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This report documents and summarizes the accomplishments

over the past year in two areas: (1) development of Landsat zlassi-

fiction accuracy assessment techniques, and (2) development of a

computerized system for assessing wildlife habitat from land cover

maps. This report includes a literature review on accuracy

assessment techniques, a complete explanation for the techniques

developed under both projects, including example analyses and

listings of the computer programs.

A summary of the presentations and discussions at the

National Working Conference on Landsat Classification Accuracy is

included. Also, two symposium papers which have been published

on zhe results of this project are included as appendices.
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1.0	 Introduction

Many studies have been conducted to determine the usefulness

of LA^WSAT data foi mapping land cover. However, very little research has

been done to decermine the degree of success (i.e., accuracy) in doing this.

A recent literature review by Mead (1977) indicated that:

...more work is needed to develop reliable techniques for
estimating classification accuracies. A means of comparing
the accuracies (i.e., to compare classification matrices)
obtained in different areas on different dates, or estimated
by different techniques is needed. Such techniques should permit the
investigator to test hypotheses that at specified level of
confidence the accuracies from several areas, dates, etc.

1	
are not different}

(p. 59)

Mead (1977) continues by suggesting "Future studies might consider

iterative proportional fitting of the classification matrices as a

means of doing this." (Bishop et al. 1975).

`	 The apparent absence of quantitative methods for comparing class---

fication accuracy is certainly a stumbling block that must be overcome.

The effects of imaging date, spectral band combination, classification

algorithm, training set selection procedure, and the image analyst on fi.,al

classification accuracy must be studied. Therefore, the following study

was proposed with these objectives:

	

1.1	 Objectives

1. To develop a computer system that implements an iterative

.^	 I
proportional fitting technique to "normalize" the coefficients

within classification error matrices.

S. .,



2. To develop hierarchal models for Lesting the significance

of several tactors (e.g., image date, classification

algorithm, the analyst, etc.) on the resulting classifi-

cation accuracy.	 -

3. To test the above techniques and determine their usefulness

Y
with actual data for classification accuracy.

	

1.2	 Justification

Research will undoubtedly continue toward development of a system

for classification of land cover from digitally recorded Landsat imagery.

Such research efforts will in part be measured by improvements in the

classification accuracies achieved. Therefore Scientists will need ways

of assessing the accuracy. also the accuracy of the final maps produced.

must be verified before they are distributed to users. Once standards

are established, rigorous statistical procedures will be needed to maintain

the quality of the maps. Therefore, it can be seen that accuracy assess-

ment techniques will be needed in both the research and operational

environmenrs.

	

1.3	 State of the Art of Landsat Classification Accurac y Assessment

Landsat, like any other remote sensing F-ystem, is only as good

as our ability to evaluate it. The need for techniques to assess the

accuracy of the Landsat sensor systems cannot be understated. As

Freese (1960) states, "testing the accuracy of some measurement against
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an accepted standard requires a statement of the accuracy required, a

measure of the accuracy attained, and an objective method of deciding

whether the accuracy attained is equal to the accuracy required". If

there are no methods for measuring the accuracy attained with a certain

sensor system, then there will be no way to make comparisons between

systems to determine which is better.

If Landsat is ever to be ,=e an operational system, then

e ,:aluation and accuracv assessment techniques must be developed to

show where such sensor systems give more adequate results than con-

ventional methods. These assessment techniques must then be appliid

to specific applications. For example,"the usefulness of satellite

imagery for forestry depends on the extent to which forest data can

be recorded by a remote sensing system from satellite altitudes, pro-

cessed by an image interpretation system, and used in forest mapping

and inventories"(Kalensky and Scherk, 1975).

1.31 Accuracy Assessment Techniques

There have been very few studies done on accuracy of Landsat

classification. `lost of the early assessments were done as an "after

thought" without muct• consideration given to the statistical methods

used. These studies, such as the one none by Kalensky and Scherk (1975),

usually dealt only with training set accuracy. The use of training sets

as well as other possible areas to be assessed will be discussed later.
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A review of the current assessment techniques are necessary before

any of the applications of these techniques can be understood.

The most common way to describe the accuracy of a Landsat image

is in the form of an error matrix (e.g., Todd et al., 1980; Mead and

Meyer, 1977; Hoffer, 1975). An error matrix is a square array of

numbers set out in rows and columns which express the number of pixels

assigned as a particular land cover type relative to the actual land

cover as verified in the field or from photos. The columnsusually

represent the ground truth and the rows indicate the computer assigned

land cover category. This form of expressing accuracy

as an error matrix allows for an effective way to evaluate

both errors of inclusion (commission errors) and errors of exclusion

(omission errors) present in the classification. Also, the error matrix

allows the analyst to determine the performance for individual categories

as well as for the overall classification (Hoffer and Fleming, 1978).

In the ideal situation, all the no •i-major diagonal elements of the

error matrix would be zero, indicatir,g that no pixel had been misclassi-

Pied (Lillesand and Kiefer, 1979).

There are two basic types of accuracy assessments. They are site

specific accuracy and non-site specific accuracy. all the methods

described to assess accuracy can be applied to either type. Non-site

specific accuracy is less useful than site specific accuracy. Meyer

et al. (1975) used a non-site specific accuracy assessment to evaluate
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classification of Landsat imagery in Southeastern Montana. Total area

acreages were calculated for each informational class. There were no

tests made for positional accuracy (site specific), just relative total

acreages. Meyer found the estimate of the relative proportion of each

cover type compared favorably with the ground truth (i.e., actual acres

of each land cover category). however, he also noticed that omission

and commission errors were very obvious and that the overall positional

accuracy of the cover types within the areas studied was poor.

This example points out the major disadvantages of a non-site

specific accuracy assessment. If only total acreage estimates are needed,

then this method may apply. However, the natural resource manager is

usually interested in the location as well as the acreage of a certain

land cover category. If this is the case, it is obvious that non-site

specific accuracy assessment is not adequate.

Site specific accuracy, on the other hand, is a measure of how

well the computer (classification algorithm) classifies each pixel with

respect to the ground truth. It is a more meaningful representation of

the accuracy of the classification. The analyst can see which categories

are easily identifiable and which are being confused. Although Lyon (1979)

used site s pecific accuracy assessment, he includes no error matrices in

his paper. Instead, he gives just one number as a measure of the accuracy.

This is a common problem throughout the literature. Without error matrices,

1

I,$
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the reader has little chance of understanding how an accuracy figure

was determined. The reader also loses the knowledge of which cate-

gories were easily identified and which were difficult.

Once the error matrix has been generated, a very simple procedure

can be used to determine the overall accuracy. Since all the values on

the major diagonal represent those pixels that have been correctly

classified, if one adds up the major diagonal and divides this number

by the total number of pixels classified, one will obtain the overall

accuracy of that error matrix. This is the most common use of the error

matrix in accuracy assessment.

In recent years, some new techniques have been develuped to assess

1	 classification accuracy. :among these new methods are analysis of vari-

ance techniques, regression analysis techniques, and discrete multi-

variate analysis techniques. Each of these methods has certain assumpt-

ions that must be met before the technique can be used for assessing

classification accuracy. If these assumptions are not met, the :echnique

loses its power.

The data used in classification accuracy assessment is of the

discrete type. Discrete data, as opposed to continuous data, may take

on only a limited number of distinct values (Snedecor and Cochran, 1976).

In analysis of variance, the data must be normally distributed in order

to meet the assumptions of the technique. Since discrete data is not

Nor-

*I `(pi
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normally distributed, it would seem that ANOI TA is not a good technique

for accuracy assessment. However, Rosenfield (1980) has proposed the

use of the logit transformation or the aresine transformation as described

by Snedecor and Cochran (1976) to transform the data into an approximately

normal distribution. Rosenfield states, "the statistically interpreted

results of the weighted adjustment agree fairly well with what might be

technologically expected, and are therefore judged technically accept-

able". After the transformation is applied to the data, the analysis

	

(	 of variance can be run. From the resulting ANOVA table, multiple range

	

I	 tests are applied to population means found to be significantly different

(Rosenfield, 1980). analysis of variance is a powerful statistical tool.

However, other techniques that do not require so much data manipulation

shculd also be tested. Rosenfield (1978) agrees, "this does not mean

fthat they (ANOVA) are the best; however, the tools available should be

used until soruething better comes along".
i

Regression analysis is another way of visually representing

accuracy. In this case the ground truth (i.e., actual land cover) is

the independent variable, X, and the computer classification is the

dependent variable, Y. If the computer is completely correct in its

	

•	 classification, then all the points will lie on a forty five degree line.

More likely, the points will be spread out from this line. the value of

the correlation coefficient can then be used to get an idea of the
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relative agreement between the ground truth and the computer classi-

fication. Regression analysis has not been widely used in t he litera-

ture and therefore no more.will be said about it.

1.32 Sampling Techniques

The need to use more than just training areas for accuracy

assessment has already been di.cussed. However, one could not afford

nor desire to assess the entire scene. Instead, a representative sample

should be chosen and assessed as the accuracy for the entire scene.

Sampling allows not only the calculation of a number that represents

the accuracy of the classification, but also allows for a confidence

interval to be placed around that number.

Ginevan (1979) states three criteria that should be satisfied in

any sampling scheme. -These criteria are: (1) the sampling scheme should

have a low probability of accepting a map of low accuracy, (2) the sampl-

ing scheme should have a high probability of accenting a map of high

accuracy, and (3) the sampling scheme should have a minimum number, v,

of ground truth samples. Many researchers (Hay, 1979; Ginevan, 1979; and

Genderen and Lock, 1977) agree that stratified random sampling is the

best sampling scheme to use. Rhode (1978) proposes other schemes

including cluster-stratified sampling and two phase sampling. No matter

which samp ling scheme is used, it should be chosen so to obtain the

maximum information with the minimum amount of work. This involves
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considering many variables such as terrain, image identifiable

loations, and variability of wand cover categories.

It should also be noted that errors arise in classification

6	 from other sources besides the sampling scheme chosen. Problems arise

in radiometric correction and geometric rectification. Also, the time

•	 interval between when the imagery is attained and when the field check-

:ng is done may cause differences in land cover category. It must also

be realized that just because the classification of a category seems

perfect, this does not always mean that the method is error free. The

result may occur purely by chance because of the sampling design. "This

fact is seldom appreciated by many image interpreters when checking the

accuracy results of their remote sensing land use survey (Genderen and

Lock, 1977).

Finally, no matter which sampling scheme is chosen, a sample

size must be determined. This situation is described by Ginevan (1979),

'The sampling problem as defined 'here is the determination of the optimal

number, N, of ground truth samples and an allowable number, X, of mis-

classifications of these samples." Once these have been determined, the

results of image interpretation are checked against the N ground truth

samples and the map is accepted as accurate if X or fewer of the ground

truth samples are misclassified. The optimum number of samples, N, to be

•	 taken has met with widespread disagreement throughout the literature

(Todd et al., 1980; Hay, 1979; Geriueren et al., 1978; Genderen and Lock,

1977; and Hord and Brooner, 1976). Each researcher seems to have his



own ideas about sample size determination and it is obvious that a

great deal more research is needed in this area.

