CENTRAL FLOW CONTROL SOFTWARE DEVELOPMENT: A CASE STUDY OF THE
EFFECTIVENESS OF SOFTWARE ENGINEERING TECHNIQUES

Peter C. Belford and Richard A. Berg
Computer 3cieaces Corporation
Silver Spring, Marvland, U.S.A.

Thomas L. Hannan
Federal Aviatior Administration
Washington, D.C., U.S.A.

Abstract

The purpose of this paper is to present cost and
error data collected during "he development cvele of a
large-scale software 2tffort, 0 2nalyze this data in com-
parison with other available data from similar projects,
and to evaluate the etfectiveness of the recnniques utilized
on the project. The project being reported on is Com-
puter Sciences Corporation's development of the Central
Flow-Control Software System for the Federal Aviation
Administration's Air Traffic Control System Command
Center. Analysis of the cost data provides insight aot
only into the added development costs associated with
severely limiting module sizes, but al3o into the effec-
+iveness of various cost estimatioa techiniques. The
error data analvsis supports the usefulness of the sott-
wvare engineering techniques which were used on the
project ia conjunction with definitive module-level test
requirements. The paper provides a foundation upon
which %o estmblish he development and,data collection
environment jor future joftware systems.

Introducticn

Major software development projects emploving con-
trolled software engineering techniques occur {nfre-
quently over the life of an organization. [t is even more
uncommon for these controlled projects to have the man-
agement support required o collect sufficient data to
evaluate the techniques urilized. In order rhat subsequent
developers may have the opportunity to select atfective
software engineering techniques, more project details
need to be collected, evaluated, and the results stored
for their use.

This paper describes 1 major software development
oroject, the sortware engineering pracuces employed,
the data collection procedures and results obtained, and
conclusions about the effectiveness of the practices as
implemented on the project. The experiences zained
from the oroject were not of the.controlled, psvchomet-
ric variety; the hudget 2nd deadlines were real, and the
various !apses in data and, perbaps, in resolution, re-
flect these {acts. Taldag :kis into consideration, ‘ie
following material i35 presented, not is conclusive proof

of the efficacy of a particular merhodology, but as ex-
periences resulting from a representative large-scale
development project.

Proiect and Approach

The Federal Aviation Administration (FAA) operates
an Air Traffic Control System Command Center {ATCSCC)
whose function is balancing the Jow of air traffic so that
in-flight delays are minimized. The Cantral Flow Con-~
trol (CFC) System provides automation support for this
function. A computer complex in Jacksonville, Florida,
is linked with the major FAA nationwide facilities to pro-
vide up-to-date information about proposed flights and
in-flight movements. This demand information is fed
into 2 data base along with airport capacity informadon,
and is subsequently used bv ATCSCC personnel in an
on-line query environment, The overall system can be
described as an on-line (laquiry), real-time (flight data),
transacton-oriented {independent asynchronous activities)
information system.

The project was initiated in late 1975. * was de-
cided to establish a rigid software architectural require-
ment and functional /stimulus/response) specification to
ensure that the system would be able to evolve along with
the application. Maintainability with an empbasis on
modiﬁa.bi.lityl was the prime objective prior to contract
initiation. However, a more recent grouping of these
factors indicates that exbility tended to become ke
primary goal, wvith maintainability second, and reliabil-
ity 2 weak third for the initial syscem.")

Toward this end, the FAA specified the funcdonal
requiremems.3 utilizing an existing rardware configura-
sion, and provided a haseline operatng svsiem. Com-
puter Sciences Corporation ;CSC) was competitively
awarded a coantract to modify the operating 3ystem,
develop data base manageweat and applications zoitware,
and provide support software for system development,
generadon, test, ind performance evaluation. The
award wag made in April 1977, and :the system was de-
livered in January 1979, six months prior o the opera-
rional readiness date of Julv 1979.

The selection of 2 develooment methodolog™ vas
bYased a3 much o0 marager-ent criteria as on techoical
criteria. it was decided o move.stepwise through the

P. Beiford
CSC
1 of 20

development process, checkpointing each phase by base-
lining the output. With the requirements definition phase
and the functional specification phase completed and
their results baselined, the remaining development etfort
was allocated to three major phases: (1) the system de-
sign phase; (2) the unit design, code, and test phase;

and (3) the system test phase. The final two phases were
- performed four separate :times. Each time a portion of
the software (called a Build) was impiemented to demon-
strate a subset of the functional capabilities of the sys-
tem.

Software Engineering Methods

It became clear that successful execution of the-
development phase {within both budget and schedule)
would require careful front-end attention paid to:

(1) product definition, (2) tool utilization, (3) practice
standardization, and (4) organizational structure. An
attempt was made (with varying degrees of success) to
deflne software ind documentation products so that they
would evolve naturally, and so that as much of these
products as possible would be in machine-readable form..
A set of tools and practices were selected to assist in
those areas which had been troublesome in the past, most
notably control and communication. Finally, an organi-
zation was formed based upon 2 Work Breakdown Struc-
ture (WBS), which was to serve as an accounting, data
collection, and referencing mechanism as well as a basis
for scheduling.

