
PROCEEDINGS FROM
THE THIRD SUMMER SOFTWARE

ENGINEERING WORKSHOP

{NASA-TH-84195) PfiOCEEDINGS IBOM IHE THIBD . K82-74136
S D M M E B SOFTiARE E N G I N E E R I N G I(OBKSHO£ (N A S A) Tf l f iO

p N82-74141
Unclas

00/61 OS833

HELD ON

SEPTEMBER 18, 1978

AT

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

i

NASA
National Aeronautics and
Space Administration

PROCEEDINGS

OF

THIRD SUMMER SOFTWARE ENGINEERING WORKSHOP

Organized By:

Software Engineering Laboratory
GSFC

September 18, 1978

GODDARD SPACE FLIGHT CENTER
Greenbelt, Md.

SCHEDULE FOR SOFTWARE ENGINEERING WORKSHOP

8:45 am Introduction — F. E. McGarry, GSFC

i
9:00 am Panel #1 - 'The Data Collection Process'

Chairperson: Gerry Page, Computer Sciences Corporation .
Member 1 David Weiss, Naval Research Lab
Member 2 Bill Curtis, General Electric
Member 3 Pat Ryan, SAI

10:30 am Coffee Break

10:45 am Panel #2 — 'Validation and Verification of Software Development Models'

Chairperson: Vic Basili, University of Maryland
Member 1 Larry Putnam, Quantitative Software Measurement
Member 2 Sylvia Sheppard, General Electric
Member 3 Doug Brooks, IBM Corporation

12:15pm Lunch

1:15 pm Panel #3 — 'Measuring Software Development Methodologies'

Chairperson: Marv Zelkowitz. University of Maryland
Member 1 Bob Reiter, University of Maryland
Member 2 Phil Milliman, General Electric
Member 3 Paul Scheffer, Martin Marietta Corporation

2:45 pm Coffee Break

3:00 pm Panel # 4 — 'Current Activities and Future Direction'

Chairperson: Frank McGarry, GSFC
Member 1 Lorraine Duval, IITRI
Member 2 Vic Basili, University of Maryland
Member 3 Chuck Everhart, Brown Engineering

4:30 pm Adjourn

PANEL #1

THE DATA COLLECTION PROCESS

Chairperson Gerry Page (Computer Sciences Corp)

Member #1 David Weiss (Naval Research Lab)

Member #2 Bill Curtis (General Electric)

Member #3 Pat Ryan (Science Applications Inc)

DATA COLLECTION FOR THE SOFTWARE ENGINEERING
LABORATORY

David M. Weiss
Naval Research Laboratory

The Software Engineering Laboratory (SEL) is a project started and sponsored by Goddard Space
Flight Center (GSFC) to study software development. The purpose of the SEL is to find ways to
improve the software developed for and by GSFC. The approach used is to collect data for analysis
by monitoring current software development projects. Analysis of the data is expected to provide
insight into such issues as

• What resources are used for different types of projects and during different stages
of a project?

• What activities are in progress during different project stages, and how much effort is
expended on those activities?

• What kinds of changes are made to software as it is being developed, and how are those
changes distributed over the development cycle?

• How good are current software cost estimation techniques?

• How many and what kinds of errors are committed during the software development
cycle?

The preceding and other, similar, analyses will be performed for different software development
methodologies. The results of these analyses are expected to provide the basis for deciding which
methodologies yield better software.

METHODOLOGY

Data collection and analysis for the SEL is a cooperative project among Computer Sciences Corpo-
ration (CSC), GSFC, and the University of Maryland (UM). Data is collected in parallel with soft-
ware development. The data collection instruments are a series of six different forms that focus on
the following areas:

• Definition of the software development methodology used during the project,

• Estimation of manpower arid computer resources needed to complete the project,

• Resources actually used during the project, on a weekly basis,

• Activities (e.g. design, coding, reviews, etc.) occurring during the development,

• Changes made and errors committed during the development cycle.

D.Weiss
NRL

3 Page 1 of 5

FORMS

The forms used by the SEL were developed over a period of about a year and a half. The first step
was to decide on a list of questions of interest to be answered by the study. A set of forms was then
designed to capture the data needed to answer those questions. This process was repeated several
times. The forms were then used on a few projects, and revised. The forms currently in use are
described below.

At the beginning of each project a General Project Summary form is completed providing estimates
of the resources needed and a definition of the methodology to be used on the project. The General
Project Summary is updated midway through the project and at the completion of the project. Each
time a new component of the system under development is identified, a Component Summary Form
is completed describing the component, giving the reason(s) for its existence and, the resources need-
ed to complete it. The Component Summary form is also updated partway through the project
and at the end of the project. On a weekly basis, Resource Summary and Component Status Re-
port forms are completed. The Resource Summary provides, for each person working on the proj-
ect, the amount of time spent on and the computer usage for the project. The Component Status
Report gives, for each programmer, for each component of the project, the amount of time spent in
design, development, testing, and other activities. For each change made to the software, a Change
Report form is completed describing the change. The type of change, the reason for the change, the
amount of time required to make the change, and, for error corrections, the source of the error, the
techniques used for detecting and correcting the error, and the project stage at which the error was
introduced are included on the Change Report form. Finally, for each computer run made during
the project, a Computer Program Run Analysis form is completed, containing the duration, purpose,
and results of the run.

DATA PROCESSING

All data collection forms, except for the General Project Summary, once completed, are initially
manually verified at CSC. They are then sent to GSFC to be encoded for computer entry. Once
encoded, the data are entered into a PDP-11 computer, validated by a program, and written onto a
tape. The tape is then sent to UM, the data invalidated and entered into a data base using the Ingres
data base system on another PDP-11. The data are then analyzed by a set of programs designed to
calculate various parameters of interest.

Because data collection proceeds in parallel with system development, the SEL data collection and
processing procedures offer excellent opportunities for ensuring data accuracy. As an example,
part of the procedure for processing Change Reports allows the reports to be examined by a UM
researcher shortly after they are received at GSFC. If a form is incomplete or inconsistent in some
way, the researcher can then contact the programmer who completed the form to correct the infor-
mation on it.

DATA COLLECTION PROBLEMS

The major problem in collecting and processing SEL data is ensuring the completeness and accuracy
of the data from the time it is collected to the time it is analyzed. Errors are introduced at the time

D. Weiss
NRL

4 Page 2 of 5

the forms are filled out, at the time they are encoded for computer entry, and at the time the encoded
data are keypunched. Many of the keypunching and encoding errors are detected by the validation
programs. Errors made in filling out a form often are only detected when an SEL researcher reviews
the form. Correcting these errors usually requires that the person who completed the form be con-
tacted.

An early problem in processing forms was the volume of data involved. The number of people
needed for encoding and computer entry of the data was significantly underestimated. There are
currently three people assigned to this task full-time.

Other problems involved in data collection are training software development project personnel in
completing forms, and retraining them when the forms are revised, keeping the overhead involved
in filling out forms reasonably low so that it does not significantly interfere with project schedules,
ensuring that the data requested on the forms is sufficient to answer questions of interest, and de-
vising a bookkeeping system to keep track of the whereabouts of all forms from the time they are
completed to the time they are entered in the data base.

D.Weiss
NRL

5 Page 3 of 5

GOALS OF THE SOFTWARE ENGINEERING LABORATORY

• Gain insight into software development process

— What resources are used?

— What activities are in progress at different stages?

— How good are current estimation techniques?

— What kinds of changes are made?

— How many and what kinds of errors are committed?

• Compare different software development methodologies

— Which methodologies produce "better" software?

METHODOLOGY OF SEL

• Cooperative effort among CSC, GSFC, UM

• Collect and analyze data

— Methodology definition (General Project Summary, Component Summary)

— Resource estimation (General Project Summary, Component Summary)

— Resource usage (Resource Summary, Component Status, Computer Program
Run Analysis)

— Activities (Resource Summary, Component Status)

— Changes and errors (Change Report)

DATA COLLECTION

1. Programmers and managers complete forms

2. Forms verified initially at CSC

3. Forms encoded for computer entry at GSFC

4. Encoded data checked by validation program at GSFC

5. Encoded data revalidated and entered into data base at UM

D. Weiss
NRL
Page 4 of 5

CHANGE REPORT FORM PROCESSING

1. Change form completed by programmer at each change

2. Manual completeness check made at CSC

3. Manual completeness and consistency check made by UM

4. Interview with programmer when necessary by UM

5. Encoding for computer entry by GSFC

6. Computer entry and validation at GSFC

7. Validation and data base entry at UM

D.Weiss
NRL
Page 5 of 5

SOME THEORETICAL PRESPECTIVES ON DEVELOPING
A SOFTWARE LIFE CYCLE DATA BASE

Dr. BUI Curtis
sS Software Management Research

Information Systems Programs
C } General Electric Company

Arlington, Virginia

In developing a software life cycle data base, we make the rather obvious assumption that research
is not a scavenger hunt. Although software development efforts generate an enormous assortment
of numbers, research is not an attempt "to salvage usable goods by rummaging through refuse or
discards" (Webster's definition of "scavenge"). Rather, data collection for research purposes should
be designed from a theoretical model of the phenomena to be studied. It is important to identify
the data to be collected from the factors in the model, rather than contorting the model to fit the
data that happen to be lying around. The quality of the resulting data base may also hinge on as-
signing an individual the responsibility of data collection and editing.

In identifying data relevant to each factor in a theoretical model, there are a number of important
considerations. First, the data should be collected at the appropriate level of explanation. The fol-
lowing list represents three possible levels of explanation:

• Software development project

• Programming team

• Individual programmers

Data collected at the project level is not sufficient by itself to explain processes occurring at the
level of the individual programmer. Thus, average lines of code per man-month at the project level
is not an adequate criteria for investigating the productivity of individual programmers. Performance
at the project level involves effort spent integrating the work of programmers and programming
teams above and beyond the work initially expended by programmers in developing their code. In
analyzing data across levels of explanation it is important to specify rules for aggregation which iden-
tify how the work of the parts is integrated into the whole.

Performance itself is an ambiguously used term. Rather than attempting to identify an ultimate
criterion, the wise approach might be to identify multiple criteria at several different levels of expla-
nation. Managers like to talk of meeting schedules within budgets, delivering high quality prod-
ucts. Jim McCall and Gene Walters of our Sunnyvale, CA office have identified myriad attributes
constituting software quality such as reliability, maintainability, portability, efficiency, etc. Re-
garding criteria relevant to schedule and budget, one can collect machine records (runs, errors,
changes, cpu time, etc.), personnel and payroll records (manpower loadings, labor costs, absenteeism,
etc.), and managerial performance ratings. Identification of multiple criteria represents to

B. Curtis
GE

8 Page 1 of 3

software development managers the tradeoffs they must frequently make between schedule, budget,
and quality.

In software life cycle research it is important to distinguish between objective data which are direct
measurements of the phenomena under consideration and subjective data which are reports by proj-
ect participants. While subjective data are important, they should be collected along with rather
then instead of objective data. To evaluate the effect of a modern programming practice solely on
the basis of managerial reports is to introduce into the analysis the perspectives and biases of the
managers which flavor their conclusions about the technique. A warm feeling in the tummy should
be backed by analyses of objective data.

There are two primary research strategies which can be employed in testing hypotheses from theo-
rectical models depending on the type of controls which can be exercised over the variables affecting
performance. In a laboratory situation, experimental controls can be exercised by manipulating the
independent variable(s), holding all other situational factors constant, and minimizing the effect of
individual differences among participants by randomly assigning them to different conditions of the
experiment. The strongest causal statements can usually be made from rigorously controlled experi-
ments. On the other hand, research in field settings must usually reply on statistical controls to study
the effects of different variables. Through the use of multivariate correlational methods such as
structural equation models or time series analysis, underlying relationships can be teased from the
data and different causal models can be compared to determine which is most consistent with the
data at hand. In using either experimental or statistical controls, it is always important to identify
both the factors which may moderate the relationships observed and the populations to which the
results can be generalized.

The Software Management Research Unit at General Electric is currently conducting research proj-
ects using each type of control discussed above. In subsequent articles, Sylvia Sheppart will report
on our experimental work for the Office of Naval Research on human factors in software engineer-
ing and software complexity metrics. Phil Milliman will report on our work for Rome Air Develop-
ment Center evaluating the effects of modern programming practices on software development
projects.

In summary we propose the following guidelines for software life cycle research:

• Begin with a theoretical model

• Identify an appropriate research strategy

• Appoint someone responsible for data collection

• Collect data which is

— appropriate to the level of explanation

— objective

— longitudinal

B. Curtis
GE

9 Page 2 of 3

• Identify multiple criteria

• Hire a good statistician

ACKNOWLEDGEMENT

Work from which this paper was drawn was performed pursuant to contracts #N0014-77-C-0158 with
Engineering Psychology Programs, Office of Naval Research and #F30603-77-C-0194 with Rome Air
Development Center. The views expressed in this paper, however, are not necessarily those of either
the United States Navy or Air Force or the Department of Defense.

B. Curtis
GE

10 Page 3 of 3

"THE DATA COLLECTION PROCESS"

Pat Ryan, SAI

Extensive error and production data has been collected on two software products developed in the
Huntsville Office of SAI. Specifically, the following kind of data has been collected and is being
tabulated.

• Modules vs. Number of Errors

• Personnel vs. Number of Errors

• Months vs. Number of Errors

• Number of Each Error Type
(39) Possible Types)

• Modules vs. Number of Runs

• Modules vs. Total CPU Time

• System Builds vs. CPU Time

• System Builds vs. Number of Errors

On the basis of the above efforts we feel as though a productive data collection effort can be carried
out on most projects as long as it is of reasonable overhead and non retributory to those partici-
pating in its collection. Further, we feel as though the collection process itself will raise the inherent
quality of the work being monitored.

P. Ryan
SAI

11 Page 1 of 6

SOFTWARE SHOULD BE

• CORRECT — with respect to its requirements

• ROBUST — with respect to its inputs and modifications

P. Ryan
SAJ

1 *• Page 2 of 6

SOFTWARE ERRORS

• In requirements, because of misunderstanding, poor judgement, on inconsistency

• In Design or Code, because of syntactics or poor judgements

• Inconsistencies between consecutive stages.

P. Ryan
SAI

13 Page 3 of 6

PROBLEM REPORT

•4
-I.

2

3

4

5

6

7

2 ~ "
PROBLEM REPORT NUMBER

TYPE OF CHANGE

1. Error 1 5

2 .a Improvement

TYPE OF IMPROVEMENT

1. Delete Unnecessary Requirement
2. Additional Capabilities
3. Increased Efficiency
4. Analysis Aid
5. Other '°

ERROR/IMPROVEMENT DESCRIPTION 2

DATE ? / / I

TYPE OF ERROR

Use trror Categorization 1S~T
IMPACT OF IMPROVEMENT

1. Major
.2. Moderate
3 . Minor |

)

MO^JLE(S) AFFECTED 2

I I ; 1
SOLUTION DATE , j / | /

SOLUTION DESCRIPTION 2

REVIEW COMMITTEE USE ONLY

1. Shc'Jld ^e Reviewed
':. . i:".:.u_J NOT. Se KL-:;vie«'-;d
3. Program L-.=:VciL-pT.i.-nr Error Review"

AZ; iEK DoiCISIC.:.*

1. Approved For Correction
2. Disapproved

APPROVAL:

/ /

REASON FOR DISAPPROVAL

1. Hardware Problem
2. Duplication
3. High Cost
4 . No Problem i 2
5. Other

CORRECTION PERSONNEL ASSIGNED (Initials)

SOLUTION REVIEW DATÊ / /

1 (
-BASELINE VERSION -UPDATE DATE - • ,

* CLOSED OUT DATE / | I / I
*

* APPROVAL:
*
*

SOLUTION APPROVAL:

/

*

it

*

*

*

14

P. Ryan
SAI
Page 4 of 6

SYSTEM TEST REPORT

Module Names:

Testing Period: Start - / / Finish -

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CPU Time
min sec

Error Numbers Comments

•

15

P. Ryan
SAI
Page 5 of 6

PERSONNEL ACCEPTANCE

Data Collection Effort should be

• of minimal overhead effort to personnel

• non-retributive

P. Ryan
SAI

16 Page 6 of 6

PANEL#2

VALIDATION AND VERIFICATION OF SOFTWARE
DEVELOPMENT MODELS

Chairperson Vic Basili (University of Md.)

Member #1 Larry Putnam (Quantitative Software
Measurement)

Member #2 Sylvia Sheppard (G.E.)

Member #3 Doug Brooks (IBM Corporation)

17

EXAMPLE OF AN EARLY SIZING, COST
AND SCHEDULE ESTIMATE FOR AN APPLICATION

SOFTWARE SYSTEM

© Lawrence H. Putnam
Quantitative Software Management, Inc.

