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IMPLICIT MARCHING SOLUTION OF COMPRESSIBLE VISCOUS
SUBSONIC FLOW IN PLANAR AND AXISYMMETRIC DUCTS

Charles E. Towne

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

and

Joe D. Hoffman
Purdue University

West Lafayette, Indiana

a SUMMARY

A new streamwise marching procedure has been developed and coded

for compressible viscous subsonic flow in planar or axisymmetric ducts

with or without centerbodie:. The continuity, streamwise momentum,

cross-flow momentum, and ener gy equations are written in generalized

orthogonal curvilinear coordinates. To allow the use of a marching

procedure, second derivatives in the streamwise direction are neglec-

ted, and the pressure in the streamwise momentum equation is written

as the sum of a known twn-dimensional imposed pressure field and an

unknown one-dimensional viscous correction. For turbulent flow, the

Reynolds stress and turbulent heat flux terms are modeled using two

different two-layer eddy viscosity turbulence models.

Prior co each main marching step, a preliminary marching step is

taken ir ► which the integral mass flow rate equation and an uncoupled

form of the streamwise momentum equation are solved simultaneously to

obtain the viscous pressure correction. During the main marching step

the four governing equations are solved simultaneously as a coupled

system using an implicit finite-difference method, with the viscous

PRECEDING PAGE BL&NK NOT FILMED
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pressure correction treated as a source term. The equations are

linearized to second-order accuracy without using iteration by expand-

ing each unknown term in a Taylor series in the streamwise direction.

Results are presented for developing laminar flow in a circular

pipe. laminar flow in a two-dimensional converging channel (Jeffery-

Hamel flow), developing turbulent flow in a circular pipe, turbulent

flow in a two-dimensional S-duct, and turbulent flow in a typical sub-

sonic diffuser for a supersonic inlet. For all test cases, the results

are compared with data and/or exact solutions.

The computed results agree very well with the data and exact so-

lutions for tf, laminar cases studied. The results for the turbulent

cases also agree well with the data, although not quite as well as for

laminar flow. The viscous pressure correction properly accounts for

the effect of viscous blockage on the streamwise pressure gradient.

n
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SECTION 1

INTRODUCTION

1.1 GENERAL BACKGROUND

The computation of viscous subsonic internal flow has many engi-

neering applications. The design or analysis of a subsonic jet engine

system, for example, requires the computation of flow through the inlet

and nozzle. Even a supersonic inlet requires a subsonic solution in

the diffuser.

The traditional method for computing subsonic flow in a duct is to

first use an inviscid analysis to get a pressure field in the main

core flow region, and then to use a boundary layer analysis to account

fo- the viscous effects near the walls. If the boundary layers grow

large enough to have a blockage effect on the core flow, however, some

type of patching or iteration between the inviscid and boundary layer

analyses must be done. If the boundary layers grow further, so that

they merge as,d fill the duct with viscous flow, this method breaks

down completely.

One approach that can be used in this situation is to solve the

complete Navier-Stokes equations. Since these equations are elliptic,

they are usually solved by time-dependent or relaxation techniques,

requiring large amounts of computer time and storage.
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For many flows, however, a complete Navier-Stokes solution is not

necessary. If the flow conditions and geometry are such that elliptic

effects in one of the coordinate directions can either be ignored or

assumed known a priori, a marching solution procedure can be used.

This requires that viscous and thermal diffusion in the streamwise

direction be neglected. In addition, special treatment of the stream-

wise pressure gradient is normally required, since the pressure field

in subsonic flow is inherently elliptic. Physically, these assumptions

imply a relatively high Reynold's number flow without abrupt changes

in geometry and without flow separation.

1.2 EARLIER WORK

All previously published marching methods for viscous internal

flow, of course, neglect streamwise diffusion. However, they differ

considerably in several details, including the form of the equations

being solved, the degree of approximations and/or simplifications in-

volved, the treatment of the streamwise pressure gradient, the degree

of coupling between equations, the treatment of compressibility, and

the numerical method used.