The system design phase involved the least infusion
of modern practices and yielded the least amount of soft-
ware engineering data. The products of the phase were
(1) the Program Design Specification (PDS), (2) the Sys-
tem Development Plan, and (3) the System Test Plan.
The PDS was developed using Hierarchy plus Input-
Process-Output (H-[PO) diagrams. The Hierarchy (H-)
diagrams evertually evolved.into execution diagrams,
which gained reasonable support, but the [PO diagrams,
which met with some initial success, were quickly sup-
planted by Program Design Language (PDL). The PDL
allowed for six basic structured constructs. Data was
1i350 addressed hierarchicaily ia the PDS, and the
CODASYL Data Description Language was employed."'
This complemented the PDL, and both were updated for
inclusion in the final documentation.

The unit design, code, ind test phase was the most
amenable to incorporation of modern practices and was
the source of the most useful data. Additionally, the
organization was adjusted during this phase to provide
both a Quality Control group and an independent Data
Base Administrator.

Unit design was accomplished using PDL, ind the
unit test specification was generated by automated analy-
3i8 of the PDL. This tool also verified the PDL for
compliance with project quality standards, The :est
specifications were for unit testing based upon the
decision-ro-decision {DD) path structure of the design.

The DD paths were determined from the constructs util-
ized in the PDL and were a relationship of the number of
possible branch paths between constructs. The DD paths
eventually demonstrated some highly advantageous prop-
erties (discussed subsequently in the section entitled
“Presentation of Reduced Data’y. Units, or modules,
were constrained to single entry, single exit, and single
function. They were documented at this stage by a
machine~readable Prologue, which contained identifica-
tion, operational-characteristic, cross-reference, data-
definition, and processing-logic information.3 Prologues
were also automatically analyzed for completeness.
Modules were subjected to Walkthroughs,® and the re-
sultant error data, together with weekly resource ex-
penditure sheets, the module PDL, Prologue, and Test
Specifications were incorporated into {ndividual Software
Engineering Notebooks.

Unit coding and testing was based on the design in the
PDL and Test Specifications. Structured code (in
JOVIAL)? was derived from the PDL, and Test Proce-
dures were developed based upon the Test Specifications;
both of these items were then incorporated into the note-
books. Data interfaces were coatrolled by use of the
JOVIAL data-description facility, COMPOOL, which was
regulated by the Data Base Administrator. Resource
utilization and error data were collected as they were in
the previous phase; this data is presented and evaluated
later in the paper. .

The system test phase was carried out for each build
by an Independent Test Team composed of both developer
and user personael. System Test Specifications and
Procedures, in contrast to those at the module level,
were for functional testing, and were traceable back to
the requirements definition phase through the functional
specificarions. Errors were recorded on Test Team
Trouble Reports, which were iacluded in Build Test Re-
ports.

Automated documentatioa tools were 2mploved at
the system level. The JOVIAL Automated Verificatdon
System (JAVS)3 was modified ‘or this project, and was
used :o produce program hierarchy :calling tree), pro=-
gram structure (OD paths), and cross-reference infor-
mation, 18 well as o support the degree of test case
coverage obtained. Intermediate JAVS outputs were
also scanned by a specially developed software tool,
which produced a Data Item Dictionary.

CFC Softwvare Data Collection

Three general categories of data were collected on
the CFC Project: activity data, software module struc-
tural data, and software error data. The activity data
collected was man-nours expended by project personnel
at the software subsystem level. Software module struc-
tural data inciuded counts of the total number of execut-
able source statements plus 2 count of the aumber of
DD paths from the design for each module. Software
error data included both walkthrough and execution time

P. Belford
CsC
20f20

errors. Walkthrough errors were recorded by quality
control at the design walkthrough, and executioa errors
were recorded by the responsible programmers or the
Independent Test Team, depending on the level of test-
ing. Error data was collected both at the module (or
unit) ievel and at the svstem level.

The procedures for data collection were based on the
types of data and the mechanism used to collect each
type. The data types and the corresponding basic collec-
tion devices were as follows:

. Activity data

- Personnel: time accounting given at the
subgystem level

e Module structural data
- Physical structure: module source code

- Logical structure: module PDL and test
procedures

o Software error data
~ —Module: programmer error log
- System: test team trouble reports

Control of data collection was maintained within the
development departments and monitored by the quality
comtrol staff on 2 continuing basis. Organization and
delivery of the final data package was performed by the
quality control staff. The following subsections describe
in detail the forms and procedures used to collect and
summarize the three data types.

Activity Data Collection

Time data in man-hours was collected for all per-
sonnel on the project at the funcrional subsystem level.
This time data was collected by means of a CFC Project
Data Collection Form that was distributed weekly and
filled out along with weekly time cards by each person on
the project. The number of man-hours expended in each
subsystem for design, code, test, library maintenance,
throwaway code develoomert, management, and quality
assurance functions performed within the subsystem was
compiled from this data.