1.33 National Data Base for Error Matrices

Letters were sent out to potential sources of error matrices

asking that any matrices they had be sent to us for inclusion in a

National Data Base for Error Matrices. An information questionnaire was

sent along with each request for data. This questionnaire contained

questions about the location of the area analyzed, the analyst, the

'	 algorithm, and the date the data were taken.

All error matrices that we have received have been compiled

along with their corresponding pertinent irformation and placed on a

computer tape. This data are available for distribution to other users

upon request. A listing of the sources of error matrices can be

found in appendix I.

i
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2.0	 Statistical Methods

	

2.1	 Methods of Comparing Similarity Matrices

Two methods were used to compare two-dimensional matrices

representing ground classification versus machine classification

from different methods. In the first method of comparison the

cell entries in each matrix are successively balanced until the

sum of each of the matrix margins is one. The entries in the

matrix then represent a normalized percentage of the total

observations occurring in each matrix cell. Within an individual

matrix these percentages can be used to examine omission and

commission errors. Classification errors between two or more

m::chine classification methods can be evaluated by comparing the

percentages in corresponding cells in each matrix. Matrices with
i

differing numbers of observations can be compared since the entries

in each matrix are transformed to percentages.

The second method of comparison was a measure of agreement

for two-dimensional square matrices presented by Bishop et al. (1975).

This measure, K, is calculated as the difference between the actual

agreement and chance agreement between two classification methods.

In this application the two methods are ground classification and

machine classification. The measure is calculated as
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r	 r
N E X.. - E X. Y

	K = i=1 11	 1=1 
1+ +i

	2 	 r
N - E 

Xi+X+i
l 1 

where r is the number of rows in the matrix, X is the number of
ii

observations in row i and column i, X.l+ and X,. are the marginal
 rl

totals of row i and column i, respectively, and N is the total

cumber of observations. An approximate large sample variance,

based on the asymptotic normality of K, is available, and can be
i

used to derive a confidence interval for K from a single matrix

and to perform tests for equality of K between two matrices.

The two methods described above can be used together. Method

•	 two, K, will indicate whether two matrices exhibit the same degree

of classification success for error). If a difference exists,

method one can be used to determine in which particular category

or categories the difference lies.

2.2	 Categorical Data Analysis

The influence of factors such as season of imaging, film type,

and interpreter bias on classification accuracy was examined using

categorical data analysis (Bishop et al., 1975). Using this analysis

technique the dependence of classification accuracy on a single

factor or combination of factors can be assessed.
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Categorical data analysis requires only that each factor

being examined for influence on accuracy car. be assigned to an

unambiguous category within each factor. These categories may

be normative, ordinal, or interval. The result of data

collection is a multidimensional matrix with each factor, including

ground and machine classification, serving as a dimension of the

matrix.

This method of analysis avoids the more restrictive

assumptions inherent in alternative analysis methods such as

multivariate regression or analysis of variance. No normality

assumption is necessary, no factors need be considered as con-

tinuous, and interpretation of many dummy variables is avoided.

W^
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3.0	 Sample Data Analyses

	

3.1	 `4ARGFIT Analysis

:1s previously discussed, the FORTRAN computer program `".ARGFIT

(see Appendix II) implements a normalization procedure which standardizes

each error matrix for purposes of comparison. The accuracy of the

classification can then be represented as a normalized overall perform-

ance. This value is calculated the same way as in overall performance

(i.e., summing the major diagonal and dividing by the total) except

that the matrix is normalized first.

Smith and Itkowsky (1978) compiled five error matrices for a

study in north central Colorado. Two of the matrices were for

training sets; Original was compiled using a supervised classification

while Josesigs was compiled using a modified unsupervised classification.

The other three matrices (Scrambll, Scrambl2, Scrambl3) were attempts

to reclassify incorrect pixels using a computer program called SCF_kMLBL.

Table 1 shows the Josesigs error matrix before normalization and

Table 2 shows the matrix after normalization.
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Table 1. Josesigs error matrix before normalization.

Reference Data

nari ri 	 (nnir	 C.rIgq	 Maa(iC)w	 Shr,ih	 Water	 Sage

17 2 0 0 0 0 0

28 127 0 0 0 0 0

0 0 2 2 1 0 0

16 0 0 i	 122 6 0 0

6 0 0 4 3 0 0

0 0 0 0 0 127 0

0 (	 0 (	 0 0 I	 0 0 0

Decid.

C
o Conif.,a
:J

U Grass
W
+-1
^n

Meadow
U

Shrub
.J
7

o Water
U

Sage

0•3erall

Performance

398 = .g596
463

=398

Table 2. Josesios error matrix after normalization.

Reference Data

na,iA	 Cnni is 	rrncc	 Wan inw	 Sh,-nh	 1jater	 Sage

.5363 .0996 .1001 .0168 .0645 .0155 .1674

.1382 .8044 .0158 .0027 .0102 .0025 .0265

.0154 .0200 .5025 .0842 .1943 .0156 .1681

.0879 .0035 .0174 .7139 .1457 .0027 .0291

.1804 .0180 .0906 .1366 .4089 .0141 .1515

.0035 .0046 .0230 .0039 .0148 .9108 .0385

.038 Z, .0499 .2505 .0420 .1615 .0389 1.4190

Decid.

0
u Conif.

Grass
m
n

U Meadow

Shrub

0
Water

Sage

Normalized
Overall

Performance

4.2958 =
7	 6136

E=4.2958



Table 3 shows the results of overall performance and

normalized overall performance f)r all five error matrices. vote

that the relative accuracies are similar for the two performance

values except for the Josesigs matrix. Careful study of Table 1

snows why this is so. Only three pixels in the shrub category were

correctly classified. This forced the normalization procedure to

inflate the values in the shrub row and column decreasing the

normalized performance accuracy. Also, no sage category pixels were

classified at all resulting in the same tripe of normalization

problem.

Table 3. Overall and normalized overall performance results
for five classification error matrices.

	`f trix	 Overall Performance

	

Original	 (	 90.377

	

Josesigs	 1	 85.96%

	

Scrambll	 1	 85.43%

	

Scrambll	 1	 78.94%

	

Scramb13	 1	 80.18%

Normalized
Overall Performance

86.037

61.367

79.97%

70.49%

74.177
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Similar results were achieved for matrices compiled by Hoffer

C1975a). Here four error matrices were compiled at two different dates

comparing a classification of major land cover types versus forest

cover types. The results of normalization shown in Table 4 agree with

the overall performance values calculated by Hoffer.

Table 4. Overall and normalized overall performance results
for four cover type error matrices.

Normalized
Matrix	 Overall Performance	 Overall Performance

Major Land
Cover Types 85.96% 89.51%

6-5-73

Major Land
Cover Types 69.35% 72.53%

8-8-73

Forest
Cover 71.79% 76.87,%
Types
6-5-73

Forest

i

Cover 48.83% 57.88%
Types
8-8-73

3.2	 KAPPA Analysis

The FORTRAN computer program KAPPA (see Appendix III) calculates

a K statistic for a given error matrix which allows one to compare



error matrices to see if they are significantly different. This type

of comparison has many uses. In an example sited above, Hoffer (1975a) com-

piled two classifications at two different dates. The K statistic and

corresponding confidence interval (i.e., upper and lower bounds) are

presented for each error matrix in Table 5.
k

Table 5. K statistic with upper and lower limits at 95
confidence interval for four cover type error
matrices.

Matrix	 Lower Limit	 K	 UDDer Limit

Major Land
Cover Types .69396 .69458 .69521
6-5-73

Major Land
Cover Types .62880 .62929 .62978
8-8-73

Forest
Cover .38961 .39055 .391.50
Types
6-5-73

Forest
Cover .33004 .33074 .33144
Types
8-5-73
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As can be seen from Table 5, none of the confidence intervals

overlap; therefore, all these matrices are significantly different.

This means that the imagery taken at two different dates is signifi-

cantly different which implies that one date must the y, be better than

the oth--r. A quick look at the data indicates that 6-5-73 was the

significantly better date.

Another example of this technique is provided by Hoffer (1975b).

In this example, four matrices were generated from four different

classification algorithms. The results presented in Table 6 show

that all the matrices a-e significantly different.

E

Table 6. K statistic with upper and lower limits at 95%
confidence interval for four classification
algorithms.

Matrix	 Lower Limit	 K	 UDDer Limit

P	 .
Nonsupervised

I(10 cl.) .60271 .60479 .60686

Nonsupervised
(20 cl.) .58348 .58573 .58799

Modified
Supervised .47326 .47581 .47837

Modified
Cluster .71631 .71846 .72001

A final example of the K statistic is found in Appendix V.

This example deals with comparing photo interpreters to see if they

are significantly different.
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3.3	 CONTABLE Analysis

The APL computer program CONTABLE (see Appendix IV) allows

one to analyze multi-way contingency tables.* In the example here

a 5-way table is analyzed. This table (Carneggie, 1972) deals with 5

factors or effects listed in Ta = le 7. The data consists of 18

5 x 5 error matrices with various films, dates, and interpreters.

Table 7. List of factors and effects for 5-way contingency
table.

FACTOR	 EFFECT

1	 Date	 (6/10, 7/25, 10/25)

2	 Film	 (Color, CIR)

3	 Interpreter	 (#l, 412, 413)

4	 Row	 (1, 2, 3, 4, 5)

5	 Column	 (1, 2, 3, 4, 5)

The hypotheses to be tested in this example are listed in

Table 8 while the results and conclusions are listed in Table 9.

*Without the use of this program and its Iterative Propottional
Fitting Procedure, analysis of tables larger than 3 dimensions
would be impossible.

.y

•	 .
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Table 8. List of hypothesis for CONTABLE example.

1. H0 : 11 2	- 0 No film effect

2. H0 : 11 3	= 0 No interpreter effect

3. H0 : il l 	= 0 No date effect

4. H0 : u4	 - u 5 = 0	 No row-column effect

5. H0 : 1112 =
0 No date-film interaction

6. H0:
1113 

3 0 No date-interpreter interaction

7. H0: 11
23	 =

0 No film-interpreter interaction

Table 9. List of results and conclusions for CONTABLE
example.

HYPOTHESIS CHI SQUARE VALUE

H0 : 11 2	 = 0 623.487

H 0 : 3	 = 0 613.142

H 0 : µ l	= 0 591.543

H0 : 11 4 =11 5 = 0 134.485

H0:
1112 =

0 145.961

H0:
1113 =

0 162.393

H0:
u23 =

0 144.707

CONCLUSION

rej -ct H0

reject H0

reject HO

fail to reject H0

fail to reject H0

fail to reject H0

fail to reject H0
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Table 9 shows that although no -_..gle factor significantly

affects the classification, the combination of two or more factors

does. This means that none of the three factors (film, date,

interpreter) is more important than the others. Instead all three

factors interact together to give the best classification. From

the analysis so far there is no significant one factor on which

most of the accuracy depends.

A
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4.0	 accuracy Conference

A National Working Conference on Landsat Classification Accuracy

Assessment Procedures was held in Sioux Falls, South Dakota. A

summary of this conference is given in Appendix VI as a draft manu-

script which will, be revised and submitted for publication in

journal.

