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Abstract

The purpose of this paper is to present cost and
error data collected during -.he development cycle of a
large-scale software effort, to analyze this data in com-
parison with other available data from similar projects,
and to evaluate the effectiveness of the techniques utilized
on the project. The project being reported on is Com-
puter Sciences Corporation's development of the Central
Flow-Control Software System for ;he Federal Aviation
Administration's Air Traffic Control System Command
Center. Analysis of the cost data provides insight not
only into the added development costs associated with
severely limiting module sizes, but also into the effec-
tiveness of various cost estimation techniques. The
error data analysis supports the usefulness of the soft-
ware engineering techniques which were used on the
project La conjunction with definitive module-level test
requirements. The paper provides a foundation upon
which to establish the development and,data collection
environment :or future software svstems.

Introduction

Major software development projects employing con-
trolled software engineering techniques occur infre-
quently over the life of an organization, tt is even more
uncommon for these controlled projects to have the man-
agement support required to collect sufficient data to
evaluate the techniques utilized. In order that subsequent
developers may have the opportunity to select affective
software engineering techniques, more project details
need to be collected, evaluated, and the results stored
for their use.

This paper describes a ziaior software development
project, the software engineering practices employed,
the data collection procedures and results obtained, and
conclusions about the effectiveness of the practices as
implemented on the project. The experiences gained
from the project were r.ot of the-controlled, psychomet-
ric variety; :he budget and deadlines were real, and the
various lapses in data and, perhaps, in resolution, re-
flect these i'acts. Taking :his ir.to consideration,- the
following Material is presented, not as conclusive proof

of the efficacy of a particular methodology, but as ex-
periences resulting from a representative large-scale
development project.

Project and Approach

The Federal Aviation Administration (FAA) operates
an Air Traffic Control System Command Center (ATCSCC)
whose function is balancing die flow of air traffic so that
in-flight delays are minimized. The Central Flow Con-
trol (CFC) System provides automation support for this
function. A computer complex in Jacksonville, Florida,
is linked with the major FAA nationwide facilities to pro-
vide up-to-date information about proposed flights and
in-flight movements. This demand information is fed
into a data base along with airport capacity information,
and is subsequently used by ATCSCC personnel in on
on-line query environment. The overall system can be
described as an on-line (inquiry), real-time (flight data),
transaction-oriented (Independent asynchronous activities)
information system.

The project was initiated in late 1975. It was de-
cided to establish a rigid software architectural require-
ment and functional .'stimulus/response) specification to
ensure that the system would be able to evolve along with
the application. Maintainability with an emphasis on
modifiability1 was the prime objective prior to contract
initiation. However, a more recent grouping of these
factors indicates that flexibility tended to become the
primary goal, with maintainability second, and reliabil-
ity a weak third for the initial system.-

Toward this end, the FAA specified the functional
requirements,'' utilizing an existing hardware configura-
tion, and provided a baseline operating system. Com-
puter Sciences Corporation sCSCi was competitively
awarded a contract to modify the operating system,
develop data base management and applications software,
and provide support software for system development,
generation, test, and performance evaluation. The
award was made in April 1977, and the system was de-r
livered in January 1979, six months prior to the opera-
tional readiness date of July 1979.

The selection of a development methodology was
based as much on management criteria as on technical
criteria. It was decided to move stepwise through the
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development process, checkpointing each phase by base-
lining the output. With the requirements definition phase
and the functional specification phase completed and
their results baselined, the remaining development effort
was allocated to three major phases: (1) the system de-
sign phase; (21 the unit design, code, and test phase;
and (3) the system test phase. The final two phases were
performed four separate times. Each time a portion of
the software (called a Build) was implemented to demon-
strate a subset of the functional capabilities of the sys-
tem.

Software Engineering Methods

It became clear that successful execution of the'
development phase (within both budget and schedule)
would require careful front-end attention paid to:
(1) product definition, (2) tool utilization, (3) practice
standardization, and (4) organizational structure. An
attempt was made (with varying degrees of success) to
define software and documentation products so that they
would evolve naturally, and so that as much of these
products as possible would be in machine-readable form..
A set of tools and practices were selected to assist in
those areas which had been troublesome in the past, most
notably control and communication. Finally, an organi-
zation was formed based upon a. Work Breakdown Struc-
ture (WBS), which was to serve as an accounting, data
collection, and referencing mechanism as well as a basis
for scheduling.