1057Waverley^Way
McLean, VA 22101

ABSTRACT

Software development has been characterized by severe cost overruns, schedule slippages and an
inability to size, cost and determine the development time early in the feasibility and functional
design phases when investment decision must be made. Managers want answers to the following
questions: Can I do it? How much will it cost? How long will it take? How many people? What's
the risk? What's the trade-off? This portion of the paper shows how to size the project in source
statements (Ss), how to relate the size to the management parameters (life cycle effort (K) and de-
velopment time (t^)] and the state-of-technology (Cp,) being applied to the problem through the
software equation, Sg = C^ K1^3t^4^3. The software equation is then solved using a constraint
relationship K = I V D I tj3 , wherelVDl is the magnitude of the difficulty gradient empirically found
to be related to system development characteristics measuring the degree of concurrency of major
task accomplishment. Monte Carlo simulation is used to generate statistics on variability of the ef-
fort and development time. The standard deviations are used to make risk profiles. Finally, having
the effort and development time parameters, the Rayleigh/Norden equation is used to generate the
manpower and cash flow rate at any point in the life cycle. The results obtained demonstrate that
engineering quality quantitative answers to the management questions can be obtained in time for
effective management decision making.

BACKGROUND AND APPROACH

Overthe-past four years the author has studied the manpower vs time pattern of several hundred
medium to large scale software development projects of different classes. These projects all exhibit
a similar life cycle pattern of behavior — a rise in manpower, a peaking and a tailing off. Many of
these projects (and all the large ones) follow a time pattern described by the life cycle curves of

"Norden (7,8) which are of the general Weibull class and more specifically the Rayleigh form,
i

y = K/tj2 . t . e ' d , where y is the manpower at any time t; K is the area under the curve and
is the nominal life cycle effort in manyears; t^ is the time of peak manpower in years and corre-
sponds very closely to the development time for the system.

Even though large systems seem to follow this general pattern, some small systems do not. They
seem to have a more rectangular manpower pattern, The reason for this is that the applied man-
power pattern is determined by management and by contractual agreements. Many small projects

L. Putnam
QSM, INC.

18 Page 1 of 40

are established as level-of-effort contracts — hence rectangular manloading. For large projects this
is generally inadequate because managers have a poor intuitive feel for the resources to do the job.
Accordingly, they tend to respond to the needs of the system reactively. This results in time lags
and underapplication of effort at some instant in time, but the effect is a reasonably close approxi-
mation to Rayleigh manloading.

The author has shown in earlier works (5-6) that there is a Rayleigh law at work. It is the 1st sub-
cycle of the overall development curve called the design and coding curve (detailed logic design and
coding). This is also a manpower curve that is proportional to the analyst and programmer man-
power — the direct productive manpower. This curve is denoted y[. Its form is

y, = K/td
2 t e ~3t2 /td

2 (MY/YR) when related to the original definition of K and td for the overall
burdened life cycle curve. When this curve is multiplied by the average productivity (PR) for the
project it yields the rate of code production.

dSs = S = 2.49 PR y,, where the 2.49 is
dT

necessary to account for the definition of productivity as a burdened number (i.e., includes over-
head and support activities). Now the time integral of the rate of code production yields the total
number of source statements,

oo

S =/ .dSdt=M2.49/ y id ts o dt o

S. =TR. 2.49.K/6.
o

The author has found that the PR is related to the Rayleigh parameters K and td in the following
manner (6):

"PR = Cn (K/td
2)"2/3 where the term K/td

2 has been defined as the system difficulty in terms of
effort (K) and time (td) to produce it and Cn is a quantized constant defining a family of such curves.
Cn is a channel capacity measure in the information theory sense, but in a more practical sense, it
seems to be a measure of the state-of-technology being applied to a particular class of system.

Substituting for PR, we obtain the software equation:

Ss = 2.49 Cn(K/td
2) -2/3 K/6

Ss = CK K1/3 td
4/3, where CK has now

subsumed =^2 Cn.
6

Having this expression which now relates the product in source statements to the Rayleigh man-
power parameters (which are also the management parameters), we turn to a practical way in which

L. Putnam
QSM, INC.

19 Page 2 of 40

to estimate the size (Sg), effort (K) and development time (t,j) of a software project early in the re-
quirements and specification phase of the project. This will let us answer the management questions
necessary for effective investment decisions for the software project.

We will do this in the form of a case history for a project we will call SAVE. First, we will show a
way to obtain a good estimate of the number of source statements. We'll plot the software equa-
tion and establish a feasible region for our development time parameters, we will impose a con-
straint relation involving K and (t^). We will do a Monte Carlo simulation to generate variances for
K and (tj). With these numbers in hand, we can then do a trade-off analysis, pick a reasonable effort
(cost) time combination and complete our translation into quantitative answers to the management
questions. The answers we obtained will be close to optimal for the given constraint and, moreover,
we will automatically have a sensitivity and risk profile.

INITIAL SIZING

Given the broad, preliminary design of SAVE consisting of the processing flow of the major func-
tions and the estimates by the designers of the size range of the major functions, we can make a
preliminary estimate of the development time, development effort and development cost to build
the system.

The input data from the project team are in the form of size ranges for each-major function. Three
or four team members estimated the size of each function as follows:

— Smallest possible size (in source statements) — a

— Most likely size — m

— Largest possible size - b

These were averaged for each function and resulted in the first 3 columns of Table 1. This was in
effect a Delphi polling of experts and their consensus. (Having done this with several groups of sys-
tems engineers, it is interesting to note that they are very comfortable with this procedure.)

Note that this results in a broad range of possible sizes for each function and that the distribution is
skewed on the high side in most cases. This is typical of the Beta distribution, the characteristics of
which are used in PERT estimating. We adopt the PERT technique to get an overall system size
range and distribution.

1. An estimate of the expected value of a Beta distribution is:

E, = a + 4m + b

The overall expected value is just the sum of the individual expected values.

N

E = 2 Ej .

1 — j L. Putnam
QSM, INC.

20 Page 3 of 40

This is the sum of the fourth column of Table 1 (98475 Sc),o

2. An estimate of the standard deviation of any distribution (including Beta) is the range
within which 99% of the values are likely to occur divided by 6, i.e,

Oj = |b-a| 16

The overall standard deviation is the square root of the sum of the squares of the individual stan-
dard deviations, i.e.,

/N \l/2
atot = I 2 °i2

V"
This results in a much smaller standard deviation than one would "guess" by just looking at the in-
dividual ranges: the reason is that some actuals will be lower than expected (Ej); others will be
higher. The effects of these variations tend to cancel each other to some extent. This cancelling
effect is best represented by the root of the sum of squares criterion.

The result is

E = 98475 source statements

#tot = ± 7081 source statements

and the 99% range is 77,000 - 120,000 Ss, or we are 99% sure that the ultimate size will be in this
range if the input estimates do not change. Of course, if the input estimates change, we should redo
our calculations and revise the results accordingly.

Major Function

Maintain
Search
Route
Status
Browse
Print
Cser Aids
Incoming Msg
Sys Monitor
SysMgt
Comm Proc

Least

a

8675
5377
3160
850

1875
1437
6875
5830
9375
6300
3875

Most
Likely

m

13375
3988
3892
1425
4052
2455

10625
3962

14625
13700
3975

Most

b

18625
13125
8800
2925
8250
6125

16250
17750
28000
36250
14625

Expected

Ei
13467
9109
4588
1579
4389
2897

10938
9905

16979
16225
9400

98475

Standard
Deviation

ai
1658
1258
940
346

1063
781

1663
1987
3104
4992
1458
7081

Table 1.

21

L. Putnam
QSM, INC.
Page 4 of 40

DEVELOPMENT TIME-EFFORT DETERMINATION

Table 2 is a result of using the software equation which relates the product in source statements
to the effort, development time and state-of-technology being applied to the project. The equation
is derived partly from theory and partly from an empirical fit of a substantial body of productivity
data. Ihe form of the equation is:

where Ss is the number of end product delivered source lines of code, an information measure.

Ck is a state-of-technology constant. For the environment anticipated for SAVE this constant is
10040. C^ can be determined by calibration against the software equation using data from proj-
ects developed by the same software house using similar technology and methods.

-3ff

-\<r

E

+ \a

+3*

Ss

77000

91394

98475

105556

1 20000

t d =2yrs

Dev Effort (MY)

11.28
(S.564M)

18.86
(S.943M)

23.59
(S1.18M)

29.05
(S1.45M)

42.69
(S2.135M)

Fastest

td

1.63

1.75

1.81

1.86

1.97

Dev Effort
(MY)

25.80
(S1.29M

32.16
(S1.61M)

35.40
(S1.77M)

38.71
($1.84M)

45.55
(S2.28M)

Risk Biased

td + .4yr

2.03

2.15

2.21

2.26

2.37

Dev Effort
(MY)

10.71
(S.55M)

14.12
($.71M)

15.91
(S.796M)

.17.77. ..
(S.89M)

21.77
(S1.09M)

Table 2. Assumptions: On-Line interactive development; top-down, structured programming;
HOL; contemporary development environment. C = 10040, Standalone system — IVDI = 15.

22

L. Putnam
QSM, INC.
PageS of 40

K is the life cycle effort in man years. This is directly proportional to development effort

(Dev Effort = .4K) and cost (S/MY . K = SLC cost;~$/MY - (-4K) = $ Dev).

tj is the development time in years. This corresponds very closely to customer turnover.

Figure 1 shows a parametric graph of this equation.

Table 2 presents three scenarios for 5 different points in the size distribution curve. The expected
case is given in the row labelled E. The column under t^ = 2 years gives a nominal development
effort of 23.59 man years, S1.18M cost (@ $50,000/MY) to do 98475 source statements.

The fastest (or minimum) possible time for 98475 source statements is 1.81 years. The corres-
ponding development effort is 35.4 MY, and cost of $1.77 million. The assumption here is that
the system is a stand alone and the gradient condition of 1701 = 15 cannot be exceeded.

The risk biased column is based on deliberately adding time (.4 of a year) to the minimum time to
increase the probability of being able to deliver the product at the contract specified date. This
biasing is to allow for external factors such as late delivery of a computer, an average number of
requirements changes during development, etc. In the case of 98,475 source statements, this would
be 1.81 +.4 = 2.21 years. The corresponding expected development effort is 15.91 MY; $.8 million
cost. Note that development effort and cost go down as time to do the job is increased. This is
Brooks' law at play. Conversely, there is no free lunch — if time is shortened the cost goes up>
dramatically.

This can be illustrated by obtaining the trade off law from the software equation. Solve the software
equation for K:

Kt,4=

This is the trade-off law. In terms of development effort, E = .4K so

In our specific case

E=.*l 10040I 1
L. Putnam
QSM, INC.

23 Page 6 of 40

and we can trade-off between 2 years (contract constraint, say) and 1.81 years - the minimum time
for our gradient constraint.

PARAMETER DETERMINATION BY SIMULATION

While Table 2 gives a fairly broad range of solutions that answer many "what if questions, it is an
essentially deterministic solution; that is, it assumes we know the input information exactly. Of
course, we don't.

A better solution, then, is one in which we treat the uncertainties in our input information in ob-
taining our solution. This is generally not feasible analytically, but is nicely handled by Monte Carlo
simulation. In our case we do this by letting the input number of Sg vary randomly about the ex-
pected value (98,475) according to our computed standard deviation, 055 = 7081, and letting the

o

the stand-alone gradient (IVDI = 15) vary within the statistical uncertainty of its measured (com-
puted) value (o j) = 2).

We then run the problem on the computer several thousand times with these random variations in
parameters and generate the statistics of the variation in our answer. This is a much better measure
of what is likely to happen as a result of the uncertainties in the problem.

The results of the simulation are given in the next table. Notice that the simulated estimated de-
velopment effort is the same as the expected deterministic value and the development time is also
the same. This is as it should be. 'The simulation produces the right expected values. The real value
in the simulation is that it produces a measure of the variation in effort and in development time
which we can used'to construct risk profiles.

SAVE SIMULATION

INPUT: 85=98475,05 =7081

D = 15, aD = 2S

Ck = 10040, N = 2170 iterations

RESULTS:
Expected development time = 1.81 yrs.
a, development time = ± .063 yrs.

Expected development effort = 35.1 MY
a, development effort = ± 3.77 MY

Table 3.

MAJOR MILESTONE DETERMINATION

The results of the simulation determination of the development time are used to generate the major
milestones of the project.

24

L. Putnam
QSM, INC.
Page 7 of 40

These milestones relate to the coupling of subcycles of the life cycle to the overall project curve
(5). Examination of several hundred systems shows this coupling is very stable and predictable. The
empirical milestones resulting from these earlier studies shows the following scaling.

Event

Critical Design Review
Systems Integration Test
Prototype Test
Start Installation
Full Operation Capability

Milestone Fraction of
Development Time, t^

A3
.67
.80
.93

1.0

Table 4 converts this to the appropriate descriptors and actual time schedule for this project.

SAVE MILESTONES (tH =1.81 years)

Event

CDR
Software S.I.T.
Hardware S.I.T.
Start Install.
Start Accept.
Test
Complete
Accept. Test

t/td

.43

.67

.80

.93

1.0

1.14

Time from start
(months)

9
15
17
20

22

25

Table 4.

RISK ANALYSIS

The results of the SAVE simulation for development time, development effort and development
cost can be shown in the form of probability plots. Assuming a normal (gaussian) distribution, all
that is necessary is an estimate of the expected value (plotted at 50% level) and the standard devi-
ation (plotted offset from the expected value at the 16% probability level) to generate the line.
Then one can determine the probability of any value of the quantity in question. For ease
of presentation, the plots are summarized in Table 5.

% Probability
that value will
not be greater
than

1
10
20
50
80
90
99

Dev Time

(td)
years

1.55
1.73
1.76
1.81
1.86
1.90
1.97

Dev Effort
(E)

manyears

25
30
32
35.1
38.5
40
45

Dev Cost
PHII

Millions

1.25
1.50
1.60
1.75
1.93
2.04
2.25

Table 5.
25

L. Putnam
QSM, INC.
Page 8 of 40

The result for the development time is extremely important from a conceptual point of
view. The small standard deviation is both a curse and a blessing. It says we can deter-
mine the development time very accurately (a^ /td = 3.5%) but at the same time it tells

us we have little latitude in adjusting the development time to meet contractual require-
ments.

For example, at = .063 years is .063 (52) = ± 3.28 weeks; 3at =3 (3.28) = ± 9.83
weejcs; d d

= ± 9.83
= ± 10 weeks

So, if we add 30 to td we will be 99% sure that td will not exceed the actual value from random
causes. This does not mean that requirements changes or late delivery of a computer will still per-
mit the software to come in at ± 10 weeks of the expected time. These are external factors that
will change t<j and must be specifically accounted for.

This is the curse. The system is very sensitive to external perturbations and these will generally
cause development time increments greater than 2 or 3 a^ (a 90 day delay in test bed computer
delivery, say).

But, knowing this great time sensitivity, management can use it effectively in planning and con-
tracting so that risk is always acceptable. The major point is: time is not a free good. Develop-
ment time cannot be specified by management.

MANPOWER AND CASH FLOW PATTERN

Now that we have the parameters for development effort and development time we can generate
the manloading and cash flow pattern for the software development period (and even the life cycle,
if we choose). The Rayleigh/Norden equation gives the instantaneous manpower.

y = K/td
2 . t . e -t2/2td

2 MY/YR

for the software development effort (Phase III). The cash flow is just the average dollar cost/MY
times y . _ _ _ _ . . . - . - . . - . - - - -

Cash Flow Phase II = S/MY . y $/YR

Table 6 combines the software development effort (Phase II) with the initial design and system
specification (Phase II) overlap and the hardware integration and test effort. The column labelled
total adds the separate efforts together at each time period to show the total people on board. The
cash flow rate is the annualized spending rate at that instant in time (assuming an average burdened
cost/MY of $50,000). The last column gives the cumulative cost at each two month interval.

L. Putnam
QSM, INC.

26 Page 9 of 40

(Mos.)

0
2
4
6
8

10
12
14
16
18
20
22
24

PH II PH
. . . Peopl

0
5
9

13
17
21
24
25
28
29
30
30
20

I HDWRE
e

0
0
0
1
1
2
3
3
4
4
4
6
4

TOTAL

10
13
15
18
19
23
28
29
32
33
34
36
24

CASH FLOW
RATE

($ MIL/YR)

.50
.65
.80
.90
.95

1.15
1.25
1.45
1.60
1.65
1.70
1.80
1.20

SUM COST
($ MIL.)

— —
.096
.217
.358
.513
.888
.896

1.383
1.654
1.933
2.225
2.405

Table 6.

Figure 2 shows the time-phased manloading of the Phase II part of the project as laid out
in Table 6.

"j'.OO 10.00 20.00 30.00 10.00 50.00 SO.CO 70.30 30.00 90.00
S Y S T E M S I Z E H i d '

100.00

Figure 1. Size - Effort - Time Trade-Off Chart

27

L. Putnam
QSM, INC.
PagelOof40

MANPOWER
(MY/YR)

50

40

30

20

10

SFTWRE
+

HDWRE

CRITICAL DESIGN REVIEW

SOFTWARE S.I.T.

HARDWARE S.I.T

START INSTALL.

START ACCEPT.
TEST

COMPLETE
ACCEPT.
TEST

SFTWRE
MANLOADING

12 18
(MONTHS)

24

Figure 2

28

L. Putnam

QSM, INC.

Page 11 of 40

CONCLUSION

We have shown that the management questions posed at the beginning can be answered quantita-
tively to acceptable engineering accuracy for a software project during the specification prepara-
tion phase. We need only know the state-of-technology we are going to apply to the development,
estimate the number of lines of code using the PERT techniques, and use the software equation
with a constraint relationship to solve for the management parameters (K,t j) of the Rayleigh/Norden
equation. Simulation provides suitable statistics for risk estimation.

