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CHAPTER I
INTRODUCTION

The reflector antenné may be thought of as an aperture antenna.
The classical solution for the radiatioh pattérn of such an antenna is
found by the "aperture integration" (AI) method. Success with this
method depends on’ how accurately the aperture currents are known
beforehand. In the past, geometrical optics (GO) has been employed to
find the aperture currents. This approximation is suitable for
calculating the main beam and possibly the first few sidelobes.

A better approximation is to use aperture currents calculated from
the "Geometrical Theory of Diffraction" (GTD). It will be found that
integration of_the‘GTD currents over an extended aperture yields more
accurate results for the radiation pattern. In fact, if the plane of
integration is ektended tb infinity, our solution is expected to be

exact in a "high frequency sense."



The radiation pattern away from the main beam may alternatively be
calculated directly from GTD without any integration. A fundamental
Timitation of this approach is that it usually fai]s.in the far zone
near the reflector axis. One exception,however, is the special case Qf
uniform aberture illumination. Then, GTD may be used to calculate the
‘far field pattern, arbitrarily close to the reflector axis. This
solution is exact in a high frequency sense.

| Because there exists an "exact" high frequency solution for the far
zone radiation pattern of a reflector anténna with a uniform aperture
field, this case will be used as a check on the validity of results
obtained by: 1) aperture integration of GO currents (which shall be
reféred to as "AI") and 2) integration of GTD currents over an extended
aperture (Which shall be called "AIE").

The far field radiation patterns of both offset and non offset
}eflectors will be examined. All discussions will deal with two |
dimensiona] modeis only. Except for Chapter VIII,Vit shall also be
assumed thg feed is a magnetic'1ihe source, with or without an amplitude
ftaper. Results for these conffgurations will reveal that the error
introduced by the GO approximation of aperture éurrents is more
serious.for an offset reflector than in the non offset case.

In Chapter VI, some general observations. are made about the
validity of GTD and AIAsolutions. It is known that evaluation of the
radiatioh integral by the method of stationary phase yields the
geometrical optics solution for the reflected field. Also, endpoint

contributions to the integral correspond to edge diffracted fields.



Since the GTD solution consists of reflected and edge diffracted rays,
one can decide whetheerr not GTD can be used to find the radiation
pattern from éxamination of the integrand in the Al solution.

A suitable criterion for choosing the limits of integration in a
practical application of AIE is discussed in Chapter VII. It will be
found that little is gainéd by integrating the aperture field beyond its
GTD transition regiohs.

Finally, Chapter VIII examines a two dimensional version of the
offset reflector treated by Chu and Turrin_[S]. In this case, an
electric line source feed is used. AI and AIE results are compared»with

GTD. Effects of varying the limits of integration are'a1so discussed.



CHAPTER Il
PRESENT METHODS AND PROBLEMS

The Al solution is limited by the accuracy of geometrical optics
used in calculating the aperture currents. Depending on the reflector
geométry and feed, the GO current approximation may or may not be
acceptable. OQur criterion of acceptability here is that the AI and GTD
solutions over]ap in our region of interesf,

One case where'the two solutions do not overlap is the offset
reflector of Chu and Turrin [5], as shown in Figure 2.1. The AI and GTD
solutions, calculated by the NEC reflector code [6] are shown in Figure
2.2. It is important to emphasize that this problem is not unique to
the NEC reflector code. Rather, it is a fundamental limitation of the

Al and GTD solutions.
| In general, the far out sidé1obes calcu}ated by Al tend to be too
low. On the basis of GTD considerations, a modified obliquity factor
for the Al radiation integral has been derived by Rudduck [7]. This
factor improves the Al sidelobe levels considerably, and is used in the

reflector code. However, in an offset reflector, the sidelobes
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Figure 2.1 Offset reflector of Chu and Turrin (from [5]).
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calcylated by Al tend to be too low, and also in fhe wrong.position.
This cannot be corrected by a simple factor.

Thfs prdb]em motivates a preliminary study of an offset reflector
in two dimensions. In particular, we will find that the GO current

approximation is not always adequate.



CHAPTER III
APERTURE FIELD METHOD

This chapter begins with a diécussion of the aperture field method.
It is well known [1] that the unique solution requires knowTedge of
cufrents over an aperture plane of infinite extent. For illustrative
purposes, we calculate the far field patterns of offset andbnon offset
reflectors illuminated by a magnetic line source. These patterns are
found by integrating aperture currents derived from'%he geometrical
optics (GO) approximation.v The results are also compared with solutions
that are_known to be exact in a high frequénéy sense. Errors in the
solution are attributed to the GO current approximation.

These errors motivate a searéh for a more accurate representation
of the aperture currents. We shall use currents calculated by GTD, and
“integrate them over a greater extent of the aperture plane. The result
is closer agreement with the exaét solution. This is to bé expected, in

light of the uniqueness theorem for electromagnetic fields [1].