The system design phase involved the least infusion
of modern practices and yielded the least amount of soft-
ware, engineering data. The products of the phase were
(1) the Program Design Specification (PDS), (2) the Sys-
tem Development Plan, and (3) the System Test Plan.
The PDS was developed using Hierarchy plus Input-
Process-Output (H-Q?O) diagrams. The Hierarchy (H-)
diagrams eventually evolved-into execution diagrams,
which gained reasonable support, but the EPO diagrams,
which met with some initial success, were quickly sup-
planted by Program Design Language (PDL). The ?DL
allowed for six basic structured constructs. Data was
also addressed hierarchically ia the PDS, *"" the
CODASYL Data Description Language was employed."1

This complemented the PDL, and both were updated for
inclusion in the final documentation.

The unit design, code, and test phase was the most
amenable to incorporation of modern practices and was
the source of the most useful data. Additionally, the
organization was adjusted during this phase to provide
both a Quality Control group and an Independent Data
Base Administrator.

Unit design was accomplished using PDL, and the
unit test specification was generated by automated analy-
sis of the PDL. This tool also verified the PDL for
compliance with project quality standards. The cest
specifications were for unit testing based upon the
decision-co-decision fDD) path structure of the design.

The DD paths were determined from the constructs util-
ized in the PDL and were a relationship of the number of
possible branch paths between constructs. The DD paths
eventually demonstrated some highly advantageous prop-
erties (discussed subsequently in the section entitled
"Presentation of Reduced Data"}. C'nits, or modules,
were constrained to single entry, single exit, and single
function. They were documented at this stage by a
machine-readable Prologue, which contained identifica-
tion, operational-characteristic, cross-reference, data-
definition, and processing-logic information.3 Prologues
were also automatically analyzed for completeness.
Modules were subjected to Walkthroughs,6 and the re-
sultant error data, together with weekly resource ex-
penditure sheets, the module PDL, Prologue, and Test
Specifications were incorporated into individual Software
Engineering Notebooks.

Unit coding and testing was based on the design in the
PDL and Test Specifications. Structured code (in
JOVIAL)7 was derived from the PDL, and Test Proce-
dures were developed based upon the Test Specifications;
both of these items were then incorporated into the note-
books. Data interfaces were controlled by use of the
JOVIAL data-description facility, COMPOOL, which was
regulated by the Data Base Administrator. Resource
utilization and error data were collected as they were in
the previous phase; this data is presented and evaluated
later in the paper.

The system test phase was carried out for each build
by an Independent Test Team composed of both developer
and user personnel, system Test Specifications and
Procedures, in contrast to those at the module level,
were for functional testing, and were traceable back to
the requirements definition phase through the functional
specifications. Errors were recorded- on Test Team
Trouble Reports, which were included in Build Test Re-
ports.

Automated documentation tools were employed at
the system level. The JOVIAL Automated Verification
System (JAVS)3 was modified for this project, and was
used to produce program hierarchy 'calling tree), pro-
gram structure (DD paths), and cross-reference infor-
mation, as well as to support the degree of test case
coverage obtained. Intermediate JAVS outputs were
also scanned by a specially developed software tool,
which produced a Data Item Dictionary.

CFC Software Data Collection

Three general categories of data were collected on
the CFC Project: activity data, software module struc-
tural data, and software error data. The activity data
collected was man-hours expended by project personnel
at the software subsystem level. Software module struc-
tural data included counts of the total number of execut-
able source statements plus a count of the number of
DD paths from the design for each module. Software
error data included both walkthrough and execution time
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errors. Walkthrough errors were recorded by quality
control at the design walkthrough, and execution errors
were recorded by the responsible programmers or she
Independent Test Team, depending on the level of test-
ing. Error data was collected both at the module (or
unit) level and at the system level.

The procedures for data collection were based on the
types of data and the mechanism used to collect each
type. The data types and the corresponding basic collec-
tion devices were as follows:

«. Activity data

Personnel: time accounting given at the
subsystem level

• Module structural data

Physical structure: module source code

Logical structure: module PDL and test
procedures

• Software error data

- —Module: programmer error log

System: test team trouble reports

Control oi data collection was maintained within the
development departments and monitored by the quality
control staff on a continuing basis. Organization and
delivery of the final data package was performed by the
quality control staff. The following subsections describe
in detail the forms and procedures used to collect and
summarize the three data types.