REFERENCES

1. Brooks, P.P. Jr-rj The Mythical Man-Month, Addison-Wesley Publishing Co., Reading, MA. 1975-

2. Morin, Lois H., Estimation of Resources for Computer Programming Projects, MS Thesis, Univ.
of North Carolina, Chapel Hill, N.C., 1973.

3. Norden, Peter V., "Useful Tools for Project Management." Management of Production, M.K.
Starr (Editor), Penguin Books, Inc., Baltimore, Md., 1970, pp. 71-101.

4. Norden, Peter V., Project Life Cycle Modelling: Background and Application Of The Life Cycle
Curves, Papers from the Software Life Cycle Management Workshop, Airlie, Va., Aug. 1977,
sponsored by US Army Computer Systems Command.

5. Putnam, Lawrence H., and Wolverton, Ray W., Quantitative Management: Software Costing
Estimating, A Tutorial for COMPSAC '77, The IEEE Computer Society's First International
Computer Software and Applications Conference, Chicago, 111., 8-10 Nov. 1977.

6. Putnam, Lawrence H., "A General Empirical Solution to the Macro Software Sizing and Esti-
mating Problem," to appear in IEEE Transactions on Software Engineering, Summer, 1978.

L. Putnam
QSM, INC.

29 Page 12 of 40

L
U
ZLU<Z<s>-cao

Oin
aLUca

LU
3Oa.

oin
inCM

oa.
iUJ

Oin

co

Oa.oa:a.
oo

oH-
C_

ain

f̂
*

N
v
4

oO
O

aoaa.

O3O

•s.
c.

s:

oLUc.

oin
in

30

L. Putnam
Q
S
M
,
 INC.

Page 13 of 40

WHAT DO WE WANT TO KNOW ABOUT QUANTITATIVE
SOFTWARE MANAGEMENT?

HOW MANY PEOPLE

HOW LONG

HOW MANY DOLLARS

CEMENT j • MANPOWER (MANLOADING AT ANY POINT IN TIME)
METERS

CASH FLOW (SPENDING RATE)

RISK OR UNCERTAINTY ASSOCIATED WITH EACH OF THESE

TRADE-OFFS

WHAT DO WE NEED?

A SMALL SET OF EARLY (PERHAPS GROSS) SYSTEM CHARACTERISTICS
THAT

MAP INTO THE MANAGEMENT PARAMETERS
A MEANS TO UPDATE (AT ANY POINT IN LIFE-CYCLE) AND CONTROL.

L. Putnam
QSM, INC.

31 Page 14 of 40

WHAT IS A LIFE CYCLE?

EFFORT
OR

DOLLARS
PER
UNIT

TIME

FALL

t
BEGINNING TIME END

CUMULATIVE
EFFORT

OR
DOLLARS

OR
% COMPLETE

TIME

32

L. Putnam
QSM, INC.
Page 15 of 40

33

L
. Putnam

Q
SM

, IN
C

.
Page 16 of 40

APPLICATION SOFTWARE:
SOLVING THE SIZING ESTIMATING PROBLEM

FEASIBILITY SIZING
- ESTABLISH BOUNDS ON SIZE (DELPHI, BAYESIAN

J. INFERENCE, SIMULATION)

- ESTABLISH BOUNDS ON EFFORT, $, DEV. TIME (±75-100%)

DECISION SIZING (< ±25% EFFORT, $, td)
- PRELIMINARY DESIGN DONE (KNOW MAJOR FUNCTIONS

Ss ESTIMATE, TECHNOLOGY STATE POSSIBLE)

r« CONVERGE TO TRUE BEHAVIOR
- FIT REAL DATA (ADAPTIVE FILTERING)

20-40%
of

software
work

MANPOWER
(PEOPLE/YR)

CONTRACTOR)

FUNCTIONAL
SYSTEMS DESIGN. SPEC.

DEFINITION

n» CONTROL
- FIT REAL DATA (MINOR

PARAMETER ADJUSTMENT)

60-80% OF SOFTWARE
WORK

SYSTEMS
DEFINITION

\

FUNC1
DESIGT

I

riONAL
tl. SPEC.

(CUSTOMER
OR

> * \

DEVELOPMEN

II

II

T . l l .
~" (CONTRACTOR) "^

II

^ ^

OPERATION AND MAINTENANCE

(CUSTOMER)

TEST AND
VALIDATION

INSTALLATION //,
(SOMEWHAT '///.

VARIABLE)

DEVELOPMENT
WORK AT 10% OF

TOTAL EFFORT

MODIFICATION AND ENHANCEMENT
WORK AT 40% OF LIFE CYCLE EFFORT

THE SOFTWARE LIFE CYCLE

34

L. Putnam
QSM, INC.
Page 17 of 40

MAN MONTHS

250 •

J max ~ 202.2 '5orT =

MANPOWER UTILIZATION CURVE
y =2Kata -at2

DISTRIBUTION OF THE SAME TOTAL UTILIZED EFFORT,
VARYING THE TIME REQUIRED TO REACH PEAK MANPOWER.

K* 1000 FOR ALL CURVES

= TOTAL EFFORT UTILIZED
QS PARAMETER DETERMINING

TIME OF PEAK MANPOWER

t=ELAPSED TIME FRCM START

frnax"*1-3

yma,'86-6

0 2 I 4 I 6 I 8 10 12 14 16 18 20 22 24 26

max =7

SHAPE OF EFFORT DISTRIBUTION FOR CONSTANT TIME-TO-PEAK
BUT DIFFERENT TOTAL EFFORT UTILIZATION.

MAN MONTHS a - .02 FOR ALL CURVES
200

10 12 (4 , L6 18

35

L. Putnam
QSM, INC.
Page 18 of 40

es.
ozLU

Oc
:

o

oc_L
U3
»

O

zL
J

z<
:

ooL
J
aL
U

oon

C
J

z<oI—LUO
O

L
U

O

c
.

oC
_

C
3

<Co
:

ooa:oocaOooL
U
C

0

O
z

a
—

•
c.

aO

L
U

O

O

L
U

=
>

Q

c
:

o

a
'

a

o
L
U

_
J

O

L
U

I—

O

o
-

=
LU

^—
L
U

O
S

i
t—

"o

i.
0
0

«
C

3
6

L. Putnam
Q

SM
, IN

C
.

Page 19 of 40

y/ymax

FUNCTIONAL
DESIGN,
SPECIF.

20".)

t/t

37

L. Putnam
QSM, INC.
Page 20 of 40

THE S O F T W A R E EQUATION

(PR • MP)

SOURCE

S T A T E M E N T / Y R

D =

dt = PR exp dt

OUTPUT STATE OF
TECHNOLOGY
PARAMETER

INPUT

• Ss IS THE PRODUCT (OUTPUT) - DEPENDENT ON SYSTEM CHARACTERISTICS

o CK IS THE CHANNEL CAPACITY CONSTANT - QUANTIZED AND TECHNOLOGY DEPENDENT

(MACHINE THRU-PUT, TOOLS, LANGUAGE)

• K, td ARE THE MANAGEMENT PARAMETERS (INPUT) - K, trf MAY BE TRADED-OFF TO MATCH SYSTEM

AND TECHNOLOGY CHARACTERISTICS AND POSSIBLY CONTRACTUAL CONSTRAINTS

38

L. Putnam
QSM, INC.
Page 21 of 40

(S
dV

3A
)

!N
3
lA

ld
O

1
3
A

3
a

39

L
. P

utnam
Q

SM
, IN

C
.

Page 22 of 40

8ooo>

CO
(0U

J
NCOU

J

COCO

C
O

in
^

«

C
M

(S
H

V
3

A
)

l 31A
JI1 lN

3
1
A

ld
O

1
3
A

3
Q

40

L. Putnam
Q

SM
, IN

C
.

Page 23 of 40

TRADEOFF LAW

(COROLLARY TO BROOKS' LAW)

K, E _ C 1 NUMBER OF SOURCE STATEMENTS IS FIXED

DEV $ = C2 NOW SUBSUMES THE AVERAGE $ COST/MY

SUBJECT TO THE GRADIENT CONSTRAINT

(CANNOT EXCEED CAPABILITY OF ORGANIZATION AND ITS TECHNOLOGY)

41

L. Putnam
QSM, INC.
Page 24 of 40

oU
l

a

ao"3

E

a
—

o

E
 I

4
2

L
. P

utnam
Q

SM
, IN

C
.

Page 25 of 40

43

L
. Putnam

Q
SM

, IN
C

.
Page 26 of 40

VARIOUS MANLOAOIHG PATTERNS

WORST CASE

MANAGEMENT HANtOABING -

SYSTEM NEEDS,

POWER

N

\

DESIGN AND
"CODIHG HEEDS

DEVELOPMENT TIME-

III BETWEEN

MANLOADING
'(MANAGEMENT-SPECIFIED)

SVSTIM
MANPOWER WEDS,

\

GOOD ArPROXIMAIION

MANLOADItin
POWER

SOME SHALL N
IIHIIER-AI'PI.ICATIOH \

MERE

POWER

BEST rWHLOAOIIir,

44

L. Putnam
QSM.INC.
Page 27 of 40

ARON (IBM) LIFE CYCLE CURVE IS NOT INCONSISTENT

-ARON CURVE

CROSS-HATCHED AREA REPRESENTS

- EXTENSION

- ENHANCEMENTS

THIS WORK IS NORMALLY DONE BY CUSTOMER OR CUSTOMER REPRESENTATIVES

(NOT SEEN BY SOFTWARE HOUSE).

45

L. Putnam
QSM, INC.
Page 28 of 40

THE INPUTS NECESSARY TO FORCAST SOFTWARE COSTS

NO. OF FILES SYSTEM WILL HAVE

NO. OF OUTPUT FORMATS SYSTEM WILL HAVE

NO. OF APPLICATION SUBPROGRAMS SYSTEM WILL HAVE

NO. OF SOURCE STATEMENTS SYSTEM WILL HAVE

AVERAGE NO. OF SOURCE STATEMENTS PER SUBPROGRAM

AVERAGE COST PER MAN YEAR OF EFFORT

AVAILABILITY OF COMPUTER TEST TIME THROUGHOUT DEVELOPMENT -
HOURS/MONTH

DEVELOPMENT ENVIRONMENT

- INTERACTIVE?

- BATCH?
X"

- DEDICATED TO DEVELOPMENT, OR PRODUCTION WORK ALSO BEING DONE?

MODERN SOFTWARE ENGINEERING TOOLS TO BE USED
I

TYPE SYSTEM (BUSINESS, C&C, SCIENTIFIC, REAL-TIME, ETC.)

TECHNOLOGY CONSTANT CALIBRATION DATA (DEV EFFORT, DEV TIME, SIZE
IN SOURCE STATEMENTS (LESS COMMENTS) FOR ONE OR MORE PREVIOUS
SIMILIAR SYSTEMS THAT USED A SIMILAR DEVELOPMENT ENVIRONMENT AND
TOOLS)

L. Putnam
QSM, INC.

46 Page 29 of 40

DATA TO CAPTURE DURING DEVELOPMENT TIME

RATE OF CODE PRODUCTION (S./YR)
o

MANPOWER (RATE) DEVOTED TO DESIGN AND CODING (y

CUMULATIVE CODE PRODUCTION AT TIME, t (Sg (t))

CUMULATIVE PEOPLE ASSIGNED TO DESIGN AND CODING AT TIME T
(yj (t))

TOTAL CUMULATIVE PEOPLE (INCLUDING ALL INDIRECT EFFORT AND OVER-
HEAD) AT TIME t (y(t))

ACTUAL TIMES WHEN CRITICAL EVENTS START

- CRITICAL DESIGN REVIEW
- SYSTEM INTEGRATION TEST
- PROTOTYPE TEST (1ST ON-SITE, FULL SCALE TEST)
- INITIAL OPERATIONAL CAPABILITY
- CUSTOMER TURNOVER (IF DIFFERENT FROM I.O.C.)

COMPUTER TEST TIME USED PER MONTH (CH/MO)

CUMULATIVE COMPUTER TEST TIME USED AT TIME t, (CH)

L. Putnam
QSM, INC.

47 Page 30 of 40

REASONS WHY SOFTWARE DETERIORATES

RECOGNITION OF ORIGINAL DESIGN FAULTS.

DISCOVERY OF BUGS/ERRORS.

EVOLUTION OF A LEARNING USER WHO DEVELOPS HIS UNDERSTANDING OF
THE "REAL" PROBLEM AND UPGRADES HIS REQUIREMENTS BASED ON OPER-
ATIONAL EXPERIENCE.

CHANGES IN THE APPLICATION ENVIRONMENT AS A RESULT OF BUSINESS,
ACCOUNTING AND GOVERNMENT REQUIREMENTS.

CHANGES IN COMPUTER TECHNOLOGY - BOTH SYSTEMS SOFTWARE AND
HARDWARE.

Werner L. Frank
in COMPUTERWORLD

/. "MAINTENANCE" (ENHANCEMENTS, MODIFICATIONS, ERROR
FIXING)

L. Putnam
QSM, INC.
Page 31 of 40

DATA REQUIRED DURING OPERATIONS AND MAINTENANCE PHASE

MANPOWER DURING DEVELOPMENT (MY/yr)

TOTAL DEVELOPMENT EFFORT (MY)

DEVELOPMENT TIME (FROM START OF DESIGN AND CODING TO CUSTOMER
TURNOVER) (td)

ELAPSED TIME FROM START TO START OF CRITICAL MILESTONES

ACTUAL MANPOWER (CONTINUOUSLY AS A FUNCTION OF TIME) (yact)

MAINTENANCE DATA

- NO. ENHANCEMENTS STARTED/MO.
- NO. EMERGENCY FIXES STARTED/MO.
- NO. VALID ERRORS FOUND/MO.
- NO. ENHANCEMENTS/FIXES DEFFERED/MO.
- NO. MODULES CHANGED/MO.

SIZE OF SYSTEM - SOURCE STATEMENTS (CONTINUOUSLY) (S.)
d

CUMULATIVE NO. MODULES/SUBPROGRAMS CHANGED SINCE TURNOVER (td)

L. Putnam
QSM, INC.

49 Page 32 of 40

SOFTWARE AXIOMS FOR PROJECT MANAGERS

SOFTWARE DEVELOPMENT HAS ITS OWN CHARACTERISTIC BEHAVIOR

SOFTWARE DEVELOPMENT IS DYNAMIC - NOT STATIC

PRODUCTIVITY AND CODING RATES ARE CONTINUOUSLY VARYING - NOT
CONSTANT

PRODUCTIVITY RATES ARE A FUNCTION OF THE SYSTEM DIFFICULTY -
MANAGEMENT CANNOT ARBITRARILY INCREASE PRODUCTIVITY. MANAGE-
MENT CAN FAVORABLY INFLUENCE THIS BY PROVIDING SUFFICIENT TIME.

BROOKS' LAW GOVERNS - TIME AND MANPOWER ARE NOT FREELY INTER-
CHANGEABLE. (SHORTENING THE "NATURAL" DEVELOPMENT TIME OF A
SYSTEM IS VERY COSTLY - AND MAY BE IMPOSSIBLE)

THERE IS A SOFTWARE LAW THAT MUST BE OBEYED - OTHERWISE SLIPPAGE
AND OVERRUN ARE INEVITABLE.

KEEP A RECORD OF WHAT HAPPENED, WHEN AND HOW MUCH - IT WILL HELP
NEXT TIME.

L. Putnam
.QSM, INC.

50 Page 33 of 40

MENU
(WHAT WE CAN DO NOW)

PARAMETER ESTIMATION

- LIFE CYCLE SIZE (COST) (K)
- DEVELOPMENT TIME (td)

MANPOWER VS. TIME

CASH FLOW VS. TIME

COMPUTER TIME VS. TIME

RISK ANALYSIS

- COST
- MANPOWER
- TIME

UPDATING ESTIMATES FROM ACTUAL DATA (BOX'S METHOD)

DYNAMIC MODELING OF CHANGES TO RQMTS, SPECS

SIMULATION OF MANPOWER, CASH FLOW

LIFE CYCLE COST/BENEFIT ANALYSIS

AGGREGATION OF SYSTEMS TO CONTROL TOTAL EFFORT OF SOFTWARE
HOUSE

FORECAST INTERNAL MANPOWER GENERATION RATE OF SOFTWARE HOUSE
DOING MOSTLY MAINTENANCE WORK

L. Putnam
QSM, INC.

51 Page 34 of 40

WHAT DO WE NEED TO
ANSWER THE MANAGEMENT QUESTIONS?

ESTIMATES OF:

• NUMBER OF SOURCE STATEMENTS

• TECHNOLOGY CONSTANT

• ONE OR MORE CONSTRAINTS:

- MANPOWER
- MAXIMUM TIME
- MAXIMUM COST
- (MAXIMUM DIFFICULTY)
- (MAXIMUM DIFFICULTY GRADIENT)

ACTUAL DATA

- DATA STREAM FROM PROJECT WHEN UNDERWAY TO DYNAMICALLY
CONVERGE TO TRUE SYSTEM BEHAVIOR

L. Putnam
QSM, INC.

52 Page 35 of 40

THE LIFE CYCLE METHOD
CAN ANSWER THE MANAGEMENT

QUESTIONS:

• CAN I DO IT?

• HOW MANY DOLLARS?