The data was collected for each of the four builds of
the system. Within each build, data was presented for
the Applicadon/Simulation (APS) Subsystem, the Data
Assembler (DA) Subsystem, the Data Base (DB) Subsys-
tem, and the Data Reduction and Analysis (RA) Subsystem.
These subsystems represented the major functions per-
formed by the CFC System that were programmed in
JOVIAL, The time spent in functional design and system
level testing was not included in the build man-hour re-
sults.

Software Structural Data Collection

Two types of software structural data were obtained
from the CFC Development Project. The data was ac-
quired from examinadon of the module source code and
PDL. The module scurce code data was an estimate of
the physical size of 2 module measured by a count of the
total number of executable source statements. The PDL
data defined the logical structure of the design of the mod-
ule, obtained by a count of the total mumber of DD paths
in the design. Another measure of logical structure
utilized was a count of the number of test cases used to
exercise all the DD paths identified within a module
during the design phase. The test case data was obtained
from the test procedures in the Software Engineering
Notebooks.

Software Error Collection

Software error data on the CFC Project was collected
during the design and testing pnases. Errors detected in
the design phase were measured by the total number of
design errors discovered during the design walkthrough
of a given module. These error counts were collected
by the quality control staff during each walkthrough.

Errors encountered during module or unit level test-
ing were collected by the responsible programmer and
summarized for each build. System level errors were
collected by the Lidependent Test Team for each unsuc-
cessful run. The failure information was derived from
an analysis of the program output. If a failure was
caused by more than one error, 11l errors were listed.
Errors were also recorded during system acceptance
testing. While not on a build basis, these errors pro-
vided {nformation about problems encountered during the
integration of the final system.

_ Presentadon of the Data

This section presents the raw data collected on the
CFC Project. Data i3 presented in the three categories
described in the preceding section, and i3 presented for
every build in which it was available.

Acdvity data is shown in Tables 1 through 4.
Tables 1 through 3 show the man-hours spent per subsys-
tem in the acdvity categories of detailed design, code,
unit test, library maintenance, throwaway code develop-
ment, and management and technical direction by task
leaders in the subsystem plus quality control functions
performed by subsystem personnel. Data is presented
for Builds 2, 3, and 4 of the system. Build 1 of the svs~
tem is not preseated since it occurred it 3 time prior to
she institution of the reporting mechanism. However,
total man-hours statistics are available for Build 1.
Table 4 presents the :otal man-hours spent per subsvstem
for each of the four builds of the system. Tables 5
through 7 show the number of executable ines of code,
the number of DD paths, and the mumber of test cases,

P. Belford
CSsC
Jof20 .

TABLE 1. BUILD 2 MAN-HOURS IN REPORTED ACTIVITY CATEGORIES
%S BT T 7Y
aaresort | sumsysten ! sussysrem | sumsystew | suasvsrw f torus
Jesign 292 185 ,r 52 H $ed
ode 2! -2 182 5 PN
Test e N ny) ELT)
frepintd 1s 581 l 122 : 14
Troawey b 38 138) 138
Jtaare tee 296 = : 198
TOTALS [t 79 L | 3 HES
TABLE 2. BUILD 3 MAN-HOURS IN REPORTED TABLE 3. BUILD 4 MAN-HOURS IN REPORTED
ACTIVITY CATEGORIES . ACTIVITY CATEGORIES
APS 3A 28 RA . I APS 2A [] i IA
carezory | sussvstew | sumsystew | sussystew | osuasvstew |eotars CATEGSAY | SUBSYSTEN | SUBSYSTEM . SUBSISTEM : su3sYsTEM
tesim 337) 178 1887 sgu7 Zesi@m .28 N N T
i Zade- Lt 131 [e ta1 1103 2ace 7 e E L 97
{ tesc 1228 238 531 1238 -080 Tat -83 ss7 b m b 1352
Y s " 3 - oy S !
Trovavay | ” P - s XY vy 32 i oo 3 ey
lade = + — . — . -
D iinere ! 313 Y) ol sor | {;‘h"‘ 81 [N f21 i -
Crimas | ses | fe owsL | w97 1567 | |_Tes AR e o i
TABLE 4. MAN-HOURS EXPENDED BY SUBSYSTEM TABLE 3. EXECUTABLE LINES OF CODE PER
FOR EACH BUILD SUBSYSTEM PER BUILD
/ oS H M N M) i EX ! N i - - -
[i) ! ECS;\Y:T!H : 37;55'{;?:!4 | sUasysTI ! S'JBSY;TZH 4 SUBTITAL e | APS T A - [= TIAL j
E . 1+30 || 342 i 1o | s s L 53 387 - |
! ' i : :
: ; T A £ ; ww | S YT 2 ey 1558 EXe) : $337 |
! ! ! . : . :
T T 1 +
R TR 23 U ey {omeL | owre B ser) : 1350 FEE] | 26l } s || e
: | i i i : | i
- ! REa sy ' 1387 ll 1330 617 ! 3393 ; . ! 1503 I 539 ' STE RN RS IPE TS
; i ! ' { !
ioTama IRTFN ‘ 998 3 Cosals i o TaTAL 1 wez | otus | e | a3m § i
: : . ! ' [1 ! i
TABLE 6. DD PATHS PER SUBSYSTEM PER BUILD TABLE 7. TEST CASES PER SUBSYSTEM PER BUILD
Caw | oaes i A P) TITAL wi | oas | 23 D | oA :
. ’ FET) 120 ;.5' I 109 8 =9 [- -5 i) 5 '
J i i
2 197 .3 RED) | 1 iz i 2. e -3s- 2 i :
. ‘ ; L :
3 | e s | sa | -:se |ozes) 133 27 l TR Bt | X !
! ! i i ; ! i
Lo .1 e b g] e . 3 T i
| : ! | { i 1 |
! L | e E 1232 ‘ 127 : HSCI TS ! Pt | s t3a ! a2 | s l 3 :

~Includes management and technical direction by subsvstem leader and quality assurance functions performed by sub-
3ystem personnel.

