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CHAPTER I

INTRODUCTION

The reflector antenna may be thought of as an aperture antenna.

The classical solution for the radiation pattern of such an antenna is

found by the "aperture integration" (AI) method. Success with this

method depends on how accurately the aperture currents are known

beforehand. In the past, geometrical optics (GO) has been employed to

find the aperture currents. This approximation is suitable for

calculating the main beam and possibly the first few sidelobes.

A better approximation is to use aperture currents calculated from

the "Geometrical Theory of Diffraction" (GTD). It will be found that

integration of the GTD currents over an extended aperture yields more

accurate results for the radiation pattern. In fact, if the plane of

integration is extended to infinity, our solution is expected to be

exact in a "high frequency sense."



The radiation pattern away from the main beam may alternatively be

calculated directly from GTD without any integration. A fundamental

Vimitation of this approach is that it usually fails in the far zone

near the reflector axis. One exception,however, is the special case of

uniform aperture illumination. Then, GTD may be used to calculate the

far field pattern, arbitrarily close to the reflector axis. This

solution is exact in a high frequency sense.

Because there exists an "exact" high frequency solution for the far

zone radiation pattern of a reflector antenna with a uniform aperture

field, this case will be used as a check on the validity of results

obtained by: 1) aperture integration of GO currents (which shall be

refered to as "AI") and 2) integration of GTD currents over an extended

aperture (which shall be called "AIE").

The far field radiation patterns of both offset and non offset

reflectors will be examined. All discussions will deal with two

dimensional models only. Except for Chapter VIII, it shall also be

assumed the feed is a magnetic line source, with or without an amplitude

taper. Results for these configurations will reveal that the error

introduced by the GO approximation of aperture currents is more

serious for an offset reflector than in the non offset case.

In Chapter VI, some general observations are made about the

validity of GTD and AI solutions. It is known that evaluation of the

radiation integral by the method of stationary phase yields the

geometrical optics solution for the reflected field. Also, endpoint

contributions to the integral correspond to edge diffracted fields.



Since the GTD solution consists of reflected and edge diffracted rays,

one can decide whether or not GTD can be used to find the radiation

pattern from examination of the integrand in the AI solution.

A suitable criterion for choosing the limits of integration in a

practical application of AIE is discussed in Chapter VII. It will be

found that little is gained by integrating the aperture field beyond its

GTD transition regions.

Finally, Chapter VIII examines a two dimensional version of the

offset reflector treated by Chu and Turrin [5]. In this case, an

electric line source feed is.used. AI and AIE results are compared with

GTD. Effects of varying the limits of integration are also discussed.



CHAPTER II

PRESENT METHODS AND PROBLEMS

The AI solution is limited by the accuracy of geometrical optics

used in calculating the aperture currents. Depending on the reflector

geometry and feed, the GO current approximation may or may not be

acceptable. Our criterion of acceptability here is that the AI and GTD

solutions overlap in our region of interest.

One case where the two solutions do not overlap is the offset

reflector of Chu and Turrin [5], as shown in Figure 2.1. The AI and GTD

solutions, calculated by the NEC reflector code [6] are shown in Figure

2.2. It is important to emphasize that this problem is not unique to

the NEC reflector code. Rather, it is a fundamental limitation of the

AI and GTD solutions.

In general, the far out sidelobes calculated by AI tend to be too

low. On the basis of GTD considerations, a modified obliquity factor

for the AI radiation integral has been derived by Rudduck [7]. This

factor improves the AI sidelobe levels considerably, and is used in the

reflector code. However, in an offset reflector, the sidelobes



(a) FRONT VIEW ( b) SIDE VIEW

Figure 2.1 Offset reflector of Chu and Turrin (from [5]),



o
- ro

00

Figure 2.2 AI and GTD far field radiation patterns calculated for the

offset reflector of Chu and Turrin.



calculated by AI tend to be too low, and also in the wrong position.

This cannot be corrected by a simple factor.

This problem motivates a preliminary study of an offset reflector

in two dimensions. In particular, we will find that the GO current

approximation is not always adequate.



CHAPTER III

APERTURE FIELD METHOD

This chapter begins with a discussion of the aperture field method.

It is well known [1] that the unique solution requires knowledge of

currents over an aperture plane of infinite extent. For illustrative

purposes, we calculate the far field patterns of offset and non offset

reflectors illuminated by a magnetic line source. These patterns are

found by integrating aperture currents derived from the geometrical

optics (GO) approximation. The results are also compared with solutions

that are known to be exact in a high frequency sense. Errors in the

solution are attributed to the GO current approximation.

These errors motivate a search for a more accurate representation

of the aperture currents. We shall use currents calculated by GTD, and

integrate them over a greater extent of the aperture plane. The result

is closer agreement with the exact solution. This is to be expected, in

light of the uniqueness theorem for electromagnetic fields [1],



A. RADIATION INTEGRALS

We seek the solution for the electromagnetic field problem in two

dimensions, as in Figure 3.1. By the uniqueness theorem [1], a

solution inside the region A, bounded by the perimeter a is uniquely

determined by:

(1) the impressed electric and magnetic currents T(p̂ ), and

"M^D1) inside A

and

A

(2) the surface electric and magnetic currents n x Ĥ p"')
A

and E"("p') x n on a.

