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STEADY THERMOCAPILLARY CONVECTION CELLS IN LIQUID DROPS

: Alan L. Dragoo*
Institute for Materials Research, National Bureau of Standards
Washington, D. C. 20234

ABSTRACT

A nominally spherical drop is used as a model for a theoretical analysis

of thermocapillary convection and for estimates of convective flow rates in

"levitated" melts at zero-g. Since in practice temperature fields and the
resulting convective flow can be more complicated than the simple vertical
temperature gradient and the single vortex ring, respectively, the convective
flow arising from a general steady-~state temperature field is analyzed. . Ex-
pressions for the components of a steady velocity field are obtained by
adapting the analytical method of Miller and Scriven. The vortex rings are
illustrated by means of typical streamlines for the simpler, more symmetric,
temperature fields. "The circulation time is introduced as a measure of the
rate of circulation in a convection cell and typical values are given for
several materials.

INTRODUCTION

When buoyant forces are negligible, such as in a space laboratory,
convective flows may still occur in a liquid as the result of gradients
in the surface--or interfacial tension. These convective flows are commonly
called the Marangoni effect although the Marangoni effect includes both this
phenomenon of convection and the phenomenon of the deformation of a free
liquid surface (Ref. 1). Among the causes of gradients in the surface tension
are gradients in the concentration and in the temperature along the surface
of a liguid.

Concentration and temperature gradients may not be completely eliminated
in many processes, and in some instances, their presence may be necessary to
produce_the convection which is desired. The growth of crystals from a melt
is a process in which the elimination of convection in the melt is desireable
because convection produces non-uniform growth conditions, and, thereby, an
increase in the number of dislocations in the crystal. The evaporative purifi-
cation of a levitated melt is a process in which the opposite result is
desired: rapid convection is important here because it increases the rate of
purification by replenishing the impurity concentration at the surface and
because it tends to maintain an uniform composition throughout the melt.

*Financial support was provided by NASA under contract W-13,475 #l.
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The question of how much surface tension driven flows might enhance the
rate of purification of a levitated melt at zero-g is the motivation for the
work reported here. As a model which will begin to supply part of the answer
to this question, we will consider thermocapillary convection-~that is,
convection resulting from a temperature gradient along the surface (Ref. 2)--in
nearly spherical drops. The temperature field at the surface of the drop
will be treated in a general way by writing it as an expansion in spherical
harmoni¢s. The model will examine one of the convective modes corresponding
to one of the terms in the expansion of the surface temperature field. The
equations of motion-~the Mavier-Stokes equations~-will be solved within the
assumptions of a steady-state and of creeping flow--terms which are nonlinear
in the velocity will be ignored. The mathematical analysis will proceed along .
the lines of the method which Miller and Scriven (3) applied to the oscillations
of a fluid droplet although here we will not retain the time~dependence of
their problem. The physical boundary conditions will account for both the
convective flow and for the deformation of the surface so that both aspects
of the Marangoni effect will appear in the problem. The velocity field
components which are obtained from the Miller-Scriven analysis will be used
to derive the circulation time T whose inverse characterizes the rate of
circulation within a convection cell. An expression for T will be worked
out in detail for convection cells having axial symmetry. Estimates of T will
be given for a variety of materials when the convection pattern is a single,
axially symmetric vortex ring. Also, relative circulation times will be
calculated for several higher order, axially symmetric convective modes.
Illustrations of these convective modes will be given.

THE TEMPERATURE FIELD

The temperature field responsible for the convection is considered to be
a general, non-uniform, but steady, field which can be written as:

n

g no ’
T(x,8,¢) = To + ng'-l mgo ZaTm r Ym(e:‘“ (o=e,0), (1)
where, e m
an = Pﬁ {cos8) cos m ¢ (2a}
Ymn = Pn (cosf) gin m ¢ (2b)

are spherical harmonics as defined by Morse and Feshbach (4). The function

Pg (cosf) is an associated Legendre polynominal. The simple case of a constant
vertical temperature gradient through the drop--Yg, = P; (cosé) = cos 8-- is.

