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1.0 INTRODUCTION

This document is provided in response to the requirement stated in

Division 240 of Section 4.0: Statement of Work, Request for Proposal, of

the Multiresource Inventory Methods and Pilot Test, Phase I, South Carolina

Design and Implementation Planning Contract.

It supplements an earlier version of the component evaluation report.

The preliminary version (Appendix A) contains a complete list of upper and

lower level Geographic Information System (GIS) components.

The current version is of a different character; it contains a description

'	 of another step in the evolution of the MATS system. The reason for the change

is stated in the following.

?	 1.1 Approach

The old adage: "The whole is more than the sum of the parts", is espe-

cially applicable to the evaluation of the prospective MAIS system. The assur-

0	 ance that each component is a state of the art component in good working

condition does not imply that the same is true for the overall system.

Conversely, a smoothly -functioning system must necessarily consist of good

V	 working components.

An evaluation of single components is therefore not sufficient. One

must also be concerned with component interactions: their method of use and

¢	 the total effect on the entire system.

In the initial phases of the MAIS project, it was thought that a system

could be assembled from existing components. In the ccurse of the work,

however, it became apparent that along with well-entrenched methods and
f

programs, some new concepts in software would be required to make the system

-1^



function. As a result, the main concern with the evaluation of the proposed

system became focused on the simple question: Will the basic concept work?

To answer this question, Q.e Phase IA tests described in this document

+	 were undertaken. It became clear that a positive answer was required

before one could proceed with a more thorough,component-by-component evalu-

ation to secure an optimum design. Also, it seemed wise to obtain this

F	 answer b ore proceeding to the related question: How well do the concepts

work, as planned for Phase II?

This document, therefore, emphasizes actual testinj of a "prototype"

E	 system; it does not consider the background of various components with

regard to such matters as: state of the art maturity, availability,

working status, and R & D requirements. The testing approach confronts one

t	 with the real problems which arise when all components must be exercised

to provide a meaningful systems result, and thus concentrates the evaluation

effort on those components which are currently the weakest links in the design.

t	 The MATS system as proposed in the MAIS concept development document basi-

cally consists of three major subsystems: the upper level GIS, the lower level

GIS, and the "linear model", which relates data in the two GIS systems. In

t.	the course of the Phase IA work, it was discovered that the "linear model"

was the most underrated part of these three subsystems. In this model the

data from the GIS systems flow together and are combined to yield the desired

#	 estimates. It seemed that almost the entire "method of use" of the two GIS

systems with their established techniques took on critical importance in

this component. New methods and techniques not previously applied in this

t
	

context were proposed to bring this about.
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t	
As a consequence, much of the effort for the Phase IA test was expended

on this subsystem, and much of this report is devoted to the further definition

or the methods and techniques formulated for its programs. The term "linear

model" was replaced with "estimation subsystem" to more accurately reflect its

status and complexities in the overall MAIS system.

1.2 Objectives

The main objective was to process a limited set of data through a loosely

assembled "prototype system". The first concern within this overall objective

was to secure a proper data flow; that is, when data are entered at one end,

results will emerge from the other.

The second concern was to assess the data resulting from the data flow to

ascertain that meaningful results can be obtained. Mindful of the GIGO

concept, this concern seems psrhaps more important than the first. However,

a functioning system must necessarily exist before good results can be produced.

An important aspect of the Phase IA test eras therefore to assemble the

prototype system from existing components and to construct preliminary versions

of those elements which had to be newly created. It is hoped that the same

components can be used by the Phase II contractor to process data for the 16-

county test area in South Carolina.

'	 1.3 Scope

The scope of the Phase IA test was necessarily limited by several factors.

As the main objective of this test was to assure the workability of the

t	 proposed process, the question of the quality of the estimates could not be

fully answered. The time frame did not allow for a full research effort, and

3..
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the area of interest may be too small to obtain an exhaustive answer.

Therefore, a great deal of the Phase II effort also must be concentrated

in this area.

Other limiting factors also played a role during the Phase IA test.

Several resource parameters could not be completely processed through the

system because of a lack of time for basic data input. The time factor

was also a constraint in the analysis of those parameters for which a

final data set was obtained. The overall philosophy for the Phase IA

effort was to do a limited number of tasks for a limited area, but to

try to complete these tasks as well as possible.

1.4 Protot a S' stem

The meaning of the word prototype as used in this report must not be mis-

understood; an integrated software package running on a single machine was

not created. Rather, several methods, packages, machines and people at

various locations were involved. Some components were tightly integrated

packages; others were separate existing programs. Several programs were

newly created for the Phase IA effort.

The upper level GIS LANDSAT analysis was performed in two separate

locations. The LANDSAT clustering analysis was performed in cooperation with

the remote sensing group of the Space Sciences Laboratory at Berkeley on an

image processing system developed around a Data General Nova 840 computer.

All other upper level GIS processing was performed on EarthSat's PRIME 450,

located in the Washington, D.C., office. Lower level GIS processing was

accomplished with the LANDPAK system on a PRIME 550, located at the premises

of EarthSat's Berkeley office. The same system was used to integrate all
t

-4-
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?	 data and to develop and run the estimation subsystem.

Although it would have been possible to perform all processing in- house,

to ascertain a state of the art effort the assistance of experienced

personnel at the Space Sciences Laboratory was procured for the LANDSAT

classification.

1	 1.5 Document Organization

The remainder of this document is divided into two main parts. The

first, Section 2.1, contains the concepts and theory for the estimation

subsystem as well as a description of the programs developed for it. Some

of the programs can be incorporated into a permanent subsystem; most are

only temporary, written for specific tasks in the Phase IA tests.

The second part, Section 2.2, contains the report of the Phase IA testing

effort. The test area is described, and the input and data preparation

techniques are outlined. The results and the analysis of the results for the

parameters evaluated are presented.

2.0 EVALUATION

The propose, DAIS system is based on several new and innovative concepts.

Before the event of current computer technology, resource information systems

mostly consisted of maps, aerial photos, and data files, with severe physical

limitations on the amount of numerical data that could be manipulated to pro-

vide answers to management questions. The overall emphasis was on collecting

new resource data for specific problems. The resource base itself was used

t	
as a data base with limited access to resource parameters through sampling

methods.

-5-
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D	 With the continuing development of computer technology, the capability

to handle large statistical data files increased. Sampling and statistical

techniques became more complex, and in the last decade the revolution in

computer graphics has given rise to geographic information systems (GIS)

which handle maps as well as descriptor data. With these systems it has

become possible to create an accurate and comprehensive model of a resource

I-	 base with which management problems can be evaluated, and actions can be

simulated. It may . therefore, seem that the pendulum is swinging the other

way and that complete enumeration of the resource model is now reasonable

i	 in many cases. In these cases, sampling methods may have become obsolete.

In the MAIS design it has been recognized that for large areas under

diverse ownership, for which many different kinds of questions relating to

separate disciplines must be answered, the GIS technology as well as

statistical and sampling methods must play a significant role. For even

if complete enumerations were possible, they might be more efficiently applied

in large sample units by means of which estimates of required accuracies

can be provided over large areas.

Two basic approaches are possible when combining the sampling concept

with the use of GIS systems. One might model the entire resource base and

sample within the GIS system to obtain answers, or one might enter only

selected portions of the resource base into the GIS system and fully enumerate

these to obtain specific estimates. A combination of these two methods may

also be used to take advantage of the best features of both. This is the

concept favored in the MAIS design.

Two GIS systems are involved. In the upper level system, the resource

base is represented in its entirety in the form of a LANDSAT classification



I	 image, possibly combined with other auxiliary data of the same resolution.

This model can be cheaply enumerated in different ways, this being its main

advantage. The related advantage is the timeliness of the information in

the LANDSAT images. Disadvantages are poor resolution and limited infor-

mation with a sometimes unknown meaning.

To compensate, the lower level GIS stores high resolution detail, but

only for selected sample areas, This information is also kept up-to-date,

but it is mostly based on aerial photographs and ground data; hence, the

update frequency is not as high as for the L.ANDSAT data.

2.1 Estimation Subsystem

Combining GIS technology with sampling and statistical techniques presents

a unique challenge. In conventional sampling methods, randomness is mostly

assured by selecting sample units in random locations. The GIS technology

presumes, however, that the selection units stored in the GIS are permanent;

additional units may be added, but the power of the system lies in its facility

to accurately keep track of a given piece of land. The same problem has, of

course, surfaced in the past in the transition from one-time inventories to

the CFI approach. To reconcile these opposed concepts, some compromises need

to be made, and it is worthwhile to consider what the tradeoffs are for the

available options.

The first option is to shift the emphasis on the random samples in the

lower level GIS to the upper level, where complete enumeration can easily be

made; to tie the upper level to the lower level by means of a model; and to

t	 rely on the error distribmtion in this model for appropriate random effects.

V,
	 -7-
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A disadvantage of this approach is that a priori assumptions on the error

distribution in the model must hold for it to provide unbiased estimates.

The traditional approach in sampling methods has been to avoid estimators

?	 for which such a priori assumptions are required, and techniques have been

developed to obtain robust, distribution-free estimates.

The second option is to use these robust estimators and forego complete

location randomization by using the same sample (with possible added units

as stored in the GIS subsystem on successive occasions). This approach is

biased in the long run, because the population is limited to the areas

represented in the GIS. This may be somewhat compensated for by the use of

the upper level data, but mostly these act as an efficiency booster In the

overall design.

The tradeoffs will be illustrated in more detail in the following

section. For the Phase IA test, only the first option has been explored

in actual test computations. The second needs further theoretical development.

Hopefully, this can be accomplished during Phase II.

The remainder of the current section has been divided into three parts.

The general structure of the estimation subsystem is presented first. This

is followed by a more detailed discussion of the statistical formulation for

the MAIS design. The section is concluded with a description of the esti-

mation subsystem components.

2.1.1 Structure

When examining the MAIS design from a sampling point of view for the

purpose of classifying the overall approach, it is clear that a multistage

"sampling" design is used, with "multi" equal to three. The stages in a
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multistage design normally refer to the sampling steps (Murthy, 1967), with

which the target population is approached. In the multistage concept as

introduced to forest inventory by Langley et al (1969), each sampling step is also

associated with a type of imagery of a certain scale except for the final

stage, which refers to the ground level. In the MAIS design, this association

is more general, as any kind of useful information stored in the GIS systems

may be used at a given stage consistent with its spatial resolution. Thus,

for example, at the county level LANDSAT images alone may be used, or they

may be combined with NCIC data; or, one may prefer to use a general soils map

instead.

2.1.1.1 Data Structure

Each stage in the multistage view of the MAIS corresponds to a set of

spatial data with matching attribute data of a given resolution. The

nature of the data at each of these steps is as shown in column 2 of Table 1.

TABLE 1

DATA OVERVIEW

Stage	 Type of Data	 Spatial Type	 GIS

1

(Primary)	 LANDSAT	 Cell	 Upper Level
LANDSAT Classification

Sample Unit NCIC DATA
^c	 PSU	 Digitized Map Data of

Comparable Scale

2

(Secondary)	 Aerial Photo Classifications 	 Polygon	 Lower Level
Sample Unit	 Digitized Map Data of	 Line, Point
SSU	 Comparable Scale	

j

^	 Y

3

(Ultimate)	 Field Data	 Point	 lower Level
Sample Unit

USU

w	 yJ



Throughout the MAIS design concepts document, references are made to the

upper and lower level GIS systems, connected through the "linear" model". In

this document, the linear model is incorporated into a more appropriate esti-

mation subsystem. More than one linear model may be applied to obtain one set

of estimates. From this perspective, the term "upper-lower level", as used

in the design concepts document, may be somewhat misleading; upper level

applies to the first stage, whereas lower level applies to both second and

third stages as indicated in column 4 of Table 1. The term "level", as used

in the design concepts document, is related to storage and resolution require-

ments rather than sampling steps.

The basic resource units as stored in the GIS system have both a spatial

and an attribute component. Each cell has a class, and each polygon line has

an associate descriptive record. The effect of the estimation subsystem is that

attribute data are divorced from their spatial equivalents to be summarized into

estimates which then apply to much larger spatial units. At the first stage,

cell classes are summarized into class proportions by PSU; at the second stage,

polygonal areas dre converted into class proportions by SSU; and at the third

stage, fixed plot (USU) data are converted into averages by class. The sum-

arized data are then related together into county estimates. The components

to prepare the spatial data at each stage for use in the estimation subsystems

are described in Section 2.1.3.

2.1.1.2 Processing Structure

Once the data at each stage have been properly summarized, the final esti-

mates are derived in two steps. The first step ties the first two stages

together; the second step combines the output from the first with the third

stage data to produce the final results. The entire process is schematically

-In-
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0

'i



P	 shown in Figure I.

DATA PREPARATION

Stage 1	 Class Proportions 	 STEP 1
Area Estimates	 STEP 2

Stage 2	 Class Proportions	 Final Estimates

Stage 3	 Class Averages

Figure 1. Processing Steps

a

Step i revolves entirely arourd the estimation of class or stratum

areas. Step 2 integrates the area estimates with parameter estimates, by

class, to obtain parameter estimates for the larger units, such as the

county.	 The proposed "sampling" technique for Step 1 is a variation of

regression sampling. The process for Step 2 can be largely characterized

by stratified sampling. As in double sampling for stratification, the

stratum or class areas are not fixed but are themselves random variables.

Tbis is one of the unique aspects of the MATS design.