We choose to neglect direct radiation from the feed. Then the solution

is completely determined by the surface currents on cq and a£.

Furthermore, from the Sommerfeld radiation condition, we argue that the

currents on 02 do not contribute as pa>«>. This reduces the problem to

finding the currents on the."aperture plane" a\. These currents follow

from

A

= "E(y) x n , and

A

= n

The problem may be simplified further through the use of image

theory. Since we are only interested in the solution for x > 0, a

perfect conductor of magnetism may be introduced just to the left of

o]_. This shorts out the magnetic current, and doubles the electric

current:

9



Ja(y) = 2n x H(y) ., and

Ma(y) = 0 . (3.1)

An equally valid alternative representation results if an electric

conductor is introduced instead. Similar reasoning yields

Ja(y) = 0 , and

Ma(y) = 2l(y) x n . (3.2)

Except for Chapter VIII, all our investigations use a magnetic line

source for illumination. The equations for an electric line source are

easily obtained by duality, and will not be discussed.
^

In our case, TT(y) is always z directed. Using Equation (3.1), we

see If (y) will bey directed:

A A

yoa(y) = -y2Hz(y) .
A

For a y directed current as in Figure 3.2, the appropriate radiation

integral is (Appendix A)

H (p) =A/4L / z - (y x P ) • (-2H (y 1 ) ) e ° dy' (3.3)
Z V 8lT -co ° Z /Po^

with

PO = I'p-p11 = l"p-y' I

where a prime denotes the variable of integration. From Figure 3.2, we

see see that

10



APERTURE
PLANE

Figure 3.1 Surfaces used in applying the uniqueness theorem and

equivalence principle.

y j a ( y )
A y

Figure 3.2 Ay directed electric current,

11



P0
2 •= (p cos<(>)2 + (p sin* - y 1 ) 2

= p2 + y'2 - 2Py' sin <|)

so that the general expression for the near field radiation integral

with a magnetic line source becomes^"

— r. — °° -JKp
H (p) -y/ii 2 cos* / £_ H (y1 ) e ° dy ' - (3.4)

~
_<» P0 /7

0

This expression may be simplified for the far field. With ~p and ~p0

parallel ,

PO = P ~ y sin

A ^ A

z ' (y x PO) := -

so that the far field radiation pattern may be found from

H _ ( p ) =e^kp / j T z c o s * J H
/p V yiT -°°

The remaining problem is to find the aperture field. The following. two

chapters shall examine two approximations for the aperture field: GO

and GTD.

has been suggested by Rudduck [7] that the cos4> obliquity factor can
be replaced by cos(<j>/2) if the aperture fields are found by geometrical
optics.

12



CHAPTER IV

APERTURE INTEGRATION WITH G.O. CURRENTS

As a first approximation, we now use GO to find the aperture field.

We shall refer to the solution obtained by integrating GO fields as "AI"

(for aperture integration).

When discussing the GO rays, we shall take the origin of

coordinates as the parabola vertex - however, it will be more convenient

to redefine the y axis as the aperture plane when carrying out the

integration.

A. CALCULATION OF GO APERTURE FIELDS

The general method of GO is outlined in Appendix B, and the

geometry relevant to our problem is in Figure 4.1.

For a parabolic surface with its focus at f,

x = y2/4f .

13



APERTURE PLANE a,

Figure 4.1 Geometry for calculation of GO aperture fields.
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The radius of curvature Rc at the reflection point (Qx,Qy) is given by

? 3/2
|R j = [1 +(dx /dy)2] .

C d2x/dy2

In particular, for a parabola,

Rc = -2f [1 + (Q/2f )2 ] 3 / 2 .

From this, we calculate the caustic distance pr for the reflected field

_! = _!,.+ 2
pr "PO""" Rccos01

For the special case when the source is at the focus, xs = f,

Rc = -2f sec
3(a/2) ,

cose1 = cos a/2 , and

P0' = f sec
2 a/2,

so that pr->«. This means the image for the reflected field appears to

be at infinity. Equivalently, the reflected field is a plane wave. The

spreading factor is

A(P Q ) =0 Pr + PO

When xs = f, we see A(p0) = 1.

15



The reflected field with magnetic line source illumination is given by

A(p0)e"Jkpo ,

where Rn = 1 is the reflection coefficient. For our case of a focussed

parabola, we find that

Tfrefl = z H i n c(QR)e~J I<Po .

Let us assume that the magnetic line source has as its field

(4.1).

The GO aperture field then follows from

-refl _ _ e 1 o . . (4.2)

>v
If f/D is greater than 1/2, we may neglect the l//pi~ amplitude taper of

the aperture field. Then (4.2) may be reduced to

-refl B e - i Q (4.3)

with pi and p0 as in Figure 4.1. We shall use (4.3) for the aperture

field H z ( y ' ) , in (3.5) to determine far field radiation patterns for the

offset and non offset reflectors of Figure 4.2.