An early effort in this area was that of Anderson (Refs. 1-3). He

developed a method for analyzing compressible axisymmetric flow with

or without swirl by assuming that the cross-flow velocity v is of

order a and then neglecting all O (6 2 ) terms. In addition, sev-

eral other terms are neglected that involve either derivatives of

metric scale coefficients or streamwise derivatives of v. An inviscid

cross-flow momentum equation is used, with all of the convective terms,
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neglected (for zero swirl) except the one involving the derivative of

the metric scale coefficient in the cross-flow direction. Thus, the

cross-flow pressure grad i ent is balanced by the curvature of the coor-

dinate lines parallel to the wall. The coordinate lines are given by

the streem;ines and potential lines from a planar potential flow solu-

tion. In his ori g inal work (Ref. 1), Anderson uncoupled the equations

and so l veu them using an explicit numerical method. He later modified

the analysis by expanding the depende•it variables in a Taylor series

in the marching direction and solving the resulting equations impli-

citly (Refs. 2-3). In this formulation, the equation of state and the

definitions of the two shear stresses, heat flux, and entropy (the

energy equation dependent variable) are treated as independent equa-

tions. The implicit solution is thus accomplished by the inversion of

a block tri-diagonal matrix with 10x10 sub-matrices. This method has

been widely applied to flows in subsonic diffusers (Refs. 4-1).

In Anderson's method, because of the simplifications made to the

governing equations, the streamwise pressure gradient p £ can be

treated like an, other tern. However, as demonstrated by several other

authors (Refs. 8-11), when a more complete form of the cross-tlow mo-

mentum equation is solved, special treatment of the streamwise pressure

gradient is required.

In the three-dimensional method of Patankar and Spalding (Ref. 9),

the streamwise pressure gradient p t is assumed to be a function

of streamwise distance only. Thus, the pressure gradient in the

streamwise momentum equation is uncoupled from those in the cross-flow

momentum equations. To advance the solution one marching station using

the Patankar-Spalding method, the proceaure is as follows:
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1. Guess a value for p  W. In practice the value for the

preceding step would normally be used.

2. Solve the streamwise momentum equation, uncoupled from the rest

of the equations, for the streamwise velocity u using an implicit

numerical method. Since the continuity equation has not yet been used,

the computed mass flow rate will, in general, be incorrect.

3. Correct pt , using an integral equation derived from an

approximate inviscid form of the streamwise momentum equation, to get

the correct total mass flow rate.

4. Correct u to be consistent with step 3.

5. Guess a pressure distribution in the new cross-flow plane.

Again, in practice the values at the preceding station would be used.

6. Solve the cross-flow momentum equations, uncoupled, for the

cross-flow velocities v and w.

7. Correct the cross-flow pressures by solving a two-dimensional

Poisson equation lerived from the continuity equation and approximate

forms of the inviscid cros,-flow momentum equations.

8. Correct v and w to be consistent with step 7.

9. Solve the energy equation, uncoupled, for the temperature dis-

tribution at the new station.

If the flow is compressible, the density would presumably be updated

after step 9, although this is not clear in Reference 9. Mult;ple-sweep

variations of this method, ter ,,,ed "partially-parabolic" procedures,

have also been used (Refs. 12-14). However, by sweeping the entire
3

flow fiend several times, much of the advantage of a marching solution

over a complete Navier-Stokes solution is lost. The Patankar-Spalding
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method has been applied to straight pipes with circular, square, and

polar cross-sections (Refs. 9, 11, 15-16), to curved circular pipes

(Refs. 17-19), and, with iteration at each station to reduce lineari-

zation errors, to a D-shaped transitioning duct (Ref. 15).

The method of Briley (Ref. 20) is similar in concept to that of

Patankar and Spalding, but is somewhat more rigorous and differs con-

siderably in detail. He splits the pressure into an inviscid contri-

bution P and a viscous correction p'. The inviscid contribution is

assumed to be known a priori, and is used to bring elliptic effects of

the geometry into the solution. The pressure correction term in the

streamwise momentum equation is uncoupled from the correction terms in

the cross-flow momentum equations in the manner suggested by Patankar

and Spalding. The method for computing this pressure, however, is

different. Briley's procedure for advancing the solution one step is

as follows:

1. Guess a value for p^(t). Again, in practice it would be

lagged one step.

2. Solve the streamwise momentum equation, uncoupled, by an ;mpli-

cit method.