	

3.0	 Wildlife Habitat Assessment Methods

A secondary task in this year's plan of work was to develop

digital spatial analysis techniques for assessing wildlife habitat.

Appendix VII includes a FORTRAN computer program for doing this, and

the techniques are described in a manuscript which is Appendix VIII.

	

6.0	 Effects of Classification Accuracy on Interspersion Maps

Artificial land cover type maps were made in order to test the

effects of classification accuracy on computer generated interspersion

maps. Three cellular maps were made, each containing 10 rows and 10

columns with each cell assigned to one of 5 classes. The first map was

used as a reference base map for comparison with the other two maps.

The second map had 90% of its cells classified similar to the first

(i.e., 90% accurate), and the third map was 70% similar to the reference

base map. Five cover types, designated 1 through 3, were used on

each map. Similarity matrices were generated between the accurate
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(90% similar) "Map II" and the base map (Table 10), and between the

less accurate, "Map III" (70% similar) and the base map (Table 11).

KAPPA was used to compare the two resulting similarity matrices.

The interspersion index described by Mead et al.in Appendix VIII

was used to create interspersion maps from each of the three fictional

cover type maps. The maps delineate areas of high (designated 3),

medium (2), and low (1) interspersion. Similarity matrices were

created by comparing each of the interspersion maps (from the cover

type maps II and III) with the interspersion -nap made _`rom the base

map (Tables 12 and 13).

The implementation of the KAPPA program (see Section 3.2) was

then used to test for a significant difference between the interspersion

maps. The resulting MAT values indicate that cover type maps II and

III were significantly different. A significant difference was also

found between the two matrices for the interspersion maps. However,

further work is needed to understand the effect of map accuracy on

computer generated interspersion maps, juxtaposition maps, and spatial

diversity maps. Also, the effect of increasing the number of cover

types or the number of interspersion classes (high, medium and low) is

unknown.
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Table 10. Similarity matrix for five fictional cover
types on the base map and on Map II.

Base Hap Classification
c	 1	 2	 3	 4	 5
0
^ 1Mu
w 2
N

3
U

4
G 5

.:y

Overall Accuracy 100
	

90

Table 11. Similarity matrix for five fictional cover type
maps on the base map and on map III.

Base Map Classification
c	 1	 2	 1	 4	 5
0	

1L y
ro
U
w 2
,4
N

b 3
v

4

G 5

Overall Accuracy = 700 = 70%

Ppr

19 1

18 1

1 16

1 2 27 1

3 10

14 1 2

2 16 4 3

1 2 13 2

3 2 17 2

6 110
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Similarity matrix for three categories of
i-iterspersion, high (3), medium (2), and
low (1) produced from the base map and
map II.

Base `lap Interspersion

1	 2	 3

Similarity matrix for three categories of
interspersion, high (3), medium (2), and
low (1) produced from the base map and
map III.

Base Map Interspersion
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7.0	 Summary and Future Work

The literature review and preliminary investigations show

that:	 (1)	 the statistical techniques initially proposed are sound

and are useful for analysis of Landsat classification accuracy data,

(2) substantial amounts of data from accuracy assessments exist

but few sets are comparable prohibiting hypotheses from being

tested,	 (3) preliminary results show that the method used in sampling

a classification can significantly affect the estimated accuracy.

An "automatic" computerized system needs to be developed for com-

piling error matrices for any classification given the necessary

ground truth and a specified sampling strategy.	 Experiments need

to be designed in the future so that fundamental questions can be

answered about factors which affect classification accuracy.

The wildlife habitat assessment system has greatest potential

when animals with requirements related to the spatial characteristics

of the landscape are considered. 	 Juxtaposition can. be of great

importance or of very little importance depending upon the specific

geographic area and the wildlife species of interest.	 When this data

on the spatial characteristics of the landscape are coupled with basic

land cover information and ancillary data (e.g., elevation, slope,

soil type, political or ownership boundaries), an over-all system

for habitat assessment may be realized.	 Such a system could be

LJL

implemented on a computer and merged with data on other resource

-.:_.	 4^:_-tee
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attributes (e.g., timber producing capability). Further work should

include pilot testing the system and an evaluation by field level

resource managers.
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Appendix I.

List of Sources of Error Matrices

1. Mead, Roy A., Landsat Digital Data Application to Forest

Vegetation and Land-Use Classification in Minnesota. Ph.D.

Dissertation, University of Minnesota, 1977.

4 matrices (training set, test set, 2 evaluation areas)

Minnesota.

2. Fleming, Michael, Computer Aided Analysis Techniques for an

Operational System to `Sap Forest Lands Utilizing Landsat MSS

Data, LARS Technical Report 112277.

2 matrices	 Colorado.

3. Smith, James and Frank Itkowsky, Sensitivity of Variable

Probability Sampling Estimates to Initial Landsat Classifi-

cation, Final Report R.M.F. & R.E.S. USFS Coop-Agree. 16-741-CA,

September 1978, CSU, Fort Collins, Colorado.

5 matrices (training set, test set, 3 evaluation areas)

Colorado.

4. Madding, Robert and Harland Hogan, Detection and :Sapping of

Spruce Budworm Defoliation in Northern Wisconsin Using Digital

Analysis of Landsat Data. Proceedings of ASP Convention.

Feb. 26 - Mar. 4, 1978. pp 285-300.

2 matrices (normal and collapsed) 	 •

Wisconsin.
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5. Voss,	 A.	 W.,	 J.	 E.	 Baker,	 G.	 E.	 Hauser,	 and D. W.	 Newton, The

Use of Landsat Derived Land Cover Data in a Flood Peak Correla-

tion Study,	 Proceedings ASP,	 Feb.	 26-Mar.	 4,	 1978,	 pp.	 135-146.

2 matrices	 (normal and collapsed)

' North Carolina - Tennessee.

'	 6. Hoffer, Roger, Natural Resource :lapping in Mountainous Terrain

by Computer Analysis of ERTS-1 Satellite Data, LARS Research

Bulletin 919.	 Info.	 Note 061575.

10 matrices	 (different classification systems)

Colorado.

7. Hoffer, Roger, Computer-Aided Analysis of Skylab MSS Data in

Mountainous Terrain for Land Use, Forestry, Water Resources,

and Geologic Applications, LARS Info. 	 vote 121275,	 1975.

4 matrices (varying spectral bands)

Colorado.

8. Hoffer, Roger, ,lapping Vegetative Cover by Computer Aided

Analysis of Satellite Data, LARS Technical Report 011178.

2 matrices	 (test sites)

Colorado.

9. Hoffer, Roger, Variables in Automatic Classification over

Extended Remote Sensing Test Sites, LARS Information Note 061571.

1 matrix (test site)

Indiana - Illinois.

Pr



10. Hoffer, Roger, Basic Forest Cover Mapping Using Digitized

Remote Sensor Data and ADP Techniques, LARS Information Note

030573.
	 .r

13 matrices (tests at different spectral bands)
10i

11. Heller, R. C., R. C. Aldrich, R. S. Driscoll, R. E. Francis,

and F. P. Weber, Evaluation of ERTS-1 Data for Inventory of

Forest and Rangeland and Detection of Forest Stress. PSW & PM

For & Range Exp. Sta. Aug. 9, 1974.

12 matrices.

12.• Ernst, Carola Lisette, Digital Processing of Remotely Sensed

Dat`_ or `lapping Wetland Communities, Ph.D. Dissertation,

Purdue University, Dec. 1979.

6 matrices (classification)

Indiana.

13. Nelson, R. and R. Hoffer, Computer Aided Processing of Landsat

MSS Data for Classification of Forest Lands, LARS Technical

Report 102679, 1979.

12 matrices

Colorado.

14. Carneggie, D. M., Large Scale 70 mm Aerial Photographs for

Evaluating Ecological Conditions, Vegetational Changes, and

Range Site Potential. Ph.D. Dissertation, University of

California, Berkeley.

18 matrices (photo interpretation)
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15. Lauer, Donald, Claire Hay and Andrew Benson, Quantitative

Evaluation of Multiband Photographic Techniques, Final Report

for Earth Observation Division :fanned Spacecraft Center,

NASA Contract NAS 9-9577, 1970.

4
	 79 matrices (photo interpretation)

16. Bryant, Emily and Gibb Dodge

1 matrix. Maine.

17. Roberts, Edwin

1 matrix. Colorado (test set for Grand County).

18. Roller, Norman and Larry Visser, Accuracy of Landsat Forest Cover

Type dapping in the Lake States Region of the U.S., Fourth

International Symposium on Remote Sensing of Environment,

April 23-30, 1980.

1 matrix (Forest Cover Types).

Michigan.

19. Newcomer, Jeffrey

3 matrices. Pennsylvania.

20. Harrington, John A. and Charles W. Dunn, Jr.

3 matrices (forest - other) Oklahoma.
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Appendix [I. Listing of FORTRAN Computer Program MARGFIT

//NATFIV	 ,PAGE3=30
C	 #rr#wr#r##rrrwww+rrw###*####w*# www*####**#wrii
C	 i	 t
C	 *	 '+AKGFIT vA 3 KE:•ikITTEN ANO 0UCUME N TED dY
C	 #	 ►+U5SELL G. CONGALTON	 t
C	 *	 DEPt. OF FORESTRY, VPIASI	 +
C	 JULY	 1479	 w
C	 +
L	 iwwwr#i#ww#riiw w iw#wwwwwrir #r#riwri #* rr #irr#ii
C
r

iwt+wwwwww#rr rwiww#,^^► i##i#i#w##ww#w#wri#w#ftlwww#r*ww#wwww#w##r*##w#w#w
r #	 #
C * THIS PKUGRAM .'JAS DESIGNF.0 TO CHANCE A MATkIX GF *4AxT v L'm Ol'AENSIONS
C * uF 5 1 050 I'JTO A MATRIX WITH P g EDETERMI :NED HUG.- AND C01_UMN 'AAHG('q'%LS
r	 # #

C	 * 14U ,, lM AT =	 THE IAUMWER	 OF	 HATRICF5 TIt	 HE	 CHANGEC
C	 * TA6(I,J) =	 THE VALIJF_	 IN	 4U6N	 I	 AND COLUMN	 J	 OF	 TrF	 GIVE^j	 ,AArRIx
C	 * RMAR ( I ) =	 THE MA g G TNAL	 VALUE	 FOR RUNW 	 I	 #
C	 * C -IAR (I J =	 THE rlAHG j,NAL	 VALUE	 FOW COLU M -1	 J
C	 * 'A AxIT =	 THE r;AXI %1U,A	 NUMBER	 OF ITERATIONS
C	 * NIAXOEV =	 THE MAXIP 4 1jr4	 AL1_U,sA,ALF DEVIATION	 +
C	 * I k =	 THE rJUmt!ER	 OF	 R0 6vS	 j ry THE	 MATRIX
C	 * IC =	 THE NUMBER (IF	 COLUMNS IN	 THE	 .-iATRIX
C

i#*:w###rir www##wiww#####iii+#*wwi#i #i##r#wwiirri######w#wh iririwrr#r
C
r

ot^^ENSI^)ra tAy(So, Sn),RN^Aa(50J.C^•AR(5u),FIT(5c)
? REAL	 AAAOEV

C
3 NCUUNT=0
y REAO(5, 15)	 NIJMN- AT
5 15 F0RMAT(12)