Activity Data Collection

Time data in man-hours was collected for all per-
sonnel on the project at the functional subsystem level.
This time data was collected by means of a CFC Project
Data Collection Form that was distributed weekly and
filled out along with weekly time cards by each person on
the project. The number of man-hours expended In each
subsystem for design, code, test, library maintenance,
throwaway code development, management, and quality
assurance functions performed within the subsystem was
compiled from this data.

The data was collected for each of the four builds of
the system. Within each build, data was presented for
the Application/Simulation (APS) Subsystem, the Data
Assembler (DA) Subsystem, the Data Base (DB) Subsys-
tem, and the Data Reduction and Analysis (RA) Subsystem.
These subsystems represented the major functions per-
formed by the CFC System that were programmed in
JOVIAL. The time spent in functional design and system
level testing was not included in the build man-hour re-
sults.

Software Structural Data Collection

Two types of software structural data were obtained
from the CFC Development Project. The data was ac-
quired from examination of the module source code and
PDL. The module source code data was an estimate of
the physical size of a module measured by a count of the
total number of executable source statements. The PDL
data defined the logical structure of the design of the mod-
ule, obtained by a count of the total number of DD paths
in the design. Another measure of logical structure
utilized was a count of the number of test cases used to
exercise all the DD paths identified within a module
during the design phase. The test case data was obtained
from the test procedures in the Software Engineering
Notebooks.

Software Error Collection

Software error data on the CFC Project was collected
during the design and testing phases. Errors detected in
the design phase were measured by the total number of
design errors discovered during the design walkthrough
of a given module. These error counts were collected
by the quality control staff during each walkthrough.

Errors encountered during module or unit level test-
ing were collected by the responsible programmer and
summarized for each build. System level errors were
collected by the Independent Test Taam for each unsuc-
cessful run. The failure information was derived from
an analysis of the program output. If a failure was
caused by more than one error, all errors were listed.
Errors were also recorded during system acceptance
testing. While not on a build basis, these errors pro-
vided information about problems encountered during the
integration of the floal system.

Presentation of the Data

This section presents the raw data collected on the
CFC Project. Data is presented in the three categories
described in the preceding section, and is presented for
every build in which it was available.

Activity data is shown in Tables 1 through 4.
Tables 1 through 3 show the man-hours spent per subsys-
tem in the activity categories of detailed design, code,
unit test, library maintenance, throwaway code develop-
ment, and management and technical direction by task
leaders in' the subsystem plus quality control functions
performed by subsystem personnel. Data is presented
for Builds 2, 3, and 4 of the system. Build 1 of the sys-
tem is not presented sine* it occurred at a rime prior Co
the institution of the reportng mechanism. However,
total man-hours statistics are available for Build 1.
Table 4 presents the total man-hours spent per subsystem
for each of the four builds of the system. Tables 5
through 7 show the number of executable lines of code,
the number of DD paths, and the number of test cases,

37'

P. Belford
CSC
3 of 20



TABLE 1. BUILD 2 MAN-HOURS IN REPORTED ACTIVITY CATEGORIES

CAITIOKY
Dt.ljB

:od»

T«t

-iar»ry
.".•int.
Throwway

:a<i«

3t:i«r«

TOTALS

APS
SUBSYSTEM

129:

"31

iir*

us
T!

!«»

-S9»

:A
=U3SYSTT)I

w

-32

ilu

111

;:i
;u6

:r:i

:B
SUBSYSTtS

.«
:s;

•11

122

139

IT!

::3o

>.»
Si.'BSYSTT!'

;
:
: •

: ;

: i
3

TOTALS

:s-o

1!25

::H
:-*a

!3S

595 ,

"" !
TABLE 2. BUILD 3 MAN-HOURS IN REPORTED

ACTIVITY CATEGORIES
TABLE 3. BUILD 4 MAN-HOUHS LN REPORTED

ACTIVITY CATEGORIES

1 CATtMRT

-•sipi

:«i«

T«st

-lirary
-«lnt.
T>.rov«w«y

:o<:>
:tr.ir«

: TTTALS

APS
suisYsm

;337

"IT

:2is

192

;5

313

3A
SL'BSYSTm

•T5

!31

HS

:ia

:u

.61

1527

38
SUBSIST™

378

591

- >

5 =

-:c9

:39i

** ;
3U5SYSTES

;!5T ;

m ;

:138 :

33

•_»s

•i» ;
:973

TOTALS

;:»7

:;03

-080

!1T

-13

1M1

l-iS7

CATtscmr
:..i(n

:*.

