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ABSTRACT

This paper provides an end-to-end analysis comparing the effi-

ciency of various deep space communication' systems which are required

to transmit both imaging and a typically error sensitive class of data

called general science and engineering (gse) over the classic Gaussian

channel. The approach jointly treats the imaging and gse transmission

problems, allowing comparisons of systems which include various channel

coding and data compression alternatives. Actual system comparisons

include an "Advanced Imaging Communication System" (AICS) which

exhibits the rather significant advantages of sophisticated data com-

pression coupled with powerful yet practical channel coding. For exam-

ple, under certain conditions the improved AICS efficiency could pro-

vide as much as two orders of magnitude increase in imaging information

rate :compared to a single channel uncoded, uncompressed system while

maintaining the same gse data rate in both systems. Additional details

describing AICS compression and coding concepts as well as current

efforts to apply them are provided in support of the system analysis.
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END-TO-END IMAGING INFORMATION

RATE ADVANTAGES OF VARIOUS ALTERNATIVE

COMMUNICATION SYSTEMS

I. INTRODUCTION

There have been substantial advances in the communication capability of deep

space missions since Mariner IV first sent data back from Mars at 8 1/3 bits/sec

in 1964. For example, the recent Voyager spacecraft were able to communicate

from Jupiter at 115 Kbits/sec, an improvement of over four orders-of-magnitude.

Most of this monumental gain was accomplished by improvements in the basic com-

ponents and parameters of the telecommunication system which improved the received

signal-to-noise ratio ( e . g . , increased antenna diameters, better pointing accuracy,

higher transmitter frequencies, e t c . ) . Processing and coding have, until quite re-

cently, played a relatively minor role. However, while these early improvements in

signal-to-noise ratio were clearly cost-effective, further increments have become

progressively more difficult and costly. Thus with the dramatic advances in solid

state technology, the joint advantages of information processing ( e .g . , data com-

pression) and channel coding entered an era of practical consequence.

This paper traces this evolution by providing an end-to-end analysis which

illustrates the sometimes huge performance difference that can exist between deep

space communication systems. As such the results have been a strong advocate for

both data compression and other processing as well as a specific channel coding

configuration now nearing NASA standardization. Specifically we provide a means

of comparing the efficiency of various communication systems which are required to

transmit both imaging and a typically error sensitive class of data called here

general science/engineering (gse) over a Gaussian channel ( the usual space channel ,

no bandwidth limitations) . This approach jointly treats the imaging and gse trans-

mission problems and allows practical comparisons of systems which include various

channel coding and data compression alternatives. Ut i l iz ing this technique, compari-

sons of five alternative communication systems are provided. These comparisons

illustrate that the capability to communicate imaging information of the most sophis-

ticated system is from 20 to 100 times that of the most basic system. Exhibiting

such distinct performance differences, these systems probably span the full range

of potential performance available today for communicating imaging and gse data over



the classic space channel. The relative performance of other systems not treated

here would fit within this range and can be obtained by simple derivations using the

same techniques or in many cases by parameter substitution.

The system comparisons and principal results of this paper are presented in

Section II. Additional background supporting the data compression and channel

coding assumptions are provided in Sections III and IV respectively. The remainder

of this section is primarily devoted to introducing the method and philosophy of

system comparison.

Error Rate Disparity

Clearly, a communication system which must transmit more than one form of

data must satisfy the minimum transmission error rate requirements of all the data.

Performance comparisons of various systems to accomplish this task must account

for these constraints. This is precisely the situation considered here. Generally

speaking, gse data can be classified as strictly error sensitive data although there

may be slight differences in the error vulnerability of various types. Imaging data

on the other hand may or may not be error sensitive depending on the method of

image representation. The effect of transmission errors on uncompressed grey

scale images tends to be significantly less than the effect of errors on compressed

images (or gse data) for many techniques, and almost universally for algorithms

employing adaptive processing and control. We will assume this "classic" error

vulnerability since we are interested in identifying the" maximum gains possible from

processing and compression. The direct consequence of this assumption is that

both gse and compressed imaging data require a much lower transmission error rate

(to avoid unacceptable damage) than does uncompressed imaging.

Systems Considered, Method of Comparison

The systems considered here represent an evolution of communication systems

developed for planetary missions. The first four systems represent steps in that

evolution (not chronological) based on the assumption that imaging data would be

uncompressed and that gse data would be either nonexistent or at least always a

small percentage of the total information rate. In that sense a comparison of sys-

tems 1-4 demonstrates distinct step-by-step improvements in efficiency. As noted



above part of the motivation of this paper is to display the relative efficiencies of

these systems to transmit both uncompressed imaging and gse data.'

Certainly there are variations to systems 1-4 and modifications which might

include various compression algorithms. It is a straightforward matter to present

comparisons of such systems by the approaches developed here. However, we elect

to demonstrate the potential advantages of data compression by providing compari-

sons with system 5. System 5, called an "Advanced Imaging Communication System"

(AICS) in Refs. 1 and 2, is the result of an end-to-end design aimed at transmitting

all forms of data efficiently. It includes both adaptive data compression and channel

coding which eliminates the data rate penalty associated with a requirement for low

transmission error rates. Comparisons with system 5 should indicate roughly the

maximum gains that are presently available from the use of data compression.

Method of comparison. Each of the first four systems-will be separately

viewed as "baseline systems." It is assumed in all cases that the parameters of each

system are selected so that the minimum error rate requirements for all data are

simultaneously satisfied. The gse data rate, r, will be fixed in all systems as a frac-

tion of the total data rate in the baseline so that with R denoting the image data

rate in the baseline

, _ r _ gse fraction of total . .
r + R data rate in baseline

o

Then, the imaging data rate of each alternative system, R , will be compared with

that available in the baseline so that

n _ Imaging rate advantage of
R system n: a function of f

D

many potential missions the performance of accurate navigation may require

"information" from specific star field images to be transmitted in addition to the

imaging and non-imaging science (gse) . At low overall data rates the communica-

tion of full uncompressed images for this purpose could make a noticeable impact

on the effective data rate available for science. However, it will be shown in a

later paper that it is reasonable to assume compression factors of 100:1 or more

for such "optical navigation" images, thus making their impact negligible and an

unnecessary concern in this paper.