3. Correct pE, using secant iteration on steps 1 and 2, to get the

correct total mass flow rate.

4. Solve the cross-flow momentum equations (uncoupled), using a

lagged pressure field, to get predicted cross-flow velocities v 

and wP.

5. Solve a two-dimensional Poisson equation for V, where

is a velocity potential for the cross-flow • ^'^ 	 PAMMA^^;AMf
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and wC. This Poisson equation is derived from the continuity equa-

tion by assuming the cross-flow velocity corrections are irrotational.

b. Compute v  and wC from ♦. Note that with this formulation

v 
	 and wC will have non-zero values at the wall, and therefore the

final cross-flow velocities will not satisfy the no-slip boundary con-

dition.

7. Correct the pressure field used in the cross-flow momentum equa-

tions by solving a two-dimensional Poisson equation derived from the

cross-flow momentum equations.

8. Solve the energy equation for the temperature at the new sta-

tion.

As presented in Reference 20, Briley's method is for incompressible

flow, so the requirement for updating the density does not arise.

This method was later improved by Briley and McDonald (Ref. 21)

and by Levy, McDonald, Briley, and Kreskovsky (Ref. 22). In the newer

method, the velocity is split into a primary (streamwise) component

and a secondary (cross-flow) component. The secondary flow component

is split further into irrotational and rotational contributions, which

are presumed derivable from a secondary flow velocity potential and

stream function, respectively. The pressure is split as in Briley's

original method. To march one step with this method, the procedure is

as follows:

1. Guess pE(t).
2. Solve the streamwise momentum equation, the energy equation,

and an approximate equation of state for the primary velocity u, the

static enthalpy h, and the density p. In many applications, the
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total enthalpy is assumed constant, which eliminates the requirement

for solving the energy equation.

3. Correct p using secant iteration on steps 1 and 2, to get the

correct total mass flow rate.

4. Solve a two-dimensional Poisson equation for 9, where

is the velocity potential for the irrotational component of the cross-

flow velocity. This Poisson equation is derived from the continuity

equation.

5. Solve an approximate transport equation for a and a two-

dimensional Poisson equation for * as a coupled system, where

u is the streamwise vorticity and * is the stream function for

the rotational component of the cross-flow velocity. The streamwise

vorticity equation can be derived from the cross-tlow momentum equa-

tions. The Poisson equation for * is simply the definition of

streamwise vorticity written in terms of the secondary flow stream

function.

b. Compute the cross-flow velocities from 4p and *.

With this formulation, no explicit correction is made to the pressure

in the cross-flow momentum equations, since it does not appear in the

vorticity transport equation. At the end of a calculation one could

solve a three-dimensional Poisson equation for the pressure field since

the velocities are known. In practice, however, this has not been

done. The method has been applied to straight circular pipes

(Ref. 22), curved ducts of rectangular cross-section (Refs. 21,23), a

turbine blade passage (Ref. 21), and mixer nozzles (Refs. 24-16).
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A method has been developed by Dodge (Ref. 27) for three-dimen-

siunal incompressible flow that is quite different from the preceding

methods. He splits the velocity into inviscid and viscous components 	 {

V i and V v, respectively, and assumes that the inviscid component

is derivable from a velocity potential r. That is,

i

VV+V =v4p +Vi	 V	 v
1

This expression is substituted into the three momentum equations. It

is then assumed that the pressure gradients in all three directions

are balanced by the purely potential terms. Thus, the pressure

gradients are eliminated from the momentum equations, which can then

be solved for V v by a marching technique if v is known. When the

assumed velocity split is substituted into the continuity equation, the

result is a three-dimensional Poisson equation for i if V v is

known. The numerical procedure is thus:

1. Guess a three-dimensional potential tiela (or, equivalently, a

pressure field).

2. Solve the three momentum equations throughout the flow field for

V v using a marching procedure. It is not clear in Reference 27

whether an explicit or implicit method is used.

3. Solve the three-dimensional Poisson equation, using the results

for Vv from step 2, to get a new potential field.

4. Iterate steps 2 and 3 until convergence.

Note that this method involves multiple sweeps of the computational

domain. As with the "partially-parabolic" variations of the Patankar-
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,palding method, if more than a few sweeps are needed, a complete

Javier-Stokes solution might be preferred.

