distinct sets of modes

corresponding to the two distinct physical conditions of either

rigid walls or free surfaces, and no mode will satisfy both.

Hence, within each set all the modes are equally acceptable, or

unacceptable.

The question remains as to which set of boundary conditions

best represents the physical situation in a solar loop. Ideally,

one would like to place the loop boundary sufficiently deep down

in the atmosphere that conditions there do not affect the

stabiiity properties of the corona and transition region. This

can be done for the thermal boundary conditions by placing the

loop base at a sufficiently low temperature. Since both conduc-

tion and radiation decrease rapidly for T < 6 x 10 4 K, the

tnermai time scale at the base can be made to be very long

compared to the time scales in the corona or transition region

simply by including sufficiently cool material at the base of the

static models. We expect that in this case the growth rates and

the eigenfunctions will be insensitive to the thermal boundary

conditions.

However, it is = possible to select the base point so that

the growth rates and eigenfunctions are independent of the iner-

tial boundary conditions. The reason for this is that the sound

travel time in the corona, chromosphere and even photosphere is

very rapid compared to typical thermal time scales, such as the

coronal cooling time. Hence, we expect that the stability

properties of the static.: models will, in general, be sensitive to

the inertial boundary conditions assumed for the perturbations;

we show below that this is indeed the ca3e.

5
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We are left, therefore, with having to decide which is the

proper inertial boundary condition at the loop base. We believe

that the correct condition is the free surface: P lb = 0, and

that the rigid-wall condition is not applicable to solar loops.

Assuming the rigid-wall condition implies that at some level in

the solar atmosphere a true physical boundary exists across which

no mass transfer can occur. One may think of a rigid wall as

representing material of infinite inertia and, hence, immobile.

For example, in the loop models, the magnetic field is assumed to

provide infinite inertia to motions perpendicular to the field

direction, thereby justifying a one-dimensional loop geometry.

However, in our model the plasma itself has essentially no

inertia since that is the assumption implicit in dropping the

acceleration terms. Therefore, by assuming rigid-wall conditions

at the base, we are postulating that there is a distinct physical

difference between the plasma in the loop and the plasma below,

i.e., the inertial properties of the solar atmosphere must change

abruptly at some level. To our knowledge, there exists no such

level.

It is important to note that such an inertial change is not

equivalent to abrupt density or pressure changes, which do occur

in the atmosphere. In particular, the chromosphere may be

thought of as a narrow interface between the low density and

pressure corona, and the high density and pressure photosphere.

Due to the density difference, the velocities in the photosphere

will tend to be very small compared to those in the corona. For

example, the velocities in the photosphere beneath a coronal hole
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are ne•11igible compared to solar wind speeds. But the important

q•, kntity !.s the mass flux, and this is the same in both : ' -'ins.

Also, d..c t ) the pressure ratio, the position of the top of the

photosph^-re will be negligibly affected by pressure changes in

the coronc, but this does not mean that the top of the

photosph-re acts as a rigid wall with respect to the corona. On

,.lie contrary, *caterial moves freely from the photosphere to the

c = rz ..:. aad vice versa. If .he top of the photosphere acted as a

ri_7id wall, the mass flux would necessarily vanish there;

,Aad •.,.nor. s would be no steady-state flows such as the solar wind

or ^sij. ,i flow into sunspots.

III. G12wtb Batgz ind Eig en f uIIgtiQDfi

A.	 Free-Surface Modes

In this letter we calculate the growth rates and eigen-

functions only for the simplified problem that has been discussed

by previous authors; more realistic models will be considered

in a subsequent raper. In addition, we consider only the so-

called therinally isolated static model, in which the heat flux is

assumed to vanish at the loop base (Vesecky, Antiochos and

Underwood 1979). However, we investigate in detail the effects

of adding cool material to the coronal loop by including a model

chromosphere, and we include in the analyses the first symmetric

mode, which we have omitted previously. For comparison we calcu-

late the growth rates for both the free-surface and the rigid-

wall-boundary conditions; although as discussed above, we believe

tnat the free-surrace condition is the physically relevant one.
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OF F :, `, QuALITY