A.  RADIATION INTEGRALS

We seek the solution fof the electromagnetic field problem in two
dimensions, as in Figure 3.1. By the uniqueness theorem [1], a
solution 1nside the region A, bounded by the perimeter o is uniquely
determined by: »

(1) the impressed electric and magnetic currents J(p'), and
M(p') inside A . |

and

(2) the surface electric and magnetic currents n x H(p"')

and E(p') x n on o.
We choose to neglect direct radiation from the feed. Then the solution
is completely determined by the surface currents on o1 and op.
Furthermore, from the Sommerfeld radiation condition, we argue that the
currents on og'do not contribute as paz>~. This reduces the problem to

finding the currents on the "aperture plane" oj. These currents follow

from
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The problem may be simplified further through the use of image
theory. Since we are only interested in the solution for x > 0, a
perfect conductor of magnetism may be introduced just to the left of
o]. This shorts out the magnetic current, and doubles the electric

current:



2n x H(y) , and

=
<4
— —
< <
s
1\

)=0 . o (3.1)

= -
o

An equally valid alternative representation results if an electric

conductor is introduced instead. Similar reasoning yields

35(Y)

Ma(y)

0, and

A

E(y) xn . (3.2)

Except for Chapter VIII, all our investigations use a magnetic line
source for illumination. The equations for an electric line source are
easily obtained by duality, and will not be discussed.

In our case, H(y) is always z directed. Using Equation (3.1), we

see J(y) will be y directed:

A

ydaly) = -§2Hz(y) .

~ .

For a y directed current as in Figure 3.2, the appropriate radiation

integral is (Appendix A)

H (;) 7/ 3k 7 : ( : )+ (-2H_(y')) e % dy' (3.3)
= Z . x . - . y
with
oo = |e-o'| = {p-y'|

where a prime denotes the variable of integration.. From Figure 3.2, we

see see that

10
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)
N

002 = {p cos¢)? + (p sing - y')2

= 02 +y'2 - 205" sing

so that the general expression for the near field radiation integral

with a magnetic line source becomes T

— . - -ikp
Hz(p) = [15 2 cos¢ [ P Hz(y') S____fl_dy' . (3.4)
: 8n -0 PQ . /B;_

This expression may be simplified for the far field. With p and Sb

para11e1,
po = p - y' sing and
z + (y x pg) = -COS$

so that the far field radiation pattern may be found from

- I3 . . ©o 3 ' - N
Ho(p) = e-dke [k 5 cos¢ [ H_(y") eIkY'SING 4o, (3.5)
z > S - :
The remaining problem is to find the aperture field. The following two
chapters shall examine two approximations for the aperture field: 60

and GTD.

t1t has been suggested by Rudduck [7] that the cos@ obliquity factor can
be replaced by cos(¢/2) if the aperture fields are found by geometrical
optics.

12



CHAPTER 1V
APERTURE -INTEGRATION WITH G.0. CURRENTS

As a first approximation, we now use GO to find the aperture field.
We shall refer to the solution obtained by integrating GO fié]ds as "AI"
(for aperture integration).

When discussing the GO rays, we shall take the origin of
coordinates as the parabola vertex - however, it will be more convenient
to redefine the y axis as the aperture plane when carrying out the

integration.
A.  CALCULATION OF GO APERTURE FIELDS

The general method of GO is outlined in Appendix B, and the
geometry relevant to our problem is in Figure 4.1.

For a parabolic surface with its focus at f,

X = y2/af

13



+— APERTURE PLANE g,

Figure 4.1 Geometry for calculation of GO aperture fields.
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The radius of curvature R. at the reflection point (Qx,Qy) is given by

' 2.3/2
IR | = [1 "’(dx/dy) 1 .
¢ d2x /dy2

In particuTar, for a parabola,

- 5.3/2
Re = -2f [1 + (Qy/2f)2]

From this, we calculate the caustic distance p" for the reflected field

Lol 4 _2
ol Po Rccose1

For the special case when the source is at the focus, xg = f,

Re = -2f sec3(a/2) ,
cosei = ¢co0s af2 , and
oo' = f sec? o/2 ,

so that pl+o, This means the image for the reflected field appears to
- be at infinity. Equivalently, the reflected field is a plane wave. The

spreading factor is

Alp ) = _o"
Pr * Po

When xq = f, we see A(pgy) = 1.

15



The reflected field With magnetic line source illumination is given by

— ~ -jk
Arefl = 2 Hinc(Qp)Ry A(pg)e JKeg ,

where R =1 is the reflection coefficient. For our case of a focussed

parabola, we find that

frefl - ; HinC(QR)e'jkpg -

Let us assume that the magnetic line source has as its field

A

e'Jkp.i

VP4

Tinc

H =z . , (4.1)

The GO aperture field then follows from

— ~ =jk{p;+
qrefl _ e Ik (e *a;) . _ (4.2)

P4

If f/D is greater than 1/2, we may neglect the 1/Vpi amplitude taper of

the aperture field. Then (4.2) may be reduced to

~refl ; e'jk(p1+po)
f .

