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ABSTRACT 

A nominally spherical drop is used as a model for a theoretical analysis 
of thermocapillary convection and for estimates of convective flow rates i n  
"levitated" melts a t  zero-g. Since in  practice temperature fields and the 
resulting convective flow can be more complicated than the simple vertical  
temperature gradient and the single vortex ring, respectively, the convective 
flow arising from a general steady-state temperature field is analyzed. 
pressions for the components of a steady velocity field are obtained by 
adapting the analytical method of Miller and Scriven. 
illustrated by means of typical streamlines for the simpler, more synmnetric, 
temperature fields. 
rate of circulation i n  a convection ce l l  and typical values are given for 
several materials. 

Ex- 

The vortex rings are 

The circulation time is introduced as a measure of the 

INTRODUCTION, 

When buoyant forces are negligible, such as i n  a space laboratory, 
convective flows may still occur in  a liquid as the result of gradients 
i n  the surface--or interfacial tension. These convective flows are commonly 
called the Marangoni effect although the Marangoni effect includes both this 
phenomenon of convection and the phenomenon of the deformation of a free 
l iquid surface (Ref.  1). Among the causes of gradients i n  the surface tension 
are gradients i n  the concentration and i n  the temperature along the surface 
of a liquid. 

Concentration and temperature gradients may not be completely eliminated 
i n  many processes, and i n  some instances, their presence may be necessary to  
produce-the convection which is desired. The growth of crystals from a m e l t  
is a process in  which the elimination of convection i n  the melt is desireable 
because convection produces non-uniform growth conditions, and, thereby, an 
increase in  the number of dislocations i n  the c r y s t a l .  
cation of a levitated m e l t  is a process i n  which the opposite resul t  is 
desired: 
purification by replenishing the impurity concentration a t  the surface and 
because it tends to  maintain an uniform composition throughout the m e l t .  

The evaporative purifi- 

rapid convection is important here because it increases the rate of 

*Financial support was  provided by NASA under contractW-l3,475 #1. 
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The question of how mch surface tension 
rate of purification of a levitated m e l t  a t  zero- 
work reported here. As a mdel which w i l l  begin 
to this question, w e  w i l l  consider thennocapillary 
convection resulting from a temperature gradient 
nearly spherical drops. 
w i l l  be treated in  a general way by writing it as  an expansion i n  spherical 
harPl0ni.r;~. 
ta one of the terms i n  the expansion of the surface temperature field, The 
equations of motion--the Navier-Stokes equations--will be solved within the 
assumptions of a steady-state and of creeping flow--tenns which are nonlinear 
i n  the velocity w i l l  be ignored. 
the lines of the method which Miller and Scriven (3) applied to the oscillations 
of a fluid droplet although here we w i l l  not retain the *-dependence of 
their problem. 
convective flow and for the deformation o f  the surface so that both aspects 
of the Marangoni effect w i l l  appear i n  the problem. 
components which are obtained from the Miller-Scriven analysis w i l l  be used 
to derive the circulation t ime T whose inverse characterizes the rate of 
circulation within a convection cell .  
out i n  detai l  for convection cel ls  having axial symmetry. 
be given for a variety of materials when the convection pattern i s  a single, 
axially symmetric vortex ring. Also, relative circulation times w i l l  be 
c a l d a t e d  for several higher order, axially symmetric convective modes. 
Illustrations of these convective modes w i l l  be given. 

The temperature f ie ld  a t  the surface of the drop 

The model w i l l  examine one of the convective modes corresponding 

The mathematical analysis w i l l  proceed along 

The physical boundary conditions willaccount for both the 

The velocity field 

An expression for T w i l l  be worked 
Estimates of T w i l l  

The temperature field responsible for the convection is considered to  be 
a general, non-uniform, but steady, f ie ld  which can be writtenas: 

are spherical harmonics as defined by Morse and Feshbach (4). The function # k0s8) is an associated Legendre polynominal. 
v e r t k a l  temperature gradient through the drop--Y$$ - P1 (cost?) = cos 9- is 
a special case of the solution of Young, Goldstein and Block (5) who derived 
the velocity field in  a bubble rising i n  a vertical temperature gradient. 