3



This is summarized in Fig. 1. Note that an improvement in imaging data rate by p

in any system means roughly the ability to transmit (3 times as many images with

equivalent information content as those transmitted in the baseline.

Section II will introduce the five candidate system configurations and present

the comparative analysis described by (1) and (2) in graphical form. Supportive

information and background for image compression are provided in Section III and

for the channel coding options in Section IV.

rgse,

BASELINE
SYSTEM

•gse

gse

(SAME AS
r IN BASELINE)

Rn

SYSTEM
n

1 COMPARE IMAGING INFO _,

gse

RATE WITH BASELINE

^pr = f = GSE FRACTION OF TOTAL INFORMATION RATE IN BASELINE

^- = IMAGING RATE ADVANTAGE OF SYSTEM n: A FUNCTION OF f

Fig. 1. Method of System Comparisons.
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II. SYSTEM COMPARISONS

Each of the systems considered will be introduced while treating system 1 as a

baseline system (that is, the system to compare others to) . In all cases presented

here we will assume PSK modulation and ideal coherent receiver operation. The

necessary performance curves for the various channel options can be found for

convenience in Section IV where further information concerning non-ideal receiver

conditions is noted.

System Descriptions: System 1 as Baseline

System 1 is simply the familiar "uncoded channel" as diagrammed in Fig. 2.

r
gse

RR - a - r
Bl

UNCODED
CHANNEL

a

P = 10
e

-5

gse

Fig. 2. System 1, Uncoded Channel.

Assuming this is the baseline system, gse data rate is fixed at an average rate

of r bits/sec where r / a - f and a is the total available bit rate for the channel.

Then Rg-, = ot- r is the imaging information rate available in the baseline system 1.

Assuming we fix antenna size, transmitter power, etc. , a is determined solely

by the allowed bit error probability, P.. The error sensitive gse data confines this

choice to be low. For comparison purposes we will use P, =10 . The exact choice
-5

will have little impact on the end results and 10 has in practice been an acceptable

value. This operating point is obtained at a signal-to-noise ratio of roughly 9.7 dB.

r

A2l"

GO LAY

- 2r

2r

1 IMrODFD

CHANNEL

^h ** rv

p = io"3

., 9$e

~^" GOLAY *•

1

Fig. 3. System 2 (Uncoded/Golay) vs. Uncoded Baseline.
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As shown in Fig. 3, Golay block coding is applied to gse data before

transmission over the "inner" uncoded channel. The (24 ,12) Golay code assumed

is a slightly modified form of the familiar (23,12) code. Thus r parity bits are

required for each r information bits.

Because of the additional protection of gse data, the uncoded channel in this

system may be operated at higher error rates and hence higher transmission rates.

Specifically, transmission rate on the uncoded channel portion may be increased

provided that the net gse error rate is around 10 or less and uncompressed or

subsampled imaging is not substantially degraded. To meet this objective, bit error

rate requirements of imaging have historically been P, <. 5 x 10
-3

This gse-constrained operating point for the inner uncoded channel occurs in
-3 — -3

the range of 5 x 10 . We will assume a P, = 10 in the graphical examples. From
— -3

uncoded channel performance curves the P = 10 operating, point occurs at

roughly 6.8 dB . This satisfies the requirements for imaging noted above. Thus

the uncoded channel in system 2 may be operated at 2.9 dB above that in system 1

or at a rate which is A. ~1.95 times that in system 1. Operating points substan-

tially above this point would rapidly damage gse data. This leaves an imaging rate

of R
D

1o - 2r in system 2.

Note that for the channels over which imaging data passes A.. = I /A . , will

henceforth denote the rate improvement factor of system i over system j.

System 3, Convolutional/Viterbi. A block diagram of system 3 is shown in

Fig. 4. System 3 looks much like the baseline system except that all data is first

coded by a convolutional coder, and then decoded using Viterbi decoders. There
[41

are many variations that may fit different mission situations. For the purpose of

presenting graphical results here, we will assume the same principal code used on

gse

- r

CONVOLUTIONAL
CODING/VITERBI
DECODING

A31a

Pe = 10
-5

gse

Fig. 4. System 3 (Conv/Viterbi) vs. Uncoded Baseline.
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the Voyager missions to Jupiter and Saturn, a constraint K - 7, v - 2 code with 3

bits of receiver quantization. Graphs for other options can easily be obtained by

modifying input parameters. The various performance options for convolutional

codes were first elaborated on in Ref . 5 and should still serve as a valuable guide.

From the K = 1, v = 2 performance curves under ideal receiver operating con-

ditions (Section III) we see that a P, £ 10 can be achieved with a signal-to-noise

ratio which is 4.9 dB lower than an uncoded link. Thus data can be communicated

at A,, ~ 3.09 a bits/sec in system 3 while meeting the error rate requirements of

both imaging and gse data.

System 4, Voyager. A block diagram of system 4 appears in Fig. 5.

GO LAY
(INTERLEAVED)

2r

- 2r

CONVOLUTIONAL/
VITERBI

A4la

Pe = 5 x 10
-3

Fig. 5. System 4 (Conv/Viterbi-Golay) vs. Uncoded Baseline.

This system configuration is basically the Voyager communication system (also

called the Jupiter/Saturn communication system in Refs. 1 and 2). It looks much

like system 2, Uncoded/Gblay, except that the inner channel is the more powerful

convolutional/Viterbi and the Golay must be interleaved to be effective. [3]

-3We will assume that the inner channel can be operated at up to a P, = 5 x 10

while maintaining an adequately low P, on gse data. Again it is unimportant to

worry about precise operating points. The main differences between systems are

much more significant. Using the K = 7, v = 2 performance curves we have

A., a ~ 5.5a bits/sec as the maximum transmission rate of the convolutional channel.

This leaves A,,** - 2r bits/sec for imaging.

System 5, AICS. The last system considered here has been called the

"Advanced Imaging Communication System" (AICS) for which a full description as

originally conceived can be found in Ref. 2. Further background on the elements



of AICS and for the assumptions used in the system comparisons of this section is

provided in Sections III and IV. A block diagram is shown in Fig. 6.