(4.3)
with pj and py as in Figure 4.1. We shall use (4.3) for the aperture

field Hy(y'), in (3.5) to determine far field radiation patterns for the

offset and non offset reflectors of Figure 4.2.

16
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Figure 4.2 Offset and non offset reflectors.



B.  INTEGRATION OF THE CURRENT

Noting that pj + pg of Figure 4.1 is constant, the far field

radiation pattern follows from Equations (4.3) and (3.5):

H (p) = e-dke /3K 2cose 1(s) , (4.4)

where

éka(pifPO) b

ejky sind dy"
/T a

I(e) =

- oMeito) L kD(avb) /235100 sin(k[(b-a)72] sine)
Vi : kK sin¢

For the magnitude of the pattern, we see that

|H I « COS ¢ Siﬁ(k[(b:a)/2]§fﬁ¢)
i sing

This is the same for éither the offset or non offset cases! The GO
approximation for the aperture currents has failed to predict any
differences in the radiation patterns. This motivates a search for a
more accurate approximation of the aperture currents. In the next

chapter, we shall use aperture fields calculated by GTD.

18



CHAPTER V
EXTENDED APERTURE INTEGRATION (AIE) WITH GTD CURRENTS

In the previous chapter, We saw that GO was inadequate in modelling
the difference between aperture fields of offset and non offset
reflectors. In this chapter, we use the next best approximation--GTD,
to find the aperture fields. The field will be smooth and continuous
across the entire aperture, and nonzero outside the reflector rim. The
radiatfonvintegrals Qi]l be done numerically. Since the integration
extends beyond the reflector rim, we shall call this technique "extended

aperture integration"(AIE).
A. CALCULATIQN OF THE APERTURE FIELDS BY GTD

The details of app]ying GTD to calculate the aperture fields for
the reflectors of Figure 4.2 are first described. |

Thé general geometry is shown . in Figure 5.1. The field at (x,y)
has three contributions: the reflected ray, as calculated by GO in the

previous section; plus two edge diffracted rays which compensate for

19



discontinuities in the GO field. Higher order effects such as doubly
diffracted rays from Qg1 to Qg2 are neglected in this analysis.
Shadowing effects of the edges are also neglected.

The general form of the GTD solution is discussed in Appendix C.
Thé details for our particular app]icatidn are disclosed in the

following sections.
B. EDGE DIFFRACTED FIELDS

The procedure for calculating the diffracted field is the same for
both edges. Let us consider the upper edge of Figure 5.1. The incident

field L parameters are given by
Lo - in .10 e
The reflected field L parameters depend on the reflected field caustic

distance at the edge p{e. To prdper]y compensate for a discontinuity in

~the reflection from the "o" face,

re
ro_ Pl P1

where p{e is constant and is given by

p;e = p[ (QR=Qé1)

20
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Since we are dealing with a focussed parabola, c{e+w so that

Lr‘O = Pl
re
1+ 91/91
The field point never approaches the “n" face reflection boundary, so we

may safely neglect its cdrvature. Approximating it as a flat surface,

rn . P1°1

+
P17h

L

Since n=2 for the half plane edge, it follows that

lpliwl) .

(v ty) = 2cos’ (

This completes the description of all the necessary parameters for the
diffraction coefficient for-Qg1. The spreading_factor for this

diffracted ray is given by

A(pl) =_1 .
P

For our case of magnetic line source illumination, the field diffracted

from edge Qg1 is then given by

RAl = 7 Hi(Qe1) Dhy A(py) e-Jke1 , or
— ~ -jkpg -Jkp (5.1)
e ze T L oop e L.

vp vp

1 1

22



Similarly, for Qg2,

- ~ . -ikp, -jkp ‘
-2 e 2 opn,e % . (5.2)
3 76y

The total GTD aperture field is the sum of Equations (4.2), (5.1), and
(5.2): ’

o ﬁref1'+qd1+gdz a<y<b
H(y) = (5.3)

Adl + H42  ei1sewhere .
The G.0. (4.2) and GTD (5.3) aperture fields have been plotted in Figure
5.2 and Figure 5.5 for the non offset and offset reflectors of Figure
4.2,

It is easy enough to integrate the GO apefture field analytically,
as was shown in Chapter IV, however, numerical integration must be used
to integrate the GTD fields. Resulting radiation patterns for the non
offset reflector of Fiqure 4.2 are shown in Figure 5.3 and Figure 5.4.
We see that Al correctly predicts the main beam and first few sidelobes.
The results from fntegrating over an extended aperture (AIE) on -10 <y
< 10 is even better. This is to be expected, in 1light of the uniqueness
theorem. In fact, if the integration was carried over an infinite
aperture plane, we would expect the AIE and exact solutions to coincide.