C
A 56 REAO(5,10)	 ld,IC
7 lU FOR"AT(2IS)

00	 200	 I=1,IR
9 REAO(5,20)	 (TA8(I,,1),J=1,lL)

1) 20 Fi)R M A T ( 12 (F h. 1) )
11 200 CONrINUE
1? REAO(5,30)	 LkVAk(I),I=1,Ik)
15 30 FUkMAT(12(F13.0))
1u REAU(5,410)	 (C M AK(i),1 =1, IC)
15 F0PRAAT(12(Fh.0))
l-) RF_A0(5,51)	 MAXIt,'IAX(lFV
17 S1 FU;NAT(I5,Fl0.3)
113 RFAO(5,52)
19 52 F0m,11AT('AA4AAaAAAaeAAApaAaAeAaAanAaaaa9aea4"•AA4A')

2 t ARITE( b,99y)
?1 999 FUN-11AT('1')
2? aRITF(b,52)
23 ,%KITE(6,93)
2 ,3 53 F014f- AT(IX,'#i#i#i#wrw#iwiiiw#*w*..i##iririi•iwwwiii'////)
25 tip1 rE(b,54)
?ti 5u FO w `"AT(lx, I THE	 1 ,kIGIN	 L	 r.iATRjx	 I5:')
27 :jRITE(	 ,55)

2y )G 250	 I=1, Tk-'--	 -----------



3U fiWITE(b,56)	 (TAh(I	 J).J=1, IC)
3l 5b F(.)RMAT(12(Ix,F6.1.)^
32 250 CG^TINUF

r
33 VIT_u
314 DO	 300	 I=1, Ik
35 FIT(I)=0.0000U1
35 00	 1400	 J=1, IC
37 400 FIT(I)=FIT(I)+TA8(I,J)
3-1 30U CDNTINUE
3 Q luU U0	 150	 I=1,IR
40 UU	 5UU	 J=1,IC
41 TAH(I,J)=TAd(I,J)*RiHAR(I) /FIT(I)
12 500 CONTINUE
43 1514 CONTINUE
414 00	 600	 .1=1, IC
45 d=O.000OUI
46 00	 lUU	 I=1,I^
a7 100 4=8+TAH(I,J)
t4 0)U	 d00	 I = 1, Ik
149 IF(TA6(I,J)•LT,I.0F•11)	 TAri(I,J)=').0
50 Ta8(I,J)=TAd(I,J) *C'1AR(J)/h
51 900 (;ONT INUE
52 bOO CONT INWU
53 NIT	 I T + 1
514 0=0.0
55 00	 9140	 I=1,IR
5-^ FIT(I)=U.0000U1
57 psi	 1000	 J=1 , IC
5d lUUO FIT(I)=FIT(I)+TA8(I,J)
59 H=AH5(FIT(I)-kNoAR(I))
6^) IF (0.GE.r+)	 GO	 TO	 900
', 1 D =H
62 900 CUN T I',IUE
63 IF (0.LE.`^ A x0EV )	 Gr)	 TO	 2b0
614 IF(NJIT.LE.`^AxIT)	 G r )	 TO	 1^0
b5 ^kIIE(6,6U)	 'AA xI1,U
6 0+ 60 FOWMAT('	 NO	 CONVERGENCE	 AFTEp',I5,'

AIML.) M 	0EVIAT1n N4	 IS:	 ',F1O.3)
h7 GO	 TO	 1200
j ,A 260 vRITE(h, 10)	 NIT,O
6 q 70 Fr)RN^AT(/ //' 	CONVEkGENCE	 AFTE4	 ',I5,'

AIATIO .v	 UF:	 ',F10.3
70 00	 1100	 I=1,[k
71 NkITE(6,80)	 (TAS(I,J),J=lplC)
72 +10 FUKMAT(20(1x,F7.u))
73 11"10 CUPiTINOE

C
7 14 1200 NC r)UNT= :JC 	 T +I
75 IF (NCUuimT.LT.,*• nJ m MAT)	 GO	 To 	 50

r
7k STUV
77 F_`jfi

//fIATA

t

ITERATICF%S.'/' THE CURRENT MAX

ITERA TIC uS NTTH A '-4AXj'aU,'•' UEV

w^

39
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Appendix III. Listing or FORTRAN Computer Program ,KAPPA

/1',4ATFIV ,PAGES=35
C • # # # # # # # # * # * * A * # * * # * # i * # # * # * * # * A A # * * * # * # * # # # # A

C *	 #
C A	 KAPPA	 -WAS	 RE;IRITTEN	 AND	 OOCU MENTFO	 BY	 A

C *	 RUSSELL	 G.	 CONGALTON
C #	 DEPT.	 OF	 FORESTRY,	 VPIKSI
C #	 JULY	 1979	 #
C *	 *
C #*A*A##*A*##*A## ######,► #r*######*####*#*### ##A
C •
C
C #i#*####AA*A#A#####*##fA#####!r*###RAt*###A#*###**######**#***####*####
C + •

C *	 THIS	 PROGRAM	 wAS	 OESIGNEO	 TO	 TEST	 FOR	 SI'JILAR	 CEGREES	 OF	 AGREEMENT #
C *	 BETMEEN	 Tti0	 OR	 MORE	 SQUARE	 E R4 014	 MATRICES
C * t

C *	 M E	 =	 THE	 NUMBER	 OF	 TABLES	 OR	 MATRICES	 TO	 aE	 C0%%PARED
C *	 NR	 =	 NUMBER	 OF	 RONS;	 A LSU	 THE	 NU"16ER	 OF	 CCLUMNS	 SINCE	 THE
C *	 .MATRIX	 IS	 SQUARE
C *	 x(I ► J)	 =	 THE	 VALUE	 IN	 THE	 mATRIX	 FOR	 p O .,4 	 I	 ANC	 COLU M N	 J
C
C * #

C
C

1 REAL	 KHAT,LCL
2 Olf,'ENSIUN	 X(20,20),SXR(20),3xC(20)
3 DI`^ENSION	 UCL(20),LCL(20),KHAT(20)
u L=20
5 M=^)
5 R=1

C
7 REAO(5.10)	 NIE
8 1 0	 FOR ,1-1A T ( 12 )

C
9 10U	 00	 200	 I=1,L

10 SXR(i)=O.0
tt SXC(I)=O.0
12 DO	 3oO	 J=1,L
13 3Uu	 x(I,J)=0.o
14 200	 CONTINUE

C
15 R E A 0 ( 5 , 2 0 ) 	 NR
1b 20	 FORMAT(I2)
17 00	 400	 I=1,NIR
i ll REAO(5,30)	 (X(I,J) ► J=t,-1,R)
1'9 30	 F0RMAT(12(Fb.0))

20 a00	 C 0 N T I N U E
21 REAO(5,31)
22 31	 FORMAT('AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA^AAAAAAAAAAAAAA')

C
23 NRITE(6,999)
2u 999	 FORMAT('I')
25 aRtTE(6,31)
^;, wRITE(6,32)
27 32	 FORMAT( 1X,'##:###**A#*###*#######*# ####r####### #* ###########'///)
2+i ,R I T 	 (b, 3u )
29 314	 FORMAT(////,l W THE	 ORIGINAL	 ERROR	 "AATRIx	 I5:')
30 o4RITE(b,35)
31 35 FOR M AT(1X,'___	 '/)
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9 7 E-1
3)1 r)U	 1300	 I =1,r^
039 00	 1400	 J=2,M
90 IF	 (J.LE.I)	 GO	 TO	 1400
91 IF	 CLCL(J).GT.LCL(I).A N O.LCL(J).L T .t1CL(I))	 GC	 t0	 1100
9p IF	 (UCL(J).LT.UCL(I).ANr).UCL(J).GT.LCL(I))	 CC	 tO	 1100
93 wRITE ( 6,1000)	 I,J
94 1000 FORMAT (1X,'MATRIX	 ' ► I2,'	 IS	 SIG^,IFJCAATLY	 i)I F FERENT	 FROM	 MATRIX

412/)
95 GO	 TO	 1400
9^ I100 :•4RITE ( 6,1200)	 I,J
91 1200 F0R M 4T(lX,'MATRIX	 1 ,I2,'	 IS	 NOT	 3IG4IFICANTLr	 DIFFERENT	 FROM	 MATRI

AX	 ',I2/)
9A 1410 CONTINUE
99 1301 CONTINUE

100 wRITE(5,1500)
101 1500 FORvIAT('1')
102 STOP
103 EN 

//0A TA



Appendix IV. Listing of APL Com puter Program CONTABLE

C1]
1.2]
133
[41
C51

C6]
C7]
C3]
191
C10]
0111
0121
C13]
114]
C151
116]
0177
0187
119]
C20]
121]
C227
1231
C24]
C25]
C26]
0271
C28]
1297
0301
C31]
[32]
E337
CJ4]

j	 1351

C361
C377
0381
0391
C401
C417

j	 E427
0437
0441

,7CONTABLEHOW C[1]9
p CONITABLEHOW
' CONITABLE'
'ANALYSES OF MULTIDIMENSIONAL CONITINGENfCY TABLES'
'S. K, LEE - - - DEPARTMENT OF STATISTICS, VPI SU-
-ENTERED 7/5/1976'

'	 THIS PROGRAM WILL FEFFORM ANALYSES OF COMPLETE OF: INCOMPLETE,
'MULTII'INEN1SIONIAL CONTINGENCY TABLES USINIG A LOGLINIEAR MODEL'
APF' POACH ,'

'	 r4NTA SHOULD BE ARRANGED IN1TO A CONTINGENCY TABI-Ey AND MAY BE'
'STORED IN1 AN ARRAY SMF PRIOR TO PROGRAM EXECUTION OR MAY BE '
'ENTERED UPON REQUEST. WHEN ANALYZINlG INCOMPLETE TABLES THE INIITIAL'
'SITTING TABLE MAY BE STWED SIMILARLY IN AN ARRAY NAMED ONES PRIORI
'TO PROGRAM ENECUTIOO. UPON REQUEST, THE USER SHOULD ENTER A LOGLIHEAF"
'MODEL_ WITH WHICH HE INTENTS TO FIT THE DATA, THE LOGLINEAR MODEL'
'SHOULD BE ENTERED BY THE CONIFIGURATIONIS AND THE DIGIT 0 IS UBED TO
'SEPARATE CON!FIGURATIONIS.	 FOR EXAMPLE, THE 1.10-THE:EE-FAC1'OF:-I1-1TEF:ACTION1'
'MODEL OF A 3-DIMENSIOMAL TABLF-y (C12y C13y C23)y I5 ENTERED AS;'

'	 1 2 0 1 3 0 2 3'