16



Figure 4.2 Offset and non offset reflectors.
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B. INTEGRATION OF THE CURRENT

Noting that pi + PO of Figure 4.1 is constant, the far field

radiation pattern follows from Equations (4.3) and (3.5):

2cos<|,

where

/T~ a

2ejk[(a+b)/2]sin<(, s1n(k[{b-a)y2j
/f— k sin<()

For the magnitude of the pattern, we see that

IH I - cos * siri'(k[(b-a)72]s'Tri'(|>)'z

This is the same for either the offset or non offset cases! The GO

approximation for the aperture currents has failed to predict any

differences in the radiation patterns. This motivates a search for a

more accurate approximation of the aperture currents. In the next

chapter, we shall use aperture fields calculated by GTD.

18



' CHAPTER V

EXTENDED APERTURE INTEGRATION (AIE) WITH 6TD CURRENTS

In the previous chapter, we saw that GO was inadequate in modelling

the difference between aperture fields of offset and non offset

reflectors. In this chapter, we use the next best approximation--GTD,

to find the aperture fields. The field will be smooth and continuous

across the entire aperture, and nonzero outside the reflector rim. The

radiation integrals will be done numerically. Since the integration

extends beyond the reflector rim, we shall call this technique "extended

aperture integration"(AIE).

A. CALCULATION OF THE APERTURE FIELDS BY GTD

The details of applying GTD to calculate the aperture fields for

the reflectors of Figure 4.2 are first described.

The general geometry is shown .in Figure 5.1. The field at (x,y)

has three contributions: the reflected ray, as calculated by GO in the

previous section, plus two edge diffracted rays which compensate for

19



discontinuities in the GO field. Higher order effects such as doubly

diffracted rays from Qei to Qe2 are neglected in this analysis.

Shadowing effects of the edges are also neglected.

The general form of the GTD solution is discussed in Appendix C.

The details for our particular application are disclosed in the

following sections.

B. EDGE DIFFRACTED FIELDS

The procedure for calculating the diffracted field is the same for

both edges. Let us consider the upper edge of Figure 5.1. The incident

field L parameters are given by

Lio
p +p
1 1

The reflected field L parameters depend on the reflected field caustic
|T»Q

distance at the edge p, . To properly compensate for a discontinuity in

the reflection from the "o" face,

L

re
r>ro
pl P]
pl + pl

where p^
e is constant and is given by

pie = pl ̂ R^el^ '

20



b-

REFLECTION
POINT Q0

TANGENT/^
PLANE

DIFFRACTION POINT Qe ,

APERTURE PLANE

•FIELD POINT ( X,y

SOURCE POINT ( X _ , y _ )s ' J s '

a —

DIFFRACTION POINT Q
62

"0" FACE

N" FACE

Figure 5.1. Geometry for the GTD near field solution.
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Since we are dealing with a focussed parabola, ore-»"» so that

= p,

The field point never approaches the "n" face reflection boundary, so we

may safely neglect its curvature. Approximating it as a flat surface,

Lrn „
 plpl

•Y'l

Since n=2 for the half plane edge, it follows that

2 i +
a (̂ ±4,;) = 2cos^ ( I"

This completes the description of all the necessary parameters for the

diffraction coefficient for Qei« The spreading factor for this

diffracted ray is given by

A(P I )=JL

For our case of magnetic line source illumination, the field diffracted

from edge Qei is then given by

A

TTdl = z HMQei) Dhi A(P1) e-J'kPi , or

_H1
 A -Jkpj -jkp, C 5 - 1 )

Hdl = z e _ Loh e _ i_ .

22



Similarly, for Qe2,

-jkp
= z e _ Z_ . (5.2)

The total GTD aperture field is the sum of Equations (4.2), (5.1), and

(5.2):

H(y) -
Hrefl + Hdl + Hd2 a < y < b

H"dl + Hd2 elsewhere
(5.3)

The G.O. (4.2) and GTD (5.3) aperture fields have been plotted in Figure

5.2 and Figure 5.5 for the non offset and offset reflectors of Figure

4.2.

It is easy enough to integrate the GO aperture field analytically,

as was shown in Chapter IV, however, numerical integration must be used

to integrate the GTD fields. Resulting radiation patterns for the non

offset reflector of Figure 4.2 are shown in Figure 5.3 and Figure 5.4.

We see that AI correctly predicts the main beam and first few sidelobes.

The results from integrating over an extended aperture (AIE) on -10 < y

< 10 is even better. This is to be expected, in light of the uniqueness

theorem. In fact, if the integration was carried over an infinite

aperture plane, we would expect the AIE and exact solutions to coincide.

We repeat the analysis for the offset reflector of Figure 4.2. The

aperture fields are shown in Figure 5.5. The resulting radiation

patterns are shown in Figure 5.6 and Figure 5.7. In this case, only the

first sidelobe can be found from the AI solution. Again, we see that

23



the AIE solution provides significant improvement over A.I., in the

first few sidelobes. Their magnitude, as well as position are closer to

the correct result.