We repeat the analysis for the offset reflector of Figure 4.2. The
aperture fields are shown in Figure 5.5. The resulting radiation
patterns are shown in Figure 5.6 and Figure 5.7. 1In this case, only the

first sidelobe can be found from the Al solution. Again, we see that

23



the AIE solution provides significant improvement over A.I., in the
first few sidelobes. Their magnitude, as well as position are closer to

the correct result.

24
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CHAPTER VI
GENERAL VALIDITY OF THE GTD SOLUTION

So far, we have only used GID to cé]cu]ate the.antenna apertqre
fields. It turns out that we need not be so restrictive. GTD can be
used to calculate the field anywhere except at and near “"caustics". A
caustic is a confluence of rays. Several examples are shown in |
Figure 6.1. |

The advantage of this solution is that no integration is required.
The reflected plus edge diffracted rays constitute the entire so]ution.

In this chapter, we sha]]irestrict our attention to the non offset.
parabola of Figure 4.2 In this case, we mayvuse GTD to calculate the
radiation pattern anywhere except in the far zone near the reflector
axis, where the parallel rays meet, i.e., a caustic. We now ask: How
close to a caustic does our solution remain valid?

For a focussed parabola, the x axis at infinity is always a
caustic, however we shall find that the extent of -the caustic region

depends on the amplitude taper of the aperture field. In particular,
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we shall find that if the apérturg field is constant, the extent of fhe
caustic region is infinitesimal. Consequently, in the fér zone, the
field point may come arbitrarily close to the x axis. This is the
origin of the "exact" solution referred to in previous chapters.

When using GTD to calculate aperture currents along o1 of Figure
3.1, no problem arose beéause the field point is deep into the near
zone, far away from the caustic.

For a complete discussion, we shall examine near and far field
patterns for the non offset ref]éctor of Figure 4.2, with and without a
feed amplitude taper. As before, a magnetic line source feed is used
throughout. The "nonuniform" aperture field taper used is "parabolic

squared" on a pedestal, down 10 dB at the reflector edge.
A. FAR FIELD GTD AND AI SOLUTIONS WITH A UNIFORM APERTURE FIELD

Let us now consider the GTD solution for the reflector in FiguEe
6.2 with the field point at infinity, making an angle ¢ with respect to
the x axis. The reflected ray»is always parallel to the x axis, unlike
the diffracted rays which may point in any direction. We see that for ¢
+ 0, the reflected ray does not contribute to the far field solution.
‘Only the two edge diffracted rays are needed!

- It may seem unreasonable that the far field pattern is only

dependent on the reflector illumination at the edges. To reinforce the
credibility of such a result, we shall examine the corresponding Al

solution more closely.
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Reconsider the far field integral (4.4)

H. (o) =e-Jke_ ik 2cos¢ 1(¢) , where
z e \/ &

-jk(pstpy) b=5

pJky'sing dy'
- as-5

1(6) = ¢
“Although this case can be integrated in closed form, this is not the

issue we want to pursue. Rather, we wish to show‘that the result of the
integral is only affected by the value of the integrand at the
endpoints, or "edges" of the reflector.

" The real part of the integrand has been plotted with ¢ a parameter,
in Figure 6.3. Thesé results exhibit two very interesting properties.
First, we note that k=2w/X can always be made large enougﬁ so that the
integrand oscillates rapidly for ¢#0. Choosing k large is the fhigh
frequency assumption" of our so]ufion. Second, we note that for a
rapidly osci11ating integrand, the positive and negative areas will
cancel, uhtil the integration is terminated.. This means the only
contributfon to ouf solution occurs at the endpoints of integration,
i.e., the "edges". Similar reasonihg holds for the imaginary part of
the integrand, but it is hot shown.

From the above discussion, we conclude: given a constant aperture
field, the complete far field, high frequency solution for ¢#0 is given
by the two edge diffrqcted rays of the GTD solution. This result is
extremely important to us, in that we can readily thain exadt; high

frequency solutions for the offset and non of fset reflectors we have
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been discussing. The "exact" GTD solutions, found from the two
diffracted rays are shown in Figures 5.3 and 5.6 for the non offset

and offset cases, respectively.
B. NEAR FIELD GTD AND AI SOLUTIONS WITH A UNIFORM APERTURE FIELD

Let us reconsider tHe non offset reflector of the previous section
with the field point in the near zone. Unlike the far zone case, now
the GTD solution consists of three rays. The reflected ray does
~ contribute to the near field solution. In fact, the GTD solution used
to calculate the aperture fields of AIE is the near field solution.

The GTD model requires that the reflected and.diffracted rays be
well defined. One can appreciate that with increasing distance, it
_.becomes increasingly difficult to identify the reflection point on the
reflector. This inadequacy of the model for the reflected ray component
of the GTD solution is a fundamental 1imitatfon of the method.