,.3 PRESENT WORK

In the present study, a new streamwise marching procedure was de-

eloped and coded for compressible viscous subsonic flow in planar or

ixisymmetric ducts with or without centerbodies. As in the previously

iescribed methods, second derivatives in the marching direction are

neglected. The remaining second-order viscous terms are retained,

however, since they can be included within the framework of a marching

procedure.

Following Briley (Ref. 2U), the pressure in the streamwise momen-

tum equation is written as the sum of a known two-dimensional inviscid

contribution P and an unknown one-dimensional viscous correction p'.

However, this form for the pressure is used only in the streamwwise

momentum equation, not in the cross-flow momentum equation. This is

sufficient to ,-einove the streamwise elliptic character of the pressure

field and allow the use of a marching solution procedure. The pressure

in the cross-flow nxw*ntum equation is simply treated as ar unknown

dependent variable, thus eliminating the requirement for a separate

correction procedure for the cross-flow pressure field. Since elliptic

effects due to geometry are included in the known inviscid pressure

field, only one sweep through the flow field is required.
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In order to rigorously model the relationships between dependent

variables, the four governing equations (continuity, streamwise momen-

tum, cross-flow momentum, and energy) are solved simultaneously at

each station as a coupled system. Since the continuity equation is

one of the equations in the system, however, conservation of total

mass flow rate cannot be used during or after a marching step to com-

pute the pressure correction p'. Therefore, a preliminary marching

step is taken using the integral mass flow rate equation and an un-

coupled form of the streamwise momentum equation. Instead of iterating

to find the value of p' that gives the correct mass flow rate, these

two equations are solved simultaneously as a coupled system to get p'

directly. Then, with p' known, the four governing equations are

solved simultaneously with pE treated as a source term.

The equations are solved by an implicit finite-difference proce-

dure. A weighting factor is used to allow the degree of implicitness

to vary from Crank-Nicholson type to fully implicit. The equations are

linearized by expanding each unknown term in a Taylor series in the

streamwise direction. This allows the inherent nonlinearities of the

governing differential equations to be modeled with second-order accu-

racy without using iteration. Cross-flow derivatives are represented

by second-order accurate centered differences. The difference form of

the streamwise derivatives is second-order accurate when Crank-

Nicholson differencing is used and first-order accurate when fully

implicit differencing is used. The resulting set of coupled, linear

algebraic equations has a Klock tri-diagonal coefficient matrix with

4x4 sub-matrices. The equations are solved using a standard tri-

diagonal matrix inversion method.
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SECTION ,?

ANALYSIS

2.1 COORDINATE SYSTEM

In this --naiysis, the equations of motion are to be solved using a

finite difference method. The contours of the duct being studied are

usually specified in physical space in Cartesian or polar coordinates,

both designated (z,r). Using physical coordinates for computational

coordinates, however, is very inconvenient in a finite difference

method because of difficulties in applying Neumann boundary conditions.

In addition, the assumptions to be made in deriving a set of equations

that can be solved by forward marching (see Section 2.2) would, in

general, be questionable.

Therefore, an orthogonal, body-fitted, curvilinear system is used

for the computational (E,n) coordinates. The flow domain in the

physical plane is mapped into a rectangular domain in the computational

plane, as shown in Figure 2-1.

Since the governing equations will be written in a general form,

any orthogonal, body-fitted coordinate system can be used. For the

results presented in Sections 4.4 and 4.5, an existing computer code

that employs the coordinate generation method of References 2 and 3

was used. In this method, the coordinates are generated by solving

for the planar potential flow through the duct. The computational
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coordinates are chosen as the velocity potential E and stream

function n obtained from the potential flow solution.

The computational and physical coordinates are thus related through

Laplace's equation,

a2	 a`E

a z	 ar

az	 or

These equations could be solved directly to get E and n as func-

tions of z and r. The method used in References 2 and 3, however,

is to solve the inverse problem, getting z and r as functions of

E and n. This is accomplished by a conformal mapping technique

using the Schwartz-Christoffel transformation.