_ COMPRESS
56 * BY

f
IMAGE
COMPF

r(A51<* -r/f )
k-

IESSH

RM9

r/f

r

1
l_

INTERLEAVED

REED-
SOLOMON
CODER
(RS)

— — — — •

•>

A

CONV/
VITERBI
CHANNEL

51*

— —

RS-1

1

1

(^

1

1
_i

+>

+

DEC

RM2"1

gse

Fig. 6. System 5 (AICS) vs. Uncoded Baseline.

In this system all data pass through an interleaved Reed-Solomon coder be-

fore entering the same convolutional/Viterbi channel just discussed. The net result

is that virtually error-free data can be communicated at rates up to very nearly

that at which the convolutional/Viterbi channel alone obtains a 5 x 10 error rate

That is, A51 * A41.

With this kind of channel, there is no problem with communicating error

sensitive data. In Fig. 6, we have assumed that gse data is compressed by some

factor £, without any loss in true information. This appears quite feasible, and in

any event L, should be a system parameter even if we set it equal to 1. In the

graphic results the case of L, - 1 or t, = 2 will be included. Observe in Fig. 6 that

with the actual gse data rate again fixed at r bits/sec there now remain A^a - r/£

bits/sec in system 5 to be applied to imaging.

Although any image compression algorithm can fit within the structure of

Fig. 6 we will principally assume the capability of RM2 which was developed

specifically to provide the scientific user and mission designer with extensive

flexibility to maximize information return. These characteristics are more fully

treated in Section III. For the moment we require only the net gain which can be

associated with representing images by data compression.



RM2 was evaluated for planetary flyby missions by imaging scientists who

concluded that it offered an information rate advantage of 4-to-6 times compared to

alternatives of no compression or subsample algorithms. These conclusions were

substantiated in a similar more recent study for the NASA End-to-End Data System

(NEEDS) . ' A more sophisticated use of RM2 flexibility and/or a sensor with

registered multispectral bands might realistically raise the maximum advantage to

10:1 for some mission situations. To account for these possibilities we will assume

a range of RM2 or other image data compression information rate advantages, de-

noted by Y, of 4:1 to 10:1.

In addition to the above numbered assumed range we will also include two

special cases now in the process of implementation. The first is a planned repro-

gramming of the current Voyager II spacecraft flight data system to incorporate a

near noiseless coding of image data for a January 1986 encounter of Uranus. Based

on current expectations, a gain of Y = 3 will be assumed for the Voyager image

compression. The full structure of Fig. 6 will be made possible in this ap-

plication by the existence of an as yet unused hardware Reed-Solomon encoder.

The latter was incorporated just prior to launch as a backup for a potential X-band

failure mode.

A second similar application of near noiseless coding has been incorporated
r 141

into the Galileo (1985 launch) imaging system for which y has been fixed at 2 .5 .

We will assume the ful l structure of Fig. 6 although actually the Reed-Solomon cod-

ing wil l , at this time, be applied only to imaging due to its late consideration in

mission planning. Observe that the Galileo compressor, the Voyager compressor

and RM2 are related by the use of Universal Noiseless Coding techniques described

in Refs . 9 - 13.

Referring back to the diagram in Fig. 6 we see that

Y ( A 5 1 « - r/;) (3)

is the effective imaging data rate for AICS, system 5.

Derivation of Imaging Rate Advantages

For each system just described we wish to obtain a more useful form of the

ratio R /RR given in ( 2 ) . This requires no more than basic algebra. We will
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illustrate the procedure here for AICS only. Equations for all systems, including

different baseline choices, are given in Table 1.

From Figs. 1 and 2 we have

f = rla (4)

R = a- r + r(l - f) /f (5)
r>

then from Fig. 6 and (3)

R5 =

Y(A - fit,)

— r=-? — R
B

The same approach can be followed for other systems. Similarly, picking a new

baseline is no more complicated. The only difference is to now let a be the "imaging

channel" rate for the selected baseline. Imaging channel refers to those channel

elements over which imaging data passes. It does not exclude gse data.

Equations for Computing Imaging Rate Advantages

The necessary equations are shown in Table 1. Note that the rate factor

A.. = I/ A., now more generally refers to the increase in transmission rate of the
ij Ji

imaging channel of system i over that of system j. Observe that the f = 0 condition

is really a discontinuity point for some of the systems because gse requirements

would not constrain channel operating points. This fact is not noted in Table 1 or

subsequent graphs but will be treated later.

A complete listing of the A., used here is given in Table 2. These may be

derived from the channel performance curves given in Section IV.

10
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Table 1. Equations for Computing Imaging Rate Advantages.

Assumed
Baseline
System

System 1
Uncoded

System 2
Uncoded/
Go! ay

System 3
Conv /
Viterbi

System 4
Conv/
Viterbi-
Golay

Imaging Rate Advantage Factor Above Baseline

System 1
Uncoded

1

A 1 2 - f d - A l 2 )

1-f

A ] 3 - f

i - r

A M - f ( l - A , 4 )

1-f

System 2
Uncoded

Colay

A 2 , - 2 f

1-f

1

A23- 2 f

1-f

A 2 4 - f ( 2 - A 2 4 )

1-f

System 3
Conv/
Vi terbi

A 3 1 - f

1-f

A 3 2 - f ( l - A 3 2 )

1-f

1

A 3 4 - f ( l - A 3 4 )

1-f

System 4
Conv/Viterbi -

Golay

A , , -2 f

1-f

A 4 2 - f ( 2 - A 4 , )

1-f

A 43" 2 f

1-f

I

System 5
AICS

Y < A 5 ] - f / C >

1-f

Y l A 5 2 - f ( l / ; - A _ 2 ) l
1-f

V < A 5 3 - f / ; >
1 - f

Y l A 5 4 - f ( l / ; - A , 4 ) l
1-f

• gse data rate held fixed in all systems as fract ion f of total informat ion rate in Basel ine System.

• A.. = I / A . . = Rate Advantage in operating imaging channel of system i over imaging channel of

system j (see Figs. 2-6) .

Table 2. Tabulation of the A. . .

System
Number

:

*

1

2

3

4

5

Imaging Channel Rate Improvement Factor
A..

i]
.