• HOW LONG?

• HOW MANY PEOPLE?

• WHAT'S THE TRADE OFF?

• WHAT'S THE RISK?

L. Putnam
QSM, INC.
Page 36 of 40

54

L
. P

utnam
Q

SM
, IN

C
.

Page 37 of 40

oo_Jen

* i

4
-

4-

+*
V

-

oZD
0o

—
•

o)
"•

o

uj
>

;
03

~
-

o
«n

o
U

J
ID

r3
in

—
a

.
e

n
tn •-»

m
_ £

 °.
tocr

ii
ii

U
J

4-

4-

•
*
 +

4-
4-

4-

4-
4-

ocna

k
s

(W
W

i/O
O

IS
Q

J

55

L
. P

utnam
Q

SM
, IN

C
.

P
age 38

 of 40

g

S

SH
IN

D
W

N
b'W

Id

lQ
i

56

L
. P

utnam
Q

S
M

, IN
C

.
Page 39 of 40

C
D

_
J

tnaLUQ
_

OLUC
_

U
_

CDLUaaLUOcrLU>cr

en
o

LJ

13
O

3

.

en
x •

U
J

—
CV

=

•
03

a

=
• ri

tn
—

a

o

cc
>—incr

ii
ii

U
J

O
J

cno

(W
l/W

W
i)

31c'0dc!
JO

yZJ-

57

L
. P

utnam
Q

SM
, IN

C
.

Page 40 of 40

Page intentionally left blank

Page intentionally left blank

PREDICTING PROGRAMMER'S PERFORMANCE FROM
MODELS OF SOFTWARE COMPLEXITY

Sylvia B. Sheppard
Information Systems Programs

General Electric Company
Arlington, Virginia

The research reported here was designed to investigate factors influencing two tasks in software
maintenance: understanding an existing program and implementing modifications to it. These
factors included structured programming techniques, cognitive programming aids, and program com-
plexity. While the first two factors were manipulated experimentally, no systematic attempt was
made to manipulate program complexity.

Three software complexity metrics (number of statements, McCabe's v(G), and Halstead's E) were
compared to performance on two software maintenance tasks. In an experiment on understanding,
length and v(G) correlated with the percent of statements correctly recalled. In an experiment on
modification most of the significant correlations were obtained with metrics computed on modified
rather than unmodified code. All three metrics correlated with time to complete the modification,
while only length and v(G) correlated with the accuracy of the modification. Relationships in both
experiments occurred in unstructured rather than structured code, and in the second experiment
primarily where no comments appeared in the code. The metrics were also most predictive of per-
formance for inexperienced programmers. Thus, these metrics appeared to assess psychological
complexity only where programming practices did not provide assistance in understanding the code.

Assessment of the psychological complexity of software appears to require more than a simple count
of operators and operands or basic control paths. Many programs have characteristics unassessed by
these metrics which may heavily influence psychological complexity. For instance, the use of struc-
tured coding techniques or comments reduces the cognitive load on a programmer in ways unassessed
by the complexity metrics. Further, complexity metrics may not be capturing the most important
constructs for predicting the performance of experienced programmers who may either be concep-
tualizing programs at a level other than that of operators, operands, and basic control paths, or who
can fit the program into a schema similar to one with which they have had previous experience.

Further work in the area of psychological complexity should identify a set of cognitive psycholog-
ical principles relevant to programming tasks. Metrics could then be developed which assess the
qualities of software which are most closely related to these principles. Such an exercise might not
only lead to improved metrics for assessing psychological complexity but might also identify some
programming practices which could lead to simplified, more easily maintained software.

ACKNOWLEDGEMENT

The research reported in this paper was supported by Contract No. N00014-77-C-0158 Engineering
Psychology Programs, Office of Naval Research. However the opinions expressed in this paper are
not necessarily those of ONR or the Department of Defense.

S. Sheppard
GE

59 Page 1 of]

Page intentionally left blank

Page intentionally left blank

SOFTWARE RELIABILITY MODELLING
IN

FEDERAL SYSTEMS DIVISION

W. Douglas Brooks
Software Engineering

and Technology

W. Brooks
IBM

61 Page 1 of 12

BACKGROUND

EMPHASIS ON SOFTWARE QUALITY

- DoD /
— Other Customers
— Internal

NEED FOR QUANTITATIVE APPROACH

— Definition of Reliability
— Data Collection and Analysis

W. Brooks
IBM

62 Page 2 of 12

PREDICTION FROM ERROR HISTORY

• ERRORS DETECTED ARE PROPORTIONAL TO REMAINING ERRORS

• PROPORTIONALITY FACTOR IS CONSTANT

• ERRORS ARE CORRECTED WITHOUT FURTHER ERRORS

• EQUAL TEST TIMES FROM ONE OCCASION TO THE NEXT

W. Brooks
IBM

63 Page3of l2

THE IDEAL WORLD

z

(A
CC
otr
oc

cc
LLJ
00

TIME

f(t) = Ae-^
R(t) = 2 - fte-Atdt = e~^
A = NUMBER ERRORS REMAINING TIMES A

CONSTANTA)
MODEL ESTIMATES N AND 4>

64

W. Brooks
IBM
Page 4 of 12

THE REAL WORLD OF
SOFTWARE DEVELOPMENT

Z
o

UJ

oc
o
oc
oc

oc
UJ
00

TIME

f(t|, Wj, n)

DEFINITION
RELIABILITY IS THE PROBABILITY THAT NO MORE THAN
X ERRORS WILL OCCUR DURING SOME SPECIFIED
FUTURE TIME INTERVAL, UNDER SPECIFIED
TESTING CONDITIONS

65

W. Brooks
IBM
PageS of 12

EXPLANATIONS OF IRREGULARITIES

RANDOM FLUCTUATIONS

NON-RANDOM FLUCTUATIONS

• SYSTEM IS BEING DEVELOPED AND TESTED INCREMENTALLY

• TESTING SCENARIOS - SOME MODULES NOT ALWAYS TESTED

• MODULES - EVEN THE SYSTEM - NOT TESTED EQUAL AMOUNTS FROM ONE
OCCASION TO THE NEXT

• PROGRAMMERS DO MAKE ERRORS IN DEBUGGING

• CORRECTED ERRORS EXPOSE ADDITIONAL ERRORS TO DETECTION

W. Brooks
IBM

66 Page 6 of 12

IMPLICATIONS FOR MODELLING

CLASSICAL MODEL

n{ =

n^ = (N-n , -n 2)0

etc.

ADD PORTION OF THE SYSTEM UNDER TEST

n} = W,N 0

nl = (W 2 N - n 1 2) 0

n J = (W 2 N - n , 3 - n 2 3) 0

etc.

ADD UNEQUAL TIME INTERVALS

n{ =W, N [l - (l - 4 >) l >]

n J = (W 2 N - n , 2) [l -(1-0)^]

nJ = (W 2 N - n 1 3 - n 2 3) [l - (, -^^l

etc.

ADD REINSERTION/UNCOVERY RATE

n } = W , N [l - (l - 0) t »]

nl = [W 2 N - (l - r) n , 2] [l-d-*)^]

nJ = [W 3 N - (l - r) (n 1 3 + n 2 3)] [l -d -^)

etc.

W. Brooks
IBM

67 Page 7 of 12

IMPLICATIONS FOR DATA COLLECTION

FOR EACH TEST OCCASION

• Date

• Number of software errors (not incidents)

• Number of errors by module/subsystem

• Type of software error

• Amount of test time by module/subsystem

• Number of source instructions by module/subsystem

W. Brooks
IBM

68 Page 8 of 12

OUTPUTS OF THE MODEL

• Estimated number of errors remaining

• Probability of no more than X errors in specified time

• Estimated probability of error detection

• Amount of additional time required to achieve specified reliability

• Measure of confidence in goodness of fit

' W. Brooks
IBM

69 Page 9 of 12

PROBLEMS IN SOFTWARE ERROR DEFINITION

OR

AN ERROR IS AN ERROR BUT
AN INCIDENT IS A

Hardware Error

Requirements Error

Duplicate Report

False Report

Control Program Error

Design Error

Coding Error

— One Symptom

— Multiple Symptoms

W. Brooks
IBM

70 Page 10 of 12

EXAMPLE OF APPLICATION OF MODEL

C&C LAB - DWS TRAINER SOFTWARE DEVELOPMENT

PERFORMANCE REQUIREMENTS: SYSTEM RELIABILITY TEST. 48 HOURS OF
CONTINUOUS OPERATION. ERRORS ALLOWED:

- CATEGORY I - MAXIMUM OF 1
- CATEGORY II - MAXIMUM OF 3
- CATEGORY III - MAXIMUM OF 13

DATA COLLECTION REQUIREMENTS TO USE MODEL SPECIFIED

INDEPENDENT ANALYSIS SHOWS THAT TO BE REASONABLY CERTAIN OF
MEETING REQUIREMENTS, CAPABILITIES SHOULD BE:

- CATEGORY I - .5 ERRORS/48 HOURS
- CATEGORY II - 1.8 ERRORS/48 HOURS
- CATEGORY III - 9.5 ERRORS/48 HOURS

W. Brooks
IBM

71 Page 11 of 12

MODEL APPLIED TO THIS PROBLEM

DURING DEVELOPMENT RECORD APPROPRIATE ERRORS AND EFFORT

MAKE PREDICTIONS THROUGHOUT DEVELOPMENT AND TESTING

USE INCENTIVE AWARDS TO PERFORM TRADE-OFFS

MAKE RECOMMENDATIONS TO MANAGEMENT

- NEED FOR ACCELERATED TESTING
- TEST STRATEGIES

VALIDATE PREDICTIONS

DERIVE IMPLICATIONS AND DATA REQUIREMENTS FOR USE OF MODEL

- DESIGN REVIEW
- CODE INSPECTION
- UNIT TEST
- INTEGRATION TEST

W. Brooks
72 IBM

Page 12 of 12

PANEL #3

MEASURING SOFTWARE DEVELOPMENT METHODOLOGIES

Chairperson Marv Zelkowitz (University of Md)

Member #1 Bob Reiter (University of Md)

Member #2 Phil Milliman (General Electric)

Member #3 Paul Scheffer (Martin Marietta Corporation)

73

September 18, 1978, SEL Workshop Position Paper 9/30/78 1

INVESTIGATING SOFTWARE DEVELOPMENT APPROACHES: A SYNOPSIS *

Robert W. Reiter, Jr.
Department of Computer Science

University of Maryland
College Park, Maryland 20742

INTRODUCTION

The paper reports on research comparing various approaches, or methodologies, for software devel-
opment. The study focuses on the quantitative analysis of the application of certain methodo-
logies in an experimental environment, in order to further understand their effects and better demon-
strate their advantages in a controlled environment. A series of statistical experiments were conducted

The paper reports on research comparing various approaches, or methodologies, for software devel-
opment. The study focuses ontthe quantitative analysis of the application of certain methodologies
in an experimental environment, in order to further understand their effects and better demonstrate
their advantages in a controlled environment. A series of statistical experiments were conducted,
comparing programming teams which used a disciplined methodology (consisting of top-down
design, process design language usage, structured programming, chief programmer teams, and code
reading) with programming teams and individual programmers which employed their own ad hoc
approach. Specific details of the experimental setting, the investigative approach (used to plan,
execute, and analyze the experiments), and some of the results of the experiments are discussed.

The purpose of the research was to develop an investigative methodology for experimentally
studying and quantitatively characterizing the effect of methodologies and programming environ-
ments on software development. It involves the quantitative measurement and analysis of both
the process and the product of software development, in manner which is minimally obstrusive
(to those developing the software), very objective, and highly automatable. The basic premise is
that distinctions among the groups exist both in the process and in the product.

SPECIFICS

Nineteen units (teams or individuals) each performed the same software development task, but
under controlled and slightly varied conditions. Two programming factors, size of programming
team and degree of methodological discipline, each with two levels (single individual, and three-
person team; the ad hoc approach, and the disciplined methodology), were chosen as the indepen-
dent variables and formed the experimental treatments. The dependent variables to be observed
and measured were a large set (over 125) of programming aspects. The teams and individuals were

*Research supported in part by the Air Force Office of Scientific Research grant AFOSR-77-
3181A to the University of Maryland. Computer time supported in part through the facilities
of the Computer Science Center of the University of Maryland.

©Copyright 1978 by R.W. Reiter, Jr.
. J Robert W. Reiter, Jr.

University of Maryland
74 Page 1 of 8

September 18, 1978, SEL Workshop Position Paper 9/30/78 2

placed into three treatment groups, designated A, B and C (of 6, 6 and 7 units, respectively), each
operating under a certain combination of factor-levels:

A — individuals, ad hoc approach;

B — three-person teams, ad hoc approach;

C — three-person teams, disciplined methodology.

The time and place for the experiment was Spring, 1976, in conjunction with two academic courses
at the University of Maryland. The particular project or application to be developed was compiler
for a small high-level language and a simple stack machine. This task was roughly a two man-month
effort, and the resulting software systems averaged about 1200 source lines or 600 executable state-
ments, in high-level structured-language code. The participants were advanced undergraduates and
graduate students in the Computer Science Department. The implementation language was the
high-level structured-programming language SIMPL-T [Basil! and Turner 76], which is used exten-
sivly in course work at the University and has string-processing capabilities similar to PL/1.

Data collection for the experiment was automated on-line, with essentially no interference to the
programmer's normal pattern of actions during computer sessions. Special module compilation and
program execution processors created an historical data base of source code and test data accumu-
lated throughout the project development. Scores corresponding to each of the programming
aspects were extracted directly and algorithmically from this data base.

The programming aspects represent specific automatically isolatable and observable features of the
programming phenomenon, related to either the product or the process of software development.
Product aspects are based on the syntactic content and organization of the symbolic source code
which represents the complete final product developed. Process aspects are related to characteris-
tics of the development process itself, in particular, the cost and required effort as reflected in the
number of computer job steps (or runs) and the amount of textual revision of source code during
development. Major headings for the particular programming aspects reported on in this study are
listed in the accompanying table, with qualifying subcategories mentioned in square brackets.

APPROACH

The investigative methodology was designed and developed as a scientific and empirical solution
to the problem of comparing software development efforts under various conditions. It was used
to guide the planning, execution, and analysis of the set of experiments which comprise this study.
The approach consists of eleven steps or elements, as shown in the accompanying schmatic diagram
which charts the general flow (solid lines) and some of the interrelationships (dashed lines) among
these elements.

Robert W. Reiter, Jr.
University of Maryland

75 Page 2 of 8

September 18, 1978, SEL Workshop Position Paper 9/30/78 3

The methodology begins with Questions of Interest, which are turned into Research Hypotheses and
Statistical Hypotheses. The Statistical Model is very important since it governs the Experimental
Design and several other elements. Statistical Results, corresponding directly to the Statistical Hypo-
theses, are determined by the Colledted Data via the Statistical Test Procedures. Research Frame-
work(s) are necessary to organize the large volume of hypotheses and results into a smaller, more
managable form as Statistical Conclusions and Research Interpretations.

RESULTS

The methodology provides that the study's results be separated into statistical conclusions, represent-
ing factual findings, and research interpretations, representing intuitive judgements.

For each aspect there is one statistical conclusion which states any differences observed among the
three programming environments represented by the groups A, B, and C. These outcomes are ex-
pressed in the form of "equations"; e.g., A<B=C means that the average score for the individual
programmers was appreciably lower than the average scores for the ad hoc teams and the discip-
lined teams which both had about the same average score. In addition to the null outcome (A=B=C)
of no observed differences, there were twelve other possible outcomes, as noted in the accom-
panying table. The table simply lists all the non-null conclusions, arranged by outcome. The values
in the "error" column state the risk, as a probability value, of erroneously making that conclusion
and indicate how strongly pronounced the differences were in the data. Although there is much
fascinating material in these findings, space permits only a few particularly interesting conclusions
to be pointed out.

The A<B=C outcome was quite pronounced for the SEGMENTS aspect, indicating that the indi-
viduals built their systems with fewer routines on the average than either the ad hoc teams or the
disciplined teams, which used about the same number of routines. According to the A<B=C and
B=C<A outcomes, the individuals had noticably less global variables and more local variables than
both types of teams. The C=A<B outcomes for IF statements and DECISIONS indicate aspects
where the disciplined teams behaved like the individuals and both were different than the ad hoc
teams. For the number of COMPUTER RUNS (JOB STEPS), and several sub categories, the C < A
=B outcomes have very low error risks and indicate that the disciplined teams out-performed both
the individuals and the ad hoc teams in these aspects. On the number of PROGRAM CHANGES —
a measure of the amount of cummulative textual revision of the program source code during de-
velopment, which has been shown to correlate well with total error occurrences [Dunsmore and
Gannon 77] — the same data scores which support the C<A<B conclusion at a high risk of error
(0.185) also support the C < A = B conclusion at a very low risk of error (0.004), indicating a strong
distinction in terms of error-prone-ness in favor of the disciplined teams.

One framework for the interpretation of these conclusions is the concept of how the disciplined
methodology actually impacts the software development process and product. Prior to conducting
the experiment, certain general beliefs (see details on accompanying slide) about the impact had

Robert W. Reiter, Jr.
University of Maryland

76 Page 3 of 8

September 18, 1978, SEL Workshop Position Paper 9/30/78 4

been formulated. Certain basic suppositions (a priori expectations), for how the experiments should
turn out if the beliefs were true, were constructed from the general beliefs. Examination of how the
conclusions stack up against the suppositions (how true the beliefs are) shows that none of the con-
clusions for any of the observed programming aspects contravene the basic suppositions. Thus, the
study's results may be interpreted as strong experimental evidence in favor of these general beliefs.