In order to use this potential flow solution as a coordinate sys-

tem, the metric scale coefficients hl , h2 , and h3 must be de-

termined. From the definition of velocity potential and strewn func-

tion, it can be shown that differential distances along a streamline

and a potential line are given by

dS^ _	 dE
P

and

dSn = w do
P

respectively, where V P is the potential flow velocity. The dif-

ferential distance along a general line in this coordinate system is

then given by



and for an axisymmetric coordinate system,

h 3 = r

where r is the absolute radial coordinat

2.2 GUVERNING E_QUATIUNS

2.2.1 Equations of Motion

The governing equations for steady, vi

or turbulent flow in a two-dimensional ort

are derived in Appendix A as equations (A.

ted here.

s

OF PUOR QUAD f

2	 2	 i

dSZ dSE + dS^ = P/ dE2+ \ T
IP-)do 2C

But this is the definition of the metric scale coefficients h l	j

i

and h2 . Therefore, with this coordinate system,

	

h 1 = h2 =	 (2.3a)
P

Note that although these coordinates are determined by a planar

potential flow solution, they can also be used for axisymmetric flow

simply by rotation around the axis of symmetry. The third metric scale

coefficient h3 determines whether the coordinate system is planar

or axisymmetric. For a planar coordinate system,

	

h 3 = 1	 (2.3b)
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CROSS-FLOW MOMENTUM

h2	h1
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[(h 
2 

h 3 T E ^E
12

h2	 h3	 hl

+ ( h1 h3 T E^n^ + tF-C TE	
-	 - TE - 

7172 
TE	 (2.5)

	

22	 1 2	 12	 2 3	 33  	 11

ENERGY

h1 
p ucvTE + h p vc v T n = - ^1 - p[(h2 h3u) E + (h1h3v)n]

'T-F C^ 
h 2 h3g E 1 ^E + ( h1h3gE2)n ] + pE	 (2.7)

In these equations, hp h2 , and h3 are the metric scale coeffi-

cients for the orthogonal curvilinear coordinate system; E and n are

the coordinate directions; u and v are the velocities in the E and

n directions, respectively; p, p, and T are the static density,

pressure, and temperature, respectively; and c 	 is the specific

heat at constant volume. The subscripts E and n denote partial

differentiation.
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hl 	 ^
E11 =2ME u^ ^^	 -3MEv V

OF	 UA	 1	
h2	

2T=2N ( V +&u^-IuEvV
E 22	 E h2 n	 1 2

(2.8)

T2u 
h3E u+ h3n v— 2 u o	 V

E 33	 E(F173
	 ^^	 E

_	
h2 

v	
hl 

u 
l

TE 12
	uETi

l\ h2 /E +

	

( u

where

^	 1
v V a h 7

2--F (h.h3u) ^ + (hlh3v)n^

For laminar flow, 
ME is simply the molecular viscosity u L

. For

turbulent flow, it is an effective viscosity given by the sum of the

molecular and turbulent viscosities;,

ME 
= 

uL + WT

where PT = p e, and e, the eddy viscosity, comes from some appro-

priate turbulence model.

The effective heat fluxes are:

1qEl =	 kET{

1

qE2	 kETn
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where, analogous to viscosity, k 	 for laminar flow is the molecular

coefficient of thermal conductivity kL , and for turbulent flow it

is given by

It = k  + k 

where k 	 is the turbulent thermal conductivity. Here k T is rel3-

ted to u T by

C uT
k T =

where c 	 is the specific heat at constant pressure and Pr 	 is

the turbulent Prandtl number, which is assumed known.

The effective dissipation q E , when written out in full, is

given by:

	

2	 .2
hl 	h2

_® += 2u	 1 u + n v	 + 1 v + E u
E	 L	 T	 E C h	 h1 

h
2/	 h2 n	 hl 2 )

2

+	
h3E 

u + h3n v	 + 1[ h2 v	 + hl u
F1F3 	h2)E tit ^ I

h
2	 1	 + l r,	 + 1
Is uE F-

1 u E ^2 v 'F2vn

h	 h	
2

+ h^ E u + 3

	
u * ^-^— v	 (2.10)

FIT--	 'i1 3	 .2h3

Along with the governing differential equations, the perfect gas

equation of state is used to relate pressure, density, and temperature.