J r r

1

1.0

1.95

3.09

5.50

4.90

2

0.51

1.0

1.58

2.82

2.50

3

0.32

0.63

1.0

1.78

1.59

4

0.18

0.35

0.56

1.0

0.88

5

0.19

0.38

0.60

1.07

1.0

Graphical Results

Plots of equations in Table 1 are shown in Figs. 7 - 1 0 using f as a param-

eter. ' Included are AICS graphs assuming the Voyager compressor (Y = 3,

t, = 1) , the Galileo compressor (Y= 2.5, £,= 1) and RS/Viterbi alone (Y = 1) , (t, = 1) .

11
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Fig. 1. System 1 Baseline: Uncoded.
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Fig. 8. System 2 Baseline: Uncoded/Golay.
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Example 1. Suppose that the uncoded channel (system 1) was considered the

baseline communication system. Upon sizing up the power, antenna, etc., it was
- -5

concluded that 1 Kbit/sec was available at the required P, = 10 . Science instru-

ments required at least r = 500 bits/sec to be reasonable, leaving 500 bits/sec for

imaging. Then

=o. 5. RB = 500 bits/sec (7)

The graphs in Fig. 7 compare the relative amount of imaging information rate with

the R = 500 bits/sec in the baseline under the constraint that the gse data rate
B

is the same (500 here) in all systems. From Fig. 7 with f = 0.5 we see the following

imaging information rate advantages in Table 3. Given AICS and 18500 bits/sec or

more of imaging instead of 500 it is likely that the allocation to gse data would in-

crease since it would constitute now less than 3 percent of the total.

Table 3. Imaging Rate Advantages, Example 1

System

Uncoded /Golay

Convolutional/Viterbi

Conv/Viterbi-Golay

RS/Viterbi

AICS

Approximate
Factor, R /R

n D

1.9

4.5

8.6

9.0

37 to 90

Imaging Information
Rate (bits/sec)

950

2250

4300

4500

18500 to 45000

Example 2. Now start with a more powerful baseline system, the Voyager com-

munication system. Assume that the available data rate for imaging and gse (at

acceptable error rates) is 5 Kbits/sec. This is similar to the situation which would

have been faced if X-band failed near Saturn during the actual Voyager mission.

Let f = 0.5 again so that the gse data rate is r - 2500 bits/sec. Using Fig. 10 we

see that if we assume no gse data compression, AICS offers an imaging rate advan-

tage of between 6.5 and 16 (16250 and 40000 bits/sec respectively) . If in addition

we assume a not unreasonable 2:1 gse compression, the rate advantage factors in-

crease to between 8 and 20 (20000 and 50000 bits/sec respectively).

14
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Special Case, No gse

A gse fraction of the total data rate, f, equal to zero results in a special case

for uncoded system 1 and the convolutional/Viterbi system 3 since gse error rate

requirements no longer constrain the channel. Assuming that uncompressed imaging

requirements for channel fidelity remain unchanged, it is easy to see that system 1

becomes equivalent to system 2 and system 3 becomes equivalent to system 4.

One could also consider removing the uncompressed imaging constraint on

channel fidelity for systems 1-4, trading off increasing degradation from bit errors

for an increased transmission rate. This is, of course, a familiar trade-off which

has received considerable attention in the literature over the years, with and with-

out data compression. Some of these efforts were worthwhile investigations

reflecting real trade-offs within a limited set of system options. However, it does

little to alter the relative position of AICS in the graphs of Figs. 7-10.

Inspection of the ideal performance curves for the Viterbi-decoded convolu-

tional link in Section IV shows that to achieve a data rate improvement factor of only

1.25 would require accepting images degraded by a 1/20 bit error rate, certainly

not a paying proposition. In fact , the current Deep Space Network Viterbi decoders

have shown some difficulty with node synchronization at low signal-to-noise ratios

corresponding to error rates exceeding 5 x 1 0 . Thus in reality the ques-

tionable 25 percent gain in rate may not even be achievable.

Turning to the uncoded channel we see from Section IV that at a signal-to-

noise ratio of roughly 2.8 dB the concatenated channel provides "virtually error-

free" communication, whereas a user of the uncoded link must contend with a bit

error rate exceeding 1/50. But AICS data compression can provide almost perfect

images at factors of 3 to 4:1 and images of roughly equivalent quality at factors of

6 to 8:1.

Now take the error rate-versus-data rate trade-off on the uncoded link to an

extreme. By accepting the consequences of a 1/10 bit error rate on uncompressed

images means that data rate can be improved by a not insignificant factor of 2 .75 .

AICS could, however, provide compressed images of equivalent highly degraded

quality with factors in the vicinity of 40 to 50:1. It is hardly fruitful to debate

the precision of this statement or all the in-between cases. The rather significant

advantage of the completely user-controllable (see Section III) AICS rate/quality

trade-off via data compression and the concatenated channel should be self-evident.
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III. IMAGE COMPRESSION FOR DEEP SPACE EXPLORATION

The system analysis leading to the graphical results in Section II required

only simple algebra but relied on the assumption of performance parameters based

on experimental results, analysis, and common sense. This section lends further

support to these assumptions by providing additional detail and historical perspec-

tive to the image data compression developments of AICS, system 5. Discussions

will seek to remain at a tutorial level with emphasis on providing information useful

in a system context.

These discussions will realistically presume negligible channel interaction

since "virtually error-free" communication is a practical consequence of the AICS

concatenated Reed-Solomon/convolutional-Viterbi channel. This is treated further

in Section IV where the various channel performance curves are presented.

Performance Characteristics

The usual source coding problem of finding the best way to code an image with

a prescribed number of bits is only a subset of the source coding problem considered

in the AICS development. The buffer problem, loosely stated, involved seeking a

means of providing a user the capability to distribute a fixed number of bits over

a sequence of many images in a way which maximizes his scientific information

return (imaging and non-imaging) . Although such a problem will hardly yield to

rigorous theoretical analysis, simply considering the obvious role of the scientific

user in planning imaging sequences leads to a powerful and practical source coding

structure.