The reason for first arriving at a set of area estimates independently

from the resource parameters estimates is the following: An alternative

approach could have been taken in which various parameter estimates would

have been propagated through all stages with independent linear models for

continuous variables; it would have been difficult, however, to maintain

known relationships between the parameters in this kind of propagation.

With the current approach, relationships existing at the ultimate stage

f	
are not changed, as one only multiplies through by area.

A summary of the estimation subsystem components is presented in Table 2.

0	 -11-
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TABLE 2

ESTIMATION COMPONENTS

STAGE	 DATA PREPARATION	 STEP	 ESTIMATION

1	 LANDSAT Proportion'	 1	 Area Estimation
Extraction	 Component

2	 Aerial Photo Proportion 	 2	 Summary
Extraction	 Component

3	 Field Statistics
Computation

Each of these components will be discussed in Section 2.1.3. However,

first it will be necessary to examine the statistical rationale for Steps 1

and 2.

2.1.2 Statistical Formulation

The Step 1 area estimation component is conceptually one of the most

important components of the MAIS system. In it, a novel approach has been

taken which, if proven successful, could set a new standard for incorporating

LANDSAT into multistage designs.

Traditionally, the aim of most LANDSAT classifications has been to

produce a class map for which there is an optimal one-to-one correspondence

between its classes and resource categories defined in some other, more

direct way. Results are usually expressed in contingency tables which,

when both marginal classifications are identical, are referred to as confusion

matrices (Colwell, 1979; Hildebrandt, 1979); or when this is not so, are

referred to as co-occurrence matrices (Isaacson, et al, 1979).

-12-
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It is interesting to note that in recent years a new kind of emphasis has

been placed on this type of matrix. It seems to result from the realization

that a perfect diagonal confusion matrix is not attainable, at least not for

wildland resource classifications, and that therefore the matrix itself can

be a tool to interpret the classification interpretation. Consequently,

confusion matrices have been more carefully constructed using sampling

techniques (Mayer, 1979; Sader, 1979; Todd, et al, 1980), and different kinds

of hypothesis tests have been applied (Isaccson, et al, 1979; Sader, 1979;

Todd, et al, 1980).

The MRIS approach goes along with this development but adds a new point

of view which, in effect, relaxes the one-to-one correspondence concept to

the extent that any unsupervised classification may be of use.

The device used is a transition "probability matrix" (Telser, 1963), or

a "projection matrix" (Pielou, 1969), which translates the stage one proportions

into stage two proportions as follows:

a = e'P
	

(0)

where a and a are K and L element class proportion vectors, and P is a L x K

matrix of "transition probabilities." P can be estimated from the sample

proportions of a set of matching PSU-SSU's with equal areas.
17
40	

This estimation is not without problems, some with published solutions

only since 1976. The best known example in economics literature is an

application by Telser (1963), who estimated transition probabilities for

smokers switching between the brands of Lucky Strike, Chesterfield, and

Camel from year to year (1923).

Q	 -13-
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Being able to estimate P and its covariance matrix takes the MAIS design

a step beyond the usual application of the confusion or co-occurrence matrix.

Rather than subjecting it to interpretation, it is used to directly translate

X,	 proportions from one stage to the other. For this reason P will be referred to

as a "class transformation matrix" in the remainder of this document. In the

following section we will assume that P and	 the estimators for P and

its covariance matrix have been computed. Now this is accomplished is the

subject of Section 2.1.3.1.1.

2.1.2.1 Step 1 Estimators and Variances

The formulation given in the following is all based on the assumption

that sampling is with replacement.

Suppose that the PSU-SSU combinations have been located randomly and

that there are n such combinations taken from an infinite population situated

in the county. It is instructive to first consider the sampling properties

of the SSU proportions as an independent set. The SSU can be considered a

cluster of fixed size, and hence Cochran's theory for estimation of

proportions in cluster sampling can be applied (Cochran, 1963).

If a ij is the proportion of class i in SSU j, then the estimator for

the population proportion is as follows:

n
1

a - n	 a.i	 (1)
j _	 j

An unbiased sample estimate of the variance is:

1	 ^
v	

A 2
(a i )	 n n- 1 	 j ^ l (a ij - ai)	 (2)

E
-14-
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t	 Since there are K classes in the SSU, and the class proportions are not

independent, the covariance of a i , as"k must also be considered:

n

	

co"v(a" i ,a k ) = n n-1	 (ai j - a i ) ( ak j - ak )	 (3 )
j=1

Let the vector of the above K class a  estimates of the county be denoted

by a then using (2) and (3), the estimated covariance matrix of a, ^ a can
be computed.

Likewise, from the PSU's, the vector of L primary class proportions e

can be computed, as well as its estimated covariance matrix ^6.

The following estimators for the secondary county proportions are now

considered (estimators S and E in the following represent the two options

alluded to in Section 2.1).

A. AyL, ache SSU Class Proportions

The estimator is:

	

aaav = a
	 (4)

The estimated covariance is defined as described above:

ZA

	

aav	 a	 (5)

If the PSU-SSU's are randomly located, the estimator is unbiased. The

primary stage is not considered in this estimator.

C)
	 -15-



B. Regression Prediction

The estimator is:

apr = e'P
	

(6)

The estimated covariance is:

^

A	 n^

apr = E ^PE'	 (7)

Here a is the vector of L county proportions (enumeration). p is the
A

estimated class transformation matrix, 	 P is the estimated covariance matrix

of P.

P can be rearranged as a vector with M = L x K elements, and hence P

is an M x M matrix. To be compatible with this matrix, a must also be re-

arranged into a diagonally structured matrix E, as follows:

	

e 1 .....o	 e2 . . ... o	 .....eL.... o

E	
e:
	 e;	 a	 (8)

	

o......1	 0......2	 0.......L

K x M

The estimator is unbiased if P is an unbiased estimator of P. This is

only the case if the traditional regression assumption holds; namely, the

errors are uncorrelated and have constant variance over the range of the

relationship.

-16-
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The evaluation of a pr is the subject of the Phase IA tests. Its advan-

tage for use in MAIS is that the random distribution of the sample is not

that important as long as a full range of conditions is present. The random

effects which occur around the linear relationship are what count. The dis-

advantage is that the assumption on the error distribution in the model must

hol d.

It is likely that the increase in efficiency (lower variance) with this

estimator is in the same order of magnitude as for the traditional regression

sampling estimator, namely 
p2 

x 100% where p is the correlation coefficient

(Zarcovic, 1964).

C. Regression Samplin g

The estimator is:

ar5 = a + (e - &)P	 (9)

A

The estimated covariance is	 ors (defined below). It is conjectured that

the elements 
cij 

of the estimated covariance matrix can be computed as follows:

n
A

c ij - nv ^1 J(a ik - aai) - I(ek -e)`P ^i! x	 (10)

.R
1(aj 

k - aj) 
d 

I(ek `e) P JJ

where 11("k -e)Pf i denotes the i th column of the row vector resulting from the

multiplication in the brackets and v is the degrees of freedom used in the

F	 regression error calculation.



A different approach to the estimated covariance is to note that (9)

contains two vectors and one matrix of random variables. The partial

derivatives of ars with respect to these variables can be obtained, and the

"delta method" of variance propagation can be applied, given that the

combined covariance matrix is available. Along the diagonal this matrix

is composed of the submatrices	 , ^e,P. As generally the covariance

of two random variables tends to zero when the sample size increases, the

off diagonal submatrices could possibly be neglected for a relatively large

sample.

The estimator a rs is the multivariate equivalent of the traditional

regression sampling estimator. All remarks about its properties are based

on the description of this estimator as presented by Cochran (1963) and

Murthy (1967) .

The estimator is unbiased if P is a preassigned matrix. However, if

P is estimated from the sample, the estimator is biased; but the bias is

small and becomes smaller with increasing sample size.

The advantage of ars over apr 	 is that it does not depend on assumptions

about error distributions in the regression model. The disadvantage is

I	 that the sample must be randomly selected. A complication of this

estimator when dealing with proportions is discussed in Section 2.1.3.1.

The estimator was not tested in the Phase IA tests. It may be an

attractive alternative to the a pr estimator because of its insensitivity to

the error distribution in the regression model. It is therefore hoped that

the opportunity will be present in Phase II to further develop the

0	 covariance aspect and to test and compare this estimator with the alterna-



9

r

f

on r 1 nij (n i - nij)
C 

	
(72)

n 
	

n32
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2.1.2.2 Step 2 Estimators and Variances

The Step 2 process integrates the stratum or secondary class area

estimates with observations made in the field. Two types of observations

can be made: discrete and continuous. From the USU point of view, a

discrete variable is a class designation; from the class point of view,

a USU is either in or out, and hence it can be considered a binary

variable.

First, discrete variables will be considered.

2.1.2.2.1 Discrete Variables

One is confronted with the same problem present in Step 1, namely how

to translate from one set of class designations to another. Again, this

problem can be solved with a linear class transformation (Section 201.2),
A

but P2 and P2 for Step 2 must be obtained differently.

P2 can be obtained by constructing a table with the secondary class

definitions in the left margin and the ultimate definitions at the top.

Each element in the table is the proportion of ground plots in the ultimate

class j identified as secondary class i, or p ij = n ij /n i .	 (11)

If there are K classes at the second stage and I classes at the ulti-

mate stage, then P is a K x I matrix; and its corresponding covariance

matrix is of dimension (K x I) x (K x I). An estimate of this matrix can

x	 be obtained from the ground sample by computing the diagonal elements as



P	 using the variance formula for binomial distribution, and the off diagonal

elements as

Goff	 1	 niinka(nink - n ij n kd	 (13)
n1 +nk )	 niznkz

A

In the first step, P and 
	
were obtained from the primary and

P.
secondary class proportions. The ground sample provides P 2 and 

tPA2. 
An

estimate for the proportions of the ultimate (ground) classes is now

obtained as followss

6

9 = a'P2	(1.4)

!	 Where g is a vector of ultimate class percentage estimates: a can be

obtained either as ars or apr. In the latter case (14) can be rewritten as:

P
	

g = e'P 1P2
A	 A A ^
	

(16)

The covariance matrix of g again can be estimated with the delta

method. Assuming that a and P 2 are independent, one can derive:

A 
A

g = AP 2A' + P2 t a P 2	 (16)

Where A is a diagonally banded version of a. A subject of further

investigation must be whether the independent assumption holds. It is
A

also possible that the estimated covariance matrix of P 2 can be obtained

in a better way.



I

?	 2.1.2.2.2 Continuous Variables

For continuous variables, two important types may be distinguished:

by class (for the county) and by county. In the by class category, we may

I	 obtain estimates by primary, secondary or ultimate class definitions. A

further distinction can be made as to whether the estimate is a "per acre"

value or a total value. Figure 3 presents a hierarchical organization of

I-	 these types of estimates.

In the preceding section we have used e, a and g to denote primary,

secondary and ultimate stage proportions and proportion vectors. In the

following we will denote per acre estimates in each of these categories by

U, a, g, and total estimates by e, a, g. Not all of these kinds of

estimates are useful. The most important ones are discussed in the

following.

Per Acre
By County

Total
Per Acre

ESTIMATE--	
Primary

Total

Per Acre
By Class	 Secondary
(within county)

	

	 Total

Per Acre
Ultimate

^	 4-Total

Figure 3. Types of Estimates

A. Ultimate Class, Per Acre



P

on the ground, computed over all plots in the ultimate class designation.

Let this mean be denoted by y i (class i). And let s2 be its estimated
Yi

variance. Then,

7

	

yi - yi	 and s 2^ = s 2	(17)
9	 Yi

B. Ultimate Class, Total

The area for Class i is estimated as gg i (Section 2.1.2.2.1), and

hence the estimate for the total is:

9i - 9 i 9i C	 (18)

Where C is the county area. An estimate for its variance is:

S2 ^ = C2 (Y? sz" + g? s2_ )	 (19)
Ii	 i	 gi	 i	 yi

A,

where s2g. is the appropriate diagonal element ofg (Section 2.1.2.2.1).

C. Secondary Class, Per Acre

The estimator is similar to the one described under A., but the

ground plots are sorted according to secondary class designations, and the

means are computed for these classes.

D. Secondary Class, Total

Similar to B.: replace g with a.

-22-
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F	 E. Primary Class Per Acre

A different approach has to be used for this kind of estimate. The

ground plots cannot be directly related to the cells at the primary stage

because of misregistration of primary maps and images with respect to the

ground coordinate system.

Instead, the relation e = PP can be used in reverse, namely:

e' = P a
1"-	

(2C)

where P_1 is the generalized inverse of P. Using this relation on the

vector of secondary class per acre estimates (this vector can be considered

a constant times a set of proportions, with the constant automatically

carried through the matrix multiplication), one obtains a vector of per

acre estimate as follows:

e'=
-i

 a
	

(21)

F. Primary Class, Total

The same transformation method (24) can also be applied to the vector

of total estimates by class.

The application for the primary class estimates is that they be used

to construct a precise legend for a primary stage classification map. This

may be a very important use for this type of estimate.

G. Entire Count . Per Acre

County per acre and total estimates can be based on any of the three

-23-
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stratifications: primary, secondary or ultimate.
A

The per acre estimate of the ultimate classification by class was gi.

The per acre estimate for the entire county is simply a weighted average over

all classes of these estimates:

A	 I A A

9 - Eg i gi	
(22)

i=1

or by (17):

I

g E9y7	
(23)

where I is the number of ultimate classes, and the yi 's are the average

parameter estimates for the ultimate classification.

The variance can be estimated as:

A	 A

s29 = 
g ^3r

 
g+ 4 g y'

where Xy is a diagonal matrix with s ty on the diagonal and zero's elsewhere.

