OVERVIEW OF THE SOFTWARE ENGINEERING LABORATORY

F. McGarry
GSFC
INTRODUCTION

The Software Engineering Laboratory (SEL) is an organization which is functioning for the purpose
of studying and evaluating software development techniques in an environment where scientific
application software systems are routinely generated to support efforts at the National Aeronautics
and Space Administration (NASA). This laboratory has been a joint effort between NASA/Goddard
Space Flight Center (GSFC), Computer Sciences Corporation (CSC), Computer Sciences Technicolor
Associates (CSTA), and the University of Maryland. '

PURPOSE OF THE SEL

Over the past number of years, software costs seem to have been continually increasing in relation
to the costs of computer hardware. Because of the vast amounts of resources that have been di-
rected toward the software development problem, there has been a just concern over the overall
process of software development.

There certainly are many reasons for the growing concern about the software process. Not only

is a sizable portion of government and corporate budgets spent on it, but systems have been getting
more complex and software has been required to perform tasks previously considered unattainable.
All of this has been due to the rapidly advancing technology in related fields such as computer
hardware.

Therefore, in response to these problems, the science of software engineering evolved as a way of
developing software through a well-defined process. Using this approach, the software process can
be better understood and an attempt can be made to study and improve the product.

Great advances have been made in adding disciplines to this very young science. Over the past 10
years, the advent of disciplined design, development, methodologies, improved management tech-

niques, software metrics and measures, automated development tools, resource estimation models,
and many other approaches that have given birth to the term software engineering.

Although numerous software development methodologies have been developed, each claiming to
be more effective than the other, it has not been clearly understood (at least as applied to the
NASA/GSFC environment) what effects the various methodologies have on various phases of the
software development process. More specifically, it has not been understood whether structured,
programming, automated tools, organizational changes, resource estimation models, or any of the
other technologies would have any effect (either positive or negative) on the software development
process at NASA/GSFC. It has also become very clear that it is not easy to define what is a
“better” software product. For these reasons (and for several others), the Software Engineering
Laboratory (SEL) at GSFC was created.

The SEL set out to accomplish the following two important and valid tasks:

1. To clearly understand the software development process at NASA/GSFC (i.e., how people
are used, how moneyv and time are spent, how other resources such as the computer itself

are used, how well time lines and milestones are estimated, etc.).)
F. McGarry
. GSFC
3 . 1of 14

2. To measure the effects ot various modern programming practices (MPP’s) on the NASA/
GSFC software development process. '

In order to accomplish these goals, software which was developed for satellite mission support was
studied. The Systems Development Section at NASA/GSFC is responsible for generating all flight
dynamics support software for GSFC-supported missions. This software includes attitude deter-
mination, attitude control, orbit control, and general mission analysis support systems.

The SEL was then used to closely monitor all software developed to support the charter of the
Systems Development Section. This includes software developed both by GSFC employees and
contractor personnel (primarily Computer Sciences Corporation (CSC)). The SEL was created in
the summer of 1976, and it was anticipated that the monitoring process would first of all be done
on tasks using conventional means of software development, with various MPPs applied to similar
tasks in an attempt to measure the effects of these practices.

Needless to say, the efforts required to accomplish the goals were far more monumental than any
member of the SEL ever imagined. Extra efforts were required on nearly every plan of the experi-
ment. Some of the underestimated areas of work include the following:

1. Development of clear, understandable data collection forms

2. Organization of the data collection process

3. Design of data storage media for data collected ,

4, Validation of data made available through data collection forms

5. Design of meaningful, feasible reports that could reflect early results of available data

Through all of the problems and discouraging times that the SEL experienced, the real credit for
the success that the lab may have had in the past, and hopefully in the future, must go to the
programmers and managers of the tasks involved in the monitoring process. Initially it was felt
that a major obstacle was going to be the psychological problem of convincing programmers to
accurately provide data on their efforts. However, it was found that not only did quality software
people not resent providing the data but they actually made extra efforts to ensure that the data
were valid and useful.

The data that have been collected by the SEL.cover software development projects starting in late
1976 through 1979. It is anticipated that data will continue to be collected and studied in the
future. There have been approximately 25 projects involved, ranging in size from 1500 lines of
source to over 120,000 lines of source. Most of the projects were in the 40,000 to 70,000 lines
of source category. All of the projects studied were development tasks used to support the flight
dynamics area for the Mission Support Computing and Analysis Division (Code 580) at GSFC.
The data made available to study the MPPs were collected from a series of forms which were used
by all projects. In addition, data were collected through interviews, on-line accounting systems,
and by personal inspections of the information by the members of the SEL.

Having investigated projects totaling somewhere around 1 million lines of code, members of the SEL
feel that they have been successful in not only gaining insight into the software development process,
but also in determining the relative effects of various techniques applied to the software projects.