24
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6. a. 10. *A

Figure 5.2 Aperture f i e l d s for the non offset reflector w i t h

magnetic l i n e source i l l u m i n a t i o n .
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EXACT

Figure 5.3 Far field radiation pattern for the non offset reflector

with uniform illumination. AI solution.
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Figure 5.4 Far field radiation pattern for the non offset reflector

with uniform illumination. AIE solution.
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Figure 5.5 Aperture fields for the offset reflector with magnetic line

source illumination.
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Figure 5.6 Far field radiation pattern for the offset reflector.

AI solution.
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Figure 5.7 Far field radiation pattern for the offset reflector.

AIE solution.
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CHAPTER VI

GENERAL VALIDITY OF THE GTD SOLUTION

So far, we have only used GTD to calculate the antenna aperture

fields. It turns out that we need not be so restrictive. GTD can be

used to calculate the field anywhere except at and near "caustics". A

caustic is a confluence of rays. Several examples are shown in

Figure 6.1.

The advantage of this solution is that no integration is required.

The reflected plus edge diffracted rays constitute the entire solution.

In this chapter, we shall restrict our attention to the non offset

parabola of Figure 4.2 In this case, we may use GTD to calculate the

radiation pattern anywhere except in the far zone near the reflector

axis, where the parallel rays meet, i.e., a caustic. We now ask: How

close to a caustic does our solution remain valid?

For a focussed parabola, the x axis at infinity is always a

caustic, however we shall find that the extent of the caustic region

depends on the amplitude taper of the aperture field. In particular,

31



CAUSTIC
/

PARABOLIC REFLECTOR

CAUSTICS

ELLIPTICAL REFLECTOR

HYPERBOLIC REFLECTOR

Figure 6.1 Examples of caustics.
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we shall find that if the aperture field is constant, the extent of the

caustic region is infinitesimal. Consequently, in the far zone, the

field point may come arbitrarily close to the x axis. This is the

origin of the "exact" solution referred to in previous chapters.

When using GTD to calculate aperture currents along a\ of Figure

3.1, no problem arose because the field point is deep into the near

zone, far away from the caustic.

For a complete discussion, we shall examine near and far field

patterns for the non offset reflector of Figure 4.2, with and without a

feed amplitude taper. As before, a magnetic line source feed is used

throughout. The "nonuniform" aperture field taper used is "parabolic

squared" on a pedestal, down 10 dB at the reflector edge.

A. FAR FIELD GTD AND AI SOLUTIONS WITH A UNIFORM APERTURE FIELD

Let us now consider the GTD solution for the reflector in Figure

6.2 with the field point at infinity, making an angle $ with respect to

the x axis. The reflected ray is always parallel to the x axis, unlike

the diffracted rays which may point in any direction. We see that for <j>

* 0, the reflected ray does not contribute to the far field solution.

Only the two edge diffracted rays are needed!

It may seem unreasonable that the far field pattern is only

dependent on the reflector illumination at the edges. To reinforce the

credibility of such a result, we shall examine the corresponding AI

solution more closely.
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Figure 6.2 Geometry for the far field GTD solution,

34



Reconsider the far field integral (4.4)

H_(7) = e-Jkp /]T 2cos<(, !(<(,) , where

Although this case can be integrated in closed form, this is not the

issue we want to pursue. Rather, we wish to show that the result of the

integral is only affected by the value of the integrand at the

endpoints, or "edges" of the reflector.

The real part of the integrand has been plotted with $ a parameter,

in Figure 6.3. These results exhibit two very interesting properties.

First, we note that k=2ir/X can always be made large enough so that the

integrand oscillates rapidly for <J>*0. Choosing k large is the "high

frequency assumption" of our solution. Second, we note that for a

rapidly oscillating integrand, the positive and negative areas will

cancel, until the integration is terminated. This means the only

contribution to our solution occurs at the endpoints of integration,

i.e., the "edges". Similar reasoning holds for the imaginary part of

the integrand, but it is not shown.

From the above discussion, we conclude: given a constant aperture

field, the complete far field, high frequency solution for <|>*0 is given

by the two edge diffracted rays of the GTO solution. This result is

extremely important to us, in that we can readily obtain exact, high

frequency solutions for the offset and non offset reflectors we have
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been discussing. The "exact" GTD solutions, found from the two

diffracted rays are shown in Figures 5.3 and 5.6 for the non offset

and offset cases, respectively.

B. NEAR FIELD GTD AND AI SOLUTIONS WITH A UNIFORM APERTURE FIELD

Let us reconsider the non offset reflector of the previous section

with the field point in the near zone. Unlike the far zone case, now

the GTD solution consists of three rays. The reflected ray does

contribute to the near field solution. In fact, the GTD solution used

to calculate, the aperture fields of AIE is the near field solution.

The GTD model requires that the reflected and diffracted rays be

well defined. One can appreciate that with increasing distance, it

becomes increasingly difficult to identify the reflection point on the

reflector. This inadequacy of the model for the reflected ray component

of the GTD solution is a fundamental limitation of the method.