* 
The simple case of a constant 
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To obtain the velocity f i e ld  u(r,O,9) and the hydrodynamic pressure field 
p(r,e,t$) w i t h i n  a drop of radius R, w e  solve the linearized Havier-Stokes 
equations 

(3a) 

8.;: 5 0, ( 3b) 

2+ 
$7 u = vp 

where u is the coefficient of viscosity- W e  impose the requirements 

1) of a finite solution a t  r = 0; 

2) of the kinematic condition u (R) = 0, where ur is the radial 
component of the velocity; dita 

3)  of the physical bcundary conditions which w i l l  be examined i n  
the next section. 

Since Eqns. (3a,b) are linear, a general solution can be written as a 
superposition of a l l  the modes. Thus, it is suff ic ient  to find a solution 
for  one of the modes (n,m,o). 

Eqns. (3a,b) can be integrated according to the method of Miller and 
Scriven. 
of the Vorticity, where the vort ic i ty  is defined by 

This method integrates (3a,b) i n  tenus of ur and the radial component 

The resu l t s  of the Miller-Scriven m e t h o d  which sa t i s fy  requirements "1" and 

(Sa) 

(5b) 

The remaining integration constants A& and B L  w i l l  be obtained from the 
physical boundary conditions i n  the next sectzon. 

The velocity components-ug and u -can be obtained from u and 5, by 9 r a relat ion due to Sani (6); 
-f 2 u = B u + [r /n(n+l)l [VI+?~r-&rxVIr~rl , r r  (6) 

where B is t h e  radial uni t  vector, r 
a v = V - &  - 

11 r a r  
is the surface gradient operator and R is the operator 

( 7 )  
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Eqn. (4) and the results for ur, ue, u can be used to derived ce and c4. 

the divergence of (3a) which yields  V2p 5 0. 

4 
The hydrodynamic part p(r,e,4) of the pressure can be fowd by taking 

a p(rte,+) = F r%L (e,@). Thus, 
mn 

The coefficient F& can &.so be obtained from (3a) by 
+ 2+ 2 r= v u - v (IU,) = ( d u )  (ap/ar), 

from which it can be shown that . 
Fm a = 2 (2n+3)~A&/n. 

(10) 

(11) 

PHYSICAL BOUNDARY CONDITXONS 

The balance of stresses a t  the surface requires: 

1) that the normal stress on the surface due to the hydrostatic pressure 
and to the motion of the fluid is balanced by the surface tension; and 

2) that the shear stresses due to the variation of the surface tension 
are balanced by the fluid mation, 

The deformation of the surface must be included’in these conditions. The 
deformation is assumed to be small, so that 

R + AR = R [l + c ( e , 4 ) I 8  (12) 

where AR is the displacement of the surface and 

is a radial strain. 
bomdary conditions. 

The coefficient E L  also must be obtained from the 

The normal stress due to  the fluid 

is balanced by the surface tension produced stress 

*A simplification of the surface conditions is introduced a t  this point by 
neglecting the interfacial dilational e las t ic i ty  and the interfacial shear 
elasticity which contribute an interfacial viscosity term to the normal stress 
equations--see Scriwn ( 7 )  and Miller and Scriven ( 5 )  for discussions of these 
properties. 
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where y is the local value of the surface tension and R1 and 5 are the 
principal radii of curvature, For small deformations of the surface of 
a spherical drop, Iamb ( 8 )  has shown that 

- + = [2 + (n-1) (n+2) E2:]. 
5 R2 

The surface tension coefficient is expanded i n  terms of the mean value yo 
and the temperature coefficient yT aa 

(161 

where Lu 
d$fop$?surface about the temperature T ( R )  of the undeformed surface and 
TmR Ym is the (n,m,a)-term i n  the expansion of the  surface temperature field. 