a special case of the solution of Young, Goldstein and Block (5) who derived
the velocity field in a bubble rising in a vertical temperature gradient.
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SOLUTION OF THE NAVIER-STOKES EQUATIONS

To obtain the velocity field u(r,9,¢) and the hydrodynamic pressure field
pi{r,0,¢) within a drop of radius R, we solve the linearized Navier-Stokes
equations 2
uwWa = Vp (3a)

ved = 0, (3b)

where u is the coefficient of viscosity. We impose the requirements
1) of a finite solution at r = 0;

2) of the kinematic condition u_(R) = 0, where u, is the radial
component of the velocity; d

3) of the physical bcundary conditions which will be examined in
the next section. :

Since Eqns. (3a,b) are linear, a general solution can be written as a
superposition of all the modes. Thus, it is sufficient to find a solution
for one of the modes (n,m,0).

Egqns. (3a,b) can be integrated according to the method of Miller and
Scriven. This method integrates (3a,b) in terms of u. and the radial component
of the vorticity, where the vorticity is defined by

Z7=2vx u. (4)

The results of the Miller-Scriven method which satisfy requirements "1" and

"2“ are
u_(r,8,4) =a2 2" (®%-r*)¥’ (8,0) (5a)
g n=-10
T (r,0,0) = B0 2" NYC (6,0). (Sb)

The remaining integration constants A;n and B;n will be obtained from the
physical boundary conditions in the next section.

The velocity components-ue and u

-=-can be obtained from ur and cr by
a relation due to Sani (6);

$

> 2 : _a
u=2&u, + [r"/n(n+l)] [VIIRur eerII;r], (6)

where ér is the radial unit vector,

L)
v = - A —
II v °r or 7
is the surface gradient operator and R is the operator

R
%_.2 = 2. (8)
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Eqn. (4) and the results for u s Yge u¢ can be used to derived ;e and ;q,.

The hydrodynamic part p(r,8,$) of the pressure can be found by taking
the divergence of (3a) which yields V2p = 0.

o}
Thus, p(z.8,0) = 20 2 (8,0). )
The coefficient P:n can also be obtained fxom (3a) by
o v = vP(ru) = (z/w) (3p/9m), (10)
from which it can be shown that
d g
E‘m = 2(2n+3)uAmn/n. (11)

PHYSICAL BOUNDARY CONDITIONS

The balance of stresses at the surface requires:

1) that the normal stress Vo;x the surface due to the hydrostatic pressure
and to the motion of the fluid is balanced by the surface tension; and

2) that the shear stresses due to the variation of the surface tension
are balanced by the fluid motion.

The deformation of the surface must be included in these conditions. The
deformation is assumed to be small, so that

R+ AR =R [1 + £(68,0)], (12)
where AR is the displacement of the surface and
g
£(8,0) = E] v° (8,4) (13)

is a radial strain. The coefficient B:n also must be obtained from the
boundary conditions.

The normal stress due to the fluid

o e )
e, =P, * Pma‘*zm - 2u(du /35 / v (14)

is balanced by the surface tension produced stress
Y& +3), as)

R B

*A simplification of the surface conditions is introduced at this point by
neglecting the interfacial dilational elasticity and the interfacial shear

elasticity which contribute an interfacial viscosity term to the normal stress
equations--see Scriven (7) and Miller and Scriven (5) for discussions of these
properties.
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where y is the local value of the surface tension and R; and R, are the
principal radii of curvature. For small deformations of the siurface of
a spherical drop, Lamb (8) has shown that

1 1 .1 g o
= + =3 [2 + (n=1}) (n+2) EmYm]- (16)'

R

KR R

The surface tersion coefficient is expanded in. terms of the mean value Yo
and the temperature coefficient YT as

g .0 n o
Y = Yo + YT{Tm + Lm’::m]R Ymn' (17)

where r’ is the coefficient obtained in the expansion of T(R+AR) of the
dgfome&nsurface about the temperature T(R) of the undeformed surface and
TmnR Ymn is the (n,m,0)~term in the expansion of the surface temperature field.