The next section examines the corresponding near field AI solution.

We shall find that not only do the endpoint contributions correspond to

edge diffractions, but in addition, the integrand has a point of

stationary phase, corresponding to the geometrical optics reflection

point.

C. GEOMETRICAL OPTICS AND THE METHOD OF STATIONARY PHASE

With a uniform aperture field, the near field radiation integral

(3.4) becomes

H () = 2cos<f,z Sir '
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where

p^ = path length from the source to the aperture plane

(a constant),

= P / e"jk'°. dy' (6.2)

and as in Figure 3.2,

2 2 2
P0 = P + y1 - 2P y 'sin<j,

The integral (6.2) is of the form

dy1 ( (6.3)

where F(y) is the magnitude, and f(y) is the phase of the integrand.

Here, the phase function is

-f(y') = P0
 = /P2 + y'2 - 2P y'sin<f, .

It is stationary when df/dy1 =0:

df = y' - p sin<}) = Q
^T1" /pz + y'2 _ 2p y'sin.*

which occurs at

y' = p sin<j> .

The point of stationary phase corresponds to the reflection point, as

shown in Figure 6.4.
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Figure 6.4 Stationary phase point in the aperture plane.

To illustrate the behavior of the integrand, its real part has been

plotted for various field points (x,y) in Figure 6.5 and Figure 6.6.

From Figure 6.5 we see that with increasing x, the sharpness of the

stationary phase point is less pronounced. Figure 6.6 has no stationary

phase point.

The near field radiation integral may be evaluated by the method of

stationary phase (Appendix D). To apply this method, the phase f(y)

must be rapidly varying, where the magnitude F(y) is slowly varying.

Applying the prescription of Appendix D to Equation (5.2) we obtain

39



01 0
2 - O I X

rT i i i i i .1 ' ifi
01- oa - ' Oti

o
o
CM

01 0
e-OIX

om

01-

' • ' I ' " ' ' I 1

OS Q
e - O I X

- ro
i

02- Oti- i

Figure 6.5 Real part of the near field integrand with a uniform

aperture field, showing the stationary point and endpoints
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I(p) = £l e - p ' ' + endpoint contributions ,
Jk cos<()

so that

H (p) = £ _ + endpoint contributions
z

We recognize that the first term is the same as (4.3), the GO result.

Thus we have established the relation between GO and AI via the method

of stationary phase.

Near field radiation patterns at a distance of p = 50X are shown in

Figures 6.7 and 6.8. As expected, we have excellent agreement in the

main beam and f i rst few sidelobes.

D. FAR FIELD GTD AND AI SOLUTIONS WITH A NONUNIFORM APERTURE FIELD

The case of a nonuniform aperture field is more troublesome. As in

the uniform case, the GTD solution follows from the two edge diffracted

rays. Still, the far field GTD pattern only depends on the reflector

illumination at the edges. However, we shall find that the extent of

the caustic region is much greater than in the far field case with

uniform illumination. It will be shown that when the field point is too

close to the caustic, the integrand of the AI solution is not suitable

for the method of stationary phase.
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Figure 6.7 Near field radiation pattern at p=50x, with uniform aperture

illumination. AI solution.
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Figure 6.8 Near field radiation pattern at p=50x, with uniform aperture

illumination. AIE solution.
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For illustrative purposes, we use a "parabolic squared on a

pedestal" aperture illumination, given by

T 9i 2

F(y) = c + (1-c) 1 - (y_r Wltn (6-4)
a

a = 5

c = 0.398 .

The edge illumination.is 10 dB below the maximum value. The GO and

GTD aperture fields along oj of Figure 3.1 for this case are plotted in

Figure 6.9. The far field radiation integral (3.5) becomes

H (>) = e " p - . J k ? cos 17 where

2

b=5
Ifp) = / H z ( y ' ) eJky'sin^1 dy1 .

a=-5

As before, we examine the integrand of I("p). The real part has been

plotted in Figure 6.10 with $ as the parameter. The results are similar

to Figure 6.3 except that they have been "modulated" by the amplitude of

the aperture field. Far away from the x axis caustic, the integrand

oscillates sufficiently rapidly so that positive and negative areas

cancel. As before, the only contributions to the integral are from

endpoints. However, when the field point is near the x axis, the

integrand does not oscillate rapidly. This is where the GTD solution

begins to fail. This occurs at about $=3Q° for our case.
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Figure 6.9 Aperture fields for the non offset reflector with magnetic

line source illumination and a "parabolic squared on a

pedestal" amplitude taper.
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From Figure 6.12 we see that the GTD and AIE solutions begin to

disagree for $ < 30°. An even more serious problem is that shown in

Figure 6.11. The GTD and AI solutions do not overlap at all! It is

true that GTD is useful for calculating far out sidelobes and that AI is

good for calculating the main beam. In fact, the main beam of the AI

and AIE solutions agree quite well. However, it is important to note

that AI and GTD solutions do not necessarily have a common region of

validity because both have their limitations. The AI has an approximate

aperture field with a limited aperture width, whereas GTD has caustic

regions within which it is not valid.