Setting the,hydrostatic pressure po = 2y /R, and considering tenus t o  
f i r s t  order in  Y 
equation for AL~L~ EL, 

is the coefficient obtained i n  the expansion of T(WAR) of the 

i n  the normal stress Condteion, we obtain the f i r s t  

Instead of solving the shear stress conditions d i rec t ly ,  it is more 

The surface divergence equation is 
convenient to take the surface divergence and the surface curl of the force 
on an element of surface. 

(19) 
VI; Y =.IJIz a (Jar) - vI;UrIpR. 

Eqn. (19) can be simplified since VII ur 
then, yields a second equation for A: and EL, 

pR = 0. The divergence condition, 2 l  
(20) n+l a a n o  2(2n+l) PR Am/" - (n+l) yTL,nR Em = Cn+l)yTTy.  

The radial part of the surface curl equation yields the result that  B& = 0 ,  
o r  Cr = 0. 

~qns. (1s) and (20) can be solved siaairtaheously for A: and E ~ ,  U 

A' = n(n+l) (n+2)Y0yTT&/2uR Dm U 
m 
U = y T a  
'mn TmRDm' 

0 a n  where Dm = (2n+l) (n+2)y0 +yTLmR . 
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THE VELOCITY FIELD AND Tw: VORTICITY FIELD 

Defining a characteristic rate of flow 
u n  Q U& = -n(n+l) (n+2) yoyTTmR /2uDm, 

. 
the ccinponents of the velocity d can be written as 

Although 5,  = 0 within the drop, 5 and 5 generally do not vanish. Using 
the definition of the vorticity, Eqn. (8 ) ,  and'Eqns. (25a,b,c) , 

The ra te  of flow, or speed, is 

Thus, the general expression for v can be very complicated. 
for the pure modes w i l l  be investigated here. 

L& = 0 ,  w e  obtain equations for a levitated drop in a constant vertical 
temperature gradient. 

only expressions 

For the special case of the lowest order mode (n,m,u) = (1,0,e) and where 

In th is  case, the temperature i n  the drop is 

T = To + T1 Rikose, (30) 
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which r e d i d  i n  the velocity components 
2 ur 4yTT1R/3v) (1-f 1 

ue = (yTT1Ft/3u) (1-2~') sine 

u = 0. @ 
These results can be obtained from the solutions of Young, et. a l  (51, as 
mentioned i n  the Introduction. In addition, w e  find that 

E& = YTT1R/9Yo, (32) 

so that the drop is spherical i n  the limity,/yo + 0.  

SOME CHARACTERISTZCS OF A X I W Y  SYM?4ETRIC MODES 

For an axially symmetric mode (n,O,e), the expression for the rate of 
flow, Eqn. (281, is 

(33) 3 = (P1/n) tn2 (1-g') '(pn) 2 +(I--- n+3 E 2 1 2 (pn) 1 2 1 1/2 
n+l 

1 where * = v/ue , Pn is the nth or- Legendre polynomial and P is the 
associated &?%Ire polynomial of first degree. 
identify the stagnation points since 8 = 0 a t  these points. 

Within the drop, n rings of stagnation points about the axis of the d r q  
can be readily identified: take 12 = (n+l/(n+3) and Pn = 0; since P 
nodes and 0 I 0 d ZT, n rings have been identified. 
drop (P = 11, the rate of f l o w  8 = 0 i f  P i  = 0. The associated Legendre 
polynomial P i  has (n+l) nodes, including one at  each pole. 
stagnation points a t  the poles and the (n-1) stagnation rings on the surface 
coincide w i t h  the hot and cold spots of the temperature f ie ld  and define 
the boundaries of the convection cells in  the drop. If n > I, v = 0 

when r = 0. That is, flaw does not occur through the center of the &op 
when n > 1. Finally, w e  must consider the possibility of other internal 
stagnation points. 

Eqn. (33) can%e used t o  

has n 
On the surfacenof the 

These two 

That is, are there other points such that 

The answer is no. 
neither (1-f2) and (1-(n+3/n+l)P2) nor Pn and P i  vanish a t  identical values 
of f and cos 8, respectively, there are no other internal stagnation points. 