The basic philosophy behind the AICS source coding is to provide an exten-

sive range of adaptivity at all levels of coding. At the level of user intervention,

this means giving the user extensive capability to trade off rate and fidelity within

an imaging sequence or from sequence-to-sequence. On a first order basis this

capability is provided by the performance characteristics illustrated in the non-

rigorous diagram of Fig. 11. Shown is a plot of image quality-versus-the bits/

image reduction factor (compression) compared to an initial standard digital repre-

sentation. Image quality is a difficult if not impossible term to quantify and we

provide no magic formula to explicitly define it here. The quality measure shown in

Fig. 11 is simply a composite of characteristics derived from many comparative
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QUALITY
(INFORMATION
CONTENT)

[EXACT

TYPICAL NOISELESS
RANGE 2-4:1

A
NO
COMPRESSION

_L _L
16:1 8:1 6:1 4:1 2.5:1 2:1

BITS/IMAGE REDUCTION FACTOR

1:1

Fig. 11. Image Rate/Quality Trade-Off.

studies involving both subjective and quantitative measures of interest to the

scientific investigator. Although we will later provide specific examples the general

characteristics will suffice for our system arguments.

Noiseless Coding. First consider several well defined operating points on the

graphs of Fig. 11. Point A represents the operating point for a system which uses

no data compression. The corresponding quality of an image represents the best

that a "given" digital camera system can provide. Point B corresponds to the appli-
r 9 ] - f 1 3 ]

cation of "noiseless coding" to image data, resulting in exact reconstruction,

thus yielding precisely the same quality as for the original uncompressed data. Such

noiseless coding results in data-dependent compression ratios of from 4: 1 for low

detail images to 2:1 or less for detailed images. Point B is an example for a fairly

detailed image. The uncertainty in the achievable compression factor poses an

operational problem since the timing of images cannot be arbitrarily changed. This

can be partly or wholly offset when large buffers are available but the best approach

is to recognize that, except for exceptional cases, a constraint of completely noise-

less image coding for all images is an unnecessary burden as we will discuss below.

The major observation at this point is that a rate advantage of at least 2 to 4: 1

should be obtainable from data compression.
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Rate/Quality trade-off. The performance graph starting at B in Fig. 11 and

running through C and D represents the rate/quality trade-off available to a user

of the RM2 algorithm first described as an element of AICS. RM2 allows any com-

pression factor to be selected for each image with the not surprising general char-

acteristic that more bits applied to an image (lower compression factor) mean better

quality up to the point where noiseless reconstruction occurs (near the image dif-

ferential entropy) . This continuous trade-off is provided by a globally adaptive

rate allocation and control procedure. The latter allows a limited number of

bits to be focused on image features having special fidelity requirements as dis-

cussed later.

Consider a basic application of the rate quality trade-off in Fig. 11. If only a

single compression rate were allowed because of built-in operational constraints then

that rate (or compression factor) would need to satisfy the most demanding mission

requirements. This is much the same argument as the gse channel fidelity

requirements directing the operation of communication systems 1-4 in Section II.

This is precisely the situation for the Galileo mission to Jupiter. Image quality must,

for at least some of the data, fully live up to the capability of the camera system.

Thus, a compression factor of 2 .5 :1 (i .e. ,. 3. 24 bits/picture element) was chosen to

ensure near-perfect images. Such an operating point corresponds to point C in

Fig. 11. But at such low compression factors RM2 can be simplified to a one-
r 141

dimensional form called BARC. The latter has been implemented as part of

the Galileo imaging system.

Two separate studies by imaging scientists generally concluded that

almost all per image scientific objectives could be derived from RM2 images coded at

compression factors of 4:1 ( i . e . , 2 bits/picture element) although, as noted above,

the near-perfect fidelity of a lower compression factor would be desirable under

some conditions.

On the other hand there were some forms of data identified for which per image

objectives could be met with considerably higher compression factors of 6 to 10:1.

Using fewer bits-per-image for less demanding tasks should leave more bits to

apply to tasks having more stringent fidelity requirements. Then, on a first order

basis the broad performance curve provides the scientific user with a potential for

fine tuning imaging sequences to either reduce the number of bits actually needed

18



or to more effectively utilize a fixed number. For example, an imaging sequence for

which all images were coded at 3.0 bits/picture element ( b / p ) might be well approxi-

mated in science value by one in which only 20 percent were coded at 3.0 b / p , 30

percent at 2.0 b /p , 30 percent at 1.0 b/p and 20 percent at 0.5 b/p . This is an

average of 1.6 b / p , providing an additional gain of nearly 2:1 (or 5: 1 overall) .

Assuming a fixed number of bits-per-image sequence this improved efficiency could

be used to roughly double the number or type of images ( e . g . , more planetary

coverage, more spectral bands, more frequent images) thus increasing the science

return. The availability of a continuous performance curve means that such trade-

offs could be based on the most recent a priori knowledge of expected data charac-

teristics, the user's current understanding of the fidelity he can expect at a given

rate, and perhaps an updated list of scientific objectives (f l ight time for a deep

space mission typically takes several years) .

These arguments have implicitly sought to achieve maximum utilization of a

given camera system. In so doing, the quality of any particular image is always

presumed less than or equal to that resulting without compression. However, full

utilization of these rate quality trade-offs should really begin with camera design

before launch. The higher efficiency should allow greater capability to be incor-

porated in the basic design ( e .g . , higher resolution, more spectral bands) . From

this system point of view, data compression can yield better quality — n o t less.

Further pursuit of this line of thought is shown in the comparative photos of

the same scene in Fig. 12. The image labeled "compressed" is clearly better than

the one labeled "uncompressed." This unexpected result is because both images

have been coded to the same number of bits. Whereas the uncompressed image

simply indicates the basic capability of a low-resolution camera, the compressed

image is an imperfect but good approximation to the output of a higher-resolution

camera. The efficiency of data compression in this case materializes as better qual-

ity within a given image.

Global rate allocation. The basic RM2 control structure treats an image as an

array of subimages ( e . g . , 32 x 32 picture elements) and first surveys these sub-

images to determine their "data activity" A , A?, . . . , AN as illustrated in Fig. 13.
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N BITS/IMAGE N BITS/IMAGE

NO DATA COMPRESSION WITH DATA COMPRESSION

Fig. 12. Better Quality with Data Compression.