H. Entire Count L, Total

The estimator of the previous paragraph is simply multiplied by C,

the total county area. Its estimated variance must be multiplied by C2.

2.1.3 Components

Proposed components for the estimation subsystem are shown in Table 2.

In the following subsections, each of these components will be discussed.

The area estimation component ("linear model" of the design concepts

0

E

g

(24)

{
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A

t	 document) will be treated somewhat in depth, since much of the Phase IA

effort was spent on developing a prototype. The function of the other

proposed components was "simulated" by calculating needed intermediate

F	 results with "throwaway" programs. Hence, each of these components will

be discussed only briefly, mostly with respect to its role in a future

MATS.

I

2.1.3.1 Area Estimation Component

Three approaches are possible to obtain an estimate of the co-occurrence

or class transformation matrix. First, one may spatially overlay the two

classification maps and compute the area of each of the combined categories.

The proportions of these area in terms of total area for the classes of one

of the classifications are the elements of the transformation matrix.

If a complete overlay is not possible, one can resort to obtaining a

sample of points and inspect each point for classification. This is the

method taken in Step 2 for deriving ultimate class estimates. It is also

commonly described in the literature (Isaacson, et al, 1979; Sader, 1979;

Todd, 1980).

The third approach is to use a regression model to estimate the trans-

formation matrix. This is basically possible if there is a sufficient number

of sample units with proportion vectors a and e. However, working with pro-

t	 portions presents some basic difficulties, the most notable one resulting

from the requirement that the predicted proportions must add to one. Another

difficulty is that a large number of coefficients must be estimated.

P	 The complete overlay of two complete classifications, if not prohibitive,

would be extremely time-consuming and costly, especially in the polygonal

0
	 -25-



mode. An overlay using a cell approach would be more reasonable, but then

a polygon to cell conversion would be necessary. The sample approach also

requires an overlay if automated and, if used with individual pixels, must

suffer from registration problems.

The regression method seems to offer several advantages: the entire

data set is used; a linear model is developed to which a large body of

statistical "know-how" applies; and the developed matrix can be used

directly to translate from one classification to another. For these reasons

the regression approach was selected. How the associated problems were solved

in the Phase IA development is the subject of the following section..

2.1.3.1.1 Theory

A. Conditions

The linear model a = OP can be set down in terms of its individual

F

elements as:

[eIe2eL1

1xL

P11 p12 . . .. . .. pi

p21 p22 . . . .	 . p2K
•

s
•
e

e
•

PLl pL2 . . . . . . . PLK

L x K

all'

a2

a
_J
K x 1

(25)

Since a is a vector of proportions, the following conditions hold:
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^^i = 0	 0< <_

e i 1	 i = 1, ....., L	 (26)

When the model is used in the prediction mode, the following

conditions must hold for the output vector:

K

o a 	 1	 0:5 a  < I	 i = 1, .... , K	 (27)
i=1

The problem to be solved is how to constrain the elements of P such that

(27) will hold true, not only for members of the sample but for ate.

prediction.

First it- can be seen that the inequality in (27) can be reduced to:

a  2:0 for i = I, ...... K.

Now each element of a is computed as:

L

Le	 ( )
a j 	 i=1 i P ij	 28

The following condition must therefore be satisfied:

L

E
ei p

ij 
? 0
	

(2g)

But, e  ?O for i = 1, ....., L.

It is, therefore, necessary and sufficient that P ij ?: 0 for all i and

j, for (29) to hold. The first constraint on the elements of P is thus a

nonnegativity constraint.

-27-



i

K

The second requirement: ;a	 I can be translated into a constraint

on the elements of P, as follows:

K	 L	 K '

Ea = ^ N '	
= ^ i	 ;-.j e. Z p	 (30)1-4 e p ij	 i=l j ., e i p ij	 I J=l Ij

P	 j=l i=1 i

L

Because	 e	 a necessary and sufficient condition for the a 's to add

to I is that	 pij = 1.

Summarizing, for the estimator 53 pr 
(Section 2.1.2.1), the following

constraints must be enforced in the regression:

K
Lp	 1 and p ij ^ 0	 (31)
J=j ij

The same conditions are also reported by Judge and Takayama (1966) in

this discussion of the cigarette example. Goodman (1953) demonstrated that

the condition Epij = I is automatically satisfied in ordinary least

squares.

Without special precautions, negative estimates of p ij will occur

however.

A different estimator may need different constraints. To examine the

requirements for a rs 
(Section 2.1.2.1) one may first observe that the

following condition must hold:

+ i(e. - ^Opij ?:0	 (32)
4=1 I

I	 and

-28-
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@	 K	 L

L p + L( e i - e i ) p ij ) - 1	 (33)

where pi and 9  represent the primary and secondary sample average proportions
and e i is the primary class percentage for the entire county. (The bars over
the letters here mean sample averages; they do not indicate per acre estimates

as elsewhere in this document.)

Now it can be seen that the earlier derived constraints do not guarantee

(31) because e  - 9  may be negative. Therefore, a general solution for ars
is not available, but for a specific set of e i 's (county proportions of
primary classes), (32) is a linear condition in the p i g's which can be
enforced with the regression approach described below. Some algebraic

manipulation shows that (33) holds when (31) is enforced. Thus, ar s presents
an additional complication when estimating proportions with solutions that

are less general than those obtained for apr.

S. Regression Model

Suppose that n PSU-SSd pairs are available from which the P matrix can

be estimated. The following equation system can then be set up:

f.	 -29-
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1

[e11 I][e21 I]	
.[eLl I]

[e12 
1][e 

22I]	
[e L2I]

NxK

[e 
IN 

1][e 
2N I]	[eLN 1]

LxK

4

pit
	

all

P12
	

a21

p1K
	

aK1

P21
	

ail

p22
	

a22

P 2
	

a K2
	

(34)

pL1

pL2
	

a1N

a2N

PLK

:xK)xl

La 
KN

(NxK)x1

s

where, for example, [e ll s] has the following structure:

F
	 e 11 0. . . . 0

0	 e11

ell
	 (35)

F
	 0	 . e13

KxK
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The P matrix has been rearranged as a vector, and the secondary

proportions have been joined into a single column. The vector ^ is made

up of random disturbances.

The system (34) can be expressed in the usual regression notation

as:

X'3 = Y +	 (36)

As was shown, this system must be subject to a set of a priori

constraints to yield admissable predictions.

[Voting that an inequality constraint can be written as two inequality

constraints, for instance a = c: a ? c and -a ? -c, the condition (31)

:. can be expressed as the following set of inequalities:

1	 0	 0	 0	 ............................. 	 0 01
0	 1	 0	 0	 .,.	 ..	 0 0
0	 0	 1	 0	 ......	 0.........	 ... 0
0	 0	 0	 1	 .............................	 0 j.

LxK

0
(LxK)x1	 (37)

0
^" 1	 1	 1	 ...	 1	 0	 ..................... 	 0 1

0	 ...........	 1	 1	 1	 ...	 1	 0	 .........	 0 1
t L

Q.
	

.
	

.
	

.
	

•. ..•	 x	 1	 1	 .1...0 1

1-1-1...10	 .........• ....•......0 -1
Q	 ...	 - 1	 -1	 -1	 ...	 1	 0	 ........0 _t

L

0	 .......................-1 	 -4	 -41	 r1:..0 -1

((LxK) + 2L}	 x (LxK) ^(LxK)+2L) x1

4'



A(3 >_ c	 (38)

If b is the ILLS estimate for 0, then with the least squares criterion

the following problem must be solved: minimize

Y

Z = 1/2(y-Xb)'(Y-Xb)	 (39)

subject to

Ab ? c
	

(40)

4

or

Ab - v ? c	 (41)

^s

where v is a slack vector.

Several approaches to solving the general	 inequality constraint least

squares problem (ICLS) can be found:	 -

(1) Mixed estimation (Zelner, 1971; Theii, 1963)

(2) Quadratic programming (Lemke,	 1962; Liew,	 1976; Dantzig, 1967)

(3) Branch and bound Methods (Gentle, et al, 1980) 	 _w

(4) Statistical testing of negative proportions	 (0'Reagan, 1980)

(6) The condition equation approach (van Roessel, 1974)
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The quadratic programming approach was selected for use in the 14AIS.

It provides a correct solution under all circumstances, anti since 1976, an

approach to the calculation of the covariance matrix has been available

(Liew, 1976).

C. Inequality Constrained Least Squares

In this subsection, the ICLS approach will be outlined briefly with

specific emphasis on the derivation of the covariance matrix as proposed by

Liew (1977).

The Kuhn Tucker conditions specify that at the optimum point the following

conditions hold:

(X'X)b - Xy - A'X = 0	 (42)

)t!(Ab	 c) m 0	 (43)

?O	 (44)

where X is a vector of Lagrangian multipliers. If X is known, b can be

computed as:

b = (X'X) -1
 (Xy - A'X)	 (45)

substituting into (41), one obtains

-33-
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r

t	 A(X'X).lXy - c + A(X'X)-1A'X = v 	 (46)

or defining

q = A (X' X ) -1XY - c = Aj3 c	 (47)

I	 where /3 is the OLS estimate and:

W = A(X`X) -1A'	 (48)

f

one obtains the so-called fundamental problem, namely: find v and X, such

that:

v = W X + q , v' A = 0 , 	 A2:0	 (49)

Two algorithms for solving this problem are available, one by Oantzig

and Cottle (1967) and the other by Lemke (3962). The Lemke algorithm was

programmed for the Phase IA test. The equation v = W X + q can be written

in matrix form as:

[I	 -W1
= q	 (60)

mx2m

2m x 1
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If there are m constraints, then v and X are m x 1 vectors, and hence

[v 4'is 2m x 1. But since the inner product of v and Xis zero, the

near zero elements can be eliminated from v and X. and (50) can be

t	 reduced to:

[I 	 wla 
^v 

Y 
q	

(51)

Z mxl

Now one can "solve" for [v°	 as follows:

d

[v°

IM2

q 	 (52)

A°  

or, in particular, by (47)

M 2 (Aj3 - c}	 (53)

The following breakdown can also be made:

0
k	 A'X W 

(A1 IPA	 = AZA°	
(54)

)^]

Substituting (53) and (54) into (45), one obtains:

b =	 + ( X ' X ) -1 A I M (40-c)	 (55)

or

S
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b =(3 (I + (X'X) -1 A2MzA) - (X'X) -l A2 Mzc

Designating the multiplier of AO as M, the covariance matrix of b is:

^b = MV(6)M' = a2M(X'X) -l M'	 (56)

r	 and its estimator is as follows:

n

b = s2M(X'X) -l M	 (57)

F	
nK

where s2 = EeIA and eQ = aQ - aQ.

Normally v is computed as n - k, where n is the number of observations

and k is the number of estimated parameters. In the proportion estimation

case, v is computed as follows:

v = n(K - 1) - K(L - 1)	 (58)

since each vector of proportions has a implied mean. a I represents a

secondary class sample proportion prediction, and aQ is its observed value.

A coefficient of multiple determination can be computed as:

nK
- 

I 

(a, 1/K)2

fZ2	
nK	

2
	 (59)

(a.,

where 1/K is the average of all secondary class proportions in the sample,
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Similarly, an F statistic for the significance of the linear relation can

be computed as:

nK
2

s 2	K(L-1)

2.1.3.1.2 Programs

The theory of the previous section was incorporated in the program

ESTPRP written in Fortran IV. This program currently runs on the PRIME 550

at the contractor's Berkeley facility. As was mentioned in Section 2.1.1.2,

one of the problems associated with pros._:-tion estimation is the large

number of coefficients to be estimated. For instance, if L = 10 and

K = 14, 140 coefficients must be determined, and the associated covariance

matrix is of size 140 x 140. Several other matrices of this dimension are

also required in the course of computation. The memory requirements of

the current program are approximately 800,000 bytes, allowing for the

estimation of a maximum of 300 coefficients. This presents no problem on

the PRIME 550, because it has a virtual memory; however, should it be

desired to run a program on a machine with a more modest, fixed-size

memory, an additional programming effort will be necessary.

The ESTPRP program is based on a general ILLS solution, as implemented

in subroutine IOLS. This was done because the exact form of the constraint

matrix was not known at the beginning of the project. Therefore, considerable

space savings can be achieved by implementing a more specific proportion

IL	 estimation solution.

Already, a considerable reduction of needed memory was obtained by
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I	 an algorithmic computation of the initial X'X matrix, rather than using

straightforward matrix multiplication. The X'X matrix is a sparse matrix,

and very likely, a special inversion algorithm designed for this type of

matrix, can perform in a fraction of the time currently used by the

generalized inverse routine RUST. The routine ICLS calls the routine

LEMKE, which contains the Lemke algorithm.

E	 At the beginning of the project it was not known whether the row sum

constraint of the P matrix would hold implicitly, or whether the constraint

was to be expressed in the A matrix. The latter course was chosen, and

Y	 rightly so, as it appeared that these constraints were active in most

cases tested.

Because a computer is not a perfect mathematical machine, the entire

ICLS approach was implemented with appropriate tolerances. For example, the

row sum constraint is enforced as follows:

K

l- ^Lpij^lfe

with 6 = 0.0001. The error in the sum of predicted proportions was

generally less than 0.0005.

The PRIME 550 is a 32-bit machine; all computations are therefore

performed in double precision.