Since each tern is either positive or zero, and since 

For an axially symmetric problem, a streamfunction $(?,e) can be obtained 

1 2  
f sin e a r  iie = 



w h e r e  x - case. For the raode ( l , O , e ) ,  the streamfunction is that for H i l l ' s  
spherical vortex (9).  Stagnation points, indicated by "N", and typical 
s t r e d i n e s  for I t f . 11 '~  spherical vortex are il lustrated i n  Fig. I and for 
the modes n = 2,3,4,5 in Figs. 2-5, respectively. The dwps are seen i n  
vertical cross-s.c+ions. 
the axis i n  each illustration. 
represent the boundaries of the convection cells,  and here + = 0.  
positions of the stagnation points are l is ted i n  Table 1 for these five 
modes. 

The model rings l ie  i n  planes perpendicular to 
The straight l ines within the circles 

me 

Table 1. Stagnation "Points" €or Axially Symmatric Convection Cells i n  
Nominally Spherical Drops 

Modes P Interior Type Surface (2 = 1) 
e e 

1 1/42 

2 0 
h / s  

3 0 
. 42/3 

I. 

1. 

4 

5 

0 
45/7 " 
n 

" 
0 
1/243 
I# 

I. 

" 
I 

I 

540 44' 8* 
125O 15' 52" -- 

39O 13' 54" 
900 
140° 46' 6" 

30° 33' 20" 
70° 7' 28" 
109O 52' 32" 
149O 26' 40" 

25O 1' 2" 
57O 25' 14" 
900 

ring 

point 
ring 
ring 
point 
ring 
ring 
ring 

point 
ring 
ring 
ring 
rias 
point 
ring 
ring 
ring 

122O 34' 46" ring 
154O 58' 58" ring 

00 
180° 

00 
900 
1800 

00 
63O 26' 6" 

116O 33' 54" 
180° 

00 
49O 6'  24" 
900 
130° 53' 36" 
1800 

00 
40° 5'  17" 
73O 25' 38" 

106O 34' 22" 
139O 54' 43" 
1800 

point 
point 
point 
ring 
point 

point 
ring 
ring 
point 

point 
ring 
ring 
ring 
point 

point 
ring 
ring 
ring 
ring 
point 
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Ax 

I 
Figure 1. Streamlines and Sagnation P o i n t s  ("N") for the (l,O,e)-Mode: 

trills' Spherical V o r t e x .  
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P S 

Figure 2. Streamlines and Stagnation points for the (Z,O,e)-Mode 
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AXIS 

Figure 3. Streamlines and Stagnation Points for the (3,O,e)-We 
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AXIS 

Flgure 4. Streamlines and Stagnation Points €or the (4, 0,  e)-Moae 
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AXIS 

Figure 5. Streamlines and Stagnation Points For the (5,O,e)-Made 
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TRE 

The circulation time t w i l l  be introduced i n  th i s  section as  a means of 
characterizing the rate of convective mass transfer from the interior of tbe 
convection c e l l  to the vicinity of the surface of the drop. 
circulation time 5-1 is defined by 

The reciprocal 

where the circulation integral 

is taken around the boundary of the c e l l  formed by the intersection of the  
Cell with a vertical plane containing the axis of the drop, such as  any of 
the C e l l  boundaries skown i n  Figures 1-5. 
from Stokes's theorem, where the surface integrals 

The second equality follows 

are taken over the region bounded by the circuit of the line integral; d is 
the unit normal vector to the surface and here is equal to B 

of the cell.  
r igid body. 
as a rigid body, Eqn. (36) would yield 4* times the frequency of rotation 
and T would be the period of the rotation reduced by 4*. 
such a simple interpretation of themcapi l lary convection cel ls  is not 
possible,  but^ can still be used to  characterize the rate of circulation 
within the cell.  

According 
to Em. (361, the reciprocal circulation time is the average 4 '  vorticity 

The circulation time resembles the period of rotation of a 
Indeed, if the  fluid circulated about' the vortical center 

Unfortunately, 

FOP the axially symmetric mode (n,O,e), the integrals i n  Eqn. (36) 
can be performed yielding 

for the circulation time for the s-cell, where 1 S s s n+l, and x i  and x' 
are roots of s+l 

(38) 
1 Pn (x) - 0.  