T.,t

"«ln-'T

^nr*'
:tn.r-

TOTALS

APS
SUBSYSTOt

-15

ir:

•35

-31

iO

361

:T-S

3* i :B j ?A
suasrsTEH ! suBSYSTrx ! rjasTSTSM

:<<. ; 7.3 .-.a:

136 i -33 :97

iS7 j :oi ;:3

H9 ; 1:3 i.

' ! "

:T: ! !22 :•-?

i!.7 ; ::3o :--

TOTALS

15-.3

llil

.i::

'.-'.

151

IK:

5 3 9 3

TABLE 4. MAN-HOURS EXPENDED BY SUBSYSTEM
FOR EACH BUILD
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respectively, for each of the four system builds. Table 3
gives the error statistics collected for Builds 2 and 3 of
the system and the total number of software errors de-
:ected during acceptance testing. Build 1 was completed
before error reporting mechanisms were in place, and
Build 4 results were not available.

TABLE 3. ERROR STATISTICS FOR THE CENTRAL
FLOW CONTROL SYSTEM

BUILD

2

3

Acceptance
Testing

DESIGN
WALKTHROUGH

Ut

63

S/A

MODULD'1

. LEVEL
TESTING

290

223

N/A

SYSTEM
LEVEL
TESTING

ia

20

21

"APS and DA Subsystems only.

Presentation of Reduced Data

The purpose of this section is to analyze the data
presented in the preceding section. This analysis at-
tempts :o provide Quantitative evaluation of the effective-
ness of the software engineering techniques utilized on

the CFC Project. Since the project has been completed
and accepted by the FAA, this analysis evaluates the
final results of the project.

The first analysis performed concerned the relation-
ship of the sizes of software entities compared :o 'the
cost of their development. The size of a software entity
was measured in terms of both the number of lines of
executable source code and the number of decision paths
(DD paths) in the design. Cost was always measured in
man-hours expended.

Module Level and Build Level were the two software
entities evaluated. At the module level. Figure 1 pre-
sents a plot of the number of man-hours expended versus
the number of lines of executable code for each of a ran-
domly selected set of 50 modules. Any conclusive trend
is not at all obvious by analysis of the curve. However,
since the true comparison of developmental costs is ia
terms of the number of lines of code produced per man-
hour expended, further evaluation was performed.

The data, therefore, was evaluated in terms of the
number of lines of code developed per man-hour (a
"relative" measure of cost) as a function of the number
of lines of code in the module (Figure 2). If a curve
could be formed from the data, :he optimal module size
would be the highest point on the curve (i. e., the module
size for which the maximum number of lines of code
would be developed in each man-hour expended).

The data presented in Figure i shows that module
sizes of between 0 and 40 lines of executable source code
never (in fact, without exception in this sample) produce
a productivity of more than one line of code produced per
aian-hour expended. However, for modules of greater

FIGURE 1. CORRELATION OF MAN-HOURS TO MODULE SIZES
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FIGURE 2. CORRELATION OF LINES OF CODE DEVELOPED PER MAN-HOUR COMPARED TO MODULE SIZE

than 40 lines of executable source code (greater than 100
without exception), the productivity is generally greater
than one line of code produced per man-hour expended.

Although the data presented only reflects develop-
ment costs and not operational and maintenance costs,
the general theory of restricting modules to 50 lines of
executable source code or less does not appear to be cost
effective when considering developmental costs only. If
the "single entry, single exit, single function" rule is
strictly adhered to, the module size should not be utilized
as a standard. In contrast, it appears that modules of
40 lines of code or greater should be encouraged. It is
important to note that the CFC modules, regardless of
size, followed the "single entry, single exit, single func-
tion" concept of module definition.