Under the assumptions above, and neglecting the acceleration

terms (Field 1965), the fir ,at-order equations can be written in

yAQZ=ijW form as:

+ O(x) & + a TO-3/2 E - p1 ( AX TO + GW )/PO	(1)

where:

E - To 
3/2 Ti	 1	 (2)

Q(x) - (noA + To 6A To (E/no - noA )

- no a /d no (E/no))/(10-6 noTo7/2)	
t

(3)

G 	 - Who - no 6/6 n o (E /no))/(10 -6
noTo )	 (4)

X - - 10 7 k2 V/Po	 (5)

In (1) - (5) P is the total plasma pressure; n is the electron

density; A is the radiative loss coefficient (e.g., Raymond, Cox

and Smith 1976);E is the coronal heating function; the

coefficient of thermal conduction is that of Spitzer (1962); the

subscript "o" refers to the static model; k is Boltzmann's

constant; v is the growth rate, i.e. all first-order variables

are assumed to vary as eat ; and the prime indicates differentia-

tion with respect to the independent variable x, which

corresponds to the total number of electrons initially in the

loop and measured from the top (see Antiochos 1976 or McClymont

and Craig 1981b).

Equation (1) must now be solved for the various boundary

conditions. The thermal boundary conditions are straightforward

to implement: if the temperature perturbation is assumes to
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vanish at the base, then ^b - 0= if the heat flux pertur"',zion

vanishes, then V) b = 0. This is the main advantage to using a

Lagrangian formulation. In Eulerian coordinates the boundary

condition of a vanishing perturbat^,: . i heat flux has an integral

form in general = whereas it has the simple differential form

above in Lagrangian coordinates. Note that there is a physical

difference between the two formulations. In the Eulerian case we

are setting the boundary at a particular point in the loop,

whereas in the Lagrangian case we are setting the boundary at a

particular plasma particle. (Of course, both formulations are

identical in the case of rigid-wall conditions). Since we will

show below that the stability properties are insensitive to the

particular position of the boundary, as long as it is somewhere

in the chromosphere, we may as well use the Lagrangian

formulation for mathematical convenience.

The free-surface condition is also straigntforward. Since

P1 is a constant for the case of no gravity, the free-surface

condition Implies that the righthand side of (1) vanishes.

Hence, we are lei` with a standard Sturm -Liouville problem as in

Antiochos (1979) , which we solve in exactly the same manner as

before. "he rigid-wall condition, on the other hand, is more

difficult =o implement. The simplesc procedure is to express it

as an integral constraint, equivalent to Equation (2U) in

Antiochos (1979). Letting the position of the base points be ±X,

(±L in Eulerian coordinates), we find that the perturbed

pressure, P1 , can be determined in terms of the eigenfunctions:
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X

P1 = ( k/L)	 & 
To-3/2 

dx	 t6)

-X

Theretore, for the rigid-wall condition, we must solve the

inhomogeneous problem (1), subject to the constraint ( 6) (cf.

McClymont and Craig 1981c). Note that thin is not a standard

Sturm -Liouville problem = hence, none of the standard theorems

(e.g., Morse and Feshbach 1953) on the behavior of the

eigenfunctions and eigenvalues need apply. Since for this prob-

lem there are two parameters, a and Pl , that must be determined,

we do not use a "shooting" technique as in the homogeneous case

to obtain solutions. 	 Instead, we consider ( 1) and (6) as

defining a nonlinear problem for a and ^ /P l and use basically

Newton-Raphson iteration.	 Convergence was rapid, S 20

iterations, for all the cases we ran.

There are two functions in the problem that must be speci-

fied: the radiative joss coefficient, AM,  and the energy input
per particle, a (n,T)/n. For the former we use a smooth analytic

approximation to the curve derived by Raymond, Cc - and Smith

(1976). The stability properties of the models are not sensitive

to the exact form of '1(T) as long as this form is such that it

implies radiative instability above - 10 5 K and stability below

10 5 K.