Cell-s has its vortical center at  the stagnation point whose angular 
position 9 is given by the root x of 

S S 

PJX) = 0: (39) 
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9 lies within the range whose lower bound is eE, and whose upper bound is 
Tirw circulation time may w either positive or negative, the sign depending 
upon the direction of circulation in the cell. U s i n g  Eqlns. (I), (241 and (27), 
we can show that, apart from the geometric factor, the circulation time tm depends 
only on the material parameters M and yT and on the temperature gradient 
at the surface. 

I 

The circulation times for the mode n - 1 are given in Tables 2-5 for a 
variety of liquids. Here, we assume "unit conditions": I& = 0, and a 
unit tesaperature gradient, T& = -l*/cm. 
is indicated for the circulataon time by TO, where the superscript "0" 

designates unit conditions. 
at room temperature; Table 3, for five liquid metals; Table 4, for four 
molten oxides; and Table 5 for three molten sodium halide salts. 

Table 2. 

Material yT Viscosity 
mt?/lC.m* mPa . s** 

The assumption of unit conditions 

Table 2 lists circulation times for some liquids 

Circulation Times* for Some Liquids at Worn Temperature (298.15 IC) 

I 

I T I .  s 
__  -. --. --- - 

Acetone -0.112 (11) 0:316 (10) 0.0323 

M: 200, 20 CS+ -0.062 (5) 19 (5) 3.5 

200 cs -0.065 (5) 193 (5) 34 

1000 cs -0.061 (5) 793 (5) 180 

Ethano l  -0.9832 (11) 1.092 (10) 0.150 

n-Hexadecane -0.106 ( 5 )  3.086 (12) 0.334. 

.-x 143 AZ* -0.1 (13) 32.4 (13) 4 

Water -0.1477 (ll) 0.8904 (13) 0.06908 
*temperature gradient at the poles has a magnitude o f  l0/cm. 
**1 mN/m = 1 dyn/cm; 1 mPa.s - 1 cp = 10'2 dyn-s/cm2. 
+IIOW corning silicone oils of the M: 200 series. 
*A perfluoroalkylpolyether . 
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Table 3. Circulation Times*--Metals 

Materials yT 
mN/g.m 

Aluraiarnn -0.356 (10) 930 4.5 (15) 0.14 
1070 2.5 0.08 

-PP= -0.06 (10) 1370 
1470 

Mercury -0.2049 (11) 290 
470 

Sodium -0.09833 (14) 470 
670 

4.5 (15) 0.9 
3.9 0.7 

1.554 (15) 0.0869 
1.052 0.0588 

0.450 (15) 0.00524 
0.00331 0.284 

Tin -0.0706 (13) 500 1.97 (13) 0.320 
870 1.05 (13) 0.170 

*Th% temperature gradient a t  the poles has a magnitude of lo/=. 

Table! 4. Circulation Times*--Oxides 

1T1.s 
Material yT TamP. To viscosity 

mN/g.m K Pa. s 

(O.l)+ 2400 
2600 a203 

0.0354 (18) 1410 
a t  720 IC 1670 

0 056 1750 
a t  1390 K 1930 

B2°3 

-O2 

0.11 (16) 13 
0.062 7 

5.02 (17) l620 
2.01 651 

12.2 (17) 2500 
0.787 160 

5 
8 x 10 

2820 46.4 5 x lo 

sio2 0.031 2280 717 (17) 
at 2000 K 2680 102 1 x 10: 

'Temperature gradient a t  the poles has a magnitude of la/cm. 
+Estimated. 
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Table 5. Circulation Tfmas*--Sodium Halides 

1.1 *s Temp. To Viscosity (17) 
K mpa.s 

NaCl -0.0719 1090 
1150 

NaBr -0.0809 1060 
1170 

NaI -0.129 1030 
1100 

1.38 0.220 
1.08 0.172 

1.28 0.181 
1. 0O6 0.142 

1.15 0.102 
0.96 0.085 

*Temperature gradient at the poles fias a magnitude of l0/cm.' 