SUMMARY

A practical methodology was designed and developed for experimentally and quantitatively investi-
gating the software development phenomenon. It was employed to compare three particular soft-
ware development environments and to evaluate the relative impact of a particular disciplined
methodology (made up of so-called modern programming practices). The experiments were suc-
cessful in measuring differences among programming environments and the results support the claim
that disciplined methodology effectively improves both the process and product of software develop-
ment. The results will be used to guide further experiments and will act as a basis for analysis of
software development products and processes in the Software Engineering Laboratory at NASA/
GSFC [Easili et al. 77]. The intention is to persue this type of research, especially extending the
study to include more sophisticated and promising programming aspects, such as Halstead's soft-
ware science quantities [Halstead 77] and othersoftware complexity metrics [McCabe 76].

REFERENCES

1. [Basili and Reiter 78] V.R. Basili and R.W. Reiter, Jr. Investigating Software Development
Approaches. Technical Report TR-688, Department of Computer Science, University of
Maryland, August, 1978.

2. [Basili and Turner 76] V.R. Basili and A.J. Turner. SIMPL-T, A Structured Programming
Language. Paladin House Publishers, Geneva, Illinois. 1976.

3. [Basili et al. 77] V.R. Basili, M.V. Zelkowitz, F.E. McGarry, R.W. Reiter, Jr., W.F.
Truszkowski, and D.L. Weiss. The Software Engineering Laboratory. Technical Report
TR-535, Department of Computer Science, University of Maryland. May, 1977.

4. [Dunsmore and Gannon 77] P.E. Dunsmore and J.D. Gannon. Experimental Investigation of
Programming Complexity. Proceedings of ACM-NES Sixteenth Annual Technical Symposium:
Systems and Software (June 1977), Washington, D.C., pp. 117-125.

5. [Halstead 77] M. Halstead. Elements of Software Science. Elsevier Computer Science Library.
1977.

6. [McCabe 76] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engi-
neering, Vol. 2, No. 4 (December 1976), pp. 308-320.

Robert W. Reiter, Jr.
University of Maryland

77 page 4 of 8

^oa.
^^6

0
CEE-M

.
OC
u

*************###**#**********************************

00ZPJH

t/5
-»-»
OG

.
ont«CDO2Development Pi

STATEMENTERAGE TOKENS PER

>

OMPUTER RUNS (JOB STEPS)

CJ

LOCATIONS

**•~

WO<l>CC
O

A
\[compilations, executions, miscf

SSENTIAL RUNS (JOB STEPS)

tu

"
 s
 "

n-intrinsic, intrinsi
(CALLING) SEG1
n-intrinsic, intrinsi

function, procedure; no
G INVOCATIONS PER
function, procedure; no

b
_
_
l

^
^

l
_
_
l

^W-1D
w

 Q
D

 S
Q

rjj

O
 Z

S
 0

D
H

^
-

w
 z<

J

AVERAGE UNIQUE COMPILATIO1
IAX UNIQUE COMPILATIONS FO
ROGRAM CHANGES

**• •« CM

H

(CALLED) SEGMG INVOCATIONS PER
function, procedure]

>
 "

******#***#**#*#: *#

<
u

*
ex

*
«»

* •*£
*

+j
*

0

Final Produ

*

HW

W

O
J

W
p

oo
Q

CKJ
oo

O

:>> W

g
2ls

S

£
£

3
s

§
£fg

§

1

S
|2

0

g

«

§

<
U

P

L
,

<

C

>

W
 =T

 W
 ^

{* ^T
 >->

fe ?? fe 3 < .a <
O

g

O

0
 >

G

C

Q
u

 —
„ u

 i
, '-3

 O
,.,00

i-,oo i-iH
 o

_
j
. .

w
w

^
w

^
<

 E
O

^
_

) J

g
J

g
W

^
^

o

CQCQ
S

C
Q

 §9
9o —

^^ S3 Id^i s-
2g« ^5 ^

«
1

«
^

>
>

^
>

!3
|3

l
<

<
^

<
^

D
i

g
ftJ c

3
H

H

so
H

M

W
 e

w

e
x

^
^

^
f

^
^
 '

"
^

'"
"
' ^

^

1~
~

' ̂
^
 ̂

""̂

Q
 Q

Q

<

<

D

1ODULES
EGMENTS
EGMENT TYPE COUNTS

[function, procedure] :
SEGMENT TYPE PERCENTAGES

[function, procedure]
AVERAGE SEGMENTS PER MOD

LINES

•a oo oo

00O^

'&
««•'&

g
oo -S oi -g

w

£^ « 3

u

O

•<
iT

C
u bT

C
*

P
H

 &
m

&

S
g

||l
s

< 1^ §
£

3
«

^
«

ElAMETER PASSAGE 1
value, reference]

G,GLOBAL) ACTUAL
modified, not modified;
G,GLOBAL) POSSIBLE
modified, not modified ;

^~J
i—

i
prj

t—
 ' |"T

j
"—

i

S
52- 52-

i—
 ,

i—
 i

|2

5

2
OH

p
P

H

W

OS7
H

-f
3

<

^
^

't?
O

 W
 m

Q

l-(
^J

^

0
<

m

^

O

n

STATEMENTS
STATEMENT TYPE COUNTS

[:=, IF, CASE.WHILE, EXIT, 1
STATEMENT TYPE PERCENTAG]

[:=, IF, .CASE, WHILE, .EXIT,
AVERAGE STATEMENTS PER SE
AVERAGE STATEMENT NESTIN

;NTAGESELATIVE PERCE
; non-entry, entry]

G,GLOBAL) USAGE R
modified, not modified;

["T
 j

<—

^

00

DECISIONS

\ BINDINGSG.GLOBAL.SEG) DAT,

woôFUNCTION CALLS

|: ***********
percentage]
l:*************^

actual; possible; relative
:******************;

i—
 i

#

[non-intrinsic, intrinsic]

78

R
obert W

. R
eiter, Jr.

U
niversity of M

aryland
Page 5 of 8

COa
n§

8
2

V)
Q

.
CO

f-
t. 0

>

-*
^-

^*
.C

1
-

^
o

o

-*^

.

t
-
 3

-
-

o>
^

^

§

~
~
"

-»
.

tfl
CO

CO

»•
0

<
0
 I-

-̂
0

-H

t-

*-•
•

~
~

^

x
r
f

~
~

o
 x

t
f

,

X

/

x
X

X

/

x

/

'
/

X

X

/

X

/

^
•

"-
-

•
'

!

0)5f*\
•

o

.•

x
-

/
-

-U

•'
^H

to n
0}

co co
C

H

i
.C

C

O

O
 C

O
O

L

O

C
O

-rt

C
O

•

-
t-« a

>
.

C
e

o

_
4

j<
u

M

^

if)

"
C

''c

O
o

J

^
^

-
J

4
J

V

0
)

'
r

>
c

o
-

^
i

o
)

c
o

o
o

)
J

-
>

O
N

-
•

?
a

3

v
>

a
>

o
.

i
J

c
a

Q
.

x
<

A

-
2

*
_

0
-Q

-,
<

4

!
.

>
,

<
»

j

_
>

>
,

\
.

0

S
p

7
7

o
\

<
*

£
^

*
c
o

.C

<
n

x
^

A
poV

10ÎJc--^
r
-
l
C

O

3
S

"•-t
«
f-l

X

4
J
 C

O
^

m

^

'
••-*

«
-H

4
J

0
CO

C
4
J

O
0
)

O

A
Q

)^

CCOC
DVO

.-10
 C

O
-H

4
J

4J ^H
^

m
 2

T
-l

C
O

jj C
O

7 s <-
CO

.•"•••••

o
•

-r-i
-P

.

<
U

• ,9CO
"

.C
• o

• e. a.a.
•

^
(!̂

0)a)v

\
'

\
'

\
'

\
I

\
'

\
I

3j_>
a>

to -o-

tla•o

•a*i•̂i

CO

£

A

a)•O

C?,

i
 .
;

a)O

BO
(TJ

C
O

1—
I

CO

i
 .a

-3

x
Q

-
• C

d

79

R
obert W

. R
eiter, Jr.

U
niversity of M

aryland
Page 6 of 8

Non-Null Conclusions, arranged by outcome

outcome

A < B = C

B = C < A

B < C = A

C = A < B

C < A = B

A = B < C

error fVeq

9
0.0634
0.0698
0.1476
0.1614
0.2015
0.1271
0.15070.1748
0.1227

5
0.1706
0.1699
0.1699
0.1936
0.1090

3
0.2195
0.2364
0.1546

11
0.2134
0.2321
0.0780
0.1732
0.0196
0.1038
0.2065
0.1468
0.1732
0.0435
0.1861

8
0.0036
0.0223
0.0110
0.0221
0.1445
0.0037
0.0883
0.1180

0

programming aspect

SEGMENTS
DATA VARIABLES
DATA VARIABLE- SCOPE .COUNTS Y GLOBAL
DATA VARIABLE SCOPE COUNTS \ GLOBAL \ MODIFIED
DATA VARIABLE SCOPE COUNTS \ NON-GLOBAL
DATA VARIABLE SCOPE COUNTS A NON -GLOB ALA PARAMETER
DATA VARIABLE SCOPE PERCENTAGES \ NON-GLOBAL \ PARAMETER
AVERAGE NON-GLOBAL VARIABLES PER SEGMENT \ PARAMETER
(SEG, GLOBAL) POSSIBLE USAGE PAIRS

AVERAGE STATEMENTS PER SEGMENT
AVG INVOCATIONS PER (CALLING) SEGMENT \ NON-INTRINSIC
AVG INVOCATIONS PER (CALLED) SEGMENT
AVG INVOCATIONS PER (CALLED) SEGMENT \ FUNCTION
DATA VARIABLE SCOPE PERCENTAGES \ NON-GLOBAL \ LOCAL

STATEMENT TYPE PERCENTAGES \ CASE
(SEG, GLOBAL) USAGE RELATIVE PERCENTAGES
(SEG, GLOBAL) USAGE RELATIVE PERCENTAGES \ NOT MODIFIED \ NON-ENTRYi

SEGMENT TYPE COUNTS \ FUNCTION
STATEMENTS
STATEMENT TYPE COUNTS \ IF
STATEMENT TYPE COUNTS \ (PROC)CALL \ INTRINSIC
STATEMENT TYPE COUNTS \ RETURN ,
STATEMENT TYPE PERCENTAGES \ IF
STATEMENT TYPE PERCENTAGES \ RETURN
DECISIONS
INVOCATIONS \ PROCEDURE \ INTRINSIC
INVOCATIONS \ INTRINSIC
(SEG .GLOBAL, SEG) DATA BINDINGS \ POSSIBLE

COMPUTER RUNS (JOB STEPS)
COMPUTER RUNS (JOB STEPS) \ MODULE COMPILATIONS
COMPUTER RUNS (JOB STEPS) \ MODULE COMPILATIONS \ UNIQUE
COMPUTER RUNS (JOB STEPS) \ PROGRAM EXECUTIONS
COMPUTER RUNS (JOB STEPS) \ MISCELLANEOUS
ESSENTIAL RUNS (JOB STEPS)
AVERAGE UNIQUE COMPILATIONS PER MODULE
MAX UNIQUE COMPILATIONS FOR ANY ONE MODULE

A < B < C 0
A < C < B . 1 - " '

0.1194 LINES
B < C < A 2

0.1232 (SEG,GLOBAL) USAGE RELATIVE PERCENTAGES \ MODIFIED \ ENTRY
0.1173 (SEG,GLOBAL) USAGE RELATIVE PERCENTAGES \ ENTRY

B < A < C 0
C < A < B 1

0.1848 PROGRAM CHANGES
C < B < A 0

Robert W. Reiter, Jr.
University of Maryland

80 Page 7 of 8

Research Interpretations

General Beliefs:

— The disciplined methodology reduces the average cost and complexity of the process.
— The disciplined methodology can enable a programming team to compensate for their in-

herent coordination overhead and behave more like an individual programmer in terms of
designing and building the product.

Basic Suppositions:

— on process aspects: C < A , B
— on product aspects: A < C < B o r B < C < A

Support from the conclusions:

— process: C < A = B on 8 aspects
C < A < B on 1 aspect
A = B = C on 1 aspect

product: A < B = C on 9 aspects
A = C < A on 5 aspects
B < C = A on 3 aspects
C = A < B on 11 aspects
A < C < B on 1 aspect
B < C < A on 2 aspects
A = B = C on 96 aspects

None of the conclusions for any of the observed programming aspects contravene these basic
suppositions.

Thus, the study's results may be interpreted as strong experimental evidence in favor of these
general beliefs.

Robert W. Reiter, Jr.
Univeisity of Maryland

81 Page 8 of 8

Page intentionally left blank

Page intentionally left blank

MEASUREMENT AND EVALUATION OF MODERN PROGRAMMING PRACTICES:
A CASE STUDY

Phil Milliman
Information Systems Programs

General Electric Company
Arlington, Virginia

In research sponsored by the Rome Air Development Center, a four man year project was studied
to determine the effect of modern programming practices on the life cycle of a project. Analysis
of errors and error rates, the source code, and development characteristics indicated that while the
project was not greatly different from the standard industry project, it was consistently different
and higher quality than a similar project in the same development environment.

Halstead's theory of software science was used in a number of different approaches to point out
characteristics of the code and the performance of the project. In particular, the number of soft-
ware problem reports was predicted, time to program the system, the program level, and the lan-
guage level were examined. The project using modern programming practices had a higher program
and language level than the similar project in the same environment. Other factors, such as McCall's
quality metrics and comparison to the RADC data base supported these findings.

Project development data were examined, and error rates were used to predict the number of soft-
ware problem reports. Error rates and the number of lines changed per run decreased over the
coding period.

It was concluded that modern programming practices do make a positive difference in performance,
but that other environmental considerations such as computer access, management practices, and
type of problem may obscure their benefits when compared to projects in other development en-
vironments. The present study demonstrated that evaluation is possible in a matched projects en-
vironment. Matched projects allow much of the environment to be considered equal, with increased
attention on the few differences being manipulated. In this situation a more objective analysis of a
given programming practice may be obtained rather than a blanket judgement as in the present
study.

REFERENCES:

Cornell, L.M., & Halstead, M.H. Predicting the number of bugs expected in a program module
(Tech. Rep. CSD-TR 205). West Lafayette, IN: Purdue University, Computer Science Depart-
ment, October 1976.

Gordon, R.D., & Halstead, M.H. An experiment comparing Fortran programming time with the
software physics hypothesis. AFIPS Conference Proceedings, 1976, 45, 935-937.

Halstead, M.H. Elements of software science. New York: Elsevier North-Holland, 1977.

McCabe, T.J. A complexity measure. IEEE Transactions on Software Engineering, Vol. SE-2,
NO4, December 1976.

Phil Milkman
GE

83 Page 1 of 2

McCall, J.A., Richards, P.K., and Walters, G.F. Factors in software quality (Tech. Rep. 77C1502).
Sunnyvale. CA: General Electric Corporation, Information Systems Programs, Command and In-
formation Systems. Prepared for Electronic Systems Division, Air Force Systems Command and
Rome Air Development Center, June 1977.

ACKNOWLEDGEMENT:

Research described in this abstract was supported by Contract No. F30602-77-C-0194 with Rome
Air Development Center. However, opinions expressed in this paper are not necessarily those of
RADC or the Department of Defense.

Phil Milliman
GE

84 Page 2 of 2

ANALYTIC TECHNIQUES FOR

EVALUATING

SOFTWARE DESIGNS AND METHODOLOGIES

SEPTEMBER 1978

by:
Paul A. Scheffer

MARTIN MARIETTA AEROSPACE
DENVER, COLORADO

85

I. INTRODUCTION

In recent years several methodologies have been developed to assist in the software development
process at the requirements-to-design engineering phase. The objective of many of these approaches
is to assist the designer in deriving, from a given set of requirements, a modular framework for the
system which can be associated with qualities such as adaptability to changes in requirements,
testability, maintainability, interface correctness, etc. Further, in many cases these approaches are
complemented by a language designed to support the basic concept of the technique. Systems such
as PSL/PSA, SREM, SSL and strategies attributed to Dijkstra, Mills, Parnas, Jackson, and Myers fall
into this class and are currently receiving much attention by the software engineering community.
This attention can be attributed in part to the growing recognition that rigor at the requirements
and design phases tends to minimize the costly "error days" associated with software. It also allows
for manageability of evolving requirements and addresses the true life cycle costs of systems. This
attention, however, has yet to lead to guidelines for an intelligent selection from this wave of
methodologies. With some minor exceptions, the lack of quantitative and careful qualitative evalua-
tion of benefits and costs associated with "front end" development strategies is notable.