Since the mec7.inism for coronal heating is not known, the

form of the energy input E is essentially arbitrary. In our

previous work we found that the stability properties are also

insensitive to the exact form for E , at least, for the case

-mere this form is a power law dependence on n and T. Hence, we

10



simply assume that in the corona and transition region, i.e., T

6 x 10 4 8, the energy input per particle is constant: E /n =

canst. However, for the lower temperatures we use a different

form for the energy input so that there will be a significant

mass of material at "chromospheric" temperature, T < 6 x 10 4 R.

The simplest procedure for obtaining a thick chromosphere in the

static models is to adjust the energy input rate at low tempera-

tures so that it becomes almost equal to the radiation loss rate

(e.4., Crai g , Robb and Rollo 1981). Therefore, we use the

following form for the energy input:

E/n - Co tanh(X ( T)) + nA (1 - tanh(x (T)))

X (T) = C 1 (T/Tob - 1 + d ) m

Co , C l , Tob , m and 6 are constants. Equations (7) and (8) imply

that for d (< 1: E/n -> C o for T > Tob and that E /n -> n for T `-

Tob. The amount of material at T ob becomes arbitrarily large for

arbitrarily small dl in particular, ona finds a chromospheric

size scale a l/d for the value, m = 3, of the exponent in

Equation (8). Of course, this is a highly unrealistic model for

the true solar chromosphere. However, it permits us to

investigate conveniently the effect of adding cool, radiatively

stable material to the loop base.

we have analyzed the stability prcperties of a wide range of

static mod ;ls. In Figure 1 we plot the growth rates of the three

lowest free-surface modes for a series of static models. Ti Cse



modes are the first symmetric modes, Tl,top ' 0 , with either

T1,base ' 0 or Tl,base ' 0, and the first antisymmetric mode.

Ti,top 0, with Tl,base 0. The static models all gave almost

identical coronal properties, i.e., at the loop apex the tempera-

ture, Tcor ' 2.3 x 10 6 K, the density, ncor ' 5. 5 x 10 9 em -3 , and

the half-length, L - 1.7 x 10 9 cm. The models were generated by

fixing: the energy inpat rate into the corona, C o . 10-12

ergs/sec/particle (Equation (7)1; the chromospheric temperature,

Tob a ? x 10 4 K; and the exponent m - 3. We vary either the base

temperature (Tb), or the mass of the base (Tb = Tob and d

varies).

The growth rates in Figure 1 are expressed in terms of the

conductive cooling time of the coronal plasma, i.s., we plot

vrc , where Tc is defined as:

5/2 Po L2

c	 10-6 T	 7/2
cor

For the particular values of the loop parameters above, c a 1.4

X ;0 3 sec; however, is insensitive to the value of C . Hence,

Figure 1 should be valid for any static model whose parameters

lie within the observed range of solar values. Note that for all

the free-surface modes shown in Figure 1,N is negative,

indicating ip"ability.
There are several interesting features of Figure 1. First,

it is evident that the growth rates of the modes with thermal

boundary condition, Tl,base ' 0, are insensitive to the value of

the base tempe r ature or to the mass of chromospheric material.

In particular, the first symmetric mode has\ : -.65; the first

(9)
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antisymmetric mode can be shown analytically to have a = 0 (Craig

and McClymont 1981). The modes with a vanishing-perturbation

heat flux, on the other hand, are sensitive to the value of the

base temperature, in agreement with our previous results

(Antiuuhos 1979 )1 but only if the amount of chromospheric

material is very small, ^ .1% of the total loop mass. For models

witn a significant amount of cool material, the growth rates are

independent of the thermal boundary conditions or of the amount

of base material.

We conclude, therefore, that the static models of coronal

loops are linearly unstable, at least for the class of models

considered here. The fastest growing mode in all cases is the

lowest order one; hence, the instability is a global one

involving the whole coronal loop. This can be seen in Figure 2,

,#-'.ere we have plotted the eigenfunction T l (x) for the case with

the largest chromosphere, " 20% of the total loop mass. Only the

mode with Tl,base ' 0 is shown; however, the mode with Tl,base '
0 is indistinguishable from it except very near the base. The

modes exhibit a significant amplitude only in the coronal and

transition region part of the loop. This amplitude peaks at

approximately the temperature where the radiative loss rate n2 A,

is maximum " 8 x 10 4 K. Below this temperature the amplitude

falls off exponentially. Although the peak occurs in the transi-

tion region, the coronal contribution to the "energy" in the

mode, i.e., f T i 2 dx, is approximately equal to the transition

region contribution. This emphasizes the point that the

instability is a global one and not restricted solely to the
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transition region.