' F. McQarry

- GSFC
4 : 20f 14

SOFTWARE ENGINEERING LABORATORY

APPLICATIONS SOFTWARE DEVELOPMENT CYCLE

(NASA/GSFC /582.1) 5

@ OPERATION
8
MAINTENANCE

@ REVIEW SPECS
© SCOPE OUT HARDWARE
© FORMULATES SOFTWARE TASK

® DESIGNS, DEVELOPS, TESTS,
DOCUMENTS SOF TWARE

vrioy
24SD
K11eDOW "4

STRUCTURE OF THE SEL

® ldeas & Analysns

~1

Dota Verification

Data Processing
Support

V) oF M
/ OATA BASE
W

77 v NN\

= @ Better Scftware
! lfn : Understanding
| :Mlmfhl / @ Evaluated
: '--1m|m|i Methodologies
5 |‘.‘.‘1!'J/ ® Sofrware

G3Fc Development

DATA BASE Techniques

®
Develop Applications
Software

® |nformation On
Software Developmen

vl 10§
248D
K11BON 4
6
3
)
N
<
2
g
<
N
3
X
¥
3
b3
3
[)
%

SOFTWARE ENGINEERING LABORATORY — OBJECTIVES

-

1. UNDERSTAND
oc OUR CURRENT SOFTWARE DEVELOPMENT PROCESS
e STRENGTHS AND WEAKNESSES
e- TYPE OF ERRORS
e HOW DO WE SPEND TIME ANC MONEY

2. EVALUATE
e METHODOLOGIES
e TOOLS “REAL WORLD” ENVIRONMENT
e MODELS

3. PRODUCE MODEL
e FOR SOFTWARE DEVELOPMENT

4. IDENTIFY AND APPLY
¢ IMPROVED TECHNIQUES

F. McGarry
. GSFC
8 6 of 14

SOFTWARE ENGINEERING LABORATORY — THE PROCESS

e EXPERIMENTS
— SCREENING (NO PERTURBATIONS)
— SEMI-CONTROLLED (SPECIFIC METHODOLOGIES APPLIED)
— CONTROLLED* (TASKS DUPLICATED)

e IDENTIFY INFORMATION REQUIRED
— FORMS '
— INTERVIEWS
— AUTOMATIC ACCOUNTING
— CODE AUDITORS
— TOOLS (PAN. VALET, ..)

e ANALYSIS
— PROFILE INFORMATION
— APPLY METRICS-MEASURES
— SOFTWARE MODELING
— TOOL EVALUATION

F. McGarry
GSFC
7 of 14

)

prjog
248D
K150 ‘4

SCREENING TASKS

YET ME waArcH vou
BuitD THE HosSE.”

TYPES OF EXPERIMENTS

SEMI-CONTROLLED TASKS CONTROLLED EXPERIMENT
“PLEASE BUID THE HOUSES “you witt BUILD THE HOUSES
A5 NOTED IN THE INSTRUCTIONS.” A5 you ARE iNsTRYCTED.

11

24SH5

1 106
K11 "4

MONITORING THE SOFTWARE DEVELOPMENT PROCESS

® e

INTERVIEW

\
AN / ,

- (o T ne] -

GooD EVEMNING AND
WELCOME To ANOTHER
EDITioN OF MONDAY NiG HT
INTERVIEW. WITH ME 1§

THE INCOMPARABLE — THE

HIGHLY COMPENTENT - THE
ForEwosST PDP -1/ To

PROGRAMMER ., SELLY

C]
TEB[

D. BASE, TELL ™ME SeL,
¥ wbuw:u.’um\-rus

N YouR

AT ron

®

CCOUNTING
INFORMATION

R

DATA BASE

(4

4SO

vl jo 01
A3IBOOIN "4

SOFTWARE ENGINEERING LABORATORY
DATA COLLECTED

DELIVERED LINES TEAM DATA COLLECTED COMPLETENESS OF

PROJECT OF SOURCE(K) SIZE METHODOLOGY DATA OBTAINED

1 56 7 3-6-7 *kok

2 3 2 5-6-7 *

3 7 2 2-4-6 ok

4 2 2 6 *

5 3 1 2-3 *ok

6 3 2 3-4 *k

7 20 3 2 *

8 62 8 5-6-7 *

9 54 11 1 *kk

10 70 5 3-4-5-6-7 >k

11 3 1 2 >k

12 88 11 1-3-4-5-8 ek

13 6 2 6 *

14 23 4 6 *

15 6 2 2 *

16 16 2 2 *k

17 114 8 1-2-5-6-7 *kk

13 7 2 6-8 *

19 58 8 1-3-8 *okk

20 102 10 3-4-5-6-7-8 *kk
TYPE SOF TWARE METHODOLOGY EXTRACTED DATA
1. SCIENTIFIC 1. CHIEF PROGRAMMER * SOME GOOD DATA
2. UTILITY 2. TOP DOWN ** GOOD DATA
3. DATA PROCESSING 3. PRE-COMPILE-STRUCTURE *** \VERY GOOD DATA
4. REAL TIME 4. PDL ,
5. GRAPHICS 5. WALK THROUGHS