The program ESTPRP writes P 1 , andP 1 to disk for further processing

by program ESTCNT. ESTCNT takes the county proportions (see Section 2.2.2.2.6)

and the output matrices of ESTPRP and computes secondary class proportions

t	 for the county according to equations (6) and (7), Section 2.1.2.1. It,
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A

!	 in turn, writes apr and .5 
pr 

to the disk for further processing.

2.1.3.1.3 Program Testing

r	 Although the "linear model" concept of the Step 1 area computations is

simple and elegant, its details as implemented through the ILLS approach

are quite complex. The greatest precautions were taken, therefore, to

I	 assure that the programming was correct and that the program will

continue to function properly. This was accomplished by (a) computing

known test cases, and (b) incorporating test computations into the

program.

Zemke (1963) provides a numerical example, beginning with the matrix

W. It was used to test the LEMKE subroutine. Liew (1976) gives an example

of a covariance computation for an economics case. An attempt was made

to reconstruct this test computation, but it failed as the reference

material in the paper was inadequate. An example was therefore requested

directly from the author; a data set was received together with a test set

made with the author's package at the University of Oklahoma (Li V4 and

Shim, 1970). The covariance matrix of this set was duplicated on the

4	
PRIME 550. The differences between the computed elements of the covariance

matrices was generally less than 0.0003 for elements with a magnitude of

0.02.

t	 The test computations built into the program check various relations

that should exist in the course of the computation, such as ( 49), (52) and

(54), of Section 2,1.3,1.1. In addition, matrix inverse computations are

t	 checked by multiplying the result by the original matrix, and matrices to

-39-

i.
C.



f	 be inverted are inspected for rank deficiency. During development of the

program, test computations provided insight into the tolerances to be

used; in future use, they will quickly abort the program in the

I	 eventuality of storage problems or other environmental defects.

2.1.3.2 Field Statistics Component

t	 This component, as currently implemented in programs CSTAT and DSTAT,

computer the sample averages, by class, and the estimated standard deviations

for the parameters of interest (CAI). ".,ee Section 2.1.2.2.2, subparagraph A.)

It also computes P2 and P 2 (See Section 2.1.2.2.1).
The procedure currently in use is as follows: each field plot is inter-

preted as to its secondary (aerial photo) attributes. A file is then con-

structed which assigns two sets of attributes to each plot. The first set is

the PI code; the second set is derived from the basic plot and field observa-

tions and consists of the plot estimates of the parameters of interests

Currently this second set contains: CAI, Ground Land Use Code and Forest

Type Code; the latter as defined by McClure, Cost and Knight (1979).

Plots can then be sorted on various combinations of PI attributes in

the identical manner in which the SSU resource units are sorted for a desired

stratification. (See Section 2.1.3.5) For continuous variables, averages

and standard deviations are computed by these classes (Program CSTAT)

X	
For discrete data, a P matrix and a covariance matrix are computed (Program

DSTAT).

If, for security reasons, plot data are not to be stored in the lower

0	 level CIS, the field statistics component can be the primary receptacle for

t	 -40-
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P	 all field data and can be the main instrument for all field data-related

processing. Thus, all field data manipulations currently performed by

the Plot Summary Program at the Southeastern Experiment Station can be

a part of the field statistics component.

2.1.3.3 Summary Component

The function of this component simulated in the Phase IA test are

currently performed by program ESTSMR. The possible functions are the

computations of the estimators and variances described in Section 2.1.2.2.

Program ESTSMR takes the outputs of programs ESTCNT, CSTAT and DSTAT, and
S'

computes the final estimates and their estimated variances.

2.1.3.4 Primary Proportion Extraction

One alternative is to consider the proportion extraction tasks as a

part of GIS-related processing. However, it is proposed tha,: these tasks

are to be a part of the estimation subsystem. A compelling reason for

this recommendation is that the calculated proportions are for classifications

directly related to the types of estimates to be made, to be specified at

request time. These classifications can then be defined as the estimation

subsystem is invoked, and the proportions can be generated accordingly.

The manner in which primary (LANDSAT) PSU proportions were extracted for

the current test is described in Section 2.2.2.2.4. A program EPREP was

written to further combine classes generated by the program COUNT described

in this section.

0
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2.1.3.5 Secondary Proportion Extraction

The LANDPAK report generator is a versatile program capable of sorting

and summarizing resource unit data in a variety of ways. For the purpose

of the test, an outprit option was built into this generator which allows

one to summarize data onto a file for further processing. Using this

option, a file is generated which for each RU contains the RU number, the

LAHDPAK-computed area, the SSU number and the PI code for the RU. A

program JPREP was then created that sorts the RU's in this file according

to a given classification, computes the proportions of th( total area of

each class of the SSU, and outputs a list of these proportions by SSU to

the disk for further processing. Program JPREP must be modified for each

additional classification, and as such is actually part of the file. A

corresponding modification must be made in CSTAT. A user friendly way of

specifying a desired classification must be part of a permanent MATS.

S

t

0
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t	 2.2 Prototype Test

The Phase IA test is described in this section. The report of this effort

is divided into two main parts: input and data preparation of the upper and

lower level GIS, and analysis of the Step 1 and Step 2 computations of the

prototype estimation subsystem. Once again, it should be emphasized that the

current version of this subsystem, with the exception of the program ESTPRP,

consists mainly of "throwaway" programs specially created for the Phase IA test.

The description of the testing effort is preceded by a short description

of the test area: Kershaw County in South Carolina.

2.2.1 Test Area Description

Kershaw County, South Carolina, was selected as the site for the Phase IA

pilot test. Situated in the north-central region of the state, it offers a

variety of forest types and land use regimes, making it suitable for evalu-

ating new, multiresource inventory methods.

Kershaw County ha:, a total land area of 499,840 acres, of which approxi-

mately 395,000 are forested (G. C. Craver, 1978). It contains three physio-

graphic regions: the Southern Coastal Plain, Carolina Sand Hills and the

Southern Piedmont.

The predominant forest types are loblolly-shortleaf pine, oak-gum--cypress,

oak-hickory, and oak-pine. The distribution of these types is controlled mainly

t	 by soil type and moisture. Broadly, hardwoods occur in the drains with increasing

occurrence of pine on drier ground. The influence of man on the distribution of

forest species is significant.

P	 Reforestation of abandoned cotton fields throughout the county has been

encouraged, beginning in the 1950's. Species planted consist chiefly of lob-
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t	 lolly and shortleaf pines. Much of the land on upland sites is cropland and

pasture.

The range in elevation is from 100 feet to about 500 feet. The climate

is mild, due to the influence of the Gulf of Mexico and the Atlantic Ocean.

Minters are humid and mild, with average January temperatures of 45°F, although

occasional periods of frost and freezing temperatures occur. Summers are warm

and humid, with average July temperatures of 80°F. Mean annual total rainfall

is approximately 50 inches.

2.2.2 Input and Data Preparation

2.2.2.1 Lower Level GIS

2.2.2.1.1 Sample Selection

The sampling configuration decided upon includes the 210 Forest Service

field plots. These are termed Ultimate Sample Units (USU's). In addition, a

random sample of aerial photo sample units were selected. These are termed

Secondary Sample Units (SSU's). The SSU's are square, measuring one mile on

"	 an edge on the ground.

The SSU's were selected by first selecting (randomly, without replacement)

a subset of the 210 ground plots. All of the ground plots classified by the

Forest Service as other than forest or cropland were deliberately included in

the sample. This was an attempt to improve the distribution of sample plots

among the classes, as the,.e classes were inadequately represented in the ground

plot sample.

Q
	 -44-

f'



t	 Around each USU selected (we chose a total of 60), an SSU was randomly

located so that the USU was contained within the SSU boundary and oriented

orthogonal to the directions of the cor,ipass.

r

2.2.2.1.2 Photo Interpretation

The aerial photographs provided are panchromatic black and white, taken

I	 in April, 1975. The 1:20,000 scale prints were enlarged from 1:40,000 nine-

inch negatives. The image quality ranges from fair to poor, with graininess

and low contrast being the main deficiencies. Incomplete stereo coverage for

;:	 more than half of the SSU's was also a problem. High quality color IR optical

bar photography, flown in 1979, was used to supplement photo coverage of these

problem areas.

ti	 A list of land use classes was devised based on the requirements described

in the RFP. Image quality in conjunction with the interpreters` ability to

discriminate between these classes was the basis for formulating the set of

aerial photo classes used. (See Appendix B.)

Training was accomplished by first selecting training sites, which covered

the range of conditions identifiable on the photos. These sites were then

interpreted using a 1-3 power mirror stereoscope.

A field trip was made tc the test area in July, 1950. EarthSat personnel

spent 6 days in the area. The training sites were checked for correct inter-

pretation, and new training sites were established. The training sites were

described and documented using stereo pairs of color photos taken from ground

stations. Some training sites were documented by low-altitude, oblique aerial

t	 photos taken during a reconnaissance and photo flight chartered by EarthSat.

These documents, keyed to the aerial photos, were the main reference and train-
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ing aid used in the photo interpretation.

In addition to the interpretation of the SSU's, the remaining USU's were

classified as to photo class. Thus, information was compiled for 60 SSU's and

r	
210 USU's. An interpreted photo for SSU No. 20 is illustrated in Figure 2.

2.2.2.1.3 Data Entry

The lower level CIS consists chiefly of the LANDPAK system. The first

step in entering data from source maps is to establish geometric control for

that map. This consists of establishing enough points on the source map, of

P	
known ground coordinates, to ensure a good transformation from digitizer table

coordinates to ground coordinates. This is between 4 and 8 points, usually 4

if the source map is a controlled map and 6 to 8 if the source map is a delin-

eated photo or other uncontrolled map.

Control points were derived from 72-minute U.S.G.S. topographic maps if

available; otherwise, 15-minute maps were used. An error of 15 meters RMS was

the tolerance allowed for any transformation.

During the control procedure, the ground locations of the SSU centers were

established. These centers were used to generate control units, the control

layer for LANDPAK data. At this point, digitizing and entry into the LANDPAK

system of the SSU type-maps could proceed. These type-maps, when entered, con-

stitute the covertype layer. Similarly, elevation contour lines were digitized

and entered to form the topography layer.

The data items entered for the covertype layer consist of elements of the

PI codes assigned to each delineation or resource unit (RU). Thus for cover-

type, 5 data items were entered for each RU, including values denoting unknown

or irrelevant status. Stored data items for the topography layer consisted of

contour line elevations. Figures 3 and 4 illust'i^ate covertype and topography
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layer images, respectively, which were retrieved from the database and plotted 

for SSU No. 20. 

2.2.2.1.4 Data Compilation for Soil Loss Estimates 

i 
\, , 
" 

A model was selected to demonstrate an appl i cation of these methods to soil \. 

erosion potential estimation. The model, the Universal Soil Loss Equation 

(USLE) is expressed as: 

A = RKLSCP 

where: 

A is the average annual soil loss in tons/acre/year from the site 

R is the value of the rainfall erosivity index for the site 

K is the value of the soil erodibility index for the site 

L is the length of slope factor 

S is the steepness of slope factor 

C is the vegetation cover influence factor 

P is the erosion control practice factor. 

(For more information on applying the USLE, refer to USDA, SCS Technical Notes, 

January 1, 1978.) 

Average values for R, K and L for each of two major regions in Kershaw 

County were taken from a previous study (Dissmeyer and Stump, 1978). Each SSU 

fell into one of the regions for purposes of assigning these factors. Efforts 

to include soil-type maps in the database were abandoned after delays in 

receiving requested data. This would have facilitated site-specific determin-

ations for the K factor. Attempts to approximate K values by SSU were also 
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abandoned for lack of data.

Pertinent information existed in the LANDPAK database in the form of the

covertype and topography layers. This provided a means of assigning C and S

values. Slope-class maps were generated using the topography layer and LANDPAK

subsystems. The following class limits, in per cent slope, were devised:

1. 0 - 2

2. 2 - 4

3. 4 - 8

4. 8 - 16

5. 16 - 30

6. 30+

The slope-class maps were inserted into the database and constitute the slope-

class layer. A slope-class map retrieved from the database and plotted can be

seen in Figure 5. Values for S, for assignment to each slope-class (Table 1,

Technical Notes, 1978) were selected.

Representative values for C were assigned based on each RU's covertype

PI code. These values were approximated from published suggested values (Tech-

nical Notes, 1978). We feel it should be noted here that the PI classes were

not configured for determining these values. We chose a C value which was our

best approximation for an average value for that PI class. Similarly, we were

not in a position to determine P values. Since P applies chiefly to agriculture

and is really an adjustment to account for efforts to minimize erosion, we feel

its omission is relatively unimportant but should ultimately be included to

account for certain forest practices.

2.2.2.1.5 Derivation of Soil Loss Sample Set

This section describes the processing of the soil loss data using LANDPAK

-51-
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f

g	 and special programs up through the interface with the estimation subsystem.

The slope-class and covertype layer images were retrieved from the data-

base, and an overlay operation was performed to intersect these two map layers.

4	 The resulting map, a new layer referred to as the selection map, consists of

new RU's of homogeneous slope-class and PI class. Figure 6 is a plot of this

selection map for SSU No. 20. A LANDPAK report was generated for this selection

map and stored in an auxiliary file. This re port contains information on each

RU as to land area, PI code and slope-class.