Setting the hydrostatic pressure B, = 2y /R, and considering terms to
first order in Y  in the normal stress condigion, we obtain the first

ry a M
equation for Amn and Emn'

n+l o o _n, 0 Jg .n
6UR Am/n = [Yo(n-l) {n+2} + ZYTLmnR ]Emn ZYTTmR . (18)

Instead of solving the shear stress conditions directly, it is more
convenient to take the surface divergence and the surface curl of the force
on an element of surface. The surface divergence equation is

2u
II
Egn. (19) can be simplified since V

2 ?
VP Y = ulpm Ru) - Vo fu) (19)

r=R.

=
II u:: r=R

then, yields a second equation for A:m and E:m'

0. The divergence condition,

n+l o o .noC g .n
2(2n+1) R Am/n - (n+l) YTLmR Emn = (n+1)YTTmR . (20)

The radial part of the surface curl equation yields the result that B:m = 0,
or L_ = 0.
r

Eqns. (18) and (20) can be solved simultaneously for A::n and E:n'

g ) o o

Am = n({n+l) (n+2)Y°YTTm/2uR D an (21)
(- 2 g _n, o

Em = YTTMR /Dmn' (22)

o g .n
where IJnm = (2n+1) (n+2)y° H'ernR . (23)
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THE VELOCITY FIELD AND THE VORTICITY FIELD

Defining a characteristic rate of flaow

o4 g n 4
Umn = =n{n+l) (n+2)Y°Y,r’1‘mR / Zqu,

the cdmponents of the velocity 3 can be written as

U .n=-1 22,0
ut(rlel¢) = Umnr (L )Ym(6,¢)

g ,.n=l +3, .2 a
ue(r.9,¢) = Um(i‘ /n) [1- +1)r ]'(3Ym/39)

n+3
$

» wheie £ = r/R.

n+l

Although §_ = 0 within the drop,

g n . g
g, = Zmnr (1/s:.ne)(aymn/3¢)

8

g .0
Ty = 2,7 (Y /38),

$
where g

(o]
Zmn - Z(Um/R) (20+3)/n(n+3).

The rate of flow, or speed, is
2.2 2.1/2
v = [ur +ue+u¢]

’
’

where in general,
ur."= ngl mgo e (a,m,0)
n
Y9 = nd1 mEo 5% (BrRr9)
n
u¢ = nél m;'o guds (n,m,0).

Thus, the general expression for v can be very complicated.

for the pure modes will be investigated here.

¢ ,.n=1 =2 . g
u (r,9,%) = Umn(r /n) [l-(=—3E"] (l/sxnﬂ)-(a'im/ae),

r ;, and ¢ 6 generally do not vanish.
the definition of the vorticity. Eqgn. (2) , and'Eqns. (25a,b,c),

(24)

(25a) B

(25b)

(25¢)
Using-

(26a)

(26b)

27

(28)

(29a)
(29b)

(29¢)

Only expressions

For the special case of the lowest order mode {(n,m,0) = (1,0,2) and where

Lol = O, we obtain equations for a levitated drop in a constant vertical
temperature gradient. In this case, the temperature in the drop is

+ a 9
'1‘=T° Tercos,

(30)
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which results in the velocity components

u, ==y T, R/3u) (1-2%) cos (31a)
u, = (YTTlR/3u)(1—2f2)sine (31b)
u¢ = 0.

These results can be obtained from the solutions of Young, et. al (5), as
mentioned in the Introduction. In addition, we £ind that

e
Bn ™ TTTIR/9Y o’ (32)

so that the drop is spherical in the limit Yr/Yo -+ 0.

SOME CHARACTERISTICS OF AXIALLY SYMMETRIC MODES

For an axially symmetric mode (n,0,e), the expression for the rate of
flow, Eqgn. (28), is :

- .n=1 2. .22, .2 n+3 .2.2, 1,.2.1/2
v = (£ “/n)[n"(1-£") (Pn) +(1-—--n+l %) (Pn) ]

(33)
where ¥ = v/Ue ’ Pn is the nth order lLegendre polynomial and Pl is the
associated Leggndre polynomial of first degree. Eqn. (33) can"be used to
identify the stagnation points since ¥ = 0 at these points.