6. CODE READING’
7. LIBRARIAN

* Assembler Language 8. FORMAL TEST PLAN (DURING DEVELOPMENT)

(A11 Others FORTRAN)

PROFILE DATA

DISTRIBUTION OF EFFORT BY PHASE

ACCEPTANCE TEST
12%

SOURCE: NASA/GSG GSFC (SEL)

AVERAGED 6 PROJECTS (RESOURCE SUMMARY)

OTHER 5.7%

CODE & UNIT TEST

47.3%

PROFILE DATA
EFFORT BY PHASE

(PERCENT)
NASA/GSFC
1 STUDY TASK NASA/GSFC
NASA/GSFC COMPONENT 1 STUDY TASK
TRW 1BM (6 PROJECTS) STATUS RESOURCE
CODE 20 30 47 34 50
DESIGN 40 35 20 32 19
CHECKED & TEST 40 25 27 26 19
OTHER 10 6 8 12
13

F. McGarry
GSFC
11 of 14

SOFTWARE ENGINEERING LABORATORY

(NEW CODE) (+20% OLD) (NEW CODE} (NEW CODE) (NEW CODE)

vl

248D

vl ozt
A1IBOdIN *d

PROJECT LINES/ LINES/ 95 TIME/ 75 TIME/ RUNS/ % METHODOLOGY
NUMBER MM MM 100 LINES 100 LINES 100 LINES MANAGEMENT FOLLOWED RESULTS
1 511 512 8.0 248 14.9 22.6% 1-3 VERY LATE DELIVERY;

EXCEEDED BUDGET;
MANY LATE ANOMALIES

2 448 512 6.2 19.6 14.4 14.0% 3 LATE DELIVERY;
' EXCEEDED BUDGET;
MANY LATE ANOMALIES

3 543 546 9.5 205 10.5 26.8%

1 ON TIME DELIVERY;
8 WITHIN BUDGET;
4 SOME LATE ANOMALIES
9
4 715 765 7.4 11.2 14.2 14.5% 36 ON TIME DELIVERY;
‘ 79 WITHIN BUDGET;
8 SMOOTH FINISH
. 10
5 504 755 12.7 17.8 13.9 28.7% 14 EARLY DELIVERY;
25 WELL WITHIN BUDGET;
' 76 NO LATE ANOMALIES
89

TOOLS AND METHODOLOGIES

. .STRUCTURED PRE-COMPILER

..PDL

.. CHIEF PROGRAMMER

.. UNIT DEVELOPMENT FOLDERS

.. FORMAL TRAINING IN S.E. TECHNIQUES
.. FORMAL TEST PLAN

..WALK THROUGH

.. CODE READING

.. LIBRARIAN

.. TOP DOWN

COXNDHICTHEWN=

-t

st

p1Jo gl
248D
K11eDON 4

OVERHEAD COST TO 10 MAN YEAR PROJECT

VENDOR #1 VENDOR #2

METHODOLOGY | \METHODOLOGY

ERROR
MODELS
RESQURCE
ESTIMATION

- MODELS

AUTOMATED
FLOW
CHARTS

SIMULATED
/| construCcTs

SOFTWARE METHODOLOGIES

SUBJECTIVE EXPERIENCE

REQTS. /

LANGUAGE ’ /

#1 /

UNIT

.DEVELOPMENT
FOLDERS

CODE
READING

LIBRARIAN

FORMAL
STRUCTURED TESY

CODE

STRUCTURED PLAN
PRE-COMPILER

CODE
ANALYZERS

CODE
/ AUDITORS
/
I 1 i |
5% 10% 15%

BENEFIT
% SAVING TO 10 MAN YEAR PROJECT

CONCLUSION

DATA COLLECTION IS IMPORTANT

UNDERSTAND THE LOCAL ENVIRONMENT

COST ABSORBED IN BENEFITS

THERE ARE MODELS THAT DESCRIBE OUR SOFTWARE ENVIRONMENT

SOFTWARE TOOL AND METHODOLOGIES DO EFFECT THE SOFTWARE
DEVELOPMENT PROCESS

THE SOFTWARE DEVELOPMENT PROCESS CAN BE IMPROVED

THERE ARE METRIC THAT DO MEASURE THE ““GOODNESS”
OF SOFTWARE

F. McGarry
GSFC
16 . : 14 of 14