The next section examines the corresponding near field Al solution.
We shall find that not oh]y do the endpoint contributions correspond to
"edge diffractions, but in addition, the integrand has a point‘of
stationary phase, correspondingvto the.geometrical optics reflection

point.
C. GEOMETRICAL OPTICS AND THE METHOD OF STATIONARY PHASE

With a uniform apertufe field, the near field radiation integral

(3.4) becomes

- - . _jke, _
Ho(p) = /3K 2cos¢ e * 1) ' _ (6.1)
Z “ . . /r' .
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where
pg = path length from the source to the aperture plane

(a constant),

_ o -jk
I(p) = p | e_J_;})? dy' | | , . (6.2)
-0 p . -

0

“and as in Figure 3.2,

2 2 2 .
po =90 *y' =-2py'sing .

~ The integral (6.2) is of the form

[v]

() = [ Fly")edkFU") gyt | - (6.3)

-0

where F(y) is the magnitude, and f(y) is the phase of the integrand.

Here, the phase function is

-f(y') = oo = /o2 +y'2 - 25 y'sing .

It is stationary when df/dy' = 0:

df =  y'-psing = -
dy" /o2 +y'2 - 25 y'sing

which occurs at

y' = psing .
The point of stationary phase corresponds to the reflection point, as

shown in Fiqure 6.4.
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Figure 6.4 - Stationary phase point in the_apertdre plane.

To illustrate the behavfor of the integrand, ﬁts real part has been
piotted for various field points (x,y)_{n Figure 6.5 and Figure 6.6.
From Figure 6.5 we see that with increésing X, the sharpness of the
statidnany phase point is less pronounced. Figure 6.6 has no stationary
phase point. |

The near field radiation integral may be evaluated by the method of

stationary bhase (Appendix D). To apply this method, the phase f(y)

- must be rapidly varying, where the magnitude F(y) is slowly Qarying.

Applying the prescription of Appendix D to Equation (5.2) we obtain
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.T(p) = /EE S:ﬂhffgif + endpoint contributions R
Jk cos¢

so that

=3k (o)

H(p) = —

+ endpoint contributions .
We recognize that the first term is the same as (4.3), the GO.result.
Thus we have established the relation between GO and Al via the method
of stationary phase.

Near field radiation patterns at a distance of p = 50X are shown in
| Figures 6.7 and 6.8. As exbécted, we have excellent agreement in the

main beam and first few sidelobes.
D. FAR FIELD GTD AND AI SOLUTIONS WITH A NONUNIFORM APERTURE FIELD

The case of a nonuniform aperture field is more troublesome. As in
the uniform case, the GTD solution follows from the two edge diffracted
rays. Still, the far field GTD pattern only depends on the reflector
illumination at the edges. However, we shall find that the extent 6f
the caustic region is much greater than in the far field case with
uniform illumination. It will be shown that when the‘fie1d point is too
close to the caustic, the integrand of the AI solution is not suitable

“for the method of stationary phase.
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For illustrative purposes, we use a "parabolic squared on a
p q

pedestal" aperture i]lumination,'given by

2
F(y) = ¢ + (1-c) [1 - (%)2]. with (6.4)
a=>5
c =0.398 .

The edge illumination.is 10 dB below the maximum value. The GO and
GTD aperturé fie1ds along o1 of Figure 3.1 for this case are plotted in

Figure 6.9. The far field radiation integral (3.5) becomes

H (;) = exdke JK 2 cos¢ I(;) where (6.5)
_, _bs5
I(p) = [ Hy(y') eJky'siné qy'
a=-5

As before, we examine the integrand of I(p). The real part has been
plotted in Figufe 6.10 with ¢ as the parameter. The results are similar
 to Figure 6.3 except that they have been "modulated" by the amplitude of
the abérture field., Far away from the x axis caustic, the integrand
oscillates sufficiently rapidly so that positive and negative areas
cancel. As before, the only contributions to thé integral are from
endpoints. However, when the field point is_near the x axis, the
integrand does not oscillate rapidly. This is where the GTD solution

begins to fail. This occurs at about ¢=30° for our case.
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From Figure 6.12 we see that the GTD and AIE solutions begin to
disagree for ¢ < 30°, An even more serious problem is that shown in
Figure 6.11.. The GTD and AI solutions do hot bverlap at all! 1t is
true that - GTD is useful for calculating far out sidelobes and that Al is
good for calculating the main beam. In fact, the main beam of the Al
and AIE so]utions agree éuite well. However, if is important to note
that AI and GTD solutions do not necessarily have a common region of
validity because both have their limitations. The AI has an approximate
aperture field with a limited aperture width, whereas GTD has caustic

regions within which it is not valid.
E. NEAR FIELD GTD AND AI SOLUTIONS WITH A NONUNIFORM APERTURE FIELD

We have already used the near field .GTD solution to_ca]cu]ate the
extended aperture fields of the previous section. The field point in
such a case is deep in the near field, so that the solution is generally
‘well behaved. Rather, what we need to investigate here is: How far
away fromlthe antenna, along the reflector axis, does the GTD so]ution
“ begin to fail? Or equivalently, what is the extent of the caustic
region? |

| Our discussion is again based on the behavior of the Al so]utioh's

integrand. We have

Hz(p) = /%% 2 cosd I(x,y) , where

b=5b . -jkpo
] £ H(y') &
==5 Po Yo,

o' (6.6)

I{x,y)

a

which follows from (3.4).
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Figure 6.11 Far field radiation pattern with nonuniform aperture

illumination. AI solution.
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The integrand has been plotted for several field points in Figures
6.13 and 6.14.