'THE PROGRAM FOLLOWS AN ITERATIVE PROPOP:TIONAL FITTIHO SCHEME TO
'COMPUTE THE MAXIMUM LIKELIHOOD ESTIMATES OF THE EXPECTED CELL VALUES,'
'THEN! THE PROGRAM COMP'UTE'S THREE GOOD" ESS-OF-FIT CHI-SQUARE STATISTICS;'
'PEARSON! CHI-SQUARE, LIKELIHOOD PATIO, AND FREEMAM-TUKE'Y CHI-SOUARE;'
'HOWEVER, THE DEGREE OF FREEDOM ASSOCIATED WITH THESE STATISTICS SHOULD'
'BE DETERMINED BY THE USER. AFTER ALL THE COMPUTATIO"S RELATING TO THE'
'CURRENT MODEL ARE FERFOPMEDy THE PROGRAM ASKS WHETHER MORE HYPOTHESIS-
'(I.E., ANOTHER LOGLINEAP MODEL) IS TO BE FITTED, 	 IF !O1'y PROGRAM'
'EXECUTION IS TERMINATED.-

'	 ALL VARIABLES ARE LOCALIZED EXCEPT SMF AND ONES, PROGRAM,
' EKE_CUTIONI REQUIRES THE FUNCTIONIS NAMED SUM A1.1D 	 YE^_110,	 ALL OF THESE'
'PROGRAMS PLUS THIS DOCUMENTATION ARE OROUPED UNDER THE NAME CONITABI-EGRF ,

' FOR MORE DETAILEI' DISCUSSION! OF THE LOGLINEAP MODEL APPROACH SEE'
'THE FOLLOWING REFERENCE:'

'	 OISHOPy Y,M,M,y FIEMBERO,
'	 MULTIVARIATE ANALYSIS;

MASS,; THE MIT PRESS,

A SAmFLE: RUN OF THE FF: OGRAM CAN BE OBTAIHl ET, FROM S. K, LEE,'

7

S, E, AND HOLLAND, P, W, y	 DISCRETE,
THEORY AND PRACTICE, CAMBRIDGE,-

1975 .
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TCOMTAPLE [[]]p
p COHTAPLE;DIM;FOLD;A;W;T;I;J;VyVV;STEF'SjIOD; M;U;D;C;MNI:MII

C1]

F213	 ''THE DEFAULT FARAMETE R VALUES FOR THE ETERATIVE PROFORTIONAL'
[3]	 'fFITTING SCHEME APE: MAXIMUM DEVIATION = 0.01'
[ 4 1	

6	 MA`•(IMUM NUM.SEF OF ITEPATI0?IS = 15
C53	 ' '	 •

[6] SE=GIM: ' ENTER THE DIMENSIONS OF THE rnPLE I

C7]	 DIMF[I
C31	 'IS THE DATA ALREADY IN A PP A Y. SMF?(YES, NO, OF: STOP)'
C93	 Wt YEBiN0(AF(I)
1101	 -► ((w=0)r(w=1))/O.GO
1 11] RESTART: 'ENTER THE DATA WITH LAST SUE I SCRIF'T CF1A11GING FASTEST'

C 121 SMFKO
C 131 GIET: ' AMY MOPE DATA?-

[14] WaYE5NO(Aso)

C151	 -+((w =0)r(w=2)) /0,GO
1161	 ' EH -rcF: MORE DATA

C 17 1	 aMFt-SMF , r*-[]
[13]  4GET
[:197 GO:4((x /p S MF)=x/DIM)/ GO1
[20]	 'ERROR. NUMPEP OF ELEMENT S INCORRECT. HEFT_ IS THE 101PUTI
[217 SMF

C223	 'DID YOU ENTER ZERO Cour•rrs? LETS TRY AGAIN'
[23] 4PESTAPT
[241 G OI:SMF*V1MpSMF
C251	 'DO 'T'OU W ANT TO SEE THE TA81_E?'

1263 WaYESNO ( Moo )

0271	 4((w=O) ► (w= 2))/0,GO01-1
0283 SMF

1293 G0011: ' ANY FINED EROS?'
[3Q] WHYESNO ( Awn )

0311	 4((w=0),(w=2))/0,GO11
f327	 -IS THE MATRIX OF ONES AND ZEROS ALREADY IA! aPRA'Y ONES?'
133] WaYESNO ( Aso )
0341	 4((w=0),(w=1))/0.GU7
C351	 'ENTER A MATRIX OF ONES WITH ZEROS IN THE APPROPRI A TE FLACES'
0361 GO22:0mEs*0
C371 GOV 'amy MORE?'

C33]	 w^YESrro(aF[7)
1.391	 -+((w=0),(w=2))/0.6o7
[40] ' ENTER MOPE ONES POD EROS'

[41] ONESoONES.[]

0421 *GO6
E433 G07: Arp,ONEs
0441	 ^(((xiDIM;_a),((x/I'IM)<A))/GO19,GG?O
C45]	 'YOU HAVE NOT ENTERED ENOUGH NUMPERS YET: ALL THE FEiMAINING'
Cob]	 ' NUMBePS APE TAKEN TO PE ONE-

1471	 ONES*ONES.((x/DIM)-A)F1

C433	 4G02.1
[49] G020:'YOU HAVE EPTERED TOO MANY NUMPERS:'
CJ01 G0^1;071E51tZMpOr!E=
[ j1]	 'HERE IS THE iMATRIX OF ONES AND ZEROS AS IT STANDS NOW'

E521 O"ES

,r"



ITERATIVE SCHEME?'
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133]
15 4  ]
1551
056]
1'5:']
i. '^, 8 7
C591
1601
1611
C 6 2 :]
0631
16,11
1615:]
1,661
C671
C1531
1,59]
C701
1711
172]
C 731
L- 7 47
C751
C 7 6 :]
C771
C7 o1
179]
03()1
131]
082]
C331
r34]
0 35:]
C367
1977
[33]
139]
0907
C9Ij
1 9 21
193]
1'`+4]
C9j]
0961
0971
1"93]
1'99]
C1007
01011
C1077
1:103_
E10 47

[105

' IS THIS THE MArRIN 't'Ou wam,r ?'
W (-'TES110 ( A+-J3 )

-4( ('y =0) f ( W=1>) /0fG02
I RE-ENTER 't'OUP: MATF:I:t OF ONES AND '^EF'OS'
;GO2'1

G019 :Oi•IESi-I'IMp0MES
' DO YOU ,WISH TO SEE THE TABLE OF Er— S Ai-tD OtdES?'
WF?'F_SNO ( A*-Q )

4((W=0)f(w=2))/0rG02
ONES
+CiO`

v011 *(: NESF- I'IMp 1
(30' 	 E.NTE:F: MARGINALS TO SE FIT'

G0 18: V+-11
C't'CLE;'ANY MOF'E MARGINALS?'

WE- TES.N0(AE-r) )

4((W=0) r (W=2))/0fGG3
' 1. HTEF: M0F:E MA^'GIN4)LS'

V+-Vf0
4CYCLE

G03:vj-.v,0

14-0
J t-O

GO 12: J1-J+1

4(J)pv) /GO13
;(VCJ]=0)/GO12
k/`/ FfVCJ]

G014:JhJ+1
y(J>pv) /G016

4(V1J]=0)/GO17
vk,E„VV,vCJ7

4GO14
G017:4(v[J-1]=())/GO14

IF-I+ 1

A1-pVV
VVFVV,f(IXpL'IM) —A)p0
-+GO14

G013;''T'OU HAVE NOT EINTEFED ANY MAR.GINALS 'YET,	 TF:Y

-1G018
GO16:v4-.( I , pn tM) pvv

( 1' YOU HAVE EttTEPED	 ) , ( yI 1 y T' MARGINALS

MD 4-0 .01

mHIr15
FOLD1-07•tES

r  FUSE-I

M: 1
' DO 'YOU WISH TO SET THE F'ARAME'rEF' VALUES FOR THE

W4. (ESM0 ( Arej )

•(( W= O )f(W= 2))/0fVIGLOOF'
005;'WHAT IS YOUR VALUE OF MA-IMUM DEVIATI ON ? '

iH D:-^

'WHAT I S POUF: VALUE OF MAXIMUM o . fUME<F_F. OF ITEF:ArIOF;S?'

]	 MNI^ []
C1 )67 &IGLOiOF 1( M)MARZ)INOCON

t
E
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C1073 D*0
010237	 I01
Clog] LITLOOP:4(I>STEPS)/CHECK

0110]	 INDO(-(VCI+7e0))/VCI+7
C1111 FOLDIFOLDX(IND SUM SMF)_((INV SUM FOLD)+(IND SUM FOLD) 0)
C1121	 I0I +1
[113]	 -*LITLOOP
01147 CHECK;IE1
[ .115] CHECKER:-*(I)STEPS)/OUT

C1161	 IND*(-(VEI;VO))/V11:J
C1173 cy (ro f (I v Sum SMF) - (I HD SUM FOLD) )

11131	 4(C(D) /GO10
1.119]	 DOC
01207 G010:4(C)MD)/STET
1117	 I+.1 +1
11221 4C:HECKER

E1231 STEP TmE-M+1
11247 4 11GLOOP

C1257 OUT;U*((fFOLDeO)A(jSMF EO))

FI27I
1 1281	 (t'MAXIMUM DEVIATIOtt -	 ) f ( t L') y ( t '	 NO. OF ITERATION

C1291
C1303
[1313	 (t'FEARSON CHI-SQUARE	 ') ft +/(((^'U)/(fSMF_-FOLD))*2)+((-U)/;FOLD)

01323	 T*(SHF*0.5)+((SMF.+1)*0.5)—((1+4XFOLD)*0.5)
11331	 (t'FREEMAN-TUKEY CHI-SQUARE	 1)ft+/f(T*2)

01341	 UFfSMFe()
11357	 (t'LIKELIHOOD RATIO 	 )p t 2X+/((-U)/ySMF)xo((^U)/,SMF")=((-U)/,FOLD)

11363	 (t'TOTAL NUMVER OF FIXED ZEROS	 ' )ft(X/I^IM)-(+/ftUi!ES)

01371
C1381
E1391	 'DO YOU WANT TO SEE THE EXFECTED TATLE?'
01401	 Wt-'rESi1O(A,-Cl)
1141 7	 ► (( W =0) f W =2 ))/ O f CONT
0142]
C14:x1
01441	 (L0.5+ F0LL'X 100)+100

0145]

0146]

[147 1 	 1140 YOU WANT TO SEE THE F'n:E.E1•iAi•!-'TUKEY DEVIATIONS?'

C 1431	 W+. 'i ESHO (A+.[])

[149]	 4((W=0)f(W=2))/O-GO 9
01503
0151]
01523	 (L0.5+TX100)+100
E1537
01541
E1557 00 9; 1 DO YOU WANT TO SEE THE RESIDUALS (OlSER V!ED - E>(PECTIED)?'

11563 Wf YESNO(AFp)

C1571	 4((W=0)f(W=2))/0fGO4

C1583
C1591

C1601	 (L0.5+( S'MF-FOLD)X100)+100
C1613	 '	 '
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0162]	 '	
47

01631 5O41 ' DO YOU WANT TO SEE THE V 	 I:=EC' R E:SI D UALS? '

1.L64.1	 W{-r'ESNO(A't' q )
01651	 W=O)r(W=?))/OrG08

0.166]
11671
11683	 (LO.5+((SMF-FOLV)=((FULL'+FOLL'cO)*0.5) )x1OO)=100

11697
C1701
f1711 GOB:'VO YOU WANT TO SEE THE LOG EZPECTATIOPIS?'
C1721	 whTE5NO(AE_rl)

11731	 -+(( W =0>, ( W=2))/0,cor1T
11741
C1751

11761	 (LO.5 +(*F'OLL'+FOLLi £0)x10O)=100
11771

[179] COHT: ' WAOT TO TRY SOME OTHER HYPOTHSES?'