In order to support these conclusions, a measure of
module complexity, number of DD paths in the design,
was also compared to developmental costs. The same
50 modules were utilized. This time, the relative cost.
in number of DD paths generated per man-hour was
plotted against the complexity in number of DD paths.
Figure 3 shows the results of this analysis. Again, the
more complex ie module, the lower :he relative devel-
opmental costs.

These cost analyses seem to point out that within the
•'single entry, single exit, single function" concept, the
larger the module, the lower the per-unit-of-size devel-
opmental costs.

The results of this analysis seem to indicate that
restrictions limiting module size should not be a driving
factor. Single-function modules of 100 or even 200 lines
of executable source code should be acceptable.

The relative size of a build was also analyzed. Fig-
ure 4 shows the relationship between the size of a build
in number of lines of executable source code per subsys-
tem and the number of man-hours expended against that
subsystem in a build. This plot shows an obvious cor-
relation of size to cost. With the single exception of the
DA Subsystem for Build 3, which was accomplished on
third shift (the implications of which will not be discussed
here), the cost-to-size relationship is linear. Hence,
if the single-function module concept is controlled, the
size of a build appears to have no impact on the relative
cost of producing that build.

Another analysis was performed to evaluate :he re-
lationship between actual development costs and cost esti-
mation techniques. The number of man-hours expended
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per line oi executable source code was compared to the
number of man-hours expended per DD path La the de-
sign and to the number of man-hours expended per test
case (see Table 9). This comparison was accomplished
using a coefficient of variation (i. e., the ratio of the
standard deviation to the mean).

TABLE 9. COSTING PARAMETER COMPARISONS
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The statistical correlation was not diverse enough
to support differentiation between DD paths in the design
and lines of code in terms of total cost estimation tech-
niques. Number of man-hours per test case was shown
not to be a viable cost estimation technique due to its
high coefficient of variation (COV). Therefore, a sepa-
rate analysis was performed to determine a better cost-
ing parameter that could be utilized at each of the detail
design, coding, and testing phases of development.
Since the'known quantity at the completion of each phase
is DD paths in the detail design phase, lines of code in
:he coding phase, and test cases in the testing phase,
this information could be utilized to refine original cost
estimates as a project progresses. The data presented
on costing provides enough information to support de-
velopment of initial cost estimation algorithms based on
actual development products (e.j., DD paths, lines of
code, and test cases).

An analysis was performed on these . ist estimations
utilizing the data from the APS Subsystem for all four
builds. Three cost estimation algorithms were developed,
one for each development phase. The basis for these al-
gorithms is the data previously presented in Table 9.
The "Lines of Code" algorithm utilizes 1. 34 times the
number of lines of executable source code to yield the
estimated number of man-hours. The "DD-Path" algo-
rithm utilizes 5. 34-times the number of DD paths in the
design to yield tie estimated number of man-hours. The
"Test Case" algorithm utilizes 14.76 times the number
of test cases to be performed. Ail three algorithms were
then applied to the other subsystems. These results are
presented in Table 10.

The low "average percentage deviation" of the DD-
path algorithm shows that the number of DD paths pro-
vides an accurate prediction of the total man-hours
required. This technique provides the added advantage
of supporting periodic updating of the estimation as the
actual number of DD paths is finalized. !f PDL is used,
this variable is known early (i. e., at the completion of
the design phase).

The effectiveness of the software engineering tech-
niques utilized was also analyzed. The true effectiveness
of the software engineering techniques can best be meas-
ured by the reliability and maintainability of the product.
Although data is not yet available to support definitive
reliability and maintainability measures of the CFC Sys-
tem, error rate data was available within CFC and was
used to estimate the effectiveness of the software engi-
neering techniques employed on the project.

.In order to evaluate the CFC error rate with some
defined industry averages, the Rome Air Development
Center (RADC) Software Reliability Study9 was utilized.
This report presents the error rate of two JOVIAL proj-
ects at system level testing. This error rate worked out
to be about 1 error in every 35 lines of code. The CFC
error rate, calculated from Tables 5 and 3, shows
1 error in every 28 lines of code, detected at the module
level. At the system level testing of CFC, an order of
magnitude fewer number of errors (i.e., 1 error for
every 382 lines of code) than at the module level were
found. During final acceptance level testing, a 3-month
user/customer-conducted testing phase, still fewer
errors were found. In the 23,.742 lines of executable
code discussed in this paper, only 21 software errors
were detected. This is an error rate of 1 error in every
1,131 lines of code.