Within the drop, n rings of stagnation points about the axis of the drop
can be readily identified: take £2 = (n+l/(n+3) and P, = 0; since P_ has n
nodes and 0 £ ¢ < 27, n rings have been identified. On the surface"of the
drop (£ = 1), the rate of flow ¥ = 0 if Pl = 0. The associated Legendre
polynomial Pl has (n+l) nodes, including 8ne at each pole. These two
stagnation points at the poles and the (n-l) stagnation rings on the surface
coincide with the hot and cold spots of the temperature field and define
the: boundaries of the convection cells in the drop. Ifn > 1, v=0
when ¢ = 0. That is, flow does not occur through the center of the drop
when n > 1. Finally, we must consider the possibility of other intermal
stagnation points. That is, are there other points such that

n+3
n+l

2 ,.1.2

2,, =22 2 =2
am(A-ET) (Pn) + (1= r7) (Pn) =072

The answer is no. Since each term is either positive or zero, and since
neither (1-#2) and (1-(n+3/n+1)#2) nor Pp and P} vanish at identical values
of ¥ and cos 6, respectively, there are no other internal stagnation points.

For an axially symmetric problem, a streamfunction ¥ (%#,8) can be obtained

from
- 3 .
R (342)
r sin
i, = 1 2 (34b)

(-] ¥ sin 8 or
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where &a = ua/U:n (a = r,8). For the (n,0,e)-mode, the streamfunction—is——

v = ™ @er?) sinorl i/nimen), (35)
vwhere x = cosé. For the mode (1,0,e), the streamfunction is that for Hill's
spherical vortex (9). Stagnation points, indicated by "N", and typical
streamlines for Hill's spherical vortex are illustrated in Fig. 1 and for
the modes n = 2,3,4,5 in Figs. 2-5, respectively. The drops are seen in
vertical cross-sections. The model rings lie in planes perpendicular to

the axis in each illustration. The straight lines within the circles
represent the boundaries of the convection cells, and here ¢ = 0. The
positions of the stagnation points are listed in Table 1 for these five
modes.

Table 1. Stagnation "Points" for Axially Symmetric Convection Cells in
Nominally Spherical Drops

Mode n £ Interior Type Surface (f = 1)
8 8 Type
1 1//2 ring 0° point
180° point
2 o . point Q° point
v3/5 54° 44° 8" ring a0° ring
125° 15' 52* ring 180° point
3 "0 - point Qe point
_/2/3 39° 13' 54" ring 63° 26°' 6" ring
" 90° ring 116° 33° 54" ring
" 140° 46°' 6" ring 180° point
4 0 - point 0° point
/5/7 30° 33' 20" ring 49° &' 24" ring
» 70¢ 7 28" ring 90° ring
" 109° 52¢ 32" ring 130° 53* 36" ring
" 149° 26' 40" ring 180° . point
5 0 -— point 0° point
1/2/3 259 1* 2" ring 40° 5' 17" ring
" 570 25' 14" ring 73° 25°' 38" ring
" 90° ring 106° 34° 22" ring
" 122° 34' 46" ring 139° 54' 43" ring

" 154° 58' 58" ring 180° point
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Figure 1. Streamlines and Stagnation Points ("N") for the (1,0,e)-Mode:
Hills' Spherical Vortex.
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AXIS

Figure 2. Streamlines and Stagnation Points for the (2,0,e)-Mode
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AXIS

N

=
B4

Figure 3. Streamlines and Stagnation Points for the (3,0,e)-Mode
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AXIS

Z

Figure 4. Streamlines and Stagnation Points for the (4, 0, e)-Mcde
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Figure 5. Streamlines and Stagnation Points For the (5,0,e)-Mode
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o THE CIRCULATION TTME ——

The circulation time T will be introduced in this section as a means of
characterizing the rate of convective mass transfer from the interior of the
convection cell to the vicinity of the surface of the drop. The reciprocal
circulation time t~! is defined by

) a § Falyroas
= § Z-nds/ as, (36)

where the circulation integral
> =
$ u-az

is taken around the boundary of the cell formed by the intersection of the
cell with a vertical plane containing the axis of the drop, such as any of
the cell boundaries shown in Figures 1=-5. The second equality follows
from Stokes's theorem, where the surface integrals

/Z-74s and [ ds

are taken over the region bounded by the circuit of the line integral; ; is
the unit normal vector to the surface and here is equal to é . According
to Eqn. (36), the reciprocal circulation time is the averaqe¢vorticity

of the cell. The circulation time resembles the period of rotation of a
rigid body. Indeed, if the fluid circulated about' the vortical centexr

as a rigid body, Eqn. (36) would yield 47 times the frequency of rotation
and T would be the period of the rotation reduced by 4w. Unfortunately,
such a simple interpretation of thermocapillary convection cells is not
possible, but T can still be used to characterize the rate of circulation
within the cell.