B.	 Rigid-Wall Modes

In Figure 1 X is plotted for the first symmetric rigid-wall

modes and for each of the two thermal boundary conditions. (The

antisymmetric modes are identical to those of the free-surface

case as discussed above.) It is evident that the values of a are

very different from the free-surface case. First, they are all

pgaiiiYS, indicating stability, except for the cases with very

little chromosphere, < .1%, and Tlb ' - 0. For these cases the

value of \ is almost identical to the corresponding free-surface

modes. However, for the physically relevant cases with some

chromospheric mass, the values for N are positive. Note also

tnat for models with significant amounts of chromospheric mass, >

10%, the values of a decrease, indicating a tendency toward

instability as the chromospheric mass increases.

The situation can be clarified by inspection of the

eigenfunction T l (x) for the lowest symmetric mode (Figure 3).

As in the free-surface case, the mode peaks at T - 8 x 10 4 K, but

note that it has a zero crossing, whereas the lowest Free-surface

mode can have none. The amplitude in the chromosphere is large]

it dominates the contribution to the "energy" in the mode. As

the chromospheric mass increases, this amplitude increases and

becomes more constant. Hence the symmetric rigid-wall modes are

primarily chromospheric perturbations rather than coronal pertur-

bations as in the free-surface case. Since our model for the

chromosphere is highly artificial, the physical significance of

the rigid-wall modes is questionable.

14
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QiAQUAiQn

The key result of this paper is that the static models of

coronal loops are thermally unstable, even if the models contain

arbitrary amounts of chromospheric material. This disagrees with

the conclusions of several authors (Habbal and Rosner 1979,

Chiuderi, Einaudi and Torricelli-Ciamponi 1981, Craig and

McClymont 1981 and McClymont and Craig 1981a,b,c), but agrees

witn the conclusions of Hood and Priest (1980) and Wragg and

Priest (1982). The growth rate of the instability is of the

order of the cooling time of the coronal plasma, independent of

the particular parameter of the model. We can identify two

possible physical manifestations of this instability. One is in

the observations of velocities in the transition region (e.g.,

Lites et al. 1976). Since the amplitude of the unstable mode

peaks in the transition region, one might expect the largest

velocities to be generated there. Another possible manifesta-

tion of thermal instability is in observation of cool

condensations in the corona= p-:ticularly, quiescent prominences.

Our results imply that coronal loops are naturally unstable; and,

hence, condensations may form spontaneously in the corona.

Of course, in order to investigate these possibilities, the

nonlinear evolution of the instability must be calculated.

Clearly, the instability must not saturate at a low level if it

is to produce sizable velocities in the transition region or cool

H-alpha condensations in the corona. As discussed in our

previous paper (Antiochos 1979), we Lelieve that the instability

will result in a nonlinear oscillation of the loop about its
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static state. The period of the oscillation should be related to

the growth rate of the instability, 10 3 sec. for typical loop

parameters. The amplitude of the oscillation, which must be

calculated by nonlinear simulation, will determine the physical

importance of the instability.

Numerical simulations of corona'_ loops have been performed

by several authors. These simulations have not exhibited any

significant evidence for thermal instability. However, in all

cases rigid-wall boundary conditions were used, and it is clear

from our results here that these conditions will tend to

stabilize the models, at least linearly. In addition, numerical

effects may be providing unphysical stability to the models. We

intend to consider, in detail, the nonlinear stability of the

static loop .models in a forthcoming paper.
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Figur C3ptiQDH

FiSULZ 1

Absolute value of X for a series of static models with

decreasing base temperature and/or increasing chromospheric mass.

The results for five modes are shown. Solid lines wafer to free-

surface modes, dashed lines refer to rigid-wall modes.

WuLE 2

The eigenfunction Ti for the lowest symmetric free-surface

(solid line) and rigid-wall (dashed line) modes. They are

plotted as a function of log (r) where r is defined as: r
x
J"n o ( x) x dx
0
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