From Figure 6.13 we see that deep in the near field, when (x,y) =
(2,1), the integrand oscillates sufficiently rapidly so that the method
of stationary phase can be applied. However, at (x,y) = (12,1) the
"modulation” due to the aperture field taper is no longer slowly varying
with respect to the oscillations of the integrand. We see that with
increasing x, positive and negative contributions to the integral will
not cancel. Because these cancellations are no longer occurring, we no
longer have well defined stationary point and endpoint cqntributions.
We are unable to model the reflector in terms of these three
contributions. Cohsequent}y, the GTD solution begins to fail for large
ps near the reflector éxis. This should come as no surprise, because
~one of the basic postulates of GTD‘ils that it fails at and near
céustics. The x axis at infinity is a caustic of reflected rays for a
focussed\parabola.

~Figures 6.15 through 6,17 compare Al with GTD. Figures 6.18 and
6.20 compare AIE with GTD. The point of interest here is not that AIE
works better than AI, butvthat GTD fails when the method of stationary
phase fails, i.e., at large p, near the reflector axis. From these
figures, we see fhat this is a problem, even in the Fresnel zone, at

=502,
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Figure 6.14
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aperture illumination. AI solution.
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CHAPTER VII

CHOOSING THE LIMITS OF INTEGRATION FOR AIE

Since it becomes impractical tb carry out an aperture integration
over a very 1arge aperture plane, choosing the 11mi£s of integration
deserves more investigation.

The most serious error§ in using aperture fields calculated from.GO
occur when: (1) the illumination of the reflector edge is strong, and
when (2) the reflector edge is not close to the aperture plane.

As a case study, we examine the offset réf]ector of Figure 4,2 with
uniform i]]dmination. The aperture field for this casevis shown in
Figure 5.5, and is plotted again for a greater range of y, in Figure 7.1
The results of varying the limits of integration are shown in Figure 7.2
through 7.4. 1In all three cases, the aperture field used is calculated
from GTD. | |

By extending the aperture 3X on the lower edge and 2X on the upper
edge, a substantial improvement in the far field radiation pattern
occurs. This can be seen by comparing Figure 7.3 and Figure 7.2. On
the other hand, we see from Figure 7.4 that 1itt1e more is gained by

eXtending the aperture plane by 30X on both sides of the reflector.
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The aperture field of Figure 7f1 is rapidly varying, near the
reflection boundaries at y=0 and y=10. Near these regions, the
transition function F in the diffraction coefficient Dy (see Appendix C)
cdmpensates for discdntinuities in the reflected f%e]d. 0f the four
terms in Dp, the one which compensates for a discontinuity in reflection

from the "0" face of the reflector is the fourth term of Equation (C.3):

~e=d /8 o (m=(0tD)y F(kL™Ca (pr')) . (7.1)
2nv21k en . '

The region where the aperture field is rapidly varying is known as a
“transition region" [2], and the argument of F is less than 2x in that
region. ‘ |

The values of kL'%a for the upper and lower edges are in Table 7.1
as a function of y. For the upper edge, kLM%a > 27 when y > 12. For
the lower edge, kL"%a > 27 when y < -3. This suggests little is gained
by integrating the apertufe field beyond the extent of its transition
regions. The convergence of the AIE éolution to the correct result is

extremely slow past the fifth sidelobe or so.
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TABLE 7.1
kLa PARAMETERS FOR THE APERTURE FIELD

APERTURE UPPER LOWER
POINT EDGE EDGE
y/x kLFOa kL"O4
-5.0 88.174 17.787
-4.0 81.906 12.566
-3.0 75.640 7.808
-2.0 69.376 3.805
-1.0 63.117 1.020
-0.0 56.862 0.000

1.0 50.613 1.020
2.0 44,373 3.805
3.0 38.146 7.808
4.0 31.936 12.566
5.0 25.755 17.787
6.0 19.623 23.299
7.0 13.586 29.002
8.0 7.766 34,834
9.0 2.603 - 40,758
10.0 0.000 46.749
11.0 2.603 . 52.790
12.0 7.766 58.869
13.0 13.586 64.979
14.0 19.623 71.112
15.0 25.755 77.265
16.0 31.936 83.433
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CHAPTER VIII
ADDITIONAL RESULTS

In this chapter, a two dimensional counterpart of the Chu-Turrin

offset reflector is examined. This case has the following parameters:.