11301	 WF'T'ESiN O (A+.(])
11811	 -*((W=0),(W=1)) /0pG02
11823	 ' DO YOU WANT TO ANALYZE ANOTHER TABLE?

11831	 WF'T'ESI-10(A+-0)

CL84J	 4((W=O) r(W=1)) /O,B EGI1-1
C 1351	 aE ND

0136] NOCOO: ( t ' MO CONVERGENCE AFTER ' ) r ( t MNI ),t'	 ITERATIONS.'

[1137]	 ( t' THE L ' EV IATIO M AT THIS STAGE. IS

C188]	 'DO YOU WANT TO DO MORE ITERATIONS OF: CHANGE YOUR QALUE'

01891	 ''OF MAXIMUM VEVIATION?'

01901	 Wl -iESN O (A4-rj)

C1913	 -4((W=0)r(W=1))/O ► G05
C1923	 acONT

C193J END:'
C1943
01951

C

7CONTINGENCY [ q ]p
q CONTINGENCY

C1] 'ENTER OBSERVED CELL FF:EOUEMCIE5 BY I-+:OWS'

C23	 Ohio
C33 L1:000, q
0 41	 oL1x t ' r ' _(L7, q F' M OR E OBSER VED FREOUENCIES rO ENTER?' ) 011

C51	 'ENTER NUMBER OF ROWS AND COLUMOS. RESPECTIVELY'

161	 DFt- x/ (SHAF ' EF q )-1
[7]	 ROWTOTE-+/MATE-SHAFEFO

183	 Nh+/ COLTOri-+-/MAT
C91	 E',F'E-F:OWTOT, . xCOL'r OT-N

[10]	 C "ISaUAP'EE-+/, ( (MAT-E,',P )*2)-EXR

C11]	 'rOe SEF : VEU FREOUEMCIES APE:

C 123 MA r
[ 113	 ' E::F'ECTEI' FRE3UE.NC I F_ = AFB E:
1141 E X P

1151	 OY'CONTINGENCY CHI--SQUARE WITH ')r(tL'F1 ( t ' DF IS: '),tCHISRUARE
7

i^F
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TWOWAY [j]]0
,7 .Co TWOWA •Y	 C;K;M;F:;S.,SIDE;T ;TAE ;r OP; v;V

CI I	 TOF'i-q, () fo+- l EllTEF: "roF • HEAr'I.HG'
C2]	 SIDE QfOr[1 f ' Ei•!TEF: SIDE HEAI'IA!G'

C31	 T+-L' C2]+OxS+-t'C1]+OxR+-r'C31+Oxc+-r'[4]
143	 TraE« (S,T)FOxM+-i
C5]	 T1:Kf1
L"51	 V+.('rC;F 7= M /1590
C7] T"TABCM;K]F+/YCV C 

[O]	 iT2X t r .i K+—K+1

c91	 .:T1X'IS>M+.(4*1

C101
C11] ,TOP

C12]
0133	 A Ff TV F 	 ',(9xT)F'110
C14] TV FMTtT

1153	 (A)P''
L161 SIDE
C17] TVF.$yTV

C1°]	 K+-1

[19] T 3:'	 t'
1203	 (-r	 )f(1K)f(t'	 t')fTT`! FMT TAKEK;]

C21]	 iT3xlS)KFK+1

C223	 (A)F'_'
C3131	 0+-04-0E-'
12.41	 1'	 FOF: THIS TABLE. TOTAL RESPONSES ARE:	 ),1+/,TAB

v

,7YESNO C[]]7
7 W+- T ESNO A

C1]	 At-4FAf'
C2 	 y((n /A=' STOP '),(:,/A=''YES ').(.,/A_Ir•!o 	 )i/Gl G'2 G3
C31	 'TYF•E 'YES, NO, OR STOF FLEASE"'

C4] A-4f (A+-0
C5] -i2
C61	 G1:W+-0
C7]	 •+0

C23	 G2: W+-1
C9]	 -00

1103

!p
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7 rl.IFiEEWA'i [C)],7

17 W 'THF:EEWAY N

C11	 DEF'THE-Btofoto 4.- 'E?-ITEF: DEPTH HEADING-
['I ]	 F:i7w*-$T[j,OT[]+t'EtITEF: ROW HEADING'
[37	 t_OLUMN+.[], OTof ' Em ,rEF: COLUMN HEADING'

141	 I'*-wC1]+0xF: fw[2]+0xcfwC31+0x=rwC4]+0xTf-WC	 +0xU+.w1.
L1]	 TAP+- (D,F:fc)PDXIf1+OxA+•ITF::
C6] T1:Ej-1? Frf':C(-,Ci57=I)/ IA.]+0X-'fl
C7] T ":-f 'T C( T CD T ] =J ) /t P ]+OXKF1
[a]	 T3:TAE[.I;J;K]f+/•-[:U]_K

193	 +T3Xtc)K4-K+1

C10] -*Tnx F:iJfJ+1

C11] 4r1xlD>I4-1 +1

C1^I	 [l+.oi-
^	 [ 131	 ' , CLLUM?-f

E141
C1^]	 Ef- FTVf'	 ' r ( 9 XC,)f 11n

E16]	 TV FMTiC+OXIE-1

C17 ]	 (E)f''_'
[18]	 I'EF'TH,F:OW
L19]	 tE)F'_'
[ 10] TVE-18+TV
[: ,7 1] r4 J+-
L22)] T om:'	 I'
123]	 (1' 111	 111	 1' FMT(I,J)) f 4TV FMT TALCI:Jy.]

[24] 4T5xlP)JfJ+1

i	 C253	 4 T 4 x i D .L Ifl+l

021 6]	 (E:)f' _'
L271	 0-0*-Of' '

1	 [`^]

	

FOR rHIS TAPLE, TOTAL FESP f"DOSES AF:E;	 ),*•+/,TALI
7



50

App endix V.

A Quantitative Method to Test for Similarity

between Photo Interpreters

Russell G. Congalton, Research Assistant
and

Roy A. Mead, Assistant Professor
School of Forestry and Wildlife Resources

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
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New Jersey and received his B.S.

He is presently a graduate research
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his M.S. in Remote Sensing at Colorado

Remote Sensing at the University of

Abstract

A method has been developed to quantitatively test the degree

of similarity between photo interpreters. This method involves giving

each photo interpreter the same set of photos to interpret. An error

matrix is then,geners.ted for each interpreter by comparing his interpre-

tation to the actual ground cover. This error matrix is then analyzed

using a computer program called KAPPA. This program uses discrete multi-

variate analysis techniques to determine if one error matrix (i.e., photo
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interpreter) is significantly different from another. The program

can be altered to test for similarity at different confidence levels.

Not only does this technique allow one to compare two separate in-

terpreters, but it also allows one to test whether an individual photo

interpreter is consistent through time.

Introduction

Photo interpretation is the art and science of identifying

objects and deducing their significance on aerial photos. Good, con-

sistent photo interpretation depends upon the experience and skill of

the individual who delineates the boundaries between vegetation/land

cover types over the landscape. The judgment involved is generally

qualitative in nature, and therefore difficult to evaluate or compare

with interpretations made by others. Usually the interpreter has

intuitive feelings about how well he is doing, but is unable to support

these feelings with any specific tests. This paper suggests a way of

quantifying photo interpretation results and gives a statistical method

for comparing these results.

The procedure proposed in this paper can test for the degree of

similarity between interpreters, or test the consistency of the same

inter preter over time. Testing to see if interpreters are similar is

useful when more than one interpreter is to work on a project. If it can

'De determined that the delineations made by all interpreters are not

4



5 

significantly different, then the project will yield uniform results

for all interpreters. also, it would be useful to test the same

interpreter over a period of time to check for changes in his inter-

pretation. It may also be important to determine if varying types of

photography (film/filter combinations), or seasons of photography result

in significantly different delineations. By placing a grid over each
i

delineation, the individual cells are assigned to the land cover/vegetation

type which represents the majority of the cell. Each cell is then com-

pared one-by-one with the correspondin g cell (i.e., in the same location)

from another delineation. If one of the delineations is assumed to be

correct (reference data), then comparison of the two sets of spatially

defined cells yields a measure of "photointerpretatior. accuracy". This

is usually expressed in the form of an error matrix.

Procedure

An error matrix is a square array of numbers set out in rows and

columns which expresses the number of cells assigned by the photo interpreter

to a particular land cover type relative to the actual land cover (reference

data). The columns re p resent the reference data and the rows indicate

the photo interpreter assigned land cover type (Figure 1).

Reference Data

A	 B	 C

Photo	
A	

i
Interpret-
tation	

B

C

Figure 1. Error matrix format for three land cover types.
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The numbers in the error matrix are tallies compiled by com-

paring the photo interpretation with the actual cover type (reference

data) on a cell by cell basis. All correct classifications are

located on the major diagonal of the error matrix{.

The specific method used to generate an error matrix is dependent

on what information is needed. If the degree of similarity between

two or more photo interpreters is to be determined, each interpreter

is given the same aerial photographs to interpret. An error matrix

is then tabulated for each interpreter by comparing his interpretation

with a reference data set (correct delineation). If the test involves

determining the consistency over time for a single interpreter, then a

representative part of a selected stereo pair is interpreted at the

beginning of a project. At some later date the remainder of the photos

are interpreted and then the two error matrices (Time A and Time B)

are compared. Finally, if it is desired to measure the accuracy of

delineations made on different types of photography, a separate inter-

pretation is performed on the same area for each set of photos by each

interpreter and an error matrix is generated.

Once the error matrices are generated, a discrete multivariate

analysis procedure (Bishop et al., 1975) is used to test the degree of

similarity between the error matrices. This test is based on a maximum

likelihood estimate of the multinomial distribution (Equation 1).
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r	 r

K = 1E1X11	
lE l (X1+ * Y+i)	

C1)
r

N2 - E (X i+ 
t X+i)

i=1 .0

where:

K = 4 of rows in matrix	 'j

X.. = # of obs in row i and col. i
ii

Xi+ = marginal total of row i

X+i = marginal total of col. i

N = total # of observations

This equation yields a value KHAT which is a measure of the actual

agreement minus the chance agreement. A confidence interval at a given

a-level is then placed around the value of KHAT calculated for each

error matrix. If the confidence interval for one error matrix overlaps

the confidence interval for another error matrix, the two matrices are

said to be not significantly different at that a-level. However, if no

overlap of the KHAT confidence intervals occurs, then the matrices are

said to be significantly different at that a-level.

This entire comparison process can be performed using a FORTRAN

computer program called KAPPA. Given the error matrices to be analyzed,

the program calculates a KHAT value and a confidence interval for each

error matrix. The program then prints out which error matrices are

significantly different and which are not.