In this paper, several analytic techniques are discussed as they might be applied to software design.
Such techniques show promise on two fronts: the ability to quantitatively measure various aspects
(viz. qualities) of a given design statement; and, by using quality indexes for several designs produced
under different auspices, to yield a comparative assessment of individual strategies, techniques, or
personnel. The rationale behind the comparision idea is the fact that the common denominator of
all design strategies, at any level, is their treatment of the structural characteristics of problems, i.e.,
the systematic decomposition of the original problem into a logically organized set of subproblems
which contribute to the ultimate objective. The assumption is made that attributes of design
quality are sufficiently manifested in the structural characteristics of the design so that they can be
measured by a static analysis. (Similar to measures of complexity for code.) Further, we believe an
appropriate scheme for static analysis of structure may be completely adequate for comparing dif-
ferent strategies, and can also provide a general tool for the development of superior quality
software.

The application of analytics in this paper is not dependent on either a specific methodology or the
level of development to which it applies. Since any methodology has a "product" in which its in-
fluence is contained, we simply consider associating a measure with that product and hence provide
for evaluation of different methodologies or design strategies.

II. METHODOLOGY REVIEW . .. - -

A. Background

Many attempts have been made at defining the crucial aspects of software development, both
in terms of the finished product, viz. the design, and the activity itself, the design process. By
looking at finished designs, one hopes to be able to generalize the characteristics that differ-
entiate the better products. The problem then is determining how to effect the desirable result —
the good design — within the design process. Lacking a methodology which assures a quality design,
about all one is left with is an iteration and assessment cycle on designing and its end result until
a satisfactory development is achieved.

Paul A. Scheffei
Martin Marietta

86 Page 1 of 11

A methodology for design is generally applicable to a particular phase of the total design
process. As we learn more and more about software phenomena, methodology principles are dis-
covered which can be applied earlier and earlier in the design activity. (Compare for example the
precepts of structured programming from a few years ago, to Dijkstra's levels of abstraction,
hierarchical systems and families, and the "top-down" approach.) Hence we now have methodo-
logies for requirements analysis, functional analysis, and system structuring as well as detailed de-
sign and programming. However, as we shall discuss in the next section, the study of these is depen-
dent on the manner in which they are expressed. In the short methodology review which follows,
the use of design languages should be envisioned in which the design concepts can be expressed.

B. Jackson — Data Structure Orientation

The Jackson approach (7) to software design considers the input data structure as the driving
force to program design. The program is viewed as the means by which input data are transformed
to output data. By paralleling the structure of the input and output data, the analyst can presum-
ably be assured of a quality design, at least if "quality" data structures exist a priori. This approach
implicitly relies on the rationality of the data structures used and acknowledges a restriction to
sequential files and applications which do not require a DBMS.

C. Myers and Constantine — Composite Design

Although this approach (10, 20, 23) deals more with programming principles than overall soft-
ware development, the ideas can readily be generalized. In considering the design of modules,
Myers differentiates the attribute of structure from those of function (purpose) and performance
(behavior):

"Structure is a description of the construction of a program, in such terms
as coding structure, module structure, task (parallel-process) structure, memory
layout, and module interfaces."

The composite design approach combines the structure aspects of modules, data, tasks, and their
interfaces.

The methodology influences the development of programs in that it directs an iterative de-
composition of structural components, called composite analysis, using defined principles of
strength and coupling. Designing affects the organization of modules and module elements which
produces the amount of "related-ness" among elements. The degree to which elements in the
same module are related is called strength, and the methodology calls for maximizing this factor.
Relationships between elements in different modules measure coupling, and are to be minimized.
For any given program design, the degree to which these principles are* adhered to can be mea-
sured as program stability in terms of a probability value on the impact of changes.

D. Parnas — Information Hiding

On a more abstract level, David Parnas (12) has presented a way of designing software to pro-
duce a system structure which is more stable in the sense of being adaptable and flexible when it
comes to localizing the effects of a change. The Parnas methodology is based on the concept of
"information hiding". The design decomposition criteria concentrates on the decisions which
must be addressed in the software development process. The decomposition method entails the
maximal containment of information by each module so that its interface and definition reveals
as little as possible about its inner workings. Modules, i.e., software systems, developed in this
manner will have a decomposition structure much less mechanically arrived at.

Paul A. Scheffer
Martin Marietta

87 Page 2 of 11

With this approach, modules that are components of the same system know only what is
necessary about one another, no more and no less. An important aspect here is the emphasis on
the hierarchical organization of a system and the levels of abstraction which alone helps to mini-
mize module dependencies and complexities. By ordering levels from the most primitive to the
most abstract, each level appears as a virtual machine for the level above it. This in itself restricts
the information a module on one level needs about the operation of modules on lower levels.

Ill THE ANALYSIS STRATEGY

A. Approach

The study of design strategies is dependent on two important factors. One is that some
"tangible" or machine readable representation of a problem must be available which lends itself
to use computer aids in studying strategies. The second is that a "canonical form" of structural
representation can be derived upon which certain assessment metrics can be based. These two fac-
tors are generally realized by high level design languages and (tree) graphs. Most analytic tech-
niques rely on the ability to transform any methodology "product" to an equivalent graph struc-
ture of nodes and links representing design elements and element relationships. This is especially
true when considering aspects of structure and structural decomposition. However, there are less
complex forms of analysis which can be derived directly from the syntactic constructs provided
by a formal expression medium.

In Figure 1, a model for studying design strategies is presented. It basically summarizes
the concepts and relationships involved and can be used as a focal point for the discussion which
follows. The process described in Figure 1 reflects the assignment of a measurement characteristic
as a goal for a selected problem statement or expression. The center of the figure identifies the
analytic techniques which can be used — applied to a given expression to measure a specific char-
acteristic. The bottom of the figure illustrates this for the older source code analysis technology.
The majority of the techniques listed are based on the notion of structural decomposition. The
decomposition problem considers the partitioning of a set, in which "interdependencies" among
elements have been defined, into a collection of subsets (clusters) characterized by:

1. Strong interdependencies among elements with a cluster.

2. Weak interdependencies between elements in different clusters.

The decomposition problem is readily handled by using a tree graph model of the set which son-
siders interdependencies as node links (edges) and connected sub-trees for the partioning. The
characterization then appears as a strength and coupling measure on the clusters.

B. Expression

The expression of a given problem can take many "forms", depending on the vehicle
used to state it. In traditional software developments this has simply been natural language. How-
ever, it is the recent availability of specialized tools — the specification and design languages and
methodologies — which allows formalized approaches to expression. This in turn is what has
provided us with machine processible data representing some design level. It is the formalization
provided by syntactically structured and unambiguous methods and vocabularies which provides
this "data base".

Paul A. Scheffer
Martin Marietta

88 Page 3 of 11

co•HcococuC
L

XW

COCO

J
j*

COc^

4-1Cc:0)3COCOcuS3

~

rHCO34
JU3iJC
Oc01-14-1

1-1co

COo1-4
4
JCO

1-4CU
4
JUCOUCO

C
J

O

>
N

e
1-1

>, <a

o

i-i
>
,

4
J

6
0

i-4

to

4J
1-1

 e

4J
3

•i-i
>

to
to

O
*

ij
i-<

 .c

N
to

4
J
 C

J

i-l
C

•-I
i-l

C

0
0

3

co

to

i-l
T3

C

60
m

O

C
U

I-i

C
U

S3
c

o

0
0

a0

COcuI-l3COCOcu

O

I-i
.

O

 4
J

*o

C
t£

W

cn
C

O
3

4
-1

CU
N

4->

b

C
U

3

T
J

rH

J
S

C

C
U

U

<

>
 C

O

-
A

%

»

ioCu

C
J-13C

O
U

C
U

H
C

O
t

_

ill̂
M

IIH

^
1
*

~
^
^
^
^
*
^
*
^
^
^

CU
60

>

c

•oo
.
 4

J
^^

 cu
-̂

S

3

1-*
1-1

4
J

T
3

o

C

i-l
S

o

p-
CU

i-l
E

3

*-"
O

C

U

i-<

*4
-l

1-1
(j

3

d
60

T
3

*J

I-l

oo
e

c

<

<

M

cu14

»

~'<

C
O

0
3

'

~

c
o

C

D
.

T3
C

O

C
U

C

O

1UeSCU60CO3Ccoi_3

pcu.00

V

to
O

i-l

0
 v

.
I-l

C
X

i
1

 i
1-1t^
C

J

CU
i-l

U
i-l

C
O

4
-1

<
U

O

C
U

i-l

Q
c

o

*j
CU

C

to

C
O

C

O
 i-l

6
0

CO
4
J

i-l
i-l

•<-i
co

B
co

"O

i-l
i-l

C
U

<

Q

C
O

Q

S
i

^

•

N
-'

o.CO

o
J2

C

O
 4-1

tt

1-1

r
t

*^

Eo

JS

<

.3
fi

I-l
f ~

.̂
.6

0

4
J

J

|J
C

C

O

C
O

C

O
W

S

cu

co

c00

CO
CO

4
Jc&
2

C
U

C
U

4JJ
^

cocu

^ s
4
)

e
-a

U

C
U

C

U
a

tl
r
H

Q
)

i-l
i-l

0

3

c
o

'

• *
c

c
r

u
o

cu
w

c
j

o
s

o
C

O

4̂
J

4
J

T
O

 -^

O
4-1

i—
 1 C

O
C3

i-l
O

.
cu jo

E

E

C
O

 M
cu

cu
U

O

 C
U

v4
C

O

60
3

»
-i C

0
- H

to

4)
.n

Q
d

C
J•11

C
Oc£)

C
OtoI-lOJ^
»

JS11113oI-lfe1-4oU4-1coC
J11111

,Jo«
11IcuoC
J1

'
''IiJ

- • • oEC11I101
•oo0

CO
-r-4CO

I-lCOc^
JCO

4
JU34-1COcoC
J(0co•H4
JC8UTH4̂-1

-r4U41

1a
.

eoC
J01toC
J

JEJ

4̂-1
1-1X01
I-l

aC
O

oo

89

Paul A
. Scheffei

M
artin M

arietta
Page 4 of 11

Several language forms are listed in Figure 1. Each has its peculiarities as to the design level
it best expresses. For example, English is better for conceptualization, mathematics for algo-
rithmic specifications, and Higher Order Languages for detailed design representation. The PSL/
PSA scheme was originally intended as a documentation tool but continuing developments are
making it widely applicable to many design levels. At Martin Marietta/Denver, we are developing
a specialized requirements language (MEDL/R) to fill what we feel is a void for that level.

C. Analytic Techniques

1. The Andreu Approach — In (2), Andreu describes how the graph decomposition problem
can be approached with both classical and hueristic cluster analysis techniques. Algo-
rithmic schemes are based on a matrix of coefficients which be an array of adjacencies,
minimum-path distances, or similarities; each provides a distance function representation
of how a node is related to all the other nodes in a graph. Algorithmic methods are then
described which use these metrics for the decomposition criterion in producing different
structural clusterings of graph nodes.

The basic hueristic algorithm defines the "nearest-neighbor" set of nodes for each com-
ponent of the graph. A distance count d{. identifies the number of links between any two
nodes. The distance metric used is what determines the meaning of "nearest". Hence for each
node i, a neighborhood set is defined:

Ni =

Clusters are produced by considering the subsets for which IN} I is greater than some thres-
hold parameter k. The heuristic assumption is that the code notes nf of these k neighbor-
hoods form "kernels" of importance over the entire graph. By forming successive intersections
of neighborhoods and considering kernal clusters as nodes, the process becomes iterative.
Inter-cluster linkages are determined, leaf nodes and "unimportant" clusters get merged (set
union) and a decomposition is formed. A strength and coupling measure is used to evaluate
a particular decomposition; strength is increased by node counts and linkages within a clus-
ter, coupling is reduced by fewer inter-cluster linkages.

2. The Agglomerative Techniques — These are procedures which start with a set of n one-
member clusters and try to reduce the number as dictated by some meaningful criteria.
Typically, agglomerative techniques are measure independent in that they proceed until the
number of clusters is reduced to one (the entire graph). The order in which elements are as-
signed to clusters that will eventually merge into the complete original set is then used to
identify a "reasonable" set of clusters. Variations on these techniques are possible by using
different decomposition criteria (e.g. dissimilarity matrix instead of similarity; various
definitions of node-node distance). The major disadvantage of agglomerative techniques is
that early decisions which categorize (cluster) a node cannot be changed at later stages —
hence an initially poor assignment can never be reconsidered or recovered from. Also, some
measure must be used to describe which of the interim partitionings is the most useful.

3. Static Analyzers - Another class of design decomposition schemes is based on the lin-
guistic expression of a design. The ready availability of a "tangible" form of a design re-
presented by its collection of "source" statements has prompted the development of many
analysis tools analagous to source code analyzers. Most prominent in this activity are the
measurement schemes which result in "complexity scores". These are developed from some
static form of analysis of statements which generally assess:

• keyword occurrences and relationships
Paul A. Scheffer
Martin Marietta

90 Page 5 of 11

• module linkages, e.g., calling forms, parameter lists, common areas, etc.
• syntactic structures, e.g., assignments, DO's, CASE, etc.
• control structures, e.g., IF , CALL, Branches, etc.

Graph structures are not directly involved in these cases; a total decomposition (where each
node is a cluster) is essentially assumed. Hence static analyzer programs use statistical and
control flow analysis techniques to produce measures of quality, complexity, or structured-
ness.

Most noteworthy in this area is the approach of Myers (10) who develops structure
criteria based on probability measures of dependencies between modules. The probability
measures are developed from applying module strength and coupling measures to design
structures which are easily envisioned in the source code implementation. Even though
heuristically formulated, this approach seems most practical in the determination of a soft-
ware system's sensitivity to change brought about by simple maintenance of fluctuating
requirements.

D. Measurement

The ability to compute a "quality of design" score is fundamental in the scheme for strategy
comparison. Recent research has developed design quality metrics and measures from various
viewpoints. Andreu (1) uses a strength and coupling measure applied to a graph representation
of requirements and their inter-relationships for preliminary design. Myers (10) has developed a
model in terms" of probability measures applied to discrete strength and coupling factors of program
modules which is used to assess the ramifications of making program changes. Schutt, et. al. (3,17)
have applied an information entropy measure to hypergraph representations of computer processes

•and data structures. And, McCabe (8) shows a method for determining quality as a function of
module "structured-ness". Each of these approaches relates in some way to a system
measure.

We feel that the concept of subset strength and coupling (S&C) as used by Myers, Constantine,
'Andreu, et. al. is most appropriate as a quality measurement. The S&C concept assumes that it
is the links which give structure to the entire graph. Consequently a structural evaluation of a
partitioning involves the determination of how tightly coupled (linked) the nodes within a cluster
area, as well as the extent to which two different clusters are related (number of linkages between).

In Figure 1 we listed several explicit ways of producing a "quality of design" score. While
each of these has its own merits, the actual formulation of a quality measure is not as much at issue
as what it means and what we can do with it. For example, the Andreu Strength and Coupling
measure associates "goodness" with both modularity and sensitivity to change, in the sense that
he derives his input from requirements statements and is concerned with the impact of fluctuating
requirements. The Myers S&C measure is probability based using source code relationships as in-
put. The interpretation here is that a programming change in any one module will affect all other
parts with some probability as a function of how strongly the two modules are joined (coupled)
and how isolated the changed module is (strength). The McCabe measure on source code produces
a value of module complexity which characterizes a degree of structured-ness, i.e., how well the
module conforms to precepts of structured programming. This is related to the Schutt, Gileadi,
et. al. approach which deals in information entropy and software work. Using agglomerative
clustering schemes, each node or additional nodes can be associated with a probability of mis-
classification for each existing cluster which can be used to determine some facet of modularity,
organization, design quality, or sensitivity to change — obviously highly interpretive.

Paul A. Scheffer
Martin Marietta

9] Page 6 of 11

We see then, that with the various measures of design that can be used, each has a different
shade of "quality" associated with it. Ideally, we would like to have a separate measure for each
clearly identifiable software quality characteristic. To achieve this end, much research and experi-
mentation is needed to calibrate and validate specific techniques to insure that the measures pro-
duced accurately reflect the attributes of the design problem.

Paul A. Scheffer
Martin Marietta

92 Page 7 of 11

APPENDIX

Measurements of a Requirements Expression

1. Completeness — The ultimate goal of this measure is to provide the analyst some means of
determining whether or not more work needs to be done to a requirements expression to make it
usable in determining a design expression, i.e., are the requirements that I presently have avail-
able of sufficient information content that a meaningful design activity can commence? A mea-
sure for completeness was derived by using two MEDL-R constructs and applied to sample "pro-
blem" sets of requirements. The measure is a percentage value which shows the degree to which all
requirements are either RESOLVED in an appropriate manner or DERIVE others. (A greater per-
centage implies more completeness.) Appropriate resolution is determined by checking NATURE
keywords against the type of RESOLUTION; e.g., NATURE: DATA implies that a DATA-
RESOLUTION descriptor should be given

Sample Data:

Version op.n

I — Baseline
II — Baseline
II -A
II -B

100
7
12
15

Derives

11
1
1

Resolved

31
0
0
5

42
14
8

40

The reduction in completeness in Version II-A from its Baseline is due to more requirements being
added to the A revision. In Version II-B, further information was imparted to the requirements set
by providing additional resolution of existing requirements.

2, Consistency Measurement — This measure should provide the analyst a means of determining
the extent to which requirements in a set are isolated from one another. The term "isolation"
means that property of a requirement that determines the extent to which it is bound to the
total requirements set. The consistency measure used represents an average "strength" value,
i.e.ya large value implies a large degree of dependence among requirements. The value is
determined by counting the number of names the requirements have in common.