18.8x

aperture width D/2

focal distance f 9.4

and is shown in Figure 8.1.
Unlike our previous investigations, an electric line source feed is

used, with a parabolic on a pedestal aperture field given by

9.40

[«})
]

= 0.211

)
i
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The maximum value occurs at the center of the aperture, and the edge
illumination is down by 13.5 dB. The 1/v¥ amplitude taper of the
‘reflector has been neglected in this analysis.

The aperture plane is pdsitioned at GAp'= 10x. This is 0.6x
away from the reflector edge. The GO and GTD aperture fields have been
plotted in Figure 8.2. Its GID transition regions éxtend to about
-5) at the 1ower'edge, and 21X at the upper edge. Resulting Al and AIE
soiutions for the far field radiation patterns are shown in Figures 8.3
ahd 8.4.

We see that by integrating over the extent of the aperture field
transition regions, the AIE and GTD solutions will overlap at ¢ = -15°
and ¢ = 18°, Inside thfs region, the GTD solution is too low because it
is failing near a caustic. Outside this region, the AIE solution is too
low because the integration is not carried out over an infinite aperture
plane. |

Figure 8.4 represents about the best result that can be expected
,from.an AIE solution. Figure 8.5 shows the AIE solution when the
aperture plane has been extended by 20X on either side of the reflector.
We see that very little is gained from integrating beyond the aperture
field transition regions. In fact, the AIE result converges to the GTD

result extremely slowly, past the fourth or fifth sidelobe.
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Figure 8.1 Two dimensional model of the Chu-Turrin offset reflector.
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f=9.9)
/2= 138X
sa= (PN

GTD
G.O.

Figure 8.2 Apertdre field for the reflector, with electric line source
illumination and a "parabolic on a pedestal" amplitude
taper. f = 9.4, and D/2 = 18.8).
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Figure 8.3 Far field radiation pattern with nonuniform perture

illumination. AI solution.
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/\ LIMITS OF INTEGRATION
-5X < y < 21X

Figure 8.4 Far field radiation pattern with nonuniform aperture

illumination., AIE solution.
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Figure 8.5 Far field radiation pattern with nonuniform aperture

illumination., AIE solution.

73



CHAPTER IX
CONCLUSIONS
) ,

The method of extended aperture integration (AIE) is useful when
the more conventional AI and GTD solutions do not overlap. Otherwiée,
it is best avo%ded because of the additionai integration required.

Based on this- study, AIE seems to give good results for the first
four or five sidelobes with only a moderate extension of the aperture
plane. Little is gained by integrating the aperture field beyond the
extent of its transition regions. The convergence of the AIE solution
to the correct result is extremely slow, past the fourth or fifth
sidelobe. It is not a good way to ca1cu1afe far out sidelobes.

Strictly speaking, the aperture plane must ﬁot get too close to the
reflector, hecause GTD may not be valid there. In practice, however,
the aperturé plane may be moved right up to the reflector. Any errors
in the edge diffraction calculations will average out in thé integration
proceés, and will not affect tHe final result. This is useful because
the extent of the aperture field transition regions may be minimized by
moving the aperture plane as close as pbssible to the reflector rim.

This minimizes the amount of additional integration necessary. However,

74



i

the apertureAp]ane should remain perpendicu]ar.to the main beam of the
antenna. ‘

The AI solution works best for a reflector with -a highly tapered
feed. With little edge illumination, geometrical optics does quite well
in approximately the aperture field. On the other hand, a feed taper
increases the extent'ﬁf the caustic region - a situation highly
unfavorable for the GTD solution. We see that favorable conditions for
both so]utioﬁs are mdtua]]y exclusive. Because of this, the angle at
which we can switch over from an AI or AIE solution to a GTD so]ﬁtion
will increase as feed taper increases.

Although this work only treats the special case of a parabolic
reflector, AIE may be used for any aperture antenna.

A planar aperture was used in this study because it facilitates
application of image theory. The free space Green's-function may then
be used in the radiation integral to obtain the radiation pattern.
Another possible approach would be to comp]ete1y enclose the antenna by
a sufface, and calculate both Jg and Mg over the entire surface.
.Integrating these currents would give the radiation pattern anywhere
outside-the surface. Such an approach would be interesting, but
probably not advantageous, because GTD with AT or AIE can be used to
calculate the complete radiation pattern.

In a realistic three dimensional problem, vertex diffractions would
have to be inpluded in AIE aperture field calculations. Its validity in
the extreme near field would have to be investigated. Based on the
promising_resu]ts in two dimensions, further investigations in 3-D seem

worthwhi]e.
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'APPENDIX A
" RADIATION INTEGRALS

A

For an & directed electric current as in Figure A.1l, we have

A A

dH, = 7 - (2xp) (-jk/4) Jy H1(2) dg .