For the axially symmetric mode (n,0,e), the integrals in Eqn. (36)
can be performed yielding

Tns = (n+2) [Pn (x;) ‘Pn (x;*'l) ! /zzgn (9;+1-9 ;) (37

for the circulation time for the s-cell, where 1 € s ¢ n+l, and x; and x;

are roots of +1

1
Pn (x) = 0. (38)

Cell-s has its vortical center at the stagnation point whose angular
position es is given by the root x, of

Pn(x) = 0; (39)



222

6_ lies within the range whose lower bound is 9; and whose upper bound is 9; 1
circulation time may be either positive or fiegative, the sign depending

upon the direction of circulation in the cell. Using Egns. {1), (24) and (27),

we can show that, apart from the geometric factor, the circulation time t depends

only on the material parameters u and Yo and on the temperature gradient

at the surface.
The circulation times for the mode n = 1 are given in Tables 2-5 for a

variety of liquids. Here, we assume "unit conditions®: 1-31 = 0, and a

unit temperature gradient, '1‘8 = -1°/cm. The assumption of unit conditions

is indicated for the circulatlon time by 1°, where the superscript "o"

designates unit conditions. Table 2 lists circulation times for some liguids

at room temperature; Table 3, for five liquid metals; Table 4, for four

molten oxides; and Table S5 for three molten sodium halide salts.

Table 2. Circulation Times* for Some Liguids at Room Temperature (298.15 X)
Y .

Material il 1;1‘ ik ! Viscosity l<]. ls :
3 mPa.g**
Acetone -0.112 (11) 0.316 (10) 0.0323
DC 200, 20 cst -0.062 (5) 19 (5) 3.5
200 cs  =0.065 (5) 193 (5) 34
1000 cs  -0.061 (5) 793 (5) 180
Ethanol -0.9832 (11) 1.092 (10) 0.150
n-Hexadecane -0.106 (5) 3.086 (12) 0.334°
. .Krytox 143 az¥* -0.1 (13) 32.4 (13) 4
Water ~0.1477 {11) 0.8904 (13) 0.06908

*temperature gradient at the poles has a magnitude of 1°/cm.
#*1 mN/m = 1 dyn/cm; 1 mPa.s = 1 ep = 10~2 dyn.s/em2,

*+Dow Corning silicone oils of the DC 200 series.

++a perfluoroalkylpolyether.
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Table 3. Circulation Times*-~Metals

Materials Yp Temp. To : Viscosity l’fl s
uN/K*'m K mPa.s e
Aluminum ~0.356 (10) 930 4.5 (15) 0.14
1070 2.5 6.08
Copper -0.06 (10) 1370 4.5 (15) 0.9
1470 3.9 0.7
Mercury -0.2049 (11) 290 1.554 (15) 0.0869
470 1.052 0.0588
Sodium -0.09833 (14) 470 0.450 (15) 0.00524
670 0.284 0.00331
Tin -0.0706 (13) 500 1.97 (13) 0.320
870 1.05 (13) 0.170
*The temperature gradient at the poles has a magnitude of 1°/cm.
Table 4. Circulation Times*--Oxides
Material Yo Temp. T Viscosity ]
uN/Kem x © Pa.s el
Al,0, (o.nt* 2400 0.11 (18) 13
. 2600 0.062 7
8,0, ) 0.0354 (18) 1410 5.02 (17) 1620
at 720 K 1670 2.01 651
GeO, 0.056 1750 12.2 (17 2500
' at 1390 X 1930 0.787 160
Sio2 0.031 2280 7 a7 8 x 105
at 2000 K 2680 102 1x 102
2820 46.4 s x 10