ACTIVITIES
Al A2 A3-L JL

A. = ACTIVITY FOR 64 x 64 OR 32 x 32 SUBPICTURE

Fig. 13. Array of Data Activities.
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The A. may be computed "on the fly" as data is loaded into memory. These measures

of activity directly relate to the relative need of each sub-image for the limited num-

ber of bits available for the complete image. An internal algorithm will allocate

the total number of bits available for an image frame to the subimages in a way that

reflects this need. More active subimages generally receive more bits than the less

active subimages. Just as indicated for complete images in Fig. 11, more bits ap-

plied to a given subimage i mean better quality up to the point at which noiseless

coding occurs (equal to A.) . This natural emphasis can be quite effective on large

images with distinct variations in data activity throughout. The global rate alloca-

tion need not be restricted to individual images but can be applied to any sequence

of images for which buffer ing is available.

Now extend this concept by assuming that pattern recognition is used to

classify the same subimages (in one image or an image sequence) into data classes

Cn, C,, and C 7 as illustrated in Fig. 14. C, and C ̂  might be classes of particular
(J J_ L, \. Cf

scientific interest whereas C,. denotes all other data. The image quality in the C

and C 7 areas may be emphasized while maintaining the prescribed bits/ image or
L,

bits /sequence simply by artificially boosting the natural activity measures for those,

regions. The rate allocation algorithm will, unknowingly, cause more bits (and

hence quality) to flow to those subimages at the expense of subimages that did not

get an artificial increase in their activity. Going in the other direction, if the

information from a particular data class can be communicated with very few bits by

x/ m

EXTRA BITS (EQUALITY) FLOW TO
DATA CLASSES C] AND C2

Fig. 14. Classification-Directed Rate Control,
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extracting and communicating parameters only, then the unused bits can be simply

reallocated to all other regions requiring image representation. A simple example of

this occurs when an image consists of 50 percent planetary satellite and 50 percent

black space. By simply identifying where black space is, the effective rate for

image representation of the satellite itself can be doubled. Additional applications

to reconnaissance from a military remotely-piloted vehicle are given in Ref . 18.

This classification-directed image compression clearly offers a potential for

further improvements in the rate advantages of on-board information processing.

As an aid to intuition, its effect may be viewed as moving the rate control perfor-

mance upward to the dashed curve in Fig. 11. The overall net advantage is, at

this time, speculative and is highly dependent on how broadly classification and

parameter extraction can be applied. The global rate control structure of RM2 pro-

vides a practical mechanism for bridging the gap between pure information extraction

and pure image representation.

Certainly, the Section II assumption that compression/processing can reduce

data rate requirements for the representation of image information by 4:1 to 10:1

is a fair, and perhaps, conservative one.

The global rate allocation structure provides an additional subtle advantage

when we again recall that a deep space mission does not consist of imaging alone.

As noted in Section II a deep space investigation will consist of both imaging data

and equally important general science and engineering data (gse) . The information

content of this class of data can vary considerably (many instrument outputs are

bursty in nature). Efficient coding of gse data can thus produce a corresponding,

and sometimes significant, variability in the overall gse output data rate. This can

easily be accommodated by the image rate control structure when the average gse

data rate is a small fraction of the total available data rate. Image or image sequence

rate allocations are merely shifted up or down to absorb the changing gse require-

ments. An example is given in Ref . 2.

Classic quality comparisons. The preceding discussions should make clear that

the overall source coding problem for this application is much more than simply cod-

ing individual images at some fixed rate. Total performance must be evaluated from

a mission point of view. However, the performance of RM2 has been evaluated by

more familiar approaches on several occasions. Figure 15 compares the rate in
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bits/picture element ( b / p ) versus root-mean-square-error (rmse) performance of
[ 191RM2 against several more familiar approaches to image coding. Comparisons

were made with both two-dimensional Hadamard (2DAH) and cosine (2DAC) adaptive

algorithms (floating rate) , a fixed-rate hybrid algorithm called randomized-Hadamard-

dpcm ( R H D ) and simple subsampling routines. The results shown are for one

heavily cratered landscape selected by imaging scientists from the 1971 Mariner

Mercury flyby.' ' The 2DAH, 2DAC and RHD algorithms were fine tuned for

the image and the selected rate. RM2 shows a decided advantage over all algorithms

while providing the additional features noted earlier.

More recently RM2 was compared against a fixed-rate hybrid cosine/dpcm

algorithm being implemented for an army remotely-piloted vehicle program.

RM2 was applied to the same sequence of six representative reconnaissance images

selected by the military and shown in Fig. 16. Averaged over all the images the

optimized cosine/dpcm algorithm required an average of 1.7 times as many bits to

represent the images with the same rmse as RM2. This factor varied from roughly

1.2 on very noisy images to 2.5 on a detailed but highly correlated "crossroads"

image. A graph of rmse comparisons for the latter image is shown in Fig. 17.

CROSSROADS ANTENNA

Fig. 16. Reconnaissance Images (512 x 512) .
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14] at 2.5 b /p lies onNote that operation of the one-dimensional BARC algorithm

the RM2 performance curve for this image. Further note that RM2 performance at

higher-per-picture-element rates intersects at the image one-dimensional-differential

entropy. This was true for all six reconnaissance images and is a natural conse-

quence of the internal universal noiseless coding.

The original crossroads image (512 x 512, 8 b / p ) and an RM2 reproduction at

1 b/p is shown in Fig. 18. As a further example, Figure 19 visually illustrates RM2

performance on another reconnaissance image of Moffet Field, Ames Research Center

(not in the test set of six) . The 512 x 512, 8 b/p original is shown with RM2 re-

productions at 1.6 b/p ( 5 : 1 ) , 1.00 b/p (8:1) and 0 .67 b/p ( 1 2 : 1 ) . The differential

entropy of this image is 4.5 b /p .

'BARC was noted earlier for its application to the Galileo Project,
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ORIGINAL 8 b/p RM2 1.0 b/p

Fig. 18. Crossroads Image.

Observe that all of the RM2 visual and rmse results noted in this section were

run without any change in internal parameters other than selected rate.

RM2 Internal Structure

The preceding discussion principally focused on the system aspects and per-

formance characteristics of RM2. It was noted that the end product of the global

rate allocation structure was an allocation of bits to be used to represent individual

subimages (e .g . 32 x 32 arrays). Any algorithm which can selectively and effi-

ciently represent subimages with a broad range of rates (bits/subimage, b /p ) could

fit smoothly within this structure. The available per-sample rates need not be a

continuous choice since any error in using a given number of bits can easily be

reallocated to other subimages. The Cox and Tescher's local rate control trans-

form compression would certainly be a good high-performance option. We will

present the original RM2 local structure, illustrated in Fig. 20, which has provided

some rather good results on a wide variety of data with what would appear to be

considerably less computational complexity.
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RM2 1.0 b/p RM2 0.67 b/p

Fig. 19. Moffett Field Scene.
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IF CODING
CAN BE
DONE
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Fig. 20. RM2 Subimage Coding Structure.