This report was input into EROS, a modified version of computer program

JPREP2. EROS assigns the appropriate values to factors of the USLE. EROS

solves the USLE and assigns the RU to a soil-loss class. The soil-loss class

limits were assigned (in tons/acre/year) as follows:

1. 0 - 2

2. 2	 4

3. 4 - 8

4. 8 - 16

5. It - 32

6. 32-64

7. 64-L

The program accumulates areas by each of these classes. The proportion of

the total area contained in each of these classes is then computed. This table

of class proportions is the output from EROS, which is stored for use by the

estimation subsystem. Essentially, this process is carried out by SSU. The

whole process was carried out for only 12 SSU's due to constraints of time and

D	 resources.
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E	 2.2.2.2 Upper Level GIS

This section describes the procedures used for the input and manipulation

of LANDSAT data in the upper level GIS. The upper level functions used in this

project included LANDSAT preprocessing, unsupervised classification, image

registration, statistical tabulation and map generation. With the exce ption of

unsupervised classification and digitization of the county boundary , all pro-

f	 cessin^,.i was performed at EarthSat`s Washington, D.C., office on a PRIME 450

minicomputer. Classification was performed at the Remote Sensing Laboratory

at the University of California at Berkeley. The digitizing of Kershaw County

boundary was done by EarthSat, Berkeley, personnel using LANDPAK.

2.2.2.2.1 LANDSAT Preprocessin g

The Kershaw County study area is contained within a single LANDSAT frame

of path 17 or 18, row 36. Two scenes were available: 11035-15454 (LANDSAT 1,

May 1975) and 30515-15201 (LANDSAT 3, August 1979). The LANDSAT 1 scene was

chosen because it was available in the old CCT format and could be destriped

with Ea rthSat`s scan line suppression software. The LANDSAT 3 scene was avail-

able only in corrected MDP format which cannot be destriped because the geo-

metric correction process destroys the detector identities.

EartnSat's LANDSAT preprocessing program, CCTRFM, performs 3 functions:

reformatting, scan line suppression and geometric correction, in a 2--pass pro-

cedure. In the first pass the four spectral bands are separated into different

files, and the four vertical strips are pieced together. At the same time, the radio-

metric calibration introduced by NASA is removed and a histogram is acquired for

each of the 24 detectors. Four calibration lookup tables are computed in order

to match the six detectors for each spectral band. In the second pass, the

;a
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image is recalibrated and resampled (nearest neighbor) to correct for mirror

velocity profile, earth curvature and panoramic distortions. Synthetic pixels,

extra pixels inserted by !NASA to attain consistent line length, are deleted

L	
during this pass.

The corrected LANDSAT tape generated by CCTRFM was then used as input to

the classification and registration steps.

2.2.2.2.2 Classification

Classification of the LANDSAT digital data was performed on the data general

!NOVA 840 of the Space Sciences Laboratory of the University of California at

Berkeley, with program CLUSTER. It employs the ISODATA algorithm developed by

Ball and Hall, and is about five generations removed from the original program

(Ritter and Kaugars, 1978).

An envelope for Kershaw County was defined using the interactive image

processing system, and an initial clustering was performed on a 4% sample of

the points in the envelope.

The maximum standard deviation for the splitting of a cluster was set at

0.6, and the minimum distance for combining clusters was defined at 3.2. The

run terminated cleanly without the iterative splitting and combining that

occurs at times, with an average cluster standard deviation of 0.3779, and an

average in tracluster distance of 15.04. A total of 14 clusters was generated.

t
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t
TABLE 3

Percentage of Points in
Kershaw County Envelope
Assigned to Each Cluster

Cluster Per Cent

1 0.3

2 25.5

3 22.2

4 19.3

5 I	 6.7

6 7.9

7 4.0

8 0.6

9 2.2

10 8.6

11 0.7

12 0.8

13 0.5

14 0.3

Table 3 lists the clusters and the percentages of points assigned to each.

It is interesting to note that clusters 2, 3 and 4 contain almost 70% of the

points in the sample.

After the initial cluster run, the program was restarted at a later datt?,

and all points in the area were assigned a cluster number. An output tape with

the resultant image was forwarded for processing to the EarthSat, Washington,

D.C., office.

IN
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v
In the following, we will refer to the cluster and its associated points

as a spectral class. By means of an inspection of the classification image,

initial land use assignments were made for each spectral class.

TABLE 4

Initial Land Use
Cluster Assignments

Cluster Land Use Category

1 Bare Soils

2 Hardwood Pine Mix

3 Bottom-land Hardwoods

4 Pine Hardwood Mix
i

5 Cropland

6 Pine

7 Bare Soil

8 Wetland
I

9 Bare Soil	 j

10
i

Cropland

11 Water

12 Bare Soil

13 Water

14 Bare Soil

The number of spectral classes was judged too high for further analysis, and

so, after the SSU proportions were extracted, spectral classes were combined on

the basis of their intracluster distance, the number of points in each class,
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1^	 and the initial land use class assigned to the cluster.

Two sets of classifications were Ultimately used, as shown in Table 5,

one with 7 classes and one with 10 classes. We will refer to these classifica-

tions as the 7- and 10-class spectral classifications.

TABLE 5

Composition of Spectral
Classifications Used in

ICLS Estimations

f

:1

7 Spectral 10 Spectral
Classes Classes

Spectral
Class Cluster(s) Cluster(s)

1 1,	 12,	 14 1,	 12,	 14

2 2 2

3 3 3

4 4 i	 4
i

5 5,	 7,	 9,	 10 5

6 6 6

7 8,	 11,	 13 7,	 9

8 8

9 10

10 11,	 13
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2.2.2.2.3 Image Registration

In this step, ground control points (GOP's) were located to develop a

relationship between LANDSAT coordinates (line, column) and the UTM coordinate

system (northing, easting). 7=-minute maps were obtained for Kershaw County

and the surrounding area. Unfortunately, a large section of the county is

covered only by a 15-minute sheet (Camden) which was last updated in 1939.

This was unacceptable for our purposes, so no ground control was available for

that area of the count

Five GCP's were located on the 7k-minute maps and the LANDSAT image. Since

the study area covered about 1/9 of a LANDSAT scene, this was equivalent to

45 GCP's for a full scene. EarthSat's program SHADE was used to produce line

printer maps of those portions of the LANDSAT image (band 5) which contained

the control points. The line and column coordinates for each point were mea3-

ured from these line printer maps. UTM coordinates were measured from the

U.S.G.S. maps.

Ground Control Points

LANDSAT	 UTM

Line	 Column.	 N	 E

1471	 371	 3,810,874	 520,071

1126	 116	 3,840,521	 512,163

1094	 167	 3,842,405	 515,627

1711	 659	 3,789,234	 531,929

1367	 193	 3,821,109	 511,790

Phese points were entered into EarthSat's program AFFINE to determine the

coefficients which would map them with the minimum RMS error. The affine

rr
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1,	 transformation has the form:

X2	 V1*Xl + V2*Y 1	 V3

k	 Y2 V4*X l + V5*Y i + V6

where X l ,Y l is the location in coordinate systea, 1, X 2 , Y 2 is the location in

coordinate system 2, and V 1 through V6 are the coefficients. The actual trans-

formation used was:

UTM N = -77.095*LINE - 11.468*COLUMN + 3928650

UTM E W -19.565*LINE = 57.590*COLUMN + 527457

This transformation yielded a 67-meter RMS mapping error at the control

points.

2.2.2.2.4 SSU Proportion Extraction

With a suitable mapping transformation defined, it was then possible to

locate the 60 SSU's on the classified LANDSAT image and calculate the class

proportions.

EarthSat's program RESAMP was used to resample and extract each SSU. The

data were resampled to a 20-meter UTM grid using a nearest neighbor algorithm.

The 2J-meter grid was chosen over a coarser grid to allow for a more accurate

splitting of border pixels (a 20 x 20 meter cell is appro.A mately 1/12 of a

LANDSAT pixel). Each resampled SS-U consisted of an 80 x 80 array of class num-

bers. EarthSat's program COUNT was used to count the occurrences of each class

and to convert them into proportions. A color coded map of a resampled SSU

classificatio., image is shown in Figure 7. This is the identical SSU shown in
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1^	 Figures 2, 3, 4, 5 and 6.

2.2.2.2.5 Digitizing of County Boundary_

The county boundary :vas digitized from U.S.G.S. 15-minute quadrangle maps,

using EarthSat's program TALOS. Files produced for each quadrangle were editec

and merged for input to program CPOINT, a LANDPAK auxiliary program. CPOINT

:a	 was used to convert the machine coordinates to UTM coordinates using a projective

transformation computed from digitized map control points.

The file of UTM coordinates was then input to program KCC to produce a

simulated binary image to be used as a mask for the classification image. A

tape with this county boundary image was forwarded to EarthSat's Washington, D.C.,

office.

2.2.2.2.6 County Proportion Extraction

In this step the digitized county boundary was logically combined with the

classified LANDSAT image to generate class statistics for the entire Kershaw

County area. RESAMP was again used, this time to resample the entire classified

image to the 50-meter UTM grid of the county boundary file. EarthSat's program

oil	 CMBHST was used to compute statistics for those LANDSAT pixels which fell within

the Kershaw County boundary.

2.2.2.2.7 Map Generation

The map generation capability of the upper level GIS was used to create a

LANDSAT classification map of Kershaw County. EarthSat's program COMBIN was

used to combine the ;°esampled class map with the county boundary map, masking

out all pixels which lay outside the county. The masked class map was then
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processed by EarthSat's program OPTRONIC, to assign a color to each class and

create three annotated film recorder compatible tapes (one tape for each primary

color). An optronics film recorder was used to create three black and white

4	 transparenci-s from these tapes. EarthSat's photo lab composited the trans-

parencies to produce a color negative and color photomaps at various scales.

w
qf.

F

f
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2.2.3 Analysis

The most significant results of the estimation computation of the phase IA

test are presented in this section. Three primary categories of variables are

Lt	 of interest: namely, land use, current annual increment, and soil erosion. This

section is divided into three corresponding subsections, and for each of these

we will discuss the Step 1 and 2 computations.

2.2.3.1 Land Use, Step 1

Six land use classifications were defined at the secondary level. They are

summarized in Table 6.

The first is a land use classification with three broad forest type-classes.

The second has three additional forest type-classes obtained by subdividing the

original classes according to tree size. The third classification is similar,

but forest classes are split according to tree densities. In the fourth classi-

fication, the three basic forest types are split two ways: by tree density

and by tree size. For this classification, all other non-forest classes are

collapsed into three: namely, wetland, disturbed and other. The fifth and

sixth classifications were made to test the notion that better estimates can

be obtained For any given class when the class is treated by itself rather

than in conjunction with a number of other classes.

All the classifications are referred to as land use classifications;

specifically, we will refer to each individually as indicated at the top of

Table 6: namely, land use, forest types 1, forest types 2, forest types 3,

grass and water.



TABLE 6

Secondary Land Use Classifications

Class
Land
Use

Forest
Types I

Forest
Types 2

Forest
Types 3

Grass Water

1 FC FCL FCS FCLS GR W

2 FH FCH FCB FCLB NG NW

3 FM FHL FHS FCHS

4 AG FHH FHB FCHB

S WL FML FMS FHLB

6 WT FMH FMB FHHS

7 GR AGI AGI FHHB

8 UR AGN AGN FMLS

9 DS WL WL FMLB

10 BS WT WT FMHS

11 GR GR FMHB

12 UR UR WL

13 DS DS DS

14 BS BS OT

Meaning of first two characters:

FC Forested Conifer
FH Forested, Hardwood
FM Forested, Mixed
AG Agriculture
GR Grass
UR Urban
DS Disturbed
BS Bare Soil
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NG = Non-Grass
XW = Non-Water
GT Other

Meaning of third and fourth characters:

L = Low Tree Density
H = High Tree Density
S = Small Trees
B = Big Trees
I = Irrigated
N = Non-Irrigated

Q.
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2.2.3.1.1 Land Use

Two runs were made with program ESTPRP, one for each of the spectral

classifications mentioned in Section 2.2.2.2.2. The county proportions of the

land use classes for each of these runs are listed in the left-hand side of

Table 7. Proportions for the same classes were also computed from the sample

set with the estimator aav (Section 2.1.2.1). These proportions are reported

in the right-hand side of Table 7. It can be seen in this table that the esti-

mator aav , for which the estimated proportions are the SSU averages, is a

fairly good estimator compared with apr, which makes use of LANDSAT. The stan-

dard errors for apr are fairly uniform for all classes, whereas for aav the

standard errors vary proportionately with the class proportions. For the larger

classes, apr seems to be superior to aav, however, the standard errors are small

to start with, so that an efficiency increase obtained with LANDSAT amounts to

only a few per cent in increased accuracy.

One interesting effect that can be observed in Table 7 is that a av estimates

water at 3.24%. The LANDSAT estimator ;pr, however, reduces this estimate to

1.72%, indicating that the sample is not representative of the entire county.

The probable reason is that one SSU is situated on the Wateree Reservoir.