Thus,
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p . pRT	 (2.11)

where R is the g, ,s constant.

The preceding equations form a set of elliptic, nonlinear, coupled

partial differential equations to be solved for p, u, v, and T.

Such a solution is referred to as a complete Navier-Stokes solution

and can be accomplished using time-dependent or relaxation numerical

techniques. However, large amounts of computer time and storage are

required.

Fortunately, for many flows a complete Navier-Stokes solution is

not needed. If the flow conditions and geometry are such that elliptic

effects in one of the coordinate directions can either be ignored or

assumed known a priori, a marching solution procedure can be used.

Starting with known profiles at some initial station, the flowfield

can be computed by integrating the equations one station at a time

the marching direction. The flow field can be computed in one pass,

and large amounts of computer storage are not needed.

Therefore, it is assumed that a primary, or streamwise; flow ai-

rection can be identified (in this case, the t direction). An

orG4r-of-magnitude analysis is used to simplify the governing equa-

tions (see Appendix B). Viscous and thermal diffusion in the stream-

wise direction are neglected. Physically, this assumption holds best

for flows with relatively high Reynolds numbers in which there are no

abrupt changes in geometry. Separated flow regions cannot be analyzed

by this technique.

The above assumptions remove some of the elliptic character of the

governing equations, but not all. As shown by several authors (Refs.

8-11), the pressure field is also elliptic in nature for subsonic flow.
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Upstream influence can be important, sometimes very important. Remov-

ing the elliptic character of the pressure field could result in phys-

ically unrealistic solutions when using a marching procedure.

In conventional boundary layer theory, the streamwise pressure

gradient is assumed to be imposed on the viscous boundary layer by the

inviscid core flow, and the cross-flow pressure gradient is neglected.

The imposed pressure gradient usually comes from either an elliptic

inviscid analysis or experimental data. A similar procedure is used

in this analysis, but without neglecting the cross-flow pressure

gradient.

First, the streamwise pressure gradient pt is uncoupled from

the cross-flaw pressure gradient p rl as first suggested by Patankar

and Spalding (Reif. g ). No assumptions are i-,,ade regarding p n , and

it is treated as an unknown in the marching solution algorithm. The

streamwise pressure gradient p t is written as:

P4 . P E (t.n) + PO O	 (Z.12)

where P(t,n) is a known two-dimensional pressure field that is "im-

posed" unto the flow and p' (t) is a correction to P that is core-

puted as part of the marching solution to account for viscous blockage

etteets. Note that p'(t) has been written as a function of t

only, that is, it is assumed constant over any given cross-section of

the duct being analyzed. the v % t,n) term can come from any avail-

able source. Normally, it would be computed using an elliptic invis-

cid analysis.

Note that. this procedure introduces an inconsistency it) the treat-

ment of the pressure in the two momentum equations. As pointed out in

Keterence y , this inconsistency is part of the price that must be paid

Al
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in deriving a set of equations that can be solved by a forward march-

ing technique.

With the above assumptions, and the equation of state, equations
t

(2.4)-(2.7) can be written in dimensionless form as:

i

CONTINUITY

h
(up{ + au{ ) + h (PV)n + h h h C(h2h3)^ P^ 

+ ( hl h3 n)P V] = U	 (2.13)

1	 2	
l	

J

STREAMWISE MOMENTUM

h2 	hl

	

h Puu{ + h

	

	 nPvu - h h PV 
+ h h Puv 	= - h (P^ +P ^ ) + Re h h h

1	 2	 1 2	 1 2	 1	 r 1 2 3

h l	 h	 h2	 3

	

+ 1	 n	 _ 

h	

_	 E	 (	 )

	

( 11h
	 T3TE 12) n	 Rer	h lh 2 E 12	 lh2 

TE22	
hlh3 

T E33	 2.14

CROSS-FLOW MOMENTUM

1  h	 h

	

+ 1 	 +2E	 - ln	 2=-1 
R T+ 

1	 1
h auvE h P vvn hh Puv h h ou	 ( P ) n	 e} r h h h

1	 2	 1 2	 1 2	 2	 r 1 2 3

h	 h2	 3

(h1 h 	
t_

X hth3TE121 +	 3TE22 / n + ^ h 1^2 TE 12 	 2^^3 TE33

(2.15 )