^'	 J
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The data used in this study were taken from Lauer et al.

(1970). Five photo interpreters interpreted the same aerial photo-

.	 graphs of Yosemite Valley, California, and their individual error

matrices were generated. Also, five film and filter combinations

were used with a single interpreter, and error matrices were generated.

Results and Discussion

All five of the interpreters tested on the photos from Yosemite

Valley produced significantly different delineations (Table 1). The

confidence interval was calculated at the 95% level.

Table 1. Summary table for five interpreters of Yosemite Valley
photos.

Interpreter	 Lower Limit	 KHAT	 Upper Limit

1	 0.31167	 0.31991	 0.32815

2	 0.28623	 0.29420	 0.30216

3	 0.36677	 0.37485	 0.38293

4	 0.23115	 0.24156	 0.25197

5	 0.20878	 0.21925	 0.22972

The results of the five different film and filter combinations

are presented in Table 2. These results were also calculated at the

95% confidence level.
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Table 2.	 Summary table for the Live film and filter combinations.

Film/filter Lower Limit KF'.AT Upper Limit

IR-301/W25 0.31167 0.31991 0.32815

Ire /W89B 0.29615 0.30436 0.31258

Ek^_a Aero IR 0.11318 0.12071 0.12825

Enhancement % 0.25427 0.26163 0.26898

Enhancement Y 0.36704 0.37438 0.38173

As can be seen from Table 2, the interval for IR-301/W25 over-

laps with the interval for IR/W89B. Therefore,	 these two interpre-

tations are not significantly different. 	 All the other interpretations

are significantly different.

S umma r-7

The examples given in this paper indicate how photo interpre-

tation results can be quantified using error matrices. These error

matrices can then be compared using a discrete multivariate analysis

procedure and conclusions made.
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ABSTRACT

A working conference was held in Sioux Falls, South Dakota November 12,

13, and 14, 1980 dealing with Landsat Classification Accuracy Assessment

Procedures. Thirteea formal presentations were made on three general topics:

(1) sa=pling procedures, (2) statistical analysis techniques, and (3) examples

of projects which included accuracy assessment and the associated costs,

logistical problems and value of the accuracy data to the remote sensing

specialist and the resource manager. Nearly twenty conference attendees

participated in two discussion session addressing various issues associated

with accuracy assessment. This paper presents an account of the accomplish-

ments of the conference.
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INTRODUCTION

In the years since Landsat imagery first became available, an untold

number of Landsat scenes have been digitally analyzed to classify land cover.

These classifications are not without error, and have been subject to closer

•	 scrutiny by critics and potential users than similar products developed by

more traditional methods. A few potential users of Laadsat data were discouraged

by the unfulfilled expectations spirited by the results of early investiga-

tions. This has recently led researchers and government agencies to proceed

cautiously with technology transfer. Thus, scientists have been keenly aware

of the need to assess the accuracy of Landsat classifications before dis-

tributing the products to users.

Topographic mapping procedures include routine evaluations for compliance

with well defined accuracy standards and the accuracy attainable under specific

conditions (terrain characteristics and mapping equipment used) are well

known. This capability is the result of many directed research efforts.

However, techniques for assessing the accuracy of Landsat classifications have

developed in an ad hoc manner. Many such methods are not statistically sound

and can yield biased estimates of accuracy.

.-or example, researchers used the limited available ground information

(i.e., maps, photo interpretations or less often actual visits to the field)

collected for development of training statistics to estimate classification

accuracy. This can result in over optimistic estimates of classification

performance, particularly when the training data does not adequately describe

the scene variability. Windshield su r=eys, in which a few easily accessible

areas are visited on the ground, are another biased approach to accuracy

assessment. In addition, biases can also be introduced by using a different

Milk-
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classification framework for accuracy assessment than that used in developing

the digital classification.

The trend, more recently, has been to sample the classifications and measure

the degree of agreement with a set of spatially defined reference data (i.e.,

ground truth). Analysis of the resulting accuracy data can guide researchers

in scene selection (season, etc.), and determine the most appropriate methods

of classification for particular applications.

'_'he importance of assessing classification accuracy, the lack of any

standard procedures, and the limited number of reports in technically reviewed

journals, justified the conference discussed in this paper. Only a relatively

small number of researchers have worked in the subject area to any great

extent. Therefore, attendance at the conference was limited and by invitation

only. The specific objectives of the conference were:

1. To determine the state-of-the-art for accuracy assessment procedures.

2. To provide a forum for exchange of ideas concerning accuracy assess-

ment procedures.

3. To identify research needs and recommend the approach that should

be taken to improve accuracy assessment procedures.

CONF'E NCE TMES

A comprehensive proceedings of the formal conference presentations is

planned. However, it is worthwhile to identify and summarize the major themes

that developed from the conference in general.

Accuracy is a measure of the amount of agreement between two data sets.

Typically this is a themati.c map in question and a reference data set often

thought of as "ground truth." However, when this procedure is generalized

other applications become apparent, including change detection analysis for

Pr
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the monitoring of particular resources. Furthermore, sequential appraisal of

a classifcation can result in better end results.

There are several types of accuracy and it is important to identify which

is being utilized. Two major categories of accuracy are site specific and non

site specific accuracy. 'ion site specific accuracy compares tabular summarys

of the proportions of the area mapped into each of the categories. Site specific

accuracy utilizes the spatial nature of the data. That is, two spatially

defined data sets are registered and compared for the amount of agreement.

This can be a polygon, grid cell, or point comparison. In this Case, the

difference between the two data sets results in a spatially defined binary

data set. This represents the population we are sam p ling for the parameters

iu question.

An error matrix or contingency analysis approach to accuracy assessment

is still another method of comparison of the two data sets. This requires a

site specific (spatially defined) approach.

Furthermore, many factors affect the validity of an accuracy assessment.

The quantity and quality of ground truth depend upon the methods used for

sample size determination and data acqusition. In light of this, it becomes

apparent that the term "ground truth" is ill defined. What is "ground truth"

with regard to parameters such as percent of ground cover? Can this ever

really be measured? For many cover types, this parameter can be estimated

more accurately on aerial photographs than by ground procedures.

Finally, one should not lose track of the difference between the use-

fulness of a specific product and its estimated accuracy. A numerical report

of product accuracy may say nothing of how much use the product gets or how

well it compares with what was previously available. A quantitative accuracy

assessment results in a numerical summary which may or may not represent the

^n4



usefulness of the product. In many instances, a classification of low or

intermediate accuracy is a welcome and useful product.

:he desired information as well as the nature of the scene which was

classified, determine which is the most appropriate means of assessing accuracy.

Certainly, different landscapes may need to be sampled differently for best

results. Therefore, studies should be done to look at the sensitivity of

accuracy estimates when different sampling procedures are used. In comparing

and assessing sampling procedures for accuracy assessment, not only is statistical

variability to be considered, but also the spatial diversity of the data.

:urthermore, all of these considerations interact to determine the most appropriate

sampling and estimation procedure to use. Much work remains to be done,

utilizing designed experiments with specific hypotheses, to identify the

relative reliability of various sampling procedures.

?assessing and reporting, by some standard means, the accuracy of a thematic

classification will become more vital as these products become a part of

geographic information systems. This will be necessary to insure high quality

output products and well informed management decisions.

The use of training data for accuracy assessment results in a somewhat

biased but possible useful estimate of overall accuracy. The nature of the

bias is to overestimate accuracy. The amount of bias depends upon how well

the training data represent the variability present in the scene. In some

instances, such an approach will be adequate. However, for close scrutiny and

for within class estimates of accuracy, and independent accuracy assessment is

warranted. An approach to minimizing the cost of an independent accuracy

assessment is to collect accuracy assessment data at the time the training

•	 data is collected. This data should be earmarked for later use and not used in

ithe training process.

igi
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Although this conference did much to establish communication among research-

ers utilizing accuracy assessment procedures, much work remains to be done in

slanmarizing what procedures are most commonly utilized. In addition, a bibliography

of the literature and available computer programs should be compiled and

published. A survey of researchers in the field will help to define how well

they can map various cover types. This will assist in developing a set of

mapping standards. Although accuracy requirements may vary among cover types,

acceptable map accuracy standards are needed to match intended uses. Standards

such as "second order at level II" can help in minimizing subjective evaluations

and finally, perhaps many classifications are more accurate than we think due

to geometry problems and edge pixels. It becomes apparent that classification

error and mapping error are not one in the same. Much work needs to be done

to discriminate between the two sources of error.
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`:any issues were discussed and debated by the participants. Topics for

further research were identified and major themes summarized in this paper.

The participants recommended that a working group be established to write

a "manual" or "guide book" on accuracy assessment procedures. Possibly this

group could be formed as an ad hoc committee within the American Society of

Photogrammetry and seek funding to prepare the document described above.

Plans are now being made to do this.

The conference succeeded in accomplishing the three objectives stated

earlier. A comp rehensive proceedings is planned which will represent state-of-

the-art accuracy assessment procedures.
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Appendix VIII.

A CO*TUTERIZED SPATIAL ANALYSIS SYSTEM

FOR ASSESSING WILDLIFE H_BITAT

FROM VEGETATION M.A2 S *

• Roy A. `lead, Terry L. Sharik,

Stephen P. Prisley, and Joel T. Heinen

Department of Forestry

Virginia Polytechnic Institute

and State University

Blacksburg, VA 24061

ABSTRACT

Ve,ecation and land cover patterns affect the quality of habitat available

for wildlife. Given the degree of interspersion of cover types and relative

value of each edge type and the importance of spatial diversity, an index; of

habitat spatial diversity can be computed for each parcel of land (of

any desired size) relative to each wildlife s p ecies or group of species.

':his is accomplished by defining a grid which is either placed on a land

cover map or on an aerial photograph. Each cell is then coded on the basis

of (its predominant) cover type. A computer pro gram subseq uently analyzes

the arrangement of these coded cells and produces maps of (a) interspersion,

* Presented at 47th Annual '-'_eeting American Societ-j, Photogrammetr-,-, '.;ashing*_on,

D.C., Februar? 23-26, 1981.
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(b) juxtoposition, and (c) spatial diversity. Separate :multicolor maps

can be made for any wildlife habitat of interest using a digital film

recorder. These map overlays can be used by the resource manager to

compare wildlife habitat quality and potential with :naps for forest, range,

watershed and recreation potential.

INTRODUCTION

There is a tremendous need to develop quantitative methods to assess

wildlife habitat. This was specifically mandated by the Resources Planning

Act, as well as other legislation. Wildlife habitat must be considered in

all management plans together with timber, range, recreation and watershed.

An ile timber inventories have been conducted for many years, techniques for

quantifying the wildlife habitat still need to be developed.

The technology of remote sensing has provided the means for mapping land

ccver/vegetation over very large areas for wildlife habitat management

(Pengelly, 1978). However, the maps themselves only partially fulfill the

inventory data needed by biologists who must manage for wildlife. The

maps must be analyzed and interpreted to enhance the various characteristics

of the landscape which have a bearing on management decisions. In short, 	
• -A

the standard land cover map is a source of inormmation that may be helpful

in making management decisions.