Universal Noiseless Coder. As Fig. 20 shows, all data eventually pass

through a box labeled ty , called a universal noiseless coder, and are collectively the

set of algorithms described in Refs . 10-12. Code operator ijj performs the function

normally associated with Huf fman coding except that ijj is not dependent on a

full knowledge of source statistics to be efficient. \\> provides efficient noiseless

coding of memoryless sources for which only the probability ordering of input sym-

bols is known, not their values. In this problem as in many other practical appli-

cations, this condition can be well approximated for real sources by preceding ip with

appropriate reversible preprocessing functions which serve to first remove

correlation and second, to relabel symbols according to their likelihood of

occurrence, ij; will then, without further knowledge, code at rates close to the

average entropy for all entropies above zero.
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High rate allocation. Returning now to Fig. 20, if the selected rate of a given

subimage is sufficient to allow noiseless coding then that subimage will be efficiently

coded at D by coupling one or two dimensional predictive preprocessing '

with the code operator iji just noted. This same path also provides initial "data

activity" estimates used in the rate allocation procedures noted earlier.

Transform mode. When the allocated bits for a subimage are not adequate to

enable noiseless coding then that subimage undergoes simple entropy and dimen-

sionality reducing transformations to enable coding at the desired rate. When al-

located rates exceed roughly 0.75 b/p the input subimage is passed unchanged to

point C whereas otherwise it is first subsampled to produce a slightly smaller two-

dimensional array of picture elements at C (missing elements are later approximated

by a decompressor using linear interpolation). In either case, the next step is the

application of perhaps the (computationally) simplest transform used in prac-

tice. The overall transformation consists of a three-stage application of a

two-by-two Hadamard transform T-,,,. In the first stage, T..,., is applied to each

two-by-two array making up the subimage of picture elements at C. The result for

each application is a two-by-two average and three coefficients which contain the

details on how the two-by-two differs from an all grey two-by-two. Only the aver-

ages are passed on to the next stage which must perform essentially the same func-

tion as the first, but on only one quarter the number of samples. The non-average

T ., coefficients produced at the first stage are collectively denoted "high frequency'

(HI f) coefficients in Fig. 20. The second stage generates an array of 4 x 4 aver-

ages ( 2 x 2 averages of 2 x 2 averages) and a collection of "medium frequency"

coefficients (MED f) . Again only the averages are passed on to yield an array of

8x8 averages and a collection of low frequency coefficients (LO f) at the third

stage. This completes the transformation.

A floating point representation of the coefficients here would permit an error-

free retrieval of the input data array- at C by reversing the transform process. But

exact reconstruction is unnecessary for transformed data since this function is

29



essentially provided by direct noiseless coding at D. The purpose of this mode of

processing is specifically for situations when the bit allocation is insufficient to

permit noiseless coding. For practical applications our simulations have shown that,

for 8 b/p input data, very minor and acceptable degradation occurs if all transform

levels are maintained at a linearly quantized 10-bit accuracy.

Efficient noiseless coding of transform coefficients at this full 10-bit precision

can nevertheless be provided by again applying universal noiseless coder ^. The

required preprocessing can be accomplished by a simple relabeling for probability

of occurrence since all coefficients are consistently characterized by unimodal dis-

tributions about zero. A practical means of reducing the bits needed to code a

subimage is obtained by selectively reducing the linear quantization at each trans-

form level before applying noiseless coder 4*-

Successive reductions in linear quantization produce narrower transform dis-

tributions and hence lower entropies but do not alter the unimodal characteristics.

Hence, the same reversible preprocessing (relabeling) needed for ij; applies to all

transform levels and any reduction in linear quantization. A subimage can be coded

closely to a prescribed number of bits by selecting the right combination of linear

quantization reductions to gse. Since the relabeling and ijj coding are reversible

operations, reconstructed quality will be as good as the chosen quantization op-

tions allow.* These operations are summarized in Fig. 20 where the function of

quantization reduction is designated by the three boxes labeled shif t / round. Here

s., i = 1, 2, 3 denotes the selected reduction in linear quantization at transform

level i.

numbers 0, 1, -1, 2, ... are mapped into the integers 0., 1, 2, 3, 4, ...

'See Ref . 2 for slight improvements from an adaptive inverse using surrounding
data.
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IV. PERFORMANCE CURVES

The purpose of this section is to provide the coded (Gaussian) space channel

performance curves used in the end-to-end system analysis of Section II. Additional

notes and references to current implementation efforts are also provided.

Ideal Performance

Error probability versus signal-to-noise ratio curves for the selected channel

coding configurations noted in Section II are shown in Fig. 21 where ideal receiver

operating conditions are assumed/ Signal-to-noise ratio is plotted in dB as the

received-energy-per-information-bit, E, , per noise-spectral-density N-.

Systems 1-4. Bit error probabilities, P, are shown for the classic uncoded
T251channel (system 1 in Section I I ) , a channel incorporating convolutional coding/

Viterbi decoding (system 3) and .a concatenated convolutional/Viterbi-Golay channel

(gse portion of system 4) .

The convolutional code assumed is a constraint length K = 7, rate 1/v = 1/2

code and is the principal code used in today's deep space missions such as Voyager

and Galileo. The graphs assume Viterbi decoding with 3 bits of receiver quantiza-

tion, a capability currently available in the Deep Space Network ( D S N ) receiving

stations (v = 3 is also available). Further details on the DSN capabilities can be

found in Ref . 26. The characteristics of this code have been exhaustively treated

in the literature for abroad range of applications. The graphs shown here corres-

itic
5]

pond to various test results simulating DSN conditions and are little dif-

ferent than first reported by Heller and Jacobs.

The interleaved Golay concatenation scheme which is much less well known is

described in R e f . 3. For our purposes here it suffices to note that the modified

Golay code itself is a 3 error-correcting binary block code with 12 bits of parity for

each 12 information bits.