The correlation coefficients are surprisingly high for Landsat-based

analyses.	 The highest correlations obtained in an earlier study relatingY	 9	 -

LANDSAT data to ground data (van Roessel, 1975) was 0.67. The F values of
P11.58 and 8.29 must be compared with FO . g, for the indicated degrees of free-

dam: namely, 1.32 and 1.25, respectively. The linear relationships are, there-

fore, highly significant, even satisfying a criterion mentioned by Draper and 	 _3

D	 Smith (1956), namely that for a useful prediction, the value of must be at

least four times the critical value.
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TABLE 7

Land Use Proportion Estimates
For Kershaw County

Estimator: a pr Estimator: aav

7 Spectral 10 Spectral
Classes Classes

Land Use Proportion Standard Proportion	 Standard Proportion	 Standard
Class (Percent) Error I (Percent)	 Error (Percent)	 Error

FC 33.03 1.34 33.44	 1.43 32.24	 2.85

FH 6.71 1.38 6.89	 1.38 6.23	 1.02

FM 28.74 1.40 29.11	 1.43 28.36	 2.14

AG 14.36 1.20 12.04	 1.36 13.83	 2.24

WL 5.84 1.31 5.88	 1.26 5.78	 1.25

WT 1.72 1.07 1.82	 1.39 3.24	 1.56

GR 6.33 1.40 6.77	 I.39 6.60	 0.99

UR 1	 1.92 1.17 2.50	 1.39 2.10	 0.80

DS 1.25 1.32 1.37	 1.39 1.39	 0.33

BS 0.05 1.20 0.13	 1.39 0.22	 0.12

R 0.7677	 0.7740

F 11.68 	 8.29

D.F. (63,477)	 (90,450)

yF-.	
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8	 The standard errors in Table 7 can be used to construct individual con-

fidence intervals for each class using a 
t0.025 

value with approximately

450 degrees of freedom: 1.96. However, one must not make a simultaneous

a	 interpretation of these intervals.

It is interesting to note that the smaller number of spectral classes pro-

ti
vides as good a correlation as the larger number, with a higher F value.

2.2.3.1.2 Forest Types 1

Again, two runs were made with ESTPRP, one for each spectral classifica-

tion. The results are shown in Table 8. The additional breakdown of the

forest classes by tree size does not seem to be meaningful, as the correla-

tion is down by .I in both cases, and the F values are considerably less than

those of Table 7. This makes sense when considering that the LANDSAT signa-

tures are probably related more to tree density than to tree size.

2.2.3.1.3 Forest Types 2

Here the additional breakdown is by tree density, rather than by tree size.

Results are shown in Table 9. Only one spectral classification was used. The

standard errors are generally lower, and the correlation coefficient and F
value are considerably higher than those for the breakdown by tree size.

2.2.3.1.4 Forest T,ypes__3

The original three forest types FC, FH and FM are all divided by tree

size and tree density, yielding twelve different classes. However, one class

has been eliminated due to the lack of any occurrence for this class in the

aerial photo sample. The total absence of a class in the SSU proportions

I,



Estimator: apr Estimator: aav

7 Spectral 10 Spectral
Classes Classes

Land Use Proportion Standard Proportion Standard Proportion Standard
Class (Percent) Error (Percent) Error (Percent) Error

FCL 16.20 1.25 16.81 1.25 14.38 2.56

FCH 17.53 1.24 17.85 1.24 17.86 2.10

FHL 0.05 1.17 0.09 1.17 0.12 0.10

FHH 6.51 1.27 6.72 1.27 6.11 1.03

FML 2.75 1.25 2.86 1.25 2.68 0.69

FMH 25.92 1.29 26.21 1.29 25.67 2.00

AGI 14.08 1.09 11.88 1.22 13.80 2.24

AGN 0.00 0.00 0.00 0.00 0.03 0.02

WL 5.79 1.21 5.84 1.20 5.78 1.25

SIT 1.68 1.17 1,75 1.17 3.24 1.56

GR 6.23 1.29 6.44 1.30 6.60 0.99

UR 1.87 1.23 2.08 1.22 2.10 0.80

DS 1.22 1.17 1.27 1.17 1.39 0.33

BS 0.11 1.17 0.16 1.17 0.22 0.12

R 0.6813 0.6877

F 7.14 5.11

D.F. (91,639) (130,650)

a

0

TABLE 8

Forest Types l Proportion
Estimates for Kershaw County

ti

i
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TABLE 9

Forest Types 2 Proportion
Estimates For Kershaw County

Estimator: a	 7 Spectral Classesr ,

Land
Use proportion Standard

Class
(Percent) Error

FCS 2.94 1.17

FCB 29.91 1.13

FHS 0.00 0.00

FHB 6.80 1.16

FMS 3.38 1.12

FMB 25.41 1.17

AGI 14.32 0.99

AGUE 0.00 0.00

WL 5.82 1.09

WT 1.67 0.88

GR 6.44 1.17

UR 1.94 1.12

OS 1.27 1.15

BS 0.05 1.12

R 0.7643

F 11.49

D.F. (91,639)
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causes singularity in the X'X matrix. The non-forest classes were compressed

into three categories: wetland, disturbed and other. The estimated propor-

tions for the classification are shown in Table 10. Note that the bulk of the

forest category is divided between two classes, FCHB and FMEIH.

2.2.3.1.5 Grass

Because the evaluation of winter range is of specific interest for the

Phase III test, it was thought to be of special value to determine the'efficiencv

with which the grass category can be estimated by itself, with all the other

land use classes lumped in a non-grass class. The experiment was also of

general interest because it represents an extreme of the possible number of

secondary classes. Results are shown in Table 11.

Correlation coefficients and F statistics are extremely high; however,

the standard error is somewhat higher than in the previous cases where grass

was estimated in conjunction with other classes. The reason for this effect is

not clear at present. To verify that the high values are not the result of an

induced correlation present when working with proportions (Chayes and Kruskal,

1966), a random set of proportions of identical size to those used for the

grass category was generated and processed through program ESTPRP. The resul-

tant correlation coefficient was 0.2676 and F was 0.59, correctly reflecting
the random nature of the input data.

It is interesting to inspect the P matrix for the ten spectral classes

case. This matrix is shown in Table 12.

Most of the grass proportions is due to spectral class 8 (54.66/), which was

t	
initially identified on the classification image as wetland.
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TABLE 10

Forest Types 3 Proportion
Estimates For Kershaw County

I.u

t

t

7 Spectral Classes

Estimator: apr Estimator: aav

Land Use Proportion Standard Proportion Standard
Class (Percent) Error (Percent) Error

FCLS 0.40 1.07 0.46 0.31

FCLB 2.67 1.15 2.45 0.69

FCHS 6.39 1.15 5.30 1.77

FCC{B ?4.12 1.19 24.02 2.18

FHLB O.UO 0.00 0.03 0.02

FHHS 0.00 0.00 0.01 0.01

FHHS 6.82 1.17 6.20 1.03

FMLS 0.08 1.13 0.15 0.11

FMLB 3.36 1.14 2.97 0.70

FMHS 0.32 1.10 0.34 0.19

FMHS 25.07 1.19 24.90 2.05

WL 5.77 1.09 5.78 1.25

DS 1.27 1.13 1.39 0.33

OT 23.68 1.10 25.99 2.78

R 0.7635

F 11.71

D.F. (91,689)

Q
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TABLE I 

Grass Proportion
Estimate For Kershaw County

i

Estimator: apy. Estimator: aav

Land
7 Spectral Classes 10 Spectral Classes

Use Proportion Standard Proportion Standard Proportion Standard
Class (Percent) Error (Percent) Error (Percent) Error

G 6.63 1.49 6.52 1.46 6.60 0.99

NG 93.32 1.49 93.42 1.45 93.40 0.99

R 0.9842 0.9828

F 285.21 195.15

D.F. (7 0 53) (10,50)

TABLE 12

Grass P Matrix

(Percent)

t

t

Cluster
Combination

for Spectral Class

Secondary Class

G NG

1,	 12,	 14, 0.00 100.00

2 0.00 100.00

3 7.66 92.33

4 19.46 80.55

6 9.49 90.50

7, 9 2.80 97.21

8 54.66 45.33

10 25.33 74.68

11,	 13 0.00 100.00
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2.2.3.1.6 Water

The capability to distinguish water from non-water is also a major require-

ment for MAIS. A similar analysis as that for grass was therefore undertaken

for water. Results are shown in Table 13.

Were the correlations are almost equal to unity, indicating an almost

perfect correspondence with water as shown by the classification image

and the aerial photo interpretations. This could be expected, as water is the

land use class most discernible on LANDSAT Images. However, the result demon-

strates that a very good PSU-SSU registration was obtained.

In this case, unlike the analysis for grass, the low standard error does

seem to reflect the high correlation. The estimator apr is clearly superior

to aay. Again, Table 13 shows how LANDSAT introduces a global correction for

the water proportion of Kershaw County, as contrasted with the proportion in the

sample which is high because of an SSU located over the Wateree Reservoir.

2.2.3.2 Land Use, Step 2

Once the secondary proportions have been obtained, another class projection

can be applied, and proportion estimates and corresponding covariance matrices

for ground classes can be obtained using the form0 ation of Section 2.2.2.2.1.

These are the estimates presented 'in the following sections.

Two ground classification proportion estimates were attempted, one for

general land use classes, the other for more specific forest type-classes.

Class designations are explained in Table 14.

2.2.3.2.1 Ground Land Use Classes

The results for the more general land use classes are shown in Table 15.

D	
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TABLE 13

Water Proportion
Estimate For Kershaw County

Estimator: apr Estimator: aav

7 Spectral Classes 10 Spectral Classes
Land

Proportion Standard Proportion Standard Proportion StandardUse
Class (Percent) Error (Percent) Error (Percent) Error

W 1.86 0.11 1.87 0.15 3,24 1.56

NW 98.08 0.11 98.08 0.15 96.76 1.56

R 0.9994 0.9993

F 21989008 14707.36

D.F. (7,53) (10,50)
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TABLE 14

0^

Ultimate Land Use Classification
Definitions

Class Land Use

CF Commercial Forest

CR Cropland

IP Improved Pasture

IF Idle Farmland

OF Other Farmland

UR Urban and Other

WT Water

Class Forest Types

LLP Longleaf Pine

SHP dash Pine

LBP Loblolly Pine

SLP Shortleaf Pine

PDP Pond Pine

OYP Oak-young Pine

OHI Oak-hickory

SCO Southern Scrub Oak

OGC Oak-gum Cypress

EAC Elm-ash-cottonwood

NC Not-commercial Forest

I

7

-77-

^h



Z;

c.

TABLE 15

Ground Land Use Class
Proportion Estimates
For Kershaw County

Estimator: §, usir	 Spr

Land
Use Proportion Stanaard

Class (Percent) Error

CF 72.28 3.63

CR 13.28 2.19

IP 4.74 1.74

IF 2.16 1.01

OF 2.69 1.40

UR 2.70 1.30

WC 2.03 1.13

R

f

6:.
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TABLE 16

Ground Forest Types
Proportion Estimates

Kershaw County

7.

Estimator:	 g, using apr

Land
Use Proportion Standard
Class (Per Cent) Error

LLP 2.44 1.14

5HP 11.05 2.60
t

LBP 20.85 3.33
1

SLP 2.18
^

i	 0.96

PDP 03.84 0.58

OYP 10.49 I	 2.40

OHI I1.07 I	 2.51

SC0 3.85 1.26

OGC 6.00 1.88

EAC 3.76 1.37

NC 27.04 2.92



_g0_

The standard errors are generally larger than those obtained for the secondary

classifications, because the estimates are computed from two sets of random

variables.

2.2.3.2.2 Ground Forest Type Classes

The results for the forest types classification are shown in Table 16.

The non-commercial proportion in Table 16 is the complement of the commercial

forest category in Table 15.	 These figures tots; 99.32%, a good result

considering that these tables were derived using separate processes and differ-

ent groupings.

2.2.3.3 CAI, Step 1

The first step in arriving at estimates of continuous variables such as

CAI is to select a suitable classification. This classification serves as a

stratification for the second step. Either a secondary or an ultimate classi-

fication can be used.

To compare results, both types are tested. The forest types 3 classifi-

cation (Section 2.2.3.1.3) and estimates in Table 10 are used for the secondary

classification. The forest types of Section 2.2.3.2 (Table 14) and the esti-

mates in Table 16 are used for the ultimate classification.

2.2.3.4 CAI, Step 2

	

The following kinds of estimates can be made for CAI (see Figure 2) 	 by

class, per acre; by class, total; by county, per acre; and by county, total.

The per acre estimates by class are derived solely from the plot data. The

"by class" estimates for the secondary classifications are presented in Table 17;



TABLE 17

CAI Estimates by
Forest: Types 3 Class

(Cubic Feet)

Class Per/Acre
Standard
Error Total

Standard
'Error Percent

FCLS 30.0 0.0 60,135 160,539 266.

FCLS 21.4 7.3 285,862 156,683 54.8

FCHS 37.8 21.2 1,205,044 709,645 58.8

FCHS 93.9 10.2 11,322,034 1,350,470 11.9

FHLB 0.0 0.0 0 0 0

FHHS 0.0 0.0 0 0 0

FHHB 61.2 9.2 2,087,965 475,726 22.7

FMLS 0.0 0.0 0 0 0

FMLB 27.5 23.3 461,96? 422,100 91.4

FMHS 0.0 0.0 0 0 0

FMHB 58.5 6.7 7,327,357 906,993 12.4

WL 60.1 15.3 1,733,242 548,222 31.6

DS 14.1 7.5 89,727 92,952 104.

OT 0.8 0.6 98,080 66,425 67.8

COUNTY TOTAL 24,671,410 1,865:234 7.56



C

those for the ultimate classification, Table 18.

To ensure compatibility of the estimates, total estimates were made using

the county acreage given in the U.S. Census Report of 1970. The same number
f

was used by the Southeastern Experiment Station for its Forest Statistics of

Kershaw County (Craver, 1978). A county area estimate was also obtained from

the digitized boundary using program KCC. Another area figure was found in

the Lockheed Ten-Ecosystem Study Final Report (Dillman, 1978). The different

acreage figures are shown in Table 19.

TABLE 19

Kershaw County Acreage

Source	 Acres

U. S. Bureau of the Census	 499,840

Earth Satellite	 501,283

Lockheed	 503,100

Several other types of estimates for the total CAT were computed. All 	 1

estimates are summarized in Table 20.