ENERGY

houc vTE +	
ovcv nT - -- 

PRT [
(h2 h3u) E + (h1h3v)n]

1	 2	 123

3

1	 1	 h h q	 + ^ F 	(2.16)
ei^  Pr h-1-^^ (
	

2) n
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In these equations, length has been nondimensionalized by Lr,

velocity by U r	density by a r, temperature by T r, viscosity

by ur, thermal conductivity by k r, pressure by o rUr, and specific

heat by Ur/Tr . The reference Reynolds and Prandtl numbers, then, are

given by

Rer = 
°rUrLr

ur

and

cprur Urur
P r r = —k-- 

_ 77-
r 	 r 

When nondimensionalized, the shear stresses (except for the Ti in

E12
the cross-flow momentum equation), the heat flux, and the dissipation

are still given by equations (2.8)-(2.10). In the 	
12

T'	 term, the
e

higher-order (v/h 2 ) E half has been dropped, since leaving it in would

make the equation elliptic. As shown in Appendix B, many of the shear

stress terms in equations (2.14) and (2.15) are actually higher-order

terms that could reasonably be eliminateo. They have been left in for

completeness, however, since they can be handled within the framework

of d numerical marching solution. In the computer code used to solve

these equations, the user can control which viscous terms are included

in the solution.
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2.2.2 Boundary Conditions

Boundary conditions are needed for the dependent variables p, u,

v, and T at a symmetry line and at a wall. At a symmetry line, the

boundary conditions are

ap au aT

-
=	

=

an an an

v=0

At a wall, the conditions normally used are

(2.17)

The density boundary condition is found by writing the cross-flow mo-

mentum equation at the wall, using the equation of state to rewrite

ap/an in terms of p and T. The resulting equation, when written

in difference form, can be solved for oW in terms of the other

dependent variables.

The above velocity boundary conditions are general to allow for

slip or, a moving wall, and to allow for bleed or blowing. For no slip

and no bleed, u  = V  = 0. The temperature gradient boundary con-

dition is also general. For an adiabatic wall, the temperature gra-

dient normal to the wall would be set equal to zero. Details on the

implementation of these boundary conditions in the finite-difference

equations are presentee in Section 3.3.3.



22

In turbulent flow, when equations (2.18) are used as boundary con-

ditions at a wall, the finite-difference grid must be very dense near

the wall to resolve the steep velocity gradients expected there. This

can be avoided, however, by making use of the experimentally observed

properties of turbulent boundary layers (Ref. 38). A typical unsepa-

rated turbulent boundary layer can be divined into an inner region,

where the total shear stress is essentially constant, and an outer

region, where the total shear stress decreases with distance from the

wall. The inner region can be 'urther divided into a laminar subldyer

where the laminar shear stress oc:"^ .'.ates, a transition or buffer region

where both laminar and turbulent shear stress are important, and a

fully turbulent region where turbulent shear stress dominates.

In the fully turbulent part of the inner region, a universal

velocity distribution law exists, given by Reference 38 as

u+ = K In y+ + B	 (2.19j

where K is the von Kaman constant (about 0.4) and b is a con-

stant between 4.9 and 5.5. The variables u+ and y+ are de-

f ined by

+	 u

U s u

+ uy
i

y - VW

where y is the distance from the wall, v 	 is the kinematic viscos-

ity at the wall, and u 	 is the fric'ion velocity defined by



23

TW

U - —
T 	 P

Equation (2.19) is often referred to as the logarithmic law-of-the-

wall. It is valid for y+ between about 35 and 35U (Ref. 28). The

upper limit on y+ actually depends on the streamwise pressure gra-
dient, but 350 is a conservative value. If it is assumed that the

first grid point away from the wall is in the law-of-the-wall region,

a slip velocity (or wall fui.ction) boundary condition can be derived.

The laminar sublayer is not resolved, thus fewer grid points are needed

in the n direction.

To use the law-of-the-wall as a boundary condition, equation (2.19)

is differentiated with respect to n, giving

au = th uT 1	
(2.20)

an	 2 K y

where the + sign is used for a lower wall and the - sign is used

for an upper wall. This equation is the one actually used to specify

the boundary condition on u.