Sample Data:

Version Pop.n Names

I -Baseline 100 47
II - Baseline 7 4
I I -A 12 7
I I - B 15 9

Strength

.47

.57

.68

.60

93

Paul A. Scheffer
Martin Marietta
Page 8 of 11

3. Complexity Measurement — This measure should provide a means to determine the inherent
complexity of a set of requirements where the term "complexity" is still vague. However, it is
clear that the greater the complexity of a set of requirements, the more difficult those require-
ments are to understand and hence more difficult to verify that they have been satisfied. So
we chose a method that produces a probability that a node in a DERIVES tree is a non-terminal
node. The higher this probability, the more complex the requirements expression.

Sample data:

' Version Pop.n Non-Terms. Probability

I -Baseline 100 27 .73
II-Baseline 7 6 .14
I I - A 12 11 .08
I I - B 15 13 .13

Paul A. Scheffer
Martin Marietta

94 Page 9 of 11

REFERENCES

1. Andreu, R. C., "A Systematic Approach to the Design of Complex Systems: An Application
to DBMS Design and Evaluation," Center for Information Systems Research, Report #32.
MIT,1977.

2. Andreu, R. C., "Set Decomposition: Cluster Analysis and Graph Decomposition Techniques,"
CISR Preliminary Report, MIT/Sloan School, June 1977.

3. Gileadi, A. N. and Ledgard, H. F., "On a Proposed Measure of Program Structure," SIGPLAN
Notices; May 1974.

4. Halstead, M., Elements of Software Science, Elsevier 1977.

5. Hamilton, M. and Zeldin, S., "HOS - A Methodology for Defining Software," IEEE Trans-
actions, SE-2, March 1976.

6. Hartigan, J., Clustering Algorithms, Wiley, 1975.

7. Jackson, M., Principles of Program Design, Academic Press, 1975.

8. McCabe, T. J., "A Complexity Measure," IEEE Trans SE-2 No. 4, December 1976.

9. Myers, G. J., "An Extension to the Cyclomatic Measure of Program Complexity," SIGPLAN
Notices, October 1977.

10. Myers, G. J., Reliable Software Through Composite Design, Petrocelli/Charter, New York, NY,
1975.

11. Paige, M. R., "On Partitioning Program Graphs, " IEEE Transactions, SE-3, No. 6, November
1977, p. 386.

12. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into Modules," CACM 15,
12 (December 1972), p. 1053.

13. Robinson, L., "The Relationship of System Families to HDM" (Hierarchical Development
Methodology) - Stanford Research Institute, TR:CSL-50, June 1977.

14. Roubine, O., "The Design and Use of Specification Languages," SRI Tech Report CSL^S,
October 1976 (AD/A 038-783).

15. Scheffer, P. A., "Computer-Aided Software Design," Martin Marietta Internal Report D-22R,
December 1977.

16. Scheffer, P. A., and Velez, C. E. "On the Problem of Software Design and Measuring Quality,"
Proceedings NAECON, May 1978, p. 223.

Paul A. Scheffer
Martin Marietta

95 Page 10 of 11

REFERENCES

17. Schiitt, D., "On a Hypergraph Oriented Measure for Applied Computer Science," CompCon
Proceedings, September 1977, p. 295.

18. Silver, A. N., "On the Structural Decomposition and Heirarchical Recombination of Non-
Directed Linear Graphs ...," Carnegie-Mellon Symposium on Constructive Approaches to
Mathematical Models, July 1978.

19. Silver, A. N., "Structural Decomposition using Entropy Metrics", Proceedings of the 1978
conference on Information Sciences and Systems, JHU March 1978.

20. Stevens, W. P., Myers, G. J., and Constantine, L. L. Structural Design, Yourdan, Inc., 1975.

21. Teichroew, D. and Hershey, E. A. Ill, "PSL/PSA: A Computer-Aided Technique for Struc-
tured Documentation and Analysis of Information Processing Systems," IEEE Transactions
on Software Engineering, SE-3/1, January 1977.

22. TRW, "Software Requirements Engineering Methodology," Report 27332-6291-024, September
1976; Ballistic Missile Defense Advanced Technology Center, Contract DASG60-75-C-0022.

23. Yourdan, E. and Constantine, L. L., Structured Design, Yourdan, Inc., 1975.

Paul A. Scheffei
96 Page 11 of 11

PANEL #4

CURRENT ACTIVITIES AND FUTURE DIRECTIONS

Chairperson Frank McGarry (GSFC)

Member #1 Lorraine Duvall (IITRI)

Member #2 Vic Basili (University of Maryland)

Member #3 Chuck Everhart (Teledyne Brown Engineering)

97

Page intentionally left blank

Page intentionally left blank

THE DATA AND ANALYSIS CENTER FOR SOFTWARE

Lorraine M. Duvall
ITT Research Institute

The Data and Analysis for Software (DACS) is being established at the Rome Air Development
Center (RADC) to serve as a centralized source for current, readily usable data and information
concerning software technology. The major functions of this Center are to:

Develop and maintain a computer database of software data.

Establish a STINFO Library containing technical reports and a lessons-learned file.

Identify data requirements for research efforts and present as a guideline for collecting data.

Analyze the data in the database and the STINFO and produce data and information reports.

Establish a current awareness program including the publication of newsletters and involve-
ment in technical meetings to disseminate information.

Produce and distribute data subsets, data compendiums, state-of-the-art reports, and bibli-
ographies.

Provide consultation and inquiry services.

A functional model of DACS is presented in Figure 1. The functional flow consists of inputs from
external sources, internal functions and operations, and outputs in the form of products and serv-
ices. Two types of inputs are indicated; the first type is a material input, i.e. production/develop-
ment data, textual documents, development reports, etc. The second type of input is a request for
products or services, i.e. request for consulting services, data subsets, bibliographic searches, etc.

The outputs of DACS will be in the form of products and services. Typical products will include:

Data subsets

Data compendiums

Analysis reports

Bibliographies

Newsletters

Technical monographs

L. Duvall
IITRI

99 Page i of 3

Services provided by DACS will generally include:

Bibliographic requests including the use of the STINFO Library

Answering inquiries on data compendium and/or dataset usage

Consultation on software technology

r
Participation in software technology committees and symposia

A computer database of software production/development data is being developed. The goal is to
develop a database containing software environment, technology, resource utilization, production,
and software characteristics data for reporting periods within the various phases of the software life
cycle. The data may have been generated either manually or automatically through program sup-
port library systems, management control systems, and/or computer accounting systems. The data
may also be submitted in the form of project schedule reports, problem reports/correction reports,
design change requests, configuration management reports, and/or data contained within technical
reports. The data within the database will be used to support research projects including estimating
and monitoring the cost of producing computer software, measuring and predicting software relia-
bility, error analysis, and productivity and complexity studies.

For more information on the Center and/or to receive the monthly newsletter, contact:

Lorraine M. Duvall
I IT Research Institute
Box 1355, Branch P.O.
Rome, New York 13440
Phone: 315 336-0937

L. Duvall
IITRI

100 Page 2 of 3

f^cuHZ
)

O

-
CUCOCO

.OuCO
O^

4CU3o
.

u

CO
u<u(0
JD3coCO

Q

U1-1oo
.ucucueCO«J

P-.uCO
Q

COLJ14o0
.

0)C
fl

CO>
^

COCcOuCO
0

C
O

O>a.COG
O

0•H_
^CO

COCUV
4

•H3crcH
H0uCOcu3COC

gGOC1401
X

GO CO
C

 C
O

E
d

Oi—
 I

CU
O

CO3uU
-toCO

enu0)

ucu1—4CO3C
U

z—

COuUOaO
)

atCO30]

CO

O

W
U

*
U

*

S
u

ce

H

cu
zU

l
u-J<

4
J

Cga.o01o»aco•H

C
O

O

09
3
 a

•aoa,COCOauoMa*

CO4JC0»g01143cr01
a:
,couCO
a0)c•He£4CUU01
a

0CO

catoCO
aOJ
u3a
.EOCJcCOcy

cuCO
•O

co

e
ta

CO
c

CO
O

CO
-^

0)
J->

0
 C

O
o e
a
. o

•a
c

COOJ
OC

"
 O

3

0

o
-c

<J
£.

<C

tJcu

,̂
*4-4

C

U
 C

O

C

"

O
J

C
•0-H

M
 C

O

coC
J

•̂

C
fl

C

u

£

1
4

CJ
O

'ii a

CO

ij

u

o

U
 01

O

~
i

Q
-O

cu
h

3
 C

J
U

 V
4

CO
3

U

4
J

U
)

C
O

3
 O

J
0)

u

>
 -1

OJ

COCO
Q

u
C

O

k
l

•^
O

co
a.

>*
a.

-I
3

CO
O

]
C<

1
4

0
0

C
O

0
)

Ll
>
, Q

£l
<u *~* e
c c

•-< <
 O

J
00

T3
C

-H

U

>O

c

&
o0)
a.

OI—
I

H

E-=>a.

CO
0)

U

C
O

C

O
CO

ca
"O

Q
 C

O

«

U
U

C

O

C
O

O

C
cu *t-»

a.
co ca

Q

jj

0
)

0
)

*-•
a. ca

i- 1
*-• OT

0
 E

o

-^
,—

 (
h

C

O

i-i C
O

0)
O

3

u

C

C
U

C

C

O
 C

O

C

O
 C

O

f*
to

Q

^-i
u
 u

o
o

ia
u

-*.
U

i co C
 •-• co

C

C

X
O

-*

co
C

J
0)

O

G
O

 O
. *J "O

C

J **4
E

 -H
o

c
y

u
a

i-^
y

--
3

4
J ^-(

J-i
Q

J O
J C

-^

u
o o

-^i a -C
 o

O

3
C

Q
O

O
C

J
C

U
Q

-a

-C
c

a
u

v
-c

u
a

•^

O
C

J
C

C
O

-0
-&

-.C
O

"
j C

U
H

Q
l

a>CJc
CO

01
CO

CU
-H

U

i-t
.U

C

O
C0u<3CJ
•r4Ce00cya)
=

U

01 01
•H

C

O

o.
3

3
 u

 x
 c

r
cu cr ti uj oj

^-* c
o

cc
-^ »-* a

. u
•i-l

0
) c

M

o
 -<

 o£
 a

c

ti
co

g
 -i

a,
cj LJ o. tJ
•^- cj o r-»

OJ
C

O

lrt
3

C3
0

O

>

C

CO
0) tt

O
 O

ID
 H

 O
- Q

 C
J

CO01uOOJ

•*4

aL
J

C
J

COu=oC
J

woI—
I

fe

101

L
. D

uvall
IIT

R
I

P
age 3

 o
f 3

Page intentionally left blank

Page intentionally left blank

THE SOFTWARE ENGINEERING LABORATORY-1978*

Victor R. Basil! and Marvin V. Zelkowitz
Department of Computer Science

University of Maryland
College Park, Maryland 20742

Th« Software Engineering Laboratory was started in August of 1976 as a joint venture between
NASA/Goddard Space Flight Center and the Department of Computer Science of the University of
Maryland. The purpose of the laboratory is to study the development of production software at
NASA/GSFC and to recommend better ways to produce more reliable and less expensive products.

In the two years since the laboratory was organized, the empirical study of methodologies has
become recognized as an important research topic. While the answers are not as yet known, we
finally do have a handle on what questions to ask. Based upon a recent workshop [SLMW], the
following are some of the important questions which must be resolved:

1. What are the issues to be studied? What are the various terms and do we have a consistent
and complete set in order to define concepts like software, life cycle, requirements,
specifications, etc.?

2. How do we classify the raw data that is collected? How are errors corrected? What
personnel (programmers, management, support staff) are involved? How do different
organizational and environmental considerations affect this?

3. How is consistent data collected by different organizations so that results can be
compared?

4. What are the various models of software development and how are they validated with
respect to this data?

5. How are the models refined to reflect local environmental changes?

These general questions are being interpreted in the NASA/GSFC environment to reflect that data
we are collecting.. In the Systems Development Section of NASA/GSFC, data is collected via a set
of forms that are filled out by contract programmers during various stages of a project's develop-
ment. The type of data collected includes:

1. Various environmental parameters (e.g., machine, storage and timing requirements,
programming languages, etc.).

2. Manpower and computer usage on a weekly basis. This includes data on hours spent on
various components of a system and what tasks were applied to those components (e.g.,
design, code, test).

*Reseaich supported in part by Grant NSG-S123 from NASA/Goddard Space Flight Center to the University of Maryland.

V. Basili
University of Mailand

103 Page 1 of 3

3. Ratio of management to support staff to programmer effort.

4. Source code measures (e.g, number of modules, size, lines of code per hour, etc.).

5. Programmer overhead (e.g., travel, training, other activities).

6. Techniques used and their effectiveness (e.g., code reading, walkthroughs, design
language, etc.).

The raw data is now being used in three distinct studies: (a) resource estimation, (b) product mea-
sures, and (c) error analysis.

(a) Resource Estimation

The resource estimates are based upon the earlier work of Putnam and Norden [Putnam].
For large scale projects (greater than 50 man years of effort), the Rayleigh curve has been
found to fit manpower expenditures. The curve (y= 2 K a t exp(—a t2)) differs signifi-
cantly from the "assumed" rectangle during the development cycle (e.g., 25 programmers
for 2 years is 50 man years).

Within the NASA/GSFC environment, it has been found that the Rayleigh curve does not
fit as well as it does with larger projects [Basili & Zelkowitz]. The probable reason is that
these 6 to 12 man-year efforts have different characteristics than in larger projects. For
example, with data being collected on a week-by-week basis, local perturbations (e.g.,
annual leave, sickness, computer down time) become much more pronounced. In addi-
tion, with only 1 year to develop a project, the effect of delay time makes needed organ-
izational changes become more important than 5-or 6-year efforts.

Currently, work is progressing on evaluating alternatives to the Rayleigh curve model.
The goal is to build an on-line program to feed back future estimates based upon initial
data collected on any project.

(b) Product Measures

There are various measures of the "goodness" of a software product contained in the
literature (Halstead, McCabe). The Laboratory is applying several of these measures as
well as some new ones [Mills] and evaluating their effectiveness with respect to other
parameters, such as error prediction and subjective judgments about quality. On an ex-
perimental data base, of multiple implementations of the same project under varying con-
ditions, the concepts of modern programming practices (e.g., top down design, chief
programmer teams, code reading) apparently improve software quality as quantitized by
these measures. Work is being done to transfer the effective measures to the Laboratory
environment.

(c) Error Analysis

Work is progressing in the classification and life-time of errors. A taxonomy of errors is
being developed and metrics to measure reliability based upon found errors are being
developed.

V. Basili
University of Maryland

104 Page 2 of 3

SUMMARY

In summing up these first two years of the laboratory, we have found that:

1. The process is slow and more complex than first imagined. We are forced to deal with
practical realities in trying to apply the data to theoretical models.

2. We are lucky to be working within an understanding and intelligent environment. We
would like to thank NASA/Goddard Space Flight Center and Computer Sciences
Corporation for their support in this effort.

3. Progress is being made in

a. resource estimation;

b. basic data collection and the inter-relationships among the basic data;

c. error analysis;

d. product measures;

e. automation of the process.

REFERENCES

[Basili and Zelkowitz]
V. Basili and M. Zelkowitz, Analyzing Medium Scale Software Development, Third Interna-
tional Conference on Software Engineering, Atlanta, Georgia, May 1978, pp. 116-123

[Halstead]
M. Halstead, Elements of Software Science, American Elsevier, 1977

[McCabe]
T. J. McCabe, A Complexity Measure, Transactions on Software Engineering 2, No. 4, 1976,
pp. 308-320

[Mills]
H. Mills, Software Development, IEEE Transactions on Software Engineering 2, No. 4, 1976,
pp. 265-273

[Putnam]
L. Putnam, A Macro Estimating Methodology for Software Development, IEEE Compcon,
Washington, D.C., September 1976, pp. 138-143

[SLMW]
Proceedings of the Second Software Life Cycle Management Workshop, August 1978, IEEE
Society Publication

V. Basili
University of Maryland

105 Page 3 of 3

Page intentionally left blank

Page intentionally left blank

SYSTEM REQUIREMENTS LANGUAGE
FOUNDATION FOR SOFTWARE ENGINEERING

Charles R. Everhart
Teledyne Brown Engineering

Huntsville, Alabama

ABSTRACT

"System Requirements Language" here refers to those languages (defined by a formal set of syntax
rules and semantics) whose purpose is the explicit and comprehensive expression of system defi-
nition and design facts. Not only is a formal requirements language necessary in specifying pre-
cisely the functional and performance characteristics of the system at all levels of definition and
design, but at the same time this information can be used to predict the costs in time and money
required to develop, implement, operate, and maintain a proposed system. Other benefits derived
from this information include the direct generation of system and environment models used in the
analysis of design solutions, direct generation of test criteria to be used during the test and inte-
gration phases of system development and the providing of a vehicle for maintaining configuration
control throughout the life cycle of the system. "System" refers to not only software systems
developed with "Software Development Methodologies", it also refers to the methodologies
themselves.