The error rate implies two conclusions about the
development approach. First, the software engineering
techniques utilized were very effective. The C?C error
detection rate comparable to that reported in the RADC
study was noticed an entire development phase earlier.
More errors were found earlier, presumably leaving
fewer errors in the final system. This should result in
a significant cost savings, since the cost to correct on
error increases the longer it remains in the code. Sec-
ond, the testing approach proved to be quite effective.
The quantification of module level testing requirements,
specifying that all DD paths in the design must be exer-
cised at the module level, provided significant advantages
over the traditional testing approach carried on by the
programmers. This concept proved to exercise 93 per-
cent of all the decision paths in the code. Additionally,
within one subsystem where these unique module level
test specifications were rigidly applied, the acceptance
testing error rate was only 1 error detected in every
I, 371 lines of executable code; whereas within a subsys-
tem where module level test specifications were loosely
applied, the acceptance srror rate vas I arror detected
in every 733 lines of code. This roughly implies an
overall effectiveness increase of over 100 percent
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per line of executable source code was compared to the
number of man-hours expended per DD path in the de-
sign and :o the number of man-hours expended per test
case (see Table 9). This comparison was accomplished
using a coefficient of variation (i.e., the ratio of the
standard deviation to the mean).

TABLE 9. COSTING PAUAMETEB COMPARISONS
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The statistical correlation was not diverse enough
to support differentiation between DD paths in the design
and lines of code in terms of total cost estimation tech-
niques. Number of man-hours per test case was shown
not to be a viable cost estimation technique due to its
high coefficient of variation (COV). Therefore, a sepa-
rate analysis was performed to determine a better cost-
ing parameter 'h«* could be utilized at each of the detail
design, coding, and testing phases of development.
Since the known quantity at the completion of each phase
is DD paths in the detail design phase, lines of code in
the coding phase, and test cases in the testing phase,
this information could be utilized to refine original cost
estimates as a project progresses. The data presented
on costing provides enough information to support de-
velopment of initial cost estimation algorithms based on
actual development products (e.g., DD paths, lines of
code, and test cases).

An analysis was performed on these cost estimations
utilizing the data from the APS Subsystem for all four
builds. Three cost estimation algorithms were developed,
one for each development phase. The basis for these al-
gorithms is the data previously presented in Table 9.
The "Lines of Code" algorithm utilizes 1. 34 times the
number of lines of executable source code to yield '.he
estimated number of man-hours. The ''DD-Path" algo-
rithm utilizes 5.34 times :he number of DD paths 12 r-he
design to yield the estimated number of man-hours. The
"Test Cose" algorithm utilizes 14.76 cimes the number
of test cases to be performed. All three algorithms were
then applied to the other subsystems.. These results are
oresented in Table 10.

The low "average percentage deviation" of the DD-
path algorithm shows that the number of DD paths pro-
vides an accurate prediction of the total man-hours
required. This technique provides the added advantage
of supporting periodic updating of the estimation as the
actual number of DD paths is finalized. Lf PDL Is used,
this variable is known early (i.e., at the completion of
the design phase).

The effectiveness of the software engineering tech-
niques utilized was also analyzed. The true effectiveness
of the software engineering techniques can best be meas-
ured by the reliability and maintainability of the product.
Although data is not yet available to support definitive
reliability and.maintainability measures of the CFC Sys-
tem, error rate data was available within CFC and was
used to estimate the effectiveness of the software engi-
neering techniques employed on the project.

In order to evaluate the CFC error rate with some
defined industry averages, the Rome Air Development
Center (RADC) Software Reliability Study9 was utilized.
This report presents the error rate of two JOVIAL proj-
jcts.at system level testing. This error rate worked out
to be about 1 error in every 35 lines of code. The CFC
error rate, calculated from Tables 5 and 3, shows
1 error in every 23 lines of code, detected at the module
level. At the system level testing of CFC, an order of
magnitude fewer number of errors (i.e., 1 error for
every 332 lines of code) than at the module level were
found. During final acceptance level testing, a 3-month
user/customer-conducted testing phase, still fewer
errors were found. In the 23,742 lines of executable
code discussed in this paper, only 21 software errors
were detected. This is an error rate of 1 error in every
1,131 lines of code.