E. NEAR FIELD GTD AND AI SOLUTIONS WITH A NONUNIFORM APERTURE FIELD

We have already used the near field GTD solution to calculate the

extended aperture fields of the previous section. The field point in

such a case is deep in the near field, so that the solution is generally

well behaved. Rather, what we need to investigate here is: How far

away from the antenna, along the reflector axis, does the GTD solution

begin to fail? Or equivalently, what is the extent of the caustic

region?

Our discussion is again based on the behavior of the AI solution's

integrand. We have

H (P) =-,/4Ji 2 cos<t> I(x,y) , where

b=5 n
I(x,y) = / £_ H (y1) e _ °_ dy' (6.6)"a=-5 PO

which follows from (3.4).
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Figure 6.11 Far field radiation pattern with nonuniform aperture

illumination. AI solution.
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Figure 6.12 Far field radiation pattern with nonuniform aperture

illumination. AIE solution.
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The integrand has been plotted for several field points in Figures

6.13 and 6.14.

From Figure 6.13 we see that deep in the near field, when (x,y) =

(2,1), the integrand oscillates sufficiently rapidly so that the method

of stationary phase can be applied. However, at (x,y) = (12,1) the

"modulation" due to the aperture field taper is no longer slowly varying

with respect to the oscillations of the integrand. We see that with

increasing x, positive and negative contributions to the integral will

not cancel. Because these cancellations are no longer occurring, we no

longer have well defined stationary point and endpoint contributions.

We are unable to model the reflector in terms of these three

contributions. Consequently, the 6TD solution begins to fail for large

p, near the reflector axis. This should come as no surprise, because

one of the basic postulates of 6TD ils that it fails at and near

caustics. The x axis at infinity is a caustic of reflected rays for a

focussed parabola.

Figures 6.15 through 6.17 compare AI with GTD. Figures 6.18 and

6.20 compare AIE with GTD. The point of interest here is not that AIE

works better than AI, but that GTD fails when the method of stationary

phase fails, i.e., at large p, near the reflector axis. From these

figures, we see that this is a problem, even in the Fresnel zone, at

p=50x.
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Figure 6.15 Near field radiation pattern at p=10x, with nonuniform

aperture illumination. AI solution.
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Figure 6.16 Near field radiation pattern at p=20x with nonuniform

aperture illumination. AI solution.
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Figure 6.17 Near field radiation pattern at p=50X with nonuniform

aperture illumination. AI solution.
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Figure 6.18 Near field radiation pattern at p=10x with nonuniform

illumination. AIE solution.
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Figure 6.19 Near field radiation pattern at p=20x with nonuniform

aperture illumination. AIE solution.
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Figure 6.20 Near field radiation pattern at p=50x with nonuniform

aperture illumination. AIE solution.
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CHAPTER VII

CHOOSING THE LIMITS OF INTEGRATION FOR AIE

Since it becomes impractical to carry out an aperture integration

over a very large aperture plane, choosing the limits of integration

deserves more investigation.

The most serious errors in using aperture fields calculated from GO

occur when: (1) the illumination of the reflector edge is strong, and

when (2) the reflector edge is not close to the aperture plane.

As a case study, we examine the offset reflector of Figure 4.2 with

uniform illumination. The aperture field for this case is shown in

Figure 5.5, and is plotted again for a greater range of y, in Figure 7.1

The results of varying the limits of integration are shown in Figure 7.2

through 7.4. In all three cases, the aperture field used is calculated

from GTD.

By extending the aperture 3x on the lower edge and 2x on the upper

edge, a substantial improvement in the far field radiation pattern

occurs. This can be seen by comparing Figure 7.3 and Figure 7.2. On

the other hand, we see from Figure 7.4 that little more is gained by

extending the aperture plane by 30x on both sides of the reflector.
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Figure 7.1 Aperture fields for the offset reflector with magnetic line

source illumination.
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Figure 7.2 Far field radiation pattern for the offset reflector.

Limits of integration are 0 < y < 10X.
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Figure 7.3 Far field radiation pattern for the offset reflector,

Limits of integration are -3x < y < 12X.
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Figure 7.4 Far field radiation pattern for the offset reflector.

Limits of integration are -30x < y < 30X.
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The aperture field of Figure 7.1 is rapidly varying, near the

reflection boundaries at y=0 and y=10. Near these regions, the

transition function F in the diffraction coefficient Dn (see Appendix C)

compensates for discontinuities in the reflected field. Of the four

terms in Dn, the one which compensates for a discontinuity in reflection

from the "0" face of the reflector is the fourth term of Equation (C.3):

rot (*-*!*) F(kL(*+V)) • (7.1)
2n/2irk 2n

The region where the aperture field is rapidly varying is known as a

"transition region" [2], and the argument of F is less than 2ir in that

region.