One estimate was made with a av (no LANDSAT contribution) to obtain an

idea of gain in efficiency due to the primary stage. This gain was estimated
+i

at (8.17 - 7.56)/8.17 x 100% = 7.5%.

The estimate obtained with the ultimate classification had a standard 	 I

error approximately twice as large as the one computed with the secondary

classification. This is due to the introduction of an additional set of

random variables. Also, a stratification by species does not seem too mean-

inful when considering growth. A stratification by site class would be more
,v

G



TABLE 18

CAI Estimates by
Ultlm4te Forest Type

Class

(Cubic Feet)

Class Per/Acre Standard
Error

Total Standard
Error

Percent

LLP 22.1 11.2 269,645 185,421 68.7

SHP 98.7 I8.7 5,449,095 1,648,118 30.2

LBH 94.4 8.9 9,834,346 1,823,546 18.5

SLP 81.0 22.0 880,818 457,549 51.9

PDP 94.0 27.0 392,686 295,973 75.4

OYP 40.1 7.3 2,101,352 613,955 29.2

OHI 46.7 7.6 2,582,602 720,295 27.9

SCO 11.2 2.3 215,796 83,500 37.7

OGC 45.0 8.6 1,350,130 495,670 36.7

EAC 73.0 14.0 1,373,063 563,622 41.0

NC 0.0 0.0 0 0 0

COUNTY TOTAL 24,449,534 3,858,145 15.78

t•

f
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'ABLE 20

Total CAI Estimate Surm4ary
Kershaw County

Type of Estimate Total Standard
Error

Percent

Stratification with Secondary Forest 24,671;410 1,865,234 7.56
Types 3 Classification using apr

Same with 6 a (without LANDSAT) 24,134,085 1,970,590 8.17

Stratification with Ultimate Forest 24,449,534 3,858,145 15.78

, 
Types using 8pr	 9

Plot data used as Simple Random 26,474,90 8,749,250 33.05
Sample

South Carolina'78 Forest Statistics 24,435,000 1,771,540 7.25

iK

t
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t	 appropriate.

To compare the estimates obtained with aav, g and apr, which are based on

the GIS technology, with a simple random sampling estimator, a fourth estimate

was computed from the plot data by averaging the CAI's for each plot and multi-

plying this average with the county area. The standard error of this estimate

is approximately four times the one obtained with the secondary forest types 3

{	 stratification, thus dispelling any doubt that the employed technology does

contribute to the sampling efficiency for estimating current annual increment.

the final estimate in Table 20 is the one reported in the publication,

"Forest Statistics for the Northern Coastal Plain of South Carolina" (Craver,

1978): Table 8, column 6, Kershaw County. The corresponding standard error

(7.25%) was obtained from the table on page 5 of the same publication. This

figure supports the hypothesis that Phase IA estimates made with the proto-

type MAIS system are of the same quality as those obtained with current practices.

2.2.3.5 Soil Erosion, Step 1

The derivation of the secondary classification for erosion potential is

given in Section 2.2.2.1.5. A sample set of 12 SSU's was created with seven

erosion potential classes. This set was input to program ESTPRP, together

with th-, 7 class spectral classification proportions. The estimated propor-

tions in each erosion potential class are shown in Table 21.

to

	

	 The correlation coefficient is high, but the F statistic barely satisfies

the four times critical value criterion of Draper and Smith (1966), at the

0.05 level (8.39 = 4.69 x 1.71). These effects are due to the small sample

t.	 size. Given that enough coefficients are estimated in relation to the number

^k'>5^
1*



TABLE 21

Erosion Potential Class
Proportion Estimates
For Kershaw County

(Percent)

k

7 Spectral Classes

Erosion Estimator: a Estimator: ^
Potential

pr av

Proportion Standard Proportion StandardClass
Error Error

ER 1
54.95 4.33 58.43 5.47

ER2 8.77 3.81 6.01 1.66

ER 3 24-99 3.96 27.30 5.33

ER4 6.51 3.92 4.66 1.79

ER 5 4.25 3.92 3.27 1.67

ER 6 0.08 3.22 7 0.05

ER 7 0.38 3.22 0.28 0.11

R 0.9502

T 8.39

D.F.
L

(42530)

t

0
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of observations, a correlation coefficient can always be forced to unity. As

shall be seen in the next section, this situation is reflected in a large

sampling error for the county total.

4

2.2.3.6 Soil Erosion, Step 2

The class midpoint was assigned as the continuous variable for each erosion

potential class. These per acre estimates, as well as the total estimates by

class and the total estimates for Kershaw County, are shown in Table 22. Both

the estimators aav and apr were tested.

The difference between the county total standard errors for the estimators

using either apr or aav (LANDSAT regression and area photo averages) is striking.

The difference is due to the high standard errors of tho high potential erosion

classes for the apr estimator as indicated in Table 21. It is another sign of

the marginal performance of regression techniques using an inadequate sample.

In this situation, it seems that one is better off using the secondary sample

proportions alone. It is hoped that the same test car, be performed during

Phase II with a larger sample size. It is also possible that ars may perform

better than apr in the case of a limited number of of observations. The total

county estimates for both techniques conform closely.

2.2.3.7 Map Legends

t	 One of the unique aspects of the ILLS regression approach is that the

estimated class transformation matrix can be used to construct a map legend of

the primary map in terms of a secondary classification. Table 23 shows the

t	 P matrix to transform from seven spectral classes to ten secondary land use

classes. Using this matrix and a convention of reporting the three major

.f a87—
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TABLE 22

Erosion Potential Estimates
For Kershaw County

(Tons/Year)

Estimator g, using apr Estimator: 4, using aav
Erosion

Potential
Class Per/Acre Total Standard Percents Total Standard Percent

Error Error

ER 1 274,686 21,631 8.0 292,035 27,342 9.0

ER 3 131,551 57,096 43.0 90,071 24,867 28.0

£R3 6 749,552 118,725 16.0 818,637 160,329 20'.0

ER 12 390,645
3

235,377 60,0 279,260 107,401 334.0

ER 24 510,059 470,754 92.0 392,374 223,972 57.0

ER6 48 20,096 772,579 3844. 15,995 11,040 69.0

ER 96 180,215 1,545,158 857. 133,557 51,522 39.0

COUNTY TOTALS 2,256,805 1,486,338 66.0 2,021,931 337,965 17.0

-488—
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TABLE 23

Class Transformation Matrix

FC	 FH	 FM	 AG	 WL	 WT	 GR	 UR	 DS	 BS

ALN	 1.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0:0000 0.0000

B	 0.5807 0.0000 0.2082 -0.0000 0.1888 0.0000 0.0000 0.0000 0.0224 -0.0000

C	 -0.0000 0.1958 0.4050 0.22250 0.0426 0.0086 0.0889 0.0000 0.0322 0.0020

D	 0.6834 0.0193 0.2907 0.0000 -0.0000 0.0000 0.0067 -0.0000 0.0000 0.0000

EGIJ 0.1107 -0.0000 0.1384 0.5049 0.0070 0.0000 0.1715 0.0669 -0.0000 0.0007

F	 0.0000 0.2439 0.5939 -0.0000 0.0000 --0.0000 0.1013 C'.0551 0.0059 -0.0000

NKM -0.0000 0.0000 0.1079 0.0000 0.0000 0.8922 0.0000 0.0000 -0.0000 -0.0000

Cluster Composition for S pectral Classes:

ALN 1,	 12,	 14
B 2
C 3
D 4

EGIJ 5,	 7, 9, 10
F 6

HKM 8,	 11,	 13

-89-
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s;	 secondary classes for each primary class, one can assign a legend to each

cluster color on the primary classification map, as shown in Table 24. This

legend is for the LANDSAT classification map (also see Figure 7) submitted as

a deliverable product for this project. To rtake this legend, a cluster-color

-assignment table was used. Twelve colors are shown on this map. Since only

seven spectral classes are used in the analysis, a simplified map of seven

colors could be made with a simpler legend. The legend of Table 24 is only

a preliminary product and with a possibility for -Feedback, a much better map

legend can be produced.

i

t. -.90-
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TABLE 24

Legend for Landsat
Classification Map

Color Land Use Composition

Brown 100% Forest Conifer

Dark Green 58% Forest Conifer, 21% Forest Mixed,
19% Wetland

Light Green 40% Forest Mixed, 23%Agriculture,
20% Forest Hardwood

Orange 68% Forest Conifer, 29% Forest Mixed

Red 51% Agriculture, 17% Grass

14% Forest Mixed, 11% Forest Conifer

Purple 60% Forest Mixed, 24% Forest Hardwood,
10% Grass

White See Red

Light Blue 89% Water

Black See Red

Light Blue See Red

Blue 89%' Water

Yellow Sc-e Brown

Blue 89% Water

Grey See Brown

1•

A

t
-91-



.1
r

f

3.0 SUMMARY

A prototype system test was undertaken to asses the workability of the

proposed MAIS design. The most important aspect in assembling a system from

a set of components is the integrati on of the components into a workable entity.

It was realized that for MAIS, the vital link in this process is the "estimation

subsystem", and hence the evaluation effort was directed at trying the pro-

posed techniques for this subsystem in a set of preliminary tests for one county.

The results seem to support the notion that the basic scheme works very

well. Estimates which heretofore were impossible to make using conventional

methods can be made using GIS and LANDSAT technology (erosion potential). Con-

ventional estimates can be made with the same accuracy as current methods,

hopefully at reduced cost. The proposed techniques seem to be both robust and

flexible. High LANDSAT classification accuracies are by no means required, and

using the class transformation concept, one can produce a wide variety of esti-

mates to satisfy many needs. Valuable insight was gained into a poss i ale structure

for a permanent estimation subsystem. An automatic file handling system along

the lines of the transaction concept outlined in the concept development docu-

ment is highly recommended. Also, an automated report generator must be included

in a future estimation subsystem.

In conclusion, it seems that the major reservations concerning the proposed

techniques have been eliminated. Some problems remain due to time and resource

constraints. It is hoped that they can be addressed in the Phase II effort.
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1.0 GENERAL APPROACH

Z'	In Volume I (Multiresource Inventory Design and Sampling Network)

and in Volume II (MAIS Concept Development) a number of techniques have

been proposed for use on the Pilot Test Implementation. These techniques

,.	 are at many different stages of development. Some have been widely

applied in the past, so their value and limitations are well-documented

in at least some geographic areas and application areas. Others are

proposed that have not, to our knowledge, been applied before in the

context of a multiresource inventory.

In this volume, we address two questions:

®	
What is the level of maturity of each technique that will be

employed in the Pilot Test Implementation? This includes

experience with the method, the way that prior experience can

be related to the proposed use on the Pilot Test, and the way

that the technique has been embodied in available software and

hardware.

How far does the state-of-the-art in each component used on

the Pilot Test match the perceived needs of the project? This

implies a comparison of requirements against capabilities, and

this comparison must be at least partially a subjective one.

Following a component-by-component analysis that examines the two

questions given above, research and development reeds can be stated.

iol 	 When the state-of-the-art falls short of the needs, the work required to

:-prove that state-of-the-art can in many cases be identified. Thus,

component evaluation leads naturally to suggestions for areas of develop-

t	 ment that should be pursued by research activities in support of perfor-

mance of the Pilot Test. These research activities are themselves

outside the scope of the Pilot. Test Implementation; realistically, their

I
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results may not be available in time to be useful in the South Carolina

Test. There is a possibility that new techniques can be developed to

apply to the Western State Test. In addition to identifying research

areas and giving subjective assessments of the magnitude of the effort

needed, we will also attempt to scope the length of time that may be

needed to convert research work to a useful new tool for real inventories.