38

P. Beiford

CsC

4 of 20

respectively, for each of the four system builds.
gives the error statistcs collected for Builds 2 and 3 of
tke system and the total number of software errors de-
rected during acceptance testing. Build 1 was completed
before error reporting mechanisms were in place, and
Build 4 results were not available.

Table 3

the CFC Project. Since the project has been completed
and accepted by the FAA, this analysis evaluates the
final results of the project.

The first analysis performed concerned the relation-~
ship of the sizes of software entities compared :0 ‘he
cost of their development. The size of a software entity
was measured in terms of both the number of lines of
executable source code and tke aumber of decision paths
(DD paths) in the design. Cost was always measured in
man-hours expended,

.Module Level and Build Level were the two software
entities evaluated. At the module level, Figure 1 pre-

sents a plot of the number of man-hours expended versus
the number of lines of executable code for each of a ran-

domly selected set of 50 modules. Any conclusive trend
is not at all obvious bv analysis of the curve. However,
since the true comparison of developmental costs is in
terms of the number of lines of code produced per man-
hour expended, further evaluation was performed.

TABLE 3. ERROR STATISTICS FOR THE CENTRAL
FLOW CONTROL SYSTEM
MODULZ" SYSTEH
: DESIGN . LEVEL LEVEL
BUILD WALKTERCUGH TESTING TESTING
2 by 290 18
3 63 223 20
Acceptance N/A N/A 22
Testing

The data, therefore, was evaluated in terms of the
aumber of lines of code developed per man-hour (a

*APS and DA Subsystems only.

Presentation of Reduced Data

The purpose of this section is to analyze the data
oresented in the preceding section. This analysis at-
tempts to provide quantitative evaluation of the effective-
aess of the software engineering techniques utdlized on

"relative’’ measure of cost) 18 a function of the aumber
of lines of code in the module (Figure 2). If a curve
could be formed from the data, :he optimal module size
would be the highest point on the curve {i.e., the module
size for which the maximum number of lines of code
would be developed in each man-hour expended).

The data presented in Figure 2 shows that module
sizes of between 0 and 40 lines of executable source code
never (in fact, without exception in this sample) croduce
a productivity of more than one line of code procduced ser
man-hour expended. However, for modules of yreater

. ‘ . ‘
. . *
Pl . . .
- . .
* X . . .
o . .« ., o« o ee .
. .. . »] .
*
Imoer I Luinas i lice
TIGURE 1. CORRELATION OF MAN-HOURS TO MODULE SIZES
P. Belford
CSC

39 5 of 20

2.8
+
.
. L
2
ES
.
.
Lines of .
lode ler .
Han-Hour 1.3 .
Sxceaded T . N o
L]
L] . P
L]
L]
L 4
P L . . .
1 .
. O o .
.
.
LN .. Y
L] L]
H . PO
+ .
L]
.
L]
L]
28 $2 k-1 235 pR-0) s o] prad

Junper >£ Lines :I lide

FIGURE 2. CORRELATION OF LINES OF CODE DEVELOPED PER MAN-HOUR COMPARED TO MODULE SIZE

than 40 lines of executable source code (greater than 100
without exception), the productivity is generally greater
than one line of code produced per man-hour expended.

Although the data presented only reflects develop-
ment costs and not operational and maintenance costs,
the general theory of restricting modules to 50 lines of
.executable source code or less does not appear to be cost
effective when considering developmental costs only. If
the "single entrv, single exit, single function’ rule is
strictly adhered to, the module size should not be utilized
as a standard. In contrast, it appears that modules of
40 lines of code or greater should be encouraged. It is
important to note that the CFC modules, regardless of
size, ‘ollowed the "“single entry, single exit, single func-
tion” concept of module definition.

In order to support these conclugions, a measure of
moduie complexity, number of DD paths in the design,
was also compared :0 developmental costs. The same
50 modules were utilized. This time, the relative cost.
in number of DD paths generated per man-hour was
plotted against the complexity in aumber of DD paths.
Figure 3 sdows the results of this analysis. Again, the
more compiex the module, :he lower the relative devel-
opmental costs.

These cost analyses seem to point out that within the
''single entry, single exit, single function” concept, the
larger the module, the lower the per-unit-of-size devel-
opmental costs.

The results of this analysis seem to indicate that
restrictions limiting mocule size should not be a driving
factor. Single-function modules of 100 or even 200 lines
of executable source code should be acceptable.