This paper suggests a means to analyze and interpret maps of land cover

to produce spatially defined data that will be valuable infor^ation for

managing wildlife habitat. Emphasis is on the technique and not on the

controversial issue of defining habitat QUALITY. It must be understood

that the landsca pe characteristics important in habitat eval::ation var-:
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according to region ar.d the specific wildlife species of interest. The

various weighting factors discussed in this paper must be determined by

wildlife managers familiar with local conditions or from agency handbooks

which give the habitat requirements and preferences for many species.

The specific objective of this stud y was to develop a computerised

system for measuring the spatial diversity component of wildlife habitat_

from vegetation maps.

Studv Area and Innut Data

The area used as an examp le for testing the wildlife habitat analysis

techni ques described in this paper was the Great Dismal Swamp . The area

is managed by tITe U. S. Fish and Wildlife Service as a game refuge and

includes approximately 84,900 hectares. This wetland was thoroughly

described by Garrett and Carter (1977). The area was ideal for evaluating

the proposed habitat analysis techniques for three reasons. First,

the Dismal Swamp "contains a remarkable diversity of vegetative communities"

(Garrett and Carter, 19711). Second, the area had recently been mapped

(Gammon and Carter, 1979). Third, the local resource managers were

available for assistance in evaluating the validity/usefulness of the

finai habitat quality maps that were produced.

The vegetation maps produced by Gammon and Carter (1979) contained "43

se parate cano py designations and 243 specific vegetative communities...".

.7



This map was overlaid with a square grid system oriented in a North-South

manner. Each cell contained 22 hectares and formed a matrix of 93 rows

and 42 columns. Each cell was given a community desi gnation according to

the cover type which occupied the most area within that cell. This informa-

tion was stored on discs for analysis b y the computer.

Given the above data the following procedure was used to assess wildlife

habitat diversity for the Great Dismal Swamp. Since the primary thrust

of this paper is to present a proposed technique, all additional inputs

(e.;., juxtaposition weighting factors and restrictive factors) are purely

hypothetical, as is the selected wildlife species

HABITAT ASSESSMONT PROCEDURE

There are four components that form the package of techniques used for

assessing wildlife habitat:

1. Input data

2. Measurement of interspersion

3. Measurement of juxtaposition

4. Recognition of exclusion factors

Basically, the four components interact in the following way. Suitable

lard cover/vegetation maps are either obtained from existing sources or

compiled. The necessary vegetation categories, map scales and minimum

mapp ing unit size may vary from region to region and with the species for

which potential h?bicat is being assessed. the habitat criteria for the

species of interest must be Known (or estimated). Such criteeria include

t~e relati-:e desirability (i.2., the weighting actors) of various

a	 -
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vegetation/land cover edges and the animals' preference for various

vegetation distribution patterns. Classification of vegetation groups is

sometimes r;

in terms of

timber type

be adequate

restrictive

MLST NOT be

ether arbitrary (Pielou, 1977), and must_ be made biologically

the requirements of the organiser involved. For example, the

classification system used by forest industries may not always

for use in wildlife habitat inventories. Finally, specific

.actors or resources (e.g., water) that either MUST or

p resent for suitable habitat need to be ?mown.

A spatial diversity "SD" index value is computed for each parcel of land

(cell) (of any desired size) relative to each wildlife species or groups

of species. The index is a function of "IS," interspersion, "JY,"

juxtaposition, and anv number of restrictive factors.

SD I	 (aA 8 ) + (aa 12 )	 U :t	 I^	 X	 L

A	 A	 A

I	 ^

where:

A - indicates a specific wildlife species or group of species (3,

C, J, etc. for others).

4 — indicates the relative importance of intersuersion to juxtaposition

for wildlife species A, 3, or C, etc.

a - indicatesindicates t-e relative importance of juxtaposition to interspersion

for wildlife species A, 3, or C, etc.
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:Tote that o and a can range between 0 and +1 but must sum to 1.00. A low

value would indicate a very undesirable or unimportant characteristic and

+1 as very desirable or important characteristic. Scaling will ::ave to

be worked out and a sensitivity analysis performed.

ll - indicates a restrictive factor that is essential for wildlife species

A

group "A". An example of a restrictive factor might be the presence of

water w i thin one mile. If this is present (i.e., satisfying a necessity),

then^'^	 :is given a value of 1 and has no impact on the value of IS

However, if there is no grater (an absolute necessity), then 7 is assigned

A

a value of "0" and automatically makes ISA = 0.	 In some cases the

Lestrictive factors mr be set at intermediate values indicating undesirable

conditions but not total exclusion. Values f 	 isA referring to "high,"

it 	 and "low" have to be determined (ca' ,orized).

Vecessary land Cover Data

It is assumed that a suitable vegetation map is available which includes the

necessary categories of overstory and/or understory communities indicated.

This =us: be determined for each :wildlife species for which habitat is to

be assessed.

A. Small Area, Manual Analysis. A grid drawn on clear plastic material

is 7 Placed directly over the vegetation map. The predominant vegetation

category in each cell of the grid is determined, and coded directly on the

clear plastic using a grease pencil. A ::{ey will ':De needed to relate the

PF
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letters or symbols used to the vegetation categories.

B. Lar;e Area, Comoutarized Anal ysis. A vegetation map in polygon

form is aigitized (or manually coded) at any desired cell size. Individual

cells are categorized and a file created to store the resulting data.

Measurement of Interspersion

A. Small Area, Manual Anal ysis. The ve getation category predominant

in each individual cell on the clear plastic grid is compared to each of

t o immediately adjacent cells. The number of adjacent cells of anotler

vegetation type are counted and that number recorded on t^e plastic sheet

in the lower right hand corner.

Consider the following two examples:

-:camp le I	 Exams l e 11

C

3	 A	 A
	

3	 C	 B

3	 A3 A
	

A	 A7 B

3	 A	 A
	

3	 C	 C

`	 IS - 3	 IS = -

The center cell in example 1 has 3 adjacent cells with dissimilar predominant

vegetation types. Therefore, the value for interspersion is 3. In the

second example, the IS value is 7. It is clear that the land cover

patterns are much more intermixed in example II. Those cells with IS

values of 7 or 3 could be printed Light gray, values of 3-6, inte~ediace

gray, and 0-2 as dark gray. Vote that eac n.. cell in t^e entire matrix



becomes the centroid cell for comparison with adjacent cells. Thus, a map

of interspersion is produced from all of the "IS" values computed by moving

the 3 Y 3 matrix throughout the data set.

3. Large Area, Computerized Analysis. A computer could easily be

programmed to compare adjacent cells and create a file with the interspersion

values for each cell. Any range of IS values could be assigned a specific

color or gray tone, and thus an interspersion map could be made.

Measure of Juxtaposition

Wildlife biologists 'know that certain types of vegetation edges are very

important for specific wildlife species. Abundance of these species

may be considered a consequence of edges where types of food and cover come

together (Leopold, 1936). According to Odum (1971), the edge effect may

be defined as the tendency for an increase in variety and density of

organisms at community junctions. This effect is most marked in animals

with relatively low mobility (Leopold, 1936) and high requirements in

terms of diversity of vegetative communities (Leo pold, 1936). Various

edge combinations can 'oe assigned a relative weighting factor for each group

of wildlife, e.g.,

A/B	 .60

A/C	 .30

B/C	 .10

In this case the relative value of an A/B edge is twice that of an A/C

edge for a ?articiular wildlife species. Therefore, a measure of juxta-

pcsition can be easily computed b y summing the various quantit-:-quality

A



Edge Quantity Quality Total

Tvoe

A/B 4* .60 2.40

A/C 0 .30 0.00

3/C 0 .10 0.00

•

B	 A	 A

P3'1

 A A

 :^	 A

Pir'
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products for all edges relative to each centroid cell in the data matrix.

Considering example matrices I and II again:

Examole I

JY Index °	 2.40

Example II

Edge	 Quantity	 Quality	 Total
B 	 C	 3

i•»e
A	 A	 3	

--

A/3	 5	 .60	 3.00
3 ^ C	 C

A/C	 5*	 .30	 1.50

3/C	 0	 .10	 0.00

JY Index -	 4.50

The JY value for example I is 2.40 and 4.30 in example II which has more

edges which are of imporr.ance to the wildlife species bider consideration.

* :iota that diagonal edges only count 1 while either ver_ical or horizontal

edges count as 2.

W.PaP F



RESULTS An DISCUSSION

A portion of the original coded vegetation map and the resulting maps for

interspersion, juxtaposition and spatial diversity are shown in Figures

1, 2, 3, and 4. The area shown includes 20 rows and 28 columns of the coded

input data. The numbers iniFigure 1 correspond to coefficients which -.,ere

arbitrarily assigned to the various vegetation categories map ped by

Gammon and Carter (1979)..

The dark, intermediate gray and light areas in Figure 2 represent low,

medium and high interspersion, respectively. These correspond to the

following ranges for the "IS" calculation, respectively:

	

0 to	 .3

	

>.3 to	 .6

>.6 to 1.0

the designations of dark, intermediate gray, and light in Figure 3 s;^ow

juxtaposition and Correspond to these ranges for the "JN calculation,

respectively:

0 to .3

	

>.3 to	 .6 .

>.6 to 1.0

Finally, the spatial diversity index "SD" -was categorized in an identical

way. T'he resulting map is shown in Figure 4.

RLV..	 ... _ ._.	
a	 ..	

_ __...._
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SUM MARY AND CONCLUSIONS

A wildlife habitat diversity map was produced for a hypothetical wildlife

species in the Dismal Swamp utilizing a vegetation cover map. This method

can be performed very quickly by computer over large areas, given the

necessary input data. Maps of interspersion and juxtaposition can be

produced as well by assigning p rinter symbols to arbitrarily designated

categories for each of the three parameters (interspersion, juxtaposition

and the wildlife habitat diversity index). Such maps are repeatable and

would be consistent over large areas. The most crucial part of the

operation is the assignment of the weighting factors from "known" ecological

information about each wildlife species. The computerized methodology

may have tremendous potential when implemented with remotely sensed digital

data for land/cover vegetation.

Further work is needed to determine the sensitivity of the output maps to

changes in the weighting factors for various species of wildlife. The

relation between animal home range and suitable cell size must also be

examined. More efficient methods should be used to digitize the land

cover/vegetation maps. Finally, the naps must be more thoroughly evaluated

by field resource managers and wildlife habitat specialists.

The method pro posed here measures only the spatial diversity of the landscape.

Such a measure, and the maps which result, could be incorporated into a

larger, more comprehensive system for assessing :wildlife habitat quality.
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Figure 2. Interspersion map for the sane area shown in Figure 1. "A"

is Low, ("IS" is >.3 to .6), "B" is inte=ediate ("SD" is 0 to

.3), and "C" is high ("SD" is >.6 to 1.0) spatial diversity.
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low C'JX" is 0 to .3), "B" is intermediate ("TX" is >.3 to .6)

and "C" is high ("JX" is >.6 to 1.0) juxtaposition.
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Figure 4. Spatial diversity map for the same area saown in Figure 1.

is low quality ("I" is 0 to .3), "3" is inte:-redia*_e

("I" is > .3 to .0) and " C" is ni?h quality ("I" is > .G to 1. 0).
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