The values of kl_roa for the upper and lower edges are in Table 7.1

as a function of y. For the upper edge, kLroa > 2ir when y > 12. For

the lower edge, kLroa > 2ir when y < -3. This suggests little is gained

by integrating the aperture field beyond the extent of its transition

regions. The convergence of the AIE solution to the correct result is

extremely slow past the fifth sidelobe or so.
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TABLE 7.1

kLa PARAMETERS FOR THE APERTURE FIELD

APERTURE
POINT

\/ / Y
J i '*•

-5.0
-4.0
-3.0
-2.0
-1.0
-0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0

... . ... ........

UPPER
EDGE

kLr°a

88.174
81.906
75.640
69.376
63.117
56.862
50.613
44.373
38.146
31.936
25.755
19.623
13.586
7.766
2.603
0.000
2.603
7.766
13.586
19.623
25.755
31.936

LOWER
EDGE

kLroa

17.787
12.566
7.808
3.805
1.020
0.000
1.020
3.805
7.808
12.566
17.787
23.299
29.002
34.834
40.758
46.749
52.790
58.869
64.979
71.112
77.265
83.433
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CHAPTER VIII

ADDITIONAL RESULTS

In this chapter, a two dimensional counterpart of the Chu-Turrin

offset reflector is examined. This case has the fol lowing parameters:

aperture width D/2 = 18'.8*

focal distance f = 9.4X

and is shown in Figure 8.1.

Unlike our previous investigations, an electric line source feed is

used, with a parabolic on a pedestal aperture field given by

p(y) = { c + (i-c) [i - (y^.)2] } /r

where

a = 9.40

C = 0.211
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The maximum value occurs at the center of the aperture, and the edge

illumination is down by 13.5 dB. The 1//F"amplitude taper of the

reflector has been neglected in this analysis.

The aperture plane is positioned at 6/\p = lOx. This is 0.6x

away from the reflector edge. The GO and GTD aperture fields have been

plotted in Figure 8.2. Its GTD transition regions extend to about

-5x at the lower edge, and 21X at the upper edge. Resulting AI and AIE

solutions for the far field radiation patterns are shown in Figures 8.3

and 8.4.

We see that by integrating over the extent of the aperture field

transition regions, the AIE and GTD solutions will overlap at $ = -15°

and (j) =' 18°. Inside this region, the GTD solution is too low because it

is failing near a caustic. Outside this region, the AIE solution is too

low because the integration is not carried out over an infinite aperture

plane.

Figure 8.4 represents about the best result that can be expected

from an AIE solution. Figure 8.5 shows the AIE solution when the

aperture plane has been extended by 20X on either side of the reflector.

Ue see that very little is gained from integrating beyond the aperture

field transition regions. In fact, the AIE result converges to the GTD

result extremely slowly, past the fourth or fifth sidelobe.
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Figure 8.1 Two dimensional model of the Chu-Turrin offset reflector.
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Figure 8.2 Aperture field for the reflector, with electric line source

illumination and a "parabolic on a pedestal" amplitude

taper, f = 9.4X, and D/2 = 18.8x.
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Figure 8.3 Far field radiation pattern with nonuniform perture

illumination. AI solution.
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Figure 8.4 Far field radiation pattern with nonuniform aperture

illumination. AIE solution.
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Figure 8.5 Far field radiation pattern with nonuniform aperture

illumination. AIE solution.
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CHAPTER IX

CONCLUSIONS

•i

The method of extended aperture integration (AIE) is useful when

the more conventional AI and GTD solutions do not overlap. Otherwise,

it is best avoided because of the additional integration required.

Based on this study, AIE seems to give good results for the first

four or five sidelobes with only a moderate extension of the aperture

plane. Little is gained by integrating the aperture field beyond the

extent of its transition regions. The convergence of the AIE solution

to the correct result is extremely slow, past the fourth or fifth

sidelobe. It is not a good way to calculate far out sidelobes.

Strictly speaking, the aperture plane must not get too close to the

reflector, because GTD may not be valid there. In practice, however,

the aperture plane may be moved right up to the reflector. Any errors

in the edge diffraction calculations will average out in the integration

process, and will not affect the final result. This is useful because

the extent of the aperture field transition regions may be minimized by

moving the aperture plane as close as possible to the reflector rim.

This minimizes the amount of additional integration necessary. However,
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the aperture plane should remain perpendicular to the main beam of the

antenna.

The AI solution works best for a reflector with a highly tapered

feed. With little edge illumination, geometrical optics does quite well

in approximately the aperture field. On the other hand, a feed taper

increases the extent of the caustic region - a situation highly

unfavorable for the GTD solution. We see that favorable conditions for

both solutions are mutually exclusive. Because of this, the angle at

which we can switch over from an AI or AIE solution to a GTD solution

will increase as feed taper increases.

Although this work only treats the special case of a parabolic

reflector, AIE may be used for any aperture antenna.

A planar aperture was used in this study because it facilitates

application of image theory. The free space Green's function may then

be used in the radiation integral to obtain the radiation pattern.

Another possible approach would be to completely enclose the antenna by

a surface, and calculate both Ts and Ms over the entire surface.