The reiative size of a build wvas also analyzed. Fig-
ure ¢ shows the reiationship between the size of a1 build
in oumber of lines of executable source code per subsys-
tem and :the number of man-hours expended against that
subsystem in 3 build. This plot shows an obvious cor-
relaton of size t0 cost. With the single exception of the
DA Subsystem for Build 3, which was accomplished on
third shift /the implications of which will a0t be discussed
here), the cost-to-size relationship is linear. Hence,
if the single-function module concept i3 controlled, :he
size of a build appears to have no impact on the relative
cost of producing that build.

Another analvsis was cerformed to evaluate "he re-
iationship between actual development costs and cost 2sti-
mation techniques. The number of man-aours expenced

P. Belford
CSC
6 of 20

+ JsAP
x (x2A
Sa/4
.3
<+
E]
.7
+
3
2 3
I N
x
x
.3 ?
lluncer 3¢ 30 T
2azns Per 3
Yan-Hour s 3 x
Ixpencad * x
LI 8
58
]
2)
.3 x
T x 3 x .
2 2%
3
x5 9 x
s I
T X x x x
El x
3 2 'c
2
) 3
-+ s
“3
0 20 0 +Q 3 32 30 3

Humoes >¢ 20 achs

FIGURE 3. CORRELATION OF NUMBER OF DD PATHS PER MAN-HOUR TO MODULE COMPLEXITY

39¢3 #_
-30Q -— .
anoer >f
‘lan-dours JCSS
-t .
() .
.
3uill ?
200 | . . L32)
.
P> bod
T g
e 3 i LS 329
sumser 3¢ lLines ! Ixce
FIGURE 4. CORRELATION OF MAN-HOURS TO BUILD SIZE

41

P. Belford
CSC
7 of 20

per line of executable source code was compared o the
number of man-hours expended per DD path in the de-
sign and to the number of man-hours expended per test
case (see Table 9). This comparison wasg accomplished
using a coefficient of variation (i.e., the ratio of the
standard deviation to the mean).

TABLE 9. COSTING PARAMETER COMPARISONS

iigas.i.CEIRIIA 4afe<Curs. Lired JIce MAN=1Qure/ 0 Pl dan-saurs. Test ise
223 1 APS .38 5,38 [T
B .56 5.18 a2
Fgild L 24 :..~5 5.38 :19.53
il I AP i.e8 . 11,30
izl 128 .12 7n
Juila 1A 1.3 577 0.3
3:ila 1 a2§ Fet) 5.7 18,37
) 1.1 e.28
] +. 08 3.9
it P R]
273] 19
3uils - 33 131 5,47 8.3
ERETENSTY s 12.28 e

.32 *.e9 9.7

3Ia4dd 4 AN

15,008 12,008 IS)

The statistical correlation was unot diverse enough
to support differentiation between DD paths in the design
and lines of code in terms of total cost estimation tech-
niques. Number of man-hours per test case was shown .
not to be a viable cost estimation technique due to its
high coefficient of variation (COV). Therefore, a sepa-
rate analysis was performed to determine a better cost-
ing parameter that could be utilized at each of the detail
design, coding, and testing phases of development.
Since the'known gquantity at the completion of each phase
is DD paths in the detail design phase, lines of code in
the coding phase, and test cases in the testing phase,
this irformation could be utilized to refine original cost
estimates as a project progresses., The data presented
on costing provides enough information to support de-
velopment of initial cost estimation algorithrms based on
actual Zevelopment products (e. g., DD paths, lines of
code, and test cases).

An analysis was performed on these . st esdmations
utilizing the data from the APS Subsystem for all four
builds. Three cost estimation algorithms were developed,
one for 2acn deveicpment phase. The basis for these al-
gorithms is the data previously presented in Table 3.

The "Lines of Code' algorithm utilizes 1. 34 times the
number of lines of executable source code to vield the
estimated number of man-hours. The "DD-Path” algo-
rithm utilizes 3. 34-times the number of DD paths in the
design to vield the estimated number of man-nours. The
"Test Case' algorithm utilizes 14.76 times the number
of test cases !0 be performed. All three algorithms were
then applied to the other subsystems. These results are
presented in Table 10.

The low "average percentage deviation' of the DD~
path algorithm shows that the number of DD paths pro-
vides an accurate prediction of the total man-hours
required. This technique provides the added advantage
of supporting periodic updating of the estimation as the
actual number of DD paths is finalized. I PDL is used,
this variable is known early (i.e., at the completion of
the design phase).

The effectiveness of the software engineering tech~
niques udlized was also analyzed. The true effectiveness
of the software engineering techniques can best be meas-
ured by the reliability and maintainability of the product.
Although data is not yet available to support definitive
reliability and maintainability measures of the CFC Sys-
tem, error rate data was available within CFC and was
used to estimate the effectiveness of the software engi-
neering techniques employed on the project.