The error rate implies two conclusions about the
development approach. First, the software engineering
techniques utilized were very effective. The CFC error
detection rate comparable to that reported in the RADC
study was noticed an entire development phase earlier.
More errors were found earlier, presumably leaving
fewer errors in the final system. This should result in
a significant cost savings, since the cost :o correct an
error increases :he longer it remains in the code. Sec-
ond, the testing approach proved to be quite effective.
The quantification of module level testing requirements,
specifying that all DD paths in the design must be exer-
cised at the module level, provided significant advantages
over the traditional testing approach carried on by the
programmers. This concept proved to exercise 93 per-
cent of all the decision paths in the code. Additionally,
within one subsystem where these unique module level
test specifications were rigidly applied, the acceptance
testing error rate was only I error detected in every
1,571 lines of executable code; whereas within a subsys-
tem where module level test specifications were loosely
applied, the acceptance error rate was 1 error aatected
in every T33 lines of code. This roughly implies an
'overall effectiveness increase of over 100 percent
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TABLE 10. COST ESTIMATION COMPARISONS

"Lines of Cede"
Algorithm

Actual Estimated Deviation
Man-Hours Man-Kours ( % )

Build 1 DB 398 99U 1.0.59

Build 1 ;A 29U3 3601 25.56

Build 2 23 2030 1696 16. *S

3uild 2 CA 2729 30U7 11.65

3uild 3 DB 2881 3792 31.52

Build 3 3A 2537 S397 112.73

Build 3 SA 3973 553U UQ.37

2uild - -3 2390 2122 ' l . = 3

Build •*. 3A 1337 1176 37.53

Build - *A 2637 ' 2510 <*.82 •

Average 29. *2
Deviation

attributable to using these module level test specifica- 3.
tions.

Summary
4.

In conclusion, the authors feel that a significant base-
line has been established in the quantification of software
engineering techniques. The success of the CFC project, 5.
together with the supporting data that was collected, pro-
vides a foundation upon which to build successor systems.
The key factors to be considered in setting up -these fu-
ture system programs is to understand the development 5.
environment, to collect data during the development ef-
fort ~o support ihe upgrading of projections, and to sup-
port the periodic evaluation of the data to provide insight
into the product. This should provide sufficient visibil- 7.
ity to keep a project out of trouble, while at the same
time supporting evolution of more effective project plans.

- - - . . . 3. .
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TESTING METHODOLOGY

• DISCIPLINED APPROACH

• TEST SPECS GENERATED FROM PDL

• TESTS EXERCISE ALL DD PATHS IN DESIGN

• VERIFIED AT DESIGN WALKTHROUGHS

RESULTS

• 1 ERROR PER 28 LINES OF CODE AT MODULE LEVEL

• 1 ERROR 382 LINES OF CODE AT SYSTEM LEVEL

• 1 ERROR PER 1131 LINES OF CODE AT ACCEPTANCE
LEVEL

NOTE: SUBSYSTEM RIGIDLY FOLLOWING PDL/TESTING
STANDARDS
1 ERROR PER 1871 LINES OF CODE DETECTION
AND CORRECTION TIME AVERAGED 8 PERSON
HOURS.

SUBSYSTEM LOOSELY FOLLOWING DL/TESTING
STANDARDS
1 ERROR PER 733 LINES OF CODE DETECTION AND
CORRECTION TIME AVERAGED 40 PERSON
HOURS. UL+,.
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SUMMARY

• BUILD SIZE HAS LITTLE COST IMPACT

« OVER RESTRICTING MODULE SIZE IS
NOT COST EFFECTIVE IN THE INITIAL
DEVELOPMENT

• RIGID ADHERENCE TO THE
METHODOLOGY CAN REDUCE COST

0 THE METHODOLOGY DID NOT
SIGNIFICANTLY REDUCE THE NUMBER
OF ERRORS BUT DID ALLOW EARLY
DETECTION OF MOST ERRORS

• THE NUMBER OF DD PATHS IS DIRECT-
LY RELATED TO LINES OF EXECUTABLE
CODE AND CAN BE USED TO REFINE
COST ESTIMATES AFTER THE DESIGN
STAGE BEL-B-78
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