.Integrating these currents would give the radiation pattern anywhere

outside the surface. Such an approach would be interesting, but

probably not advantageous, because GTD with AI or AIE can be used to

calculate the complete radiation pattern.

In a reajistic three dimensional problem, vertex diffractions would

have to be included in AIE aperture field calculations. Its validity in

the extreme near field would have to be investigated. Based on the

promising results in two dimensions, further investigations in 3-D seem

worthwhile.
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APPENDIX A

RADIATION INTEGRALS

A

For an a directed electric current as in Figure A.I, we have

A A A

dHz = z • (axp) (- jk/4) J^ Hi(2) <tt ".

Using the large argument from of Hi(2) and integrating,

H =[JI / 2 - (JUp) .1 e"jkp At - (A.I)
z V 87r all *

currents

By duality, an £ directed magnetic current radiates as

A A A

E = ALT' / z • Uxp) M e-JkP dg. . (A.2)
Z V 8ir aH *

currents

For a z directed electric current as in Figure A.2, we have

dEz = -kZ0/4 Jz H0(2)(kp)dA .
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FIELD POINT

Figure A.I. An a directed current element.

FIELD POINT

Figure A.2. A z directed current element.
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Using the large argument form of H0(2) and integrating,

E - -Z-,/H ejll/4 / J e-Jkp da . (A.3)
all z

currents

By duality, a z directed magnetic current radiates as

eJ*/4 j M e-3kP dl . (A.4)
all z /p~

currents
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APPENDIX B

GEOMETRICAL OPTICS IN TWO DIMENSIONS

The material here is taken from [2].

For a perfectly conducting surface as shown in Figure B.I, with

radius of curvature R, the E or H field may be found from its value at

Q:

(Q)
, and

(B.I)

H(0 - H (Q) Pr

where the caustic distance of reflection pr is given by

1 = 1 + 2 . (B.2)
pr Ai R cose1

R is the radius of curvature for the surface at Q, and e1 is the angle

between the incident ray and the surface normal vector at Q.

79



CAUSTIC
POSITION

SOURCE
POINT

Figure B.I Reflection from a curved surface,
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The electric and magnetic fields are related by

A

r = Zc H" x £ .

Since the tangential el.ectric field vanishes at the perfectly conducting

surface,

EZ(Q) = -Ez (Q) and

(B.3)

HZ(Q) = H'^
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APPENDIX C

6TD FOR A PERFECTLY CONDUCTING WEDGE

The material here is taken from [2],

The high frequency solution for the fields diffracted by the edge

shown in Figure C.I is known. Either face may be concave or convex.

The formulation is valid for any wedge angle WA = (2-n)ir. We shall only

need the half plane case (n-2), with the "o" face concave and the "n"

face approximately flat.

The solution is [2]

Dh(P,p')
 e"JKp (C.2)
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FIELD
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Figure C.I Diffraction by a wedge with curved faces,
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where

2n 2n
(C.3)

The "L" parameters of Ds ^ are chosen to correctly compensate for

any discontinuities in the incident and reflected fields. With a

cylindrical wave as the incident field, we have

L10 = Lin
P+P1

Lro = PPco (C.5)
P+PCO

Lrn = Ppcn (C.6)
P+Pcn

where pco and pcn are the caustic distances of reflection for fields

reflected from the "o" face and "n" face, respectively. They are

constants, and take on the values given by Equation (B.2) at the

reflection boundaries. This is unlike the caustic pr for the reflected

field, which varies with the aspect of the observer.

The general form of a±(\(;±\pl) involves a fairly long descrip-

tion [2]. It is a measure of the angular separation between the field

point, and a reflection boundary, or incident shadow boundary.
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However, for the case of a half plane (n=2) it is simply

a+(i|>±\|/) = a'^tip1) = a(\p±V) where

(C.7)

The "transition function" F is given by

F(x) = '2 j /TeJx / e-J^ dx . (C.8)
/x"

In the far field, F(x)-»-l and the solution reduces to Kel ler 's

results [4],

For our purposes, this completes the discussion of edge

diffracted fields.
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APPENDIX D

METHOD OF STATIONARY PHASE

The material here is taken from [3].

We wish to evaluate integrals of the type

b
I = j F(y)eJ

kf(y)dy (D.I)
a

where F is the magnitude, and f is the phase of the integrand. If

F(y) is much more slowly varying than f(y), and k is large, the

integrand will appear as in Figure D.I. Then, [3] shows that

I " F(v K ZTT e k f y s + s g n y s (D.2)
s k l f " ( ys ) l

+ 1 F(y=b) pJ['<f(b)-TT/2]
k f ' (y=b)

where f ' ( ys ) = 0 > i-e., ys is the stationary phase point.
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F(y)

' kf (y)

Figure D.I Typical behavior of the integrand, magnitude and phase,
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The first term of Equation (D.2) is the stationary phase

contribution, whereas the second two terms are endpoint contributions,

It has been assumed that the endpoints "a" and "b" are not near the

stationary point ys.
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