In order to evaluate the CFC error rate with some
defined industry averages, the Rome Air Development
Center (RADC) Software Reliabilitv Studv? was urtilized.
This report presents the error rate of two JOVIAL proj-
ects at system level testing. This error rate worked out
to be about 1 error in every 35 lines of code. The CFC
error rate, calculated from Tables 3 and 3, shows
1 error in every 28 lines of code, detected at the rmodule
level, At the system level testing of CFC, an order of
magnitude fewer number of errors (.e., 1 error for
every 382 lines of code) than at the module level were
found. During final acceptance level testing, a 3-month
user/customer-conducted testing phase, still fewer
errors were found. In the 23,742 lines of ¢xecutable
code discussed in this paper, only 21 software errors
were detected. This is an error rate of 1 error in every
1, 131 lines of code.

The error rate implies two conclusions about the
development approach. First, the scftware engineering
techniques utilized were very effective. The CF¥C error
detection rate comparable to that reported in the RADC
study was noticed an entire development phase earlier.
More errors were found earlier, presumably leaving
fewer errors in the final system. This should result in
a significant cost savings, since the cost to correct an
error increases *he longer it remains in the code. Sec-
ond, the testing 2pproach proved to be quite effective.
The quamtification of module level testing requirements,
specifying that all DD paths in the design must be exer-
cised at the module level, provided significant advantages
over the traditional testing approach carried on by <ha
programmers. This concept proved :o exercise 98 per-
cent of all the decision paths in the code. Additionally,
within one subsystem where these unique module level
test specifications were rigidly applied, the azcceptance
testing error rate was only 1 error detected in everv
1, 371 iines of executable code; whereas within 3 subsvs-
tem where module level test specifications were loosely
applied, the acceptance arror rate was l arror detected
in every 733 lines of code. This roughly implies an
overall effectiveness increase of over 100 percent

P. Belford
CsSC
8 of 2U

per line of executable source code was compared to the
number of man-hours expended per DD path in the de-
sign and to the number of man-hours expended per test
case (see Table 9}, This comparison was accomplished
using a coefficient of variation {i.e., the ratio of the
standard deviation to the mean).

TABLE 9. COSTING PARAMETER COMPARISONS

1.3,08.8%em Janesaurs.Lines ide [Ane<oury 30 Famn Manesours. Teet lise
Suild L S 1.8 3.18 2.
fuald - 8 144 $.18 .12
3uild L OA - 1,98 $.38 3.5
Suald I ars -8 .18 12.30
eizd 18 . i.12 HL Y
43 £ 3022
H 9.7 8.17
+0 .73 .33
16 - is

32,238 TS

The statistical correlation was not diverse enough
to support differentiation between DD paths in the design
and lines of code in terms of total cost estmation tech-
niques. Number of man-hours per test case was shown
not to be a viable cost estimation technique due to its
high coetficient of variation (COV). Therefore, a sepa-
rate analysis was performed to determine a better cost-
ing parameter that could be utilized at each of the detail
design, coding, and testing phases of development.
Since the known quantity at the completion of each phase
is DD paths in the detail design phase, lines of code in
the coding phase, and test cases in the testing phase,
this information could be utilized to refine original cost
estimates as a project progresses. The data presented
on costing provides enough iaformadon to support de-
velopment of initial cost estimation algorithms based on
actual ceveloprzent products {e.g., DD paths, lines of
code, and test cases).

An analysis was performed on these cost esdmations
udlizing the data from the APS Subsystem for all four
builds. Three cost estimation algorithms were developed,
one for each development phase. The basis for these al-
gorithms is the data previously presented in Table 3.

The 'Lines of Code" algorithm utilizes 1. 34 times the
number of lines of executable source code to vield the
estimated number of man-hours. The "'DD-Path” aigo-
rithm utilizes 3. 34 times the number of DD paths iz the
design to vield :he estimated aumber of man-nours. The
"Test Case' ilgorithm utilizes 14.76 rimes the number
of test cases to be performed. All three algorithms were
then applied (o the other subsystems.. These resuits are
presented ia Table 10.

The low ""average percentage deviation” of the DD-
path algorithm shows that the number of DD paths pro-
vides an accurate prediction of the total man-hours
required. This technique provides the 2dded advantage
of supporting periodic updating of the estimation as the
actual number of DD paths is finalized. If PDL is used,
this variable is known early (i.e., at the completion of
the design phase).

The effectiveness of the software engineering tech-
niques utilized was also analyzed. The true effectiveness
of the software engineering techniques can best be meas-
ured by the reliability and maintainability of the product.
Although data is not yet available to support definitive
reliability and maintainability measures of the CFC Sys-
tem, error rate data was available within CFC and was
uged to estimate the effectiveness of the softwaze engi-
neering techniques employed on the project.

In order to evaluate the CFC error rate with some
defined industry averages, the Rome Air Development
Center (RADC) Software Reliability Studv? was utilized.
This report presents the error rate of two JOVIAL proj-
actg_at system. level testing. This error rate worked out
to be about 1 error in every 35 lines of code. The CFC
error rate, calculated from Tables 5 and 3, shows
1 error in every 28 lines of code, detected at the module
level. At the system level testing of CFC, an order of
magnitude fewer number of errors (l.2., l error for
every 382 lines of code) than at the module level were
found. During final acceptance level testing, a 3-momth
user/customer-conducted tesdng phase, still fewer
errors were found. In the 23,742 lines of executable
code discussed in this paper, only 21 software errors
were detected. This is an error rate of 1 error in every
1, 131 lines of code.