Using the large argument from of Hl(z) and integrating,

A ~ A

H, = ko [z (axp) J, e=Jke 4o . : (A.1)
8m  all SR |

currents

~

By duality, an 2 directed magnetic current radiates as

A A A

E, =/k_ [z« (2xp) M, e-dke 4, . o (A.2)
8t all Yo _ '
currents

~

For a z directed electric.current as in Figure A.2, we have

dE, = -kZo/4 J, Ho(2)(kp)d2 .
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Figure A.1. An & directed current element.
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Figure A.2.

A

A z directed current element.
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Using the large argument form of HO(Z) and integrating,

£o=-z [k &3TA g g etdke g

yA o) S all Z 3
currents -

~

By duality, a z directed magnetic current radiates as

Ho = -y A /K. &34 [ g etike g4y
z oV 3 : z T
¥ dm all P :

currents
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APPENDIX B
GEOMETRICAL OPTICS IN TWO DIMENSIONS

The material here is taken from [2].
For a perfectly conducting surface as shown in Figure B.1, with
radius of curvature R, the E or H field may be found from its value at

Q:

£, (%) = E (Q), /-2l e I*fs
FANNE 4 ol +2 , and
S
(B.1)
Ho(2g) = H(Q)y [—8f e7Ik%s
> pr+£
S
where the caustic distance of reflection p" is given by

J_:_l-_+ 2 . (8.2)
of % R cosdl :

R is the radius of curvature for the surface at Q, and 6l is the angle

between the incident ray and the surface normal vector at Q.

79



FIELD POINT

-~
\/
N

\

A
2

R
SOURCE
POINT
CAUSTIC
POSITION

Figure B.1 Reflection from a curved surface,
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The electric and magnetic fields are related by

Since the tangential electric field vanishes at the perfebt]y conducting

surface,

E,(Q) = -Elnc(Q) and
| (8.3)
H(Q) = Hy (Q) .
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APPENDIX C
GTD FOR A PERFECTLY CONDUCTING WEDGE

The material here is taken from [2].

The high frequency solution for the fields diffracted by the edge
shown in.Figure C.1 is known. Either face may be concave or convex.
The formulation is valid for any wedge angle WA = (2-n)w. We shall only
need the half plane case (n=2), with the "o" face concave and the "n"

face approximately ffat.

The solution is [2]

£5(0) = EJ"(6) D (osp") 3K

z z Vo (€.1)
HI(e) = H)"(0) D, (prp') £2IKP - (c.2)
7o
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Figure C.1 Diffraction by a wedge with curved faces.
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where

- -e-Jn/4 +{p-¢') in_+, -(y-v') io .- __ '
Da iﬁr_Vi;E[cot(ﬂ;jiﬁr___)F(kL 2" (-9 Jrot (LW ))F (kL1007 (4-4))

+1

{ cot(r_’f(_évr:il)p(u'""a*(w')+cot(rL\2v:_¢'l)F(kL'”°a’(¢+¢'))}] .
(C.3)

The "L" parameters of Ds,h are chosen to correctly compensate for
any discontinuities in the incident and reflected fields. With a

cylindrical wave as the incident field, we have

L1 = "= oo (c.4)
ptp :
LTo - PPco ' : (C.5)
ptoco ' .
Lrn = PPcn ' (C.6)
P*tPcn ' T

where pcq and pcp are the caustic distances of reflection for fields
reflected from the "o" féce and "n" face, respectively. They are
constants, and take on the values given by Equation (B.2) at the
reflection boundaries. This is unlike the caustic pr_for the reflected
field, which varies with the aspect of the observer.

The general form of a*(yty') involves a fairly long descrip- ‘
tion [2]. It is a measure of the angular separation between the field

point, and a reflection boundary, or incident shadow boundary.
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However, for the case of a half plane (n=2) it is simply

at(ypty') = a~(vxy') = a(y*y') where

a(yte') = 2 cos? (¥') -

The “transition function" F is given by

F(x) = 2§ /X edx [ =377 dr .
| VX

In the far field, F(x)+1 and the solution reduces to Keller's

results -[(4].

For our purposes, this completes the discussion of edge

diffracted fields.
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APPENDIX D

METHOD OF STATIONARY PHASE

The material here is taken from [3].

We wish to evaluate integrals of the type

1= ] Fy)edkf(¥)gy RS

VT

where F is the magnitude, and f is the phase of the integrand. If
- F(y) is much more slowly varying than f(y), and k is large, the

 integrand will appear as in Figure D.1. Then, [3] shows that

U RO [y e sen (T eD] (0.2)

F(y=a) oilkf(a)-n/2]
fily=a)

P o

F(y=b) Jxf(b)-m/2]
Fi(y=

b

by )

y

there f'(yg)=0, i.e., yg is the stationary phase point.
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AF(y)

Figure D.1 Typical behavior of the integrand, magrﬁ'tude and phase.
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The first term of Equation (D.2) is the stationary phase
contribution, whereas the second two terms are endpoint contributions.
It has been assumed that the endpoints "a" and "b" are not near the

stationary point ys.
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