The steady-state taperatwe gradient is obtained by balancing the 
conductivie heat flux through the drop against the radiant heat flux away 
from the drop in the cooler hemisphere. 
hotter hemisphere to maintain the steady-state gradient. 
heat flux a+, liquids such as molten metals which have high the- conduc- 
tivities will only have steep steady-state gradients at high temperatures. 
Although copper has the highest thermal'conductivity of the liquid metals 
considered in Table 3, it is the only one of the five metals which is 
considered at temperatures high enough for a rate of radiant heat loss to 
be attained which could produce a steady-state gradient of l0/cm. 
the circulation times given for copper in the table are the only ones 
which are physically attainable under steady-state conditions. For the 
other metals, the physdally attainable vrilue of T~ will be longer than 
T;: the attainable steady convective rates will be less than the rates 
produced by a gradient of lo/cm. 

Sufficient heat is applied to the 
Since the radiant 

Thus, 

The long circulation times estimated for the oxides, B203, Geo2 and 
S i 0  show the importance of the viscoskty in determining whether thermocapillary 
con8ection can occur in the liquid. 
convection is expected to be negligible. However, Al 0 has a lower viscosity 
than these other thrke oxides and, thus, a shorter circulation time. Since 
temperature gradient$ much larger than l0/cm can be attained in molten oxides, 
significant thennocapillary convection might be observed in molten alzmcina. 

The n = 1 mode has been demonstrated on earth by the work of Young, 

FOr these three oxides, thennocapillary 

2 3  

Goldstein and Block ( 5 )  who observed the balancing of the thewacapillary and 
buoyancy forces on small bubbles in a vertical temperature gradient. 
of a space laboratory in addition to facilating the levitation of a drop would 
allow the observation of the higher convective d e s ,  i n  pafticular, the n = 2 
mode. 
radiotracer. 

The 10- 

The circulation could be observed by the movement of a dye or of a 
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Relative circulation times for the axially symmetric modes n-2,3,4,5 are 
given i n  Table 6. These times are calculated relative to the single vortex 
(n * 1) time T:. 
the direction of circulation w i t h  respect to that in- single vertex drop. 
Since the convective rate decreases as n increases, the higher modes appear 
to be less desirable than the n.9 1 mode for obtaining rapid purification. 
However, the convective rates for some of these higher modes still can be 
laxge enough for the convective pattern to be studied and for these modes 
to have soms u t i l i t y  for the purification of levitated m e l t s  i n  space. 

The sign of the circulation time for a particular cell indicates 

Equations describing the convective flow velocities in  thennocapillary 
convection cel ls  i n  drops have been derived. When the thermal conditions 
approximate a pure, sylnnetric mode--that is, when the temperature field can 
be described by a single Legendre polynomial, the streamlines of the vortex 
and the positions of the stagnation points i n  each ce l l  gan be calculated. 
The circulation time, which is the reciprocal of the average vorticity of 
the cell and which characterizes the rate of circulation, also can be 
caLculated for these high sylaaetry cells. An estimate of the circulation 
time for a liquid drop is an indicator of the probable significance of 
thennocapillary convection i n  the drop when a temperature gradient is imposed 
across it. 

Table 6. Relative circulation Times, T & / T ~ ,  for Axially S m t r i c  Modes 
w i t h n > 1  - 

TO /r;* C e l l s  s ns Moden 
2 1 3 -968 

2 -3.968 

3 

4 

5 

1 
2 
3 

1 
2 
3 
4 

1 
2 
3 
4 
5 

9.981 
-7 365 
9.981 

19 e 994 
-13.505 
13.505 

-19.994 

34 e 960 
-22.691 
20.647 

-22.691 
34.960 

*.to is thecirorlation time for the s-cell of the nth made, 

T: is the circulation time for made n 5 1; a temperature gradient with a 
magnitude of lo/- is assumed a t  the poles. 
direction of circulation w i t h  respect t o  the n a lmode. 

ns 

The sign indicates the 
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