The error rate implies two conclusions about the
development approach., First, the software engineering
techniques utilized were very effective. The CFC error
detection rate comparable to that reported in the RADC
study was noticed an eantire development phase =arlier.
More errors were found earlier, presumably leaving
fewer errors in the final system. This should result in
a significant cost savings, since the cost :0 correct an
error increases :he longer it remains in he code. 3ec-
ond, the testing approach proved to be quite efective.
The quantification of module level testing requirements,
specifying that all DD paths in the design must be exer-
cised at the module level, provided significant advantages
over the traditional testing approach carried on by the
programmers. This concept proved to exercise 98 per-
cent of all the decision paths in the code, Additionally,
within one subsystem where these unique module !evel
rest specificarions were rigidly applied, the acceptance
testing error rate was only ! error detected in every
1,371 lines of executable code; whereas within 1 subsyvs-
rem where module level test specifications were loosely
appiied, the acceptance 2rror rate was 1 error Jatected
in every 733 lines of code. This roughly implies an
overall effectiveness increase of over 100 percent

P. Belford
CsC
9 of 20

TABLE 10. COST ESTIMATION COMPARISONS

"Lines of Code" "JD Path” "Test Case"
Algorichn Alzorizhm Adgorizinm
Actual Zstimated Jeviazion Sstimated Zeviation ZIstimazed Ceviaticn
Man-dours “an-Hours (%) Man-Hours (%) Man-scurs (%)
3uild L 2B 398 99%u 10.8% 353 5.21 2122 AL
3uiid L ZA 2943 3601 25.56 30958 3.36 398§ w0..7
Euilﬁ 2 55 2030 1696 16.45 1460 28.08 1077 %§.35
3uild 2 CA 2729 aou7? 11.65 2354 13,36 1993 26.37
Suild 3 OB 2881 3792 31.82 2938 1.98 2863 82
3uild 3 2a 2837 5397 112.73 3143 2S.48 1973 28.23
3uild 3 RA 3979 $58u Q.37 237 36.79 u3ge 19.22
2uiid < I3 2330 2122) .23 1386 2.76 2082 1.32
3uild <+ 3A 1837 1278 17.838 899 32.36 E2-1Y 73.38%
3uild s 2A 2837 2810 “.82 2003 pL [1299 S0.7%
. Average 29,42 22,51 30.32
Jeviation ’
attributable to using these module level test specifica- 3. Central Flow Control Computer Program Specifica-
dons. tious, Final Report (5 vols.), Federal Aviation
Administration, FAA-RD-76-157, September 1976,
Summarvy
4. CODASYL Data Base Task Group Report, Conference
In conclusion, the authors feel that a significant base- on Data Svstems Languages, April 1971,
line has been established in the quantification of software
engineering techniques. The success of the CFC project, 5. Central Flow Contrel Qualitv Assurance Plan, Final
together with the supporting data that was collected, pro- Report,_ Computer Sciences Corporation, CS_C,’ SD-
vides a foundarion upon which to build -successor systems. 78/6060, April 1978.
The key factors to be considered in setting up these fu-
ture svstem programs is to understand the development 5. Fagan, M. E., "Design and Code inspections to
environment, :0 collect data during the development etf- Reduce Errors in Program Development, " IBM
fort 1o support the upgradiog of projecrions, and o sup- Svstems Jjournal, Voi. 15, No. 2, 1976.
port the pericdic evaluation of the data to provide insight
into the product. This should provide sufficient visibil- 7. NAS Operational Support Svsteri, TBM 3020 JOVIAL
ity to keep a project out of trouble, while at the same Language Manual, NASP-3288-92, May 1975.
fime supporting evolutioa of more effective projec: plans.
- - - - - - 8.-- Gaanon, C., et al., JAVS - JOVIAL Automated
References Verification Svstem, JAVS Technical Report
(3 vols.), General Research Corporation, CR-1-
1. Boehm, B. ., et al., Characteristics of Software 722/1, June 1978,
Quality, TRW Systems Group, TRW-5S-73-09,
December 13973, ' 9. Software Reliabilitv Studv, Rome Air Development
Center, RADC-TR-74-250, October 1974.
2. MeccCall, J. A., etal., Factors in Software Qualitv,
Tinal Technical Report (3 +ois.), Rome Air De-
velopment Caater, RACC-TR-77-369, November
1977, ' ‘
P. Belford
CsC
44 10 of 20

194

oz o il

o 1)
piojiag “d

T. L. HANNAN, FEDERAL AVIATION ADMINISTRATION
"R. A. BERG, COMPUTER SCIENCES CORPORATION

BEL--7

oriotl

2SO
piojieg °d

CENTRAL FLOW CONTROL
FUNCTIONAL PURPOSE

®© LONG RANGE TRAFFIC OVERLOAD PREDICTICN
© = REDUCTION IN AIR TRAFFIC DELAYS
® FUEL SAVINGS

BEL-O-T0

Ly

0z jo ti

2SO
plojleg 'd

CENTRAL FLOW CCNTROL
SOFTWARE ENGINEERING PURPOSE

RQTS.