-2-

r?-- . P



2.0 SYSTEM REQUIREMENTS

Two sets of elements must work together if the Pilot Test is to be

performed successfully. These consist of the data sources and the

processing components that manipulate them, where the latter will

embody the mathematical models. The processing components must contain

a capability to handle all major data types. These data types consist

of:

°	 Landsat data, in image and CCT format

NCIC digital terrain data in °ape -format

Collateral data in map format

Aerial photography, in resource photography or optical bar

format

°	 Attribute (point) data

The processing components that manipulate these data types consist

of the following:

2.1 Upper Level GIS Components

INPUTS
	

COMPONENT
	

OUTPUTS

A. Old Format	 Preprocessor
Landsat Data

B. Output of A	 Scan Line
Suppression

Band Sequential,
Decalibrated, Synthetic
Pixels Deleted, Data
Drops Filled

Same Format, Scan Line
Removed

C. New Format	 Preprocessor	 Band Sequential Landsat,
Landsat P Tape,	 Data Drops Filled
Band Sequential



1

INPUTS COMPONENT OUTPUTS

D. Output of B or C GCP Location List of Control Points
User Input
UTM Base Maps

E. Outputs of B & D Landsat Specific Landsat Band Sequential
Geometric Correction in 50 Meter UTM

F. NCIC Digital Preprocessor Elevation File, Map
Terrain File Control Points

G. Output of C & D General Map Input File at UTM 50
Or F Transform Metre

H. Elevation File Slope Calculation Slope Class File
From G

I. Elevation File	 Aspect Calculation	 Aspect File
From G

J. Map Input	 Digitizer Interface	 Line Segment
Coordinate Chains

K. Output of J	 Arc-Cell Convert	 50 Metre UTM Cell
User Inputs	 File of Map Input
Polygon Attributes,
Control Points.

L. Outputs From E,
G, H, I, K

M. Multiple Data Layers
# of Classes Desired

Map Unit Extraction

Cl uster

Map Unit Files in Data
Base Format

Class Map
Class Means
Class Variance

N. Multiple Data Layers
	

Unsupervised
	

Class Map
Training Areas
	

Classification

-4-



INPUT

'	 A. Arc Extraction

Maps, Aerial Photos
(Optica, Bar)

i.,

OUTPUTSINPUTS

0. Multiple Data Layers

COMPONENT

Boolean Combination Resultant Data Layer

Resultant Data Layers

Acreage Totals for
Classes for Entire Layer
or W4thin Selected
Boundaries

P. Multiple Data Layers, 	 Linear Combination
Combination Coefficients

Q. Single Layer,	 Area Tabulation
Or Single Layer Plus
Boundary Layer

R. Multiple Layers	 Statistical	 Statistics (Mean,
Processor	 Variance, Covariance

Cross-Correlation)

S. S-Ingle Layer, 	 Map Processor	 Chloropleth Map
Desired Scale	 of Data Layer
Color Assignments

2.2 Lower Level GIS Components

PROCESS

1. Thinning

2. Conversion to UTM
Coordinates

3. Conversion to
Standard Format

4. Scale Change and
Adjustment

5. Photogrammetric
Adjustment

-5-
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INPUT

B. Arc Polygon Conversion

Arcs in Standard
Format

C. Slope/Aspect Generation

Contour Line Areas
In Standard Format

PROCESS

1. Converting Arcs-
Polygons

2. Area Calculation

1. Interactive Attri-
bute Entry

2. Bit Packing of
Data Item Values

1. Generation of Slope
and Aspect Maps

1. Insert Ready Images
Into Data Base

1. Obtain SSU Images
From Data Base

OUTPUT

Polygons and Areas
in Standard Format

Attribute Records in
Standard Format

Slope and Aspect
Polygons in Standard
Format

Data Base

SSU Image Records
In Standard Format

C. Attribute Data Entry

Attribute Data From
Forms and Maps

D. Data Base Insertion

Arc and Polygon
Records in Standing

E. Data Base Retrieval

Data Base

G. Command Language

Analyses and Retrieval	 1. Compile Routine	 Executable Code
Problem Formulation	 Executable Code

H. Attribute Search



OUTPUTINPUT

I. Zone Generation

SSU Image Records
With Desired Attributes

J. Overl ay

SSU Image Records

•s K. Report Generation

SSU Image Records

L. Map Generation

SSU Image Records

M. Updating

SSU Images Data Base

PROCESS

Generation of Zones
Around .SU Sub-Units

Boolean Combination
of SSU Layer Images

Retrieval and Sorting
of SSU Sub-Unit
Attributes

1. Spatial Display and
Assembly of SSU
Images

Process SSU Changes
Against Existing SSU
Images to Obtain SSU
Images

SSU Image Zone Records

SSU Image Records,
Derived Layers

Reports, Attributes for
Correlation with Upper
Level GIS Information

Maps for Visual
Inspection Screen
Displays

Updated Data Base
SSU Images

2.3 Additional Project Components

A.	 Sample Assignment

Provides the distribution of data samples needed for estimation of

resource variables.
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Al

B. Map Regression Relationships

Develops the correlations between aerial photo and Landsat

data for both continuous and non-continuous variables.

C. Landsat Mapping Extens ion

Permits the use of Landsat data as a mapping tool that can

extend resource information to areas not covered by aerial photos

and ground samples.

D. Photointerpretive Keys

Provides the set of interpretive key's that allow Landsat scenes

to be classified to multiple resource classes via manual photographic

analyses.
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3.0 WORKING STATUS OF GIS COMPONENTS

t

	

	 Not all components listed in the previous section have reached the

same level of maturity in either concepts or in practical implementailun.

In this section, a subjective evaluation is offered of the	 , of

r.

	

	 development of each component. In Section 4 the useful research activities

that may apply to certain selected system components are described.

3.1 Upper Level GIS Components

3.1.1 Working versions of components A through G are known to be

available, although the capability to fill in dropped data lines

from Landsat data have not been added to them. (Programs exist for

DEC PDP computers at Goddard Space Flight Center, and for !BM and

PRIME computers at Earth Satellite Corporation; other versions also

undoubtedly exist at ERIM.)

3.1.2 Working versions of the slope and aspect calculations (H

and I) exist, though not in the format conceived for use in the

Pilot Tes4. Minor modifications of the presently working software

will take care of this (programs exist on the AOIPS system at

Goddard Space Flight Center).

3.1.3 Working versions of components d and K exist for the PRIME

computer, and also in the case of component K for the IBM 360

computers (see CACM, 22, 518; 1979).



3.1.4 Working versions of component L exist on several different

computers, including the IBM 360/158 and sister machines (Purdue

University, Johnson Space Center).

3.1.5 Working versions of components M and N exist at a wide

variety of installations, 'and with a variety of options (Bayes

estimation, maximum likelihood, binary classifiers, etc.). However,

there is a definite lack of information about reliability of

classification results in mixed-resource environments. This is

particularly true if collateral variables are included in the

classification process.

3.I.6 Working versions of 0. exist for the IBM, DEC, Honeywell,

and UNIVAC equipment.

3.1.7 Working versions of P through S exist on the PRIME, DEC, and

v	 IBM 360 computer systems.

SUMMARY: The functions of the upper level GIS present no real

problems for implementation of Phase II of the Pilot Test. All

components have been developed already. The major uncertainties

arise from the question of accuracy of results obtained in some

components.

3.2 Lower Level GIS Components

All components of the lower level GIS exist in FORTRAN in

working form on at least one computer system (PRIME).

4 _10-



3.3 Additional Project Components

t

	3.3.1	 A.	 Sample Assignment

This does not currently exist in the form that will

be needed for use on the Pilot Test program. Methods are

clear, but code must be developed.

	

3.3.2	 B.	 M_ap_Regression Relationships

A good deal of development work is still needed, for

both the details of the methods and for the programming

of the meth.ds. This will require some added thought and

development during Phase II of the project.

	

3.3.3	 C.	 Landsat Mapping Extension

This also needs development. The proposed method

for use on Phase II of the Pilot Test has not been used

before. The programs must be developed and applied in

the course of the Phase II implementation.

	

3.3.4	 D.	 Photoint_e-rpretive Keys

The procedure for PI Key development is well known,

but its application to the specific environment of South

Carolina has not been made in the context of multiresource

survey. Most of the tools required for the application

of these keys to Landsat data in South Carolina will be

provided by the results of Phase I of the project, but

there will still be elements to be looked at further

during Phase II implementation.

4
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4.0 R£SEARCFI ANA D£VELOPM£NT CON5Ig£RATIONS

This section presents a partial list of research topics that could

provide a significant contribution to the effectiveness of the NlAIS.

They are in no particular order of priority, because it is difficult to

determine in advance just how valuable they will be if successfully

carried out and incorporated into the MAIS.

These activities are not appropriate for inclusion in the test

itself, since there is no way of guaranteeing that results useful to

test performance can be derived in time. Note also that no allowance

for the cast of these items is given in Volume IV, nor is any calendar

time devoted to them. Task i9 of Volume IV serves a different function.

It is intended exclusively to provide the effort needed to monitor and

remain aware of on-going activities of possible use to Pilot Test activities.

4.1 Computerized Classification Algorithms

Supervised and unsupervised algorithms for multispectrai data

have been applied predominantly in agricultural experiments, and

have proved most successful in dealing with large, regular, single

crop areas, with gentle terrain. They have been much less successful

in dealing with agriculture where small fields are common, and

least successful in dealing with cases where there is considerable

variation in altitude and aspect within a scene.

Elsefu7 accuracy figures far computerized multispectrai classifi-

cation methods are hard to come by. There appears to be no specific

experience that will be directly useful in telling how effective

^	 the classification algorithms will be in the South Carolina Pilot

Test.

^12-
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This is certainly a case where application of some research

and development effort is warthwhile, to provide some quantitative

measures of accuracy, and to show the best way to combine Landsat

data and collateral data for that purpose. Yn particular, the

sensitivity of classification accuracies to misregistration of

multiple coverage needs to be looked at in same systematic way for

application to forested scenes.

4.2 Photogrammetric Reduction of Aerial Photography_

This has been done for many years with conventional resource

photography. The high resolution color I/R photography obtained

from the optical bar camera, with its wide angle and significant

variation in aspect angle across the image, is another matter.

There is little or no experience that shows how effective this

source will be in the multiresource mapping and inventory problem.

Development effort for assessment of the use of optical bar

data woulil appear to be wE11 warthwhile.

4.3 Regression Relationships Between Landsat Data, Aerial

Photography, and Ground Samples

The use of regression relations of this type is not new (see

Volume I}, but the way in which it is proposed to apply the method

to the Pilot Test does appear to be novel and so far untried. A

key fa^:tor will be the correlation potential of Landsat with the

interpreted aerial photography. Unless that correlation is reasonable,

the method for using Landsat in either the resource estimation or

the mapping mode is of doubtful value.

4	 1
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Although this component has not been previously evaluated, it

is difficult to see how any independent evaluation outside the

bounds of the Pilot Test would be of much use in contributing to

the Pilot Test. lherefare, although this is an untried area, the

recommendation here is to apply the technique in the Pilot Test and

monitor closely the results. Ai though this is certainly a research

area, the research will be conducted in performance of this project.

4.^ The Ilse of Landsat Data in a Flapping Mode

The use of Landsat in the resource inventory mode can be

thought of as a form of data averaging, since in that case the

objective is aggregate figures for different re^.ources. The mapping

mode, however, makes much greater demands on tF y e data, in this

made, e:^trapala^ion from areas of known resources to areas of

unknown resources is attempted via the use of Landsat. This process

is more Sensitive than an averaging procedure, and is more likely

`

	

	 to lead to errors of both omission and Commission. Additional

research on the proposed method is definitely needed.

6

4.5 Determination of Resource Variables - Current Annual Increment

'this variable is not estimated by any of the conventional

techniques of remote sensing. However, by regarding timber as a

^

	

	 crop which responds to the same environmental variables as any

other crop, there i; a potential for modeling the "yield" of timber

year by year in just the same way as crop yields can be estimated.

^	 This approach is the subject of the document "MAiS - Multi-Resource

Analysis and Information System Research and Dev^:lopment Component

Requirements Discussion for Dynamic Factors" (Earl S. Merritt,

^	 -14-
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April 1980) where several dynamic aspects of the forest environment

^	 and resources are discussed. These include:

°	 Mean annual increment

°	 Erosion

^	 Forest fire prevention and management

°	 Range stocking .

°	 Watershed factors

°	 Disease and insect vector propagation.

The use of such modeling methods needs to be looked at in much

more detail before the potential can be evaluated. It is a suitable

;,	 subject for research and development in connection with the MAIS.

If successful, it would require the addition of certain dynamic

components to the presently conceived MATS.

4.5 Chan a Detection, Identification and Measurement Usin Landsat

Data

Experiments in the Pacific Northwest show that change detection,

particularly for clear-cut areas, is very feasible using Landsat as

a data source. The minimum size of areas that can be monitored in

^,

	

	 this way, however, is of the order of 10 acres (though others have

reported limited success at change detection of as little as a

single Landsat pixel). Change identification is more difficult,

and more work is needed on it. Measurement is relatively straight-

forward if the changed categories are not subject to confusion, but

here also there is need for research work to determine the practical

^	 7im^its of what can be done with Landsat. No experience base exists



for change detection, identification and measurement using Landsat

in the South Carolina em^ironment.

4.7 Multiple resource Keys

The use of PI Keys for forestry using remotely sensed data is

well established. Less well-established is the development of

multiple resource keys, where several resources may be contained in

a single location, and where each resource may call for a completely

separate resource map {for example, the geographic species distribution

of the understory may be quite different from the species distribution

of the overstory). Work on these multiple resource keys is going

on in Asheville, and additional efforts to provide good keys in the

Southeast may be appropriate as part of the Pilot Test associated

research efforts.

-1 6^
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Photo Interpretation (PI) Classes and Cades for
^, Muitiresource Methods Pi1at Test, Phase iA

Class Name	 EarthSat PI Code

Forest

1. Conifer F7	 i	 j	 k
2. Hardwood F2 i j k

3. Mixed F3 i j k
Where:	 i is an index of size of the dominant trees,

1 = sappling size and smaller
2 = pole size
3 = sawtimber

• j i5 an index for tree density (% crown cover),
^. 1 =	 0 -	 5q

2 =	 6 -	 15^
3 = i 6 -	 35^
4 = 36 -	 b5^
5 = fi6 - 100

k is a background component, an explanation
for the remaining ground cover,
7 = pine understary
2 = hardwood understory
3 = mixed pine-hardwood understory
4 = grass or herbaceous understory

Agri cut tore
1. Idle farmland Ai
2. Irrigated crc,rland A2
3. Non-irrigated cropland A3
^. Other fa rmland A4

Wetland
•• 1. Permanent, trees 51

2. Permanent, other cover SZ
3. Intermittent, trees 53
4. Intermittent, other cover S4

ldater
1. Flawing, census Wl
2. Flowing, non-census W2
3. Contained, census W3
4. Contained, non-census W9-

Grass
i. Natural rangeland G7
2. Improved pasture G2

Elrban (developed or industrial) ^!

Disturbed
i. Regenerative Dl
2. Non-generative D24

E'rush B

Rock R

- Other T

`?	 ^ -1-

E:

t ,^

^^
^^
^^i:,:;
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