1. MOTIVATION

According to a number of articles written recently [4,6] the costs of software development are
becoming dominant (i.e., 50 to 90 percent of the cost of future data processing systems). In spite
of the proliferation of programming languages [1] and software development techniques devised
during the past 15 to 20 years, progress in reducing the costs of software has been disappointing.
One source has indicated a decrease in productivity over this same period [3].

After a cursory analysis of major software developments, it appears that the industry has been
attacking the wrong problem. A very large percentage of software development costs are associated
with the definition, design, testing, and integration activities. The development of programming
languages and techniques has been directed mainly toward the coding activity which represents
only a small percentage of software development (as low as 17% for a large 7.5 year project [6]).

If the software industry is expecting to see large reductions in the cost of software, it must attack
those problems connected with definition, design, testing and integration activities representing
anywhere from 45 to 85 percent of most data processing development costs.

The first step in attacking the cost of these activities appears to be the development of a precise,
yet convenient, system requirements specification and analysis language. Teledyne Brown En-
gineering has been actively involved in this type of development since 1971 and has devised a
requirements language called IORL (Input/Output Requirements Language) which claims the
objectives of the preceding discussion.

C. Everhart
Teledyne Brown Eng.

107 Page 1 of 13

2. IORL

IORL is a formally defined language (syntactically and semantically [2,5] which uses a combi-
nation of both graphic symbols and mathematical notation to express system definition and de-
sign ideas. Block diagrams (analogous to those used in control theory) organized in a hierarchi-
cal manner identify the parts of a system and the interfaces between these parts at all levels of
system definition and design.

Descriptions of each interface identified are contained in a set of tables called lOPT's (Input/
Output Parameter Tables). Another diagram called in "IORTD" (Input/Output Relationships
and Timing Diagram) is used to define the total transformation function from input to output
as well as the response time requirements for each and every block in the hierarchy. These
diagrams (analogous to^a "Transfer Function" in control' theory)~provide the symbols for spec-
ifying the sequential, simultaneous, logical, mathematical and time requirements between inputs
and outputs of each given block. The elements of IORL and hierarchical structure of require-
ments information are characterized in Figures 1 and 2.

3. IORL STORAGE AND RETRIEVAL FACILITY

Storage, retrieval and modification of IORL diagrams and tables has been implemented on a stand-
alone PDP/11 based graphics terminal (GT44 and GT46) with 16K memory. The interactive
graphics system includes a 17-inch refresh type graphic screen with lightpen capability as well
as an electrostatic printer plotter which produces 8 . 5 x 1 1 inch copies of the screen. In edit mode,
IORL information is entered by pointing the lightpen at a location on the screen and then pres-
sing the keyboard button associated with the desired symbol. In display mode, system details
are accessed by directing the lightpen to points of interest on the higher level diagrams of the
hierarchy. This results in the subsequent display of these details on the screen. Requirements
diagrams are stored on and retrieved from disk packs which are also a part of the facility.

•4. BALLISTIC MISSILE DEFENSE (BMP) PARTITIONING STUDY EXAMPLE

Not only is a formal requirements language necessary in specifying precisely the functional and
performance characteristics of the system at all levels of definition and design, but at the same time
this information can be used to predict the costs in time and money required to develop, imple-
ment, operate and maintain a proposed system. Other benefits derived from this information
include the direct generation of system and environment models used in the analysis of design
solutions, direct generation of test criteria to be used during the test and integration phases of
system development and the providing of a vehicle for maintaining configuration control through-
out the life cycle of the system.

In an attempt to determine the feasibility of the preceding thesis, a study entitled "BMD Par-
titioning Study", was performed. The objective of this study was to demonstrate that certain
quantitatiave characteristics, related to system development and operation costs, could be de-
rived directly and mechanically from formally defined system requirements specifications. IORL
was used as the language for specifying the definition and design requirements.

The demonstration consisted of four basic steps. First, the BMD system requirements and its
environment were defined using the complete set of IORL symbols, tables and diagrams. This
information, which represented the first level in the system hierarchy, was the only infor-

C. Everhart
Teledyne Brown Eng.

108 Page 2 of 13

mation used in the subsequent requirements analysis and design activities. After checking the
first level specification for completeness and consistency, the second step involved designing two
different solutions to the BMD requirements, again expressing these solutions in IORL and pla-
cing this information in the second level of the system hierarchy. The purpose in specifying two
design solutions was to compare the total system costs which resulted from each of the solutions.
In the third step, each completely specified solution was validated against the BMD requirements
by exercising the environment, BMD, and solution models (all written in IORL) and then com-
paring responses at the BMD/environment interfaces.

In this manner it was established that each solution responded to the environment exactly as re-
quired by the BMD requirements (model). If not, the design solution was corrected. In the final
step, each solution was evaluated to determine its effect on total system costs. This evaluation,
which was a combination of static and dynamic analysis of only that information contained in
the IORL specifications, produced the summary partition evaluation results shown in Figure 6.
These summary results were derived from a series of intermediate results which plotted for exam-
ple bandwidth for each interface as a function of time, storage required as a function of time,
functional speed required,, etc.

Our experience with this study has resulted in the following conclusions:

• Quantitative measures related to the costs of a system can be determined from an
analysis of system definition and design requirements.

• The requirements language used to specify system definition and design facts is the
key factor in the success of the preceding demonstration (i.e., the language must have
certain characteristics and enforce certain disciplines).

• The proper specification of definition and design requirements can provide information
necessary to all phases of a system development (definition, design, implementation, test
and integration).

5. FUTURE R&D ACTIVITIES

Teledyne Brown Engineering has plans to continue the development of IORL related techniques and
tools. The immediate future calls for the development of the following computer utility packages:

• An extensive IORL diagnostic package (syntax analyzer)

• A set of configuration management tools

• An expended set of graphic editing features for the storage and retrieval system

• A utility program library

• A set of functional and analytic simulation compilers which will transform IORL infor-
mation into FORTRAN or PASCAL simulation statements.

C. Everhart
Teledyne Brown Eng.

109 Page 3 of 13

We have also experimented with the direct generation of assembler source code (Marco-II
Assembler) from IORL information and have determined that the information content of IORL
will support the development of a set of IORL compilers. The major problems associated with this
last activity are the implementation of mathematical functions so easily represented in IORL.

C. Everhart
Teledyne Brown Eng.

110 Page 4 of 13

REFERENCES

1. Shea, William E., "DOD-1, A Common Language", ISRAD in Touch, Volume 2, No. 1, February
1978.

2. Everhart, C. R., "IORL Analysts Users' Manual", Section 1 - Syntax, Teledyne Brown Engineer-
ing, May 1977.

3. Dolotta, T. A., et al, "Data Processing in 1980-1985", John Wiley and Sons, 1976.

4. Boehm, B. W., "Software and Its Impact: A quantitative Assessment", Datamation, pp. 48-59,
May 1973.

5. Everhart, C. R., "IORL Analysts Users' Manual", Section 2 - Semantics, Teledyne Brown Engi-
neering, May 1977.

6. Ramamoorthy, C. V., et al., "Software Requirements and Specifications: Status and Perspec-
tives", Engineering Research Recommendations, Draft Appendix A, August 12, 1977.

C. Everhart
Teledyne Brown Eng.

Ill Page 5 of 13

IORL ELEMENTS

1
x t \

6

1 „
•+

* 2
2

3 < 5

""3

« 4

1 f

4

SBD

2
I OPT 1

G PARAMETER VALUES UNITS
I OPT 6

lOPT'S

IORTD 1

• •

• •

IORTD 4

I GRID'S

FIGURE 1. IORL ELEMENTS

112

C. Everhart
Teledyne Brown Eng.
Page 6 of 13

<zI—
(

Q>
-

IEC
£.

L
iJ

cro

13

C
. E

verhart
T

eledyne B
row

n E
ng.

Page 7 of 13

CURRENT CAPABILITIES - STORAGE AND RETRIEVAL
OF REQUIREMENTS USING INTERACTIVE GRAPHICS

BASIC STORAGE AND RETRIEVAL OF INFORMATION

ON LINE EDITING

HARDCOPY

DOCUMENTATION AUDIT

MERGE SYSTEM PAGES

AUTOMATIC ACCOUNTING

A

A

A

DISK PACKS (1200 PAGES/PACK)

CLASSIFIED FACILITY

CRT
LIGHT PEN
FUNCTION KEYS

REPORT QUALITY

Figure 3. Current Capabilities — Storage and Retrieval
of Requirements Using Interactive Graphics

114

C. Eveihart
Tejedyne Brown Eng.
Page 8 of 13

SYSTEM CONFIGURATION

• PDF-11 /40 WITH 16K MEMORY

• 17" GRAPHIC DISPLAY WITH LIGHTPEN

• TELETYPE

• 2 DISK DRIVES

• ELECTROSTATIC PRINTER/PLOTTER (8% X 11 FAN FOLD)

Figure 4. System Configuration

C. Everhart
Teledyne Brown Eng.

15 . Page 9 of 13

C
O

C
O

C
OC
J)

C
OoC
O

C
O

co <:
>
- z

co <;

oLUM

C
O

C
O

ceQ
.

C
O

>—
I

C
O

QQ
.

OinL
U

^

C
_
>

^
_

U
J

—

>
-

^

C
O

O

"
 U

J

S

O

>
-

U

J

d
-

_

c
j c

o
 o

: c
o

i

1
1

6

C
. E

verhart
T

eledyne B
row

n Eng.
Page 10 of 13

0
0

PARTITION 2PARTITION 1

—
±

co
2

Q

±

ce

L
o

o
oC

O
ZU

-J
C

O

o
:

OC
OGNDSYS

(—
—

 '
C

OOC
O

U
J

C
O

1—oO

•
•

o
o

ro

o
*

O

0
0

.

.
f*"N

^^

.

^O

C
Z

7
^T

C

N
J

C
\J

C
3

*T
O

O

•—
•

O

r+
1

o
C

N
I

o

•«=•
0
0

^
H

O

'T

O
"

O
O

C
M

O

-3
-

O
O

-̂<

o
'

o
d

o

»—
 i

C
3

*=
T

IT

\
O

tr\

c
v
j

O
O

C

O

L
T

\

C
3

cvj
irC

g
^
^

Ĵ
1*

V

f̂

O
^

IT
N

••3

'

^
3

ro

i/\
C

M

O

—

^

—
 "

L
L

J
c

o

^
X

O
<

-
*

^
>

00
^ co

-C

—

S
 ±! s

°° »7>
<

S

^
~

^
U

U
L

U

O
°
-
Z

i^

—

—
J

O
m

O

L
U

^
O

O

S
<

r

<
;C

Q
1

.1

»
^
S

Q

iD
-
.

C
£

O
«

>

iT
i g

:
Q

£

C
O

C

^

Q
.

C
O

.s

Q

_
 <

_
}

D
-

^

0
0

C
O

L
U

o
:

0
1

<cQ
-

Q
i

117

C
. E

veihart
T

eledyne B
row

n E
ng.

Page 11 of 13

G
O

C
O

to
r to
u

 >
i- _

i
CO

^
>

 z
CO

<

/p

COuCOozC3o

^
/ /\>

1-

i-
-̂

 a
:

«

I

O

_
i

r-.
J
-

u
.

•1

U

J

D

U

.
(
fl

1
0

^

M
 U

<

<

D
 i

to 11 a: uj o
•

1
- _

J
 O

 U

Z

>

CO
U

J
 >

-
(L

<

b
J

o
a: (o co OQ a

Z
.

\

s"̂
.to1

RESUL1

COU
I

K

^

COzoMCOU
I

U
J

oo

G
O

G
O

18

C
. E

verhart
T

eledyne B
row

n E
ng.

Page 12 of 13

FUTURE IORL RESEARCH AND DEVELOPMENT

DIAGNOSTICS PACKAGE (SYNTAX ANALYZER)

CONFIGURATION MANAGEMENT TOOLS

EXPANDED EDITING FEATURES (GRAPHICS)

UTILITY PROGRAM LIBRARY (STATIC ANALYSIS)

SIMULATION COMPILER

A FUNCTIONAL: "IORL" TO "MODELER" TRANSLATOR

A ANALYTIC: "IORL" TO "FORTRAN" TRANSLATOR

COMPILER

A "IORL" TO "FORTRAN" TRANSLATOR

A "IORL" TO "PDP-11" MACRO-ASSEMBLER" TRANSLATOR

Figure 8. Future IORL Research and Development

C. Everfiart
Tele#yne Brown Eng.

119 Page 13 of 13

Page intentionally left blank

Page intentionally left blank

SOFTWARE ENGINEERING WORKSHOP ATTENDEES

B. Aygun
Data Processing Marketing Group
IBM
B/931 D/Z60
Bex 390
Poughkeepie, NY 12602
(914-485-8445)

V. Basili
University of Maryland
Computer Sciences Dept.
College Park, MD 20740

J. Bishop
NASA Headquarters
CodeTN-1
600 Independence Avenue
Washington, DC 20546
(755-2325)

D. Bond
CSTA-Dept. 590
Aerospace Building
10210Greenbelt Road
Seabrook, MD 20804

D. Brooks
IBM
10215 Femwood Road
Bethesda, MD 20034

R. Broskio
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

V. Brown
NASA Goddard Space Flight Center
Code 582.1
Greenbelt, MD 20771

B.Chu
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

J. Crowley
Code 582.1
NASA Goddard Space Flight Center
Greenbelt, MD 20910

B. Curtis
General Electric
1755 Jefferson Davis Highway
Suite 200
Arlington, VA 22202

S. DePriest
CSTA
NASA Goddard Space Flight Center
Code 582
Greenbelt, MD 20771
982-4725

B. DeWolf
Charles S. Draper Labs
Mail Station 64
555 Technology Square
Cambridge, MA 02139

R. Durachka
NASA Goddard Space Flight Center
Code 565.3
Greenbelt, MD 20910

L. Duvall
IIT Research Institute
P.O.Box 1355
Branch P.O. Rome, NY 13440

C. Everhart
Teledyne-Brown Engineering
Cummings Research Park, M.S. 202
Huntsville, AL 35807
(205-536-4455 Ext. 610)

C. Felix
IBM
10215 Fernwood Road
Bethesda, MD 20034

121

C. Goorevich
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

J. Green
TRW Defense and Space Systems Group
Bldg. 65, Room 1638
1 Space Park
Redondo Beach, CA 90278
(213-535-4321)

J. Grondalski
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

J. Harris
NASA Langley Research Center
Hampton, VA 23665

F. Harris
IBM
10215 Fern wood Road
Bethesda, MD 20034

B. Hodges
NASA Marshall Space Flight Center
CodeAHSl
Huntsville, AL 35812
(872-2121)

P. Hsia
Computer Sciences Dept.
University of Alabama
P.O. Box 1247
Huntsville, AL 35807
(895-6088)

A. James
8300 South Whitesburg Drive
Huntsville, AL 35802
(205-4534389)

T. King
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

J. Knight
Analysis and Computation Division
NASA Langley Research Center
Hampton, VA 23665

P. Knowles
CSTA
NASA Goddard Space Flight Center
Code 582
Greenbelt, MD 20771

T. Kurihara
2058 Carrhill Road
Vienna, VA 22180

K. S. Liu
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

R. Luczak
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

F. McGarry
Code 582.1
NASA Goddard Space Flight Center
Greenbelt, MD 20910

M. McKenzie
JPL
Mail Stop 264/801
4800 Oak Grove Drive
Pasadena, CA 91103

P. Milliman
G.E.
1755 Jefferson Davis Highway
Suite 200
Arlington, VA 22202

K. Moe
Code 514
NASA Goddard Space Flight Center
Greenbelt, MD 20771

122

G. Page
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

J. Palaimo
Rome Air Development Center
Griffis Air Force Base
BR. Rome, NY 13441

F. Petry
University of Alabama
Huntsville, AL 35807

L. Putnam
Quantitative Software Management
1057 Waverly Way
McLean, VA 22101

G. Picasso
Computer Sciences Dept.
University of Maryland
College Park, MD 20740

R. Reiter
Computer Sciences Dept.
University of Maryland
College Park, Md 20740

C. Rumore
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

P. Ryan
Science Application, Inc.
2109 W. Clinton Avenue
Suite 800
Huntsville, AL 35805
(205-533-5900)

P. Scheffer
Martin Marietta Corporation
Mail Stop 0422
P.O.Box 179
Denver, CO 80201

L. Schumacher
DOD/PESO
c/o DLA CAMERON STATION
Alexandria, VA 22314

E. Senn
Analysis and Computation Division
NASA Langley Research Center
Hampton, VA 23665

S. Sheppard
G.E.
1755 Jefferson Davis Highway
Suite 200
Arlington, VA 22202

J. Stephens
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

D. Sung
G.E.
5070 Herzel Place
Beltsville, MD 20705

K.K. Tasaki
Code 582.1
NASA Goddard Space Flight Center
Greenbelt, MD 20771

W. Truszkowski
Code 514
NASA Goddard Space Flight Center
Greenbelt, MD 20910

C. E. Velez
Martin Marietta Corporation
P.O.Box 179
Denver, CO 80201

D. Weiss
Naval Research Lab
Washington, DC 20375

D. Wilson
Computer Sciences Corporation
8728 Colesville Road
Silver Spring, MD 20910

123

D. Wychoff
Computer Sciences Corporation
8728 ColesviJle Road
Silver Spring, MD 209JO

M. Zelkowitz
Computer Sciences Dept.
University of Maryland
College Park, MD 20740

124