® PLANNED APPROACH
© STRUCTURED TESTING

(' e

K
\)\\

(‘ \“i\ S

PROD.

' ® COMPREHENSIVE DATA COLLECTION

TESY

SEL-$-79

DATA ANALYSIS AREAS AND
RESULTS

© MODULE SIZE ANALYSIS
BUILD SIZE ANALYSIS

8
e

® COSTING METHODOLOGY RESULTS
® TESTING METHODOLOGY RESULTS

0z 30 ¥l
L)
piojieg “d

BEL-9-78

6v

or'3o st

2SO
piojied 'd

DATA COLLECTED

ACTIVITY DATA

— PERSONNEL: TIME ACCOUNTING GIVEN AT THE
SUBSYSTEM LEVEL

MODULE STRUCTURE DATA

— PHYSICAL STRUCTURE: MODULE SOURCE CODE
— LOGICAL STRUCTURE: MODULE PDL AND TEST
SPECIFICATIONS

SOFTWARE ERROR DATA

— MODULE: PROGRAMMER ERROR LOG
— SYSTEM: TEST TEAM TROUBLE REPORTS

BEL-9-79

0s

07 j0 91

28D
plojied 'd-

DATA PRESENTED

© DATA PRESENTED ON THE MAJOR
SUBSYSTEMS OF CFC THAT WERE
CODED IN JOVIAL

6 38034 MAN-HOURS OF DIRECT LABOR
AND 23742 LINES OF EXECUTABLE CODE
REPRESENTED OVERALL

® OVERALL DATA PRESENTED:

MAN-HOURS, EXECUTABLE LINES OF
CODE, DD-PATHS, TEST CASES,
ERRORS

A
—

0TJo Ll

2SO
plojieg 'd

2.0 ~

LINES OF
CODE PER
MAN-HOUR
EXPENDED

1.0

OVER LIMITING SIZE
NOT COST EFFECTIVE

I 1
100 200

NUMBER OF LINES OF CODE

MODULE SIZE

3.0

2.0 1

LINES OF
CODE PER
MAN-HOUR
EXPENDED

1.0 4

1 V)
1000 2000 3000

NUMBER OF LINES OF CODE

BUILD SIZE

(43

orjogl -

2SO
plojieg 'd

COSTING METHODOLOGY

MAN-HOURS PER LINE OF CODE/DD PATH/TEST CASE WERE CAL-
CULATED FOR EACH SUBSYSTEM FOR EACH BUILD
RESULTS:

COV (LINE OF CODE) = 35%

COV (DD PATH) = 32%
COV (TEST CASE) = 76% (ELIMINATED AS USEFUL ESTIMATOR)

APS SUBSYSTEM USE AS ESTIMATOR FOR OTHER SUBSYSTEMS AND
RESULTS COMPARED WITH ACTUALS

RESULTS:

- AVERAGE DEVIATION (LINES OF CODE) = 24%

(DD PATHS) = 22%

CONCLUSION: |
DD PATHS CAN BE USEFUL IN REFINING INITIAL COST ESTIMATES

BEL-8-79

TESTING METHODOLOGY

DISCIPLINED APPROACH

TEST SPECS GENERATED FROM PDL

TESTS EXERCISE ALL DD PATHS IN DESIGN
VERIFIED AT DESIGN WALKTHROUGHS

RESULTS

1 ERROR PER 28 LINES OF CODE AT MODULE LEVEL
1 ERROR 382 LINES OF CODE AT SYSTEM LEVEL

® 1ERROR PER 1131 LINES OF CODE AT ACCEPTANCE
LEVEL

"NOTE:

SUBSYSTEM RIGIDLY FOLLOWING PDL/TESTING
STANDARDS -

1 ERROR PER 1871 LINES OF CODE DETECTION
AND CORRECTION TIME AVERAGED 8 PERSON
HOURS.

SUBSYSTEM LOOSELY FOLLOWING DL/TESTING
STANDARDS |
1 ERROR PER 733 LINES OF CODE DETECTION AND

" CORRECTION TIME AVERAGED 40 PERSON

HOU Rs-) BEL-9-79

P. Belford
csC
53 : 19 of 20

SUMMARY

BUILD SIZE HAS LITTLE COST IMPACT

OVER RESTRICTING MODULE SIZE IS
NOT COST EFFECTIVE IN THE INITIAL
DEVELOPMERNT

RIGID ADHERENCE TO THE
METHODOLOGY CAN REDUCE COST

THE METHODOLOGY DID NOT
SIGNIFICANTLY REDUCE THE NUMBER
OF ERRORS BUT DID ALLOW EARLY
DETECTION OF MOST ERRORS

THE NUMBER OF DD PATHS 1S DIRECT-
LY RELATED TO LINES OF EXECUTABLE
CODE AND CAN BE USED TO REFINE
COST ESTIMATES AFTER THE DESIGN
STAGE seen

P. Beiford
- CcSC
54 20 of 20