Assumptions of performance curve operating points leading to the Table 1

specification of rate advantages are, in most cases, noted in the figure. The

critical {P, , E
b /N Q } points for the uncoded link are {10 , 6.8 dB} and {10~5,

9.7 dB} (not shown). The two points assumed for the convolutional channel are

(5 x 10~3, 2.3 dB} and {10~5, 4.8 dB} .

Coherent demodulation of a square-wave subcarrier.
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Recall that the purpose of the concatenated convolutional/Viterbi-Golay

channel was to enable system 4 in Fig. 5 to more efficiently satisfy the disparate

error rate requirements of (uncompressed) imaging and a relatively error sensitive

class of data called general science and engineering data ( g se ) .

As a consequence of the 100 percent parity overhead the concatenated conv/

Viterbi-Golay channel operates at an E , / N ~ which is 3 dB above the operating point

of the "inner" convolutional channel. Then from the performance curves of Fig. 21

we see that if the inner convolutional channel is operated at {5 x 10 , 2 . 3 dB} ,
_ c

thus meeting imaging requirements, the concatenated channel operates at {<10 ,

5.3 dB} thus meeting gse requirements.

In a similar argument, the Golay code in system 2 of Fig. 3 will meet the same

gse requirements when the "inner" uncoded channel is operated at {10 , 6.8 dB} .

The corresponding performance curve is not shown in Fig. 21.

RS /Viterbi. The performance curve for an interleaved Reed-Solomon (RS)

block code concatenated with the same K = 1, v = 2 convolutional/Viterbi channel as

described for system 5 is shown in Fig. 21. The results are rather dramatic.

Based on Odenwalder's original studies in Refs . 27 and 28 the selection of

practical code parameters is fairly obvious. The chosen code is by the classic

definition in Ref . 29 an E = 16 symbol error-correcting RS code with symbols de-

fined over G F ( 2 5 6 ) ( i . e . , J = 8 bit symbols) and a code word length of 255 symbols

(2040 bits) . Because of the burstiness of Viterbi decoder error characteristics the

RS code should be interleaved for best performance as was the Golay in system 4.

Simulation studies by Odenwalder and Liu showed that performance equiva-

lent to ideal (infinite) interleaving could be achieved with interleaving depths

I >5. The performance curves in Fig. 21 reflect the results of those studies. The

relative merit of two forms of interleave architecture on compressed imagery is

discussed in Ref . 2.

RS word error probability PR „ is shown in Fig. 21 rather than bit error prob-

ability since it better characterizes the effects of the concatenated channel. The

channel is simply clean as long as an RS word contains no more than E = 16 symbol

errors. When that happens seventeen or more scattered symbol errors will occur

in the decoded output. Section II system considerations assumed an operating point
-4

of 2.8 dB and Poc = 10 .At this operating point the channel is clean except for
Ro
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an error event once every 2 x 10 bits or equivalently, once every sixteen Voyager

images compressed 4 to 1. Note that 2.8 dB is only 0.5 dB above the operating

point for uncompressed imaging on the convolutional channel, clearly a small price

to derive the significant efficiencies of sophisticated data compression.

Our motivation for identifying the concatenated RS/Viterbi channel has, until

now, been solely for its capability to provide significant net gains in information

rate for deep space missions when coupled with data compression. However, it has

long been noted that operation of the deep space network at maximum "tolerable"

error rates incurs a difficult-to-quantify penalty in mission distribution and pro-

cessing costs. Note that since the RS/Viterbi performance curve is so steep, an

additional reduction in data rate by only 5 percent ( 0 . 2 dB E , / N , J would reduce

error events in 4:1 compressed Voyager images to once every 1600 images, truly

earning the label of "virtually error-free" communication. By comparison, the

convolutional channel alone would require an additional data rate reduction by a

factor of 3 to achieve roughly equivalent performance. Thus combined with packet

telemetry concepts the RS/Viterbi channel in addition offers a practical vehicle

for achieving reduced ground processing and distribution costs.

Non-Ideal Operating Conditions

The effect of various non-ideal receiver operating conditions on the performance

of the convolutional/Viterbi channels was first characterized by Heller and Jacobs.

These results were later extrapolated to the concatenated RS/Viterbi channels by

Rice. Odenwalder verified and extended the latter conclusions by simulation.

More complete and exhaustive simulation measurements were recently compiled by

Liu using test equipment which closely models DSN characteristics. The

major conclusion from these investigations is that the advantages of the concatenated

system over convolutional/Viterbi alone increase significantly under non-ideal con-
-4

ditions when error rates of less than 10 are desired.

Additional theoretical performance considerations of the concatenated channel

using phased array antennas are also treated by Liu in Ref . 33.
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Implementation

We have carefully avoided any detail on the precise algebraic definition of the

Reed-Solomon codes of interest and will continue to do so. However, there are many

subtle differences in code definition which leave channel performance unchanged

from Fig. 21 but influence the corresponding encoder and decoder implementations.

Such considerations remain as the primary issue of standardization efforts.

Encoders. Classically defined Reed-Solomon encoders meeting the severe

mission requirements of Voyager and Galileo were implemented in 50 - 80 flight-

qualified CMOS parts by Johnson. The Galileo version can operate at

roughly 1 megabit/second.

More recently Berlekamp provided clever algebraic modifications which signifi-

cantly reduced the required off-the-shelf parts count for future high data rate

encoders. Carrying this goal one step further Liu has breadboarded a

VLSI design which would reduce such an interleaved 1 megabit/sec encoder to

4 chips.1381

Decoders. There has not been the same pressing need for decoder implemen-

tations ( the necessity for a Voyager/Uranus decoder will occur almost a decade

after the 1977 launch) . However, both NASA and the European Space Agency (ESA)

have recognized the power of the RS code treated here, with and without an inner

convolutional channel. In particular, they and others have recognized potential

applications involving data rates in excess of 100 megabits/second. As such the

computational requirements of a decoder become the driving concern. ESA is cur-

rently recommending that the RS code be defined over G F ( 2 5 7 ) instead of G F ( 2 5 6 ) ,

as we have thus far assumed, in order to capitalize on a potential computation ad-

vantage afforded by Fermat primes. ' ' The arguments are presented by

Best and Roefs in Ref . 41. In either case code performance is, for all practical

purposes, identical.
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