*Temperature gradient at the poles has a magnitude of 1°/cm.
+*Egtimated.
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Table 5. Circulation Timeg*--Sodium Halides

Material - 'T (18) Temp. T Viscosity (17) It],s
nN/K-n xk ° mPa.s ’
Nacl ~0.0719 1090 ' 1.38 0.220
1150 1.08 0.172
NaBr -0.0809 1060 1.28 0.181
1170 1.00, 0.142
NaI -0.129 1030 1.15 0.102
1100 0.96 0.085

*Temperature gradient at the poles has a magnitude of 1°/cm. :

The steady-state temperature gradient is obtained by balancing the
conductivie heat flux through the drop against the radiant heat flux away
from the drop in the cooler hemisphere. sSufficient heat is applied to the
hotter hemisphere to maintain the steady-state gradient. Since the radiant
heat flux =14, liquids such as molten metals which have high thermal conduc-
tivities will only have steep steady-state gradients at high temperatures.
Although copper has the highest thermal conductivity of the liquid metals
considered in Table 3, it is the only one of the five metals which is
considered at temperatures high enough for a rate of radiant heat loss to
be attained which could produce a steady-state gradient of 1°/cm. Thus,
the circulation times given for copper in the table are the only ones
which are physically attainable under steady-state conditions. For the
other metals, the physcially attainable value of T. will be longer than
T9: the attainable steady convective rates will be less than the rates
produced by a gradient of 1°/cm.

The long circulation times estimated for the oxides, B,O., GeO. and
$SiO_ show the importance of the viscosity in determining whethér thermScapillary
can%ection can oceur in the liquid. For these three oxides, thermocapillary
convection is expected to be negligible. However, A1203 has a lower viscosity
than these other three oxides and, thus, a shorter cifclilation time. Since
temperature gradients much larger than 1°/cm can be attained in molten oxides,

significant thermocapillary convection might be observed in molten alumina.

The n = 1 mode has been demonstrated on earth by the work of Young,
Goldstein and Block (5) who observed the balancing of the thermocapillary and
buoyancy forces on small bubbles in a vertical temperature gradient. The low-g
of a space laboratory in addition to facilating the levitation of a drop would
allow the observation of the higher convective modes, in particular, the n = 2
mode. The circulation could be observed by the movement of a dye or of a
radiotracer.
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Relative circulation times for the axially symmetric modes n=2,3,4,5 are
given in Table 6. These times are calculated relative to the single vortex
{n = 1) time t%. The sign of the circulation time for a particular cell indicates
the direction of circulation with respect to that inthe single vortex drop.
Since the convective rate decreases as n increases, the higher modes appear
to be less desirable than the n = 1l mode for obtaining rapid purification.
However, the convective rates for some of these higher modes still can be
large enough for the convective pattern to be studied and for these modes
to have some utility for the purification of levitated melts in space.

SUMMARY

Equations describing the convective flow velocities in thermocapillary
convection cells in drops have been derived. When the thermal conditions
approximate a pure, symmetric mode~~that is, when the temperaturxe field can
be described by a single Legendre polynomial, the streamlines of the vortex
and the positions of the stagnation points in each cell gan be calculated.
The circulation time, which is the reciprocal of the average vorticity of
the cell and which characterizes the rate of circulation, also can be
calculated for thegse high symmetry cells. An estimate of the circulation
time for a liguid drop is an indicator of the probable significance of
thermocapillary convection in the drop when a temperature gradient is imposed
across it. .

Table 6. Relative Circulation Times, T;s/‘l‘i, for Axially Symmetric Modes
withn> 1

[ - O
Modeln Cells s T ns/‘ll

2 3.968
~-3.968

9.981
=7.365
9.981

19.994
-13.505
13.505
~-19.994

34.960
-22.691
20.647
-22.691
34.960

*'r;s is thecirailation time for the s~cell of the nth mode,

1:;_ is the circulation time for mode n = 1; a temperature gradient with a
magnitude of 1°/cm is assumed at the poles. The gign indicates the

direction of circulation with respect to the n = 1 mode.
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