It should be noted that equation (2.19) was developed for incom-

pressible flow. Very little error is introduced, however, by using it

for compressible subsonic flow, as will now be shown. Several methods

have been proposed to extend equation (2.19) to compressible flow

(Ref. 29). Maise and McDonald (Ref. 30) suggested using equation

(2.19) with u replaced by a generalized velocity u'. For adiabatic

flow they used

u' = ue 
to 

sin 

1 (VC, ue /	
(2.21)
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Y -1 M2

a =
2	 e

1+ e

Here u e and Me are the velocity and Mach number, respectively,

at the edge of the boundary layer. For M e = 0 (incompressible

flow), equation ( 2.21) gives u' = u. As M e increases, the value

of u' increases for a given value of u. But, for u/u e = 0.4, for

example, the value of u'/u e is only U.4018 at Me = 1, which is

less than a one percent increase. Since the present analysis is for

subsonic flow, equation (2.19) can be used as is, with no modification

for compressibility.

When a wall function boundary condition is used for u, and the

wall temperature is specified, a wall function boundary condition must

3

also be used for temperature since the sublayer region is not resolved.

(If the temperature gradient normal to the wall is specified, the im-

plicit assumption that q - qw in the law-of-the--.lo l l region means

the temperature gradient boundary condition of equation (2.18) can

still be used). Following White (Ref. 28), but without assuming

Pr  = 1, a temperature law-of-the-wall can be written as

T+ = PrT K In y+ + c l	(2.22)

where

+	

ppWcuj (T - TW)

T	 qW

c l	12.8 Pr 0.68 _ 7.3

^l
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Here Pry = c puL/k is the laminar Prandtl number and q W is the heat

flux at the wall. Equation (2.22) is differentiated with respect to n

to give

aT = *h	
T - T 

W+	
(2.23)

an	 2 Ky PrT K In y + cll

Details on the use of equations (2.20) and (2.23) as boundary condi-

tions are presented in Section 3.3.4.

2.2.3 Initial Profiles

To start the marching procedure, profiles of p, u, v, and T

must be specified at some initial station. Two options are available

in the computer program written for this study. A uniform free stream

can be specified, with boundary layers computed for each wall from

input boundary layer parameters. Or, complete nonuniform initial pro-

files of p, u, v, and T can be read in, with the option of computing

boundary layers at the walls from input boundary layer parameters. In

either case, the procedure for computing the profiles in the boundary

layers is the same.

In laminar flow, the boundary layer thickness d and the displace-

ment thickness a* are specified. The streanwise velocity in the

boundary layer is computed by assuming a von K arman-Pohlhausen pro-

f i le, that is,

3	 2	 3
ue=6 (6 1 - 2\6/ +2 + -66 C1- 6) 	 (2.24)

Ll
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where

A = 36 - 120 a

Although equation (2.24) was originally developed for incompressible

flow, it can be used in compressible flow as well (Ref. 31).

For turbulent flow, the situation is more complicated. Coles

(Ref. 32) developed an expression for the velocity profile in the

fully turbulent part of the boundary layer. This was modified by Walz

(Ref. 31) to include the laminar sublayer and the transitional region.

Walz' expression is

u+ =u = (1-K-Ba)y+ -Beay + 1 lnG+y+ )+B+K ^uf*
T

(2.25)

where

m = 1 + sin i(2 a - 1)

f
* 3C ( UeK 	 _ 1 In 

pWuTd - 
B)'IuT	 K	 VW	 /

The only symbol in these equations not previously defined is the con-

stant a, which Walz sets equal to 0.3.

Before equation (2.25) can be used, the shear stress, viscosity,

and density at the wall must be found. The boundary layer parameters

*
specified are the thickness d, displacement thickness a , and mo-

mentum thickness 8. The wall shear stress is found from the

Ludweig-Tillman skin friction formula, as written by Sasman and Cresci

(Ref. 33). Thus,
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z	 -1.561 H u e -0.268 
T 1.268

C	 W - 0.246 a	
i e	

a	 (2.26)f 
^T ae e
	

v	 7

where T is a reference temperature given by

T	 T

	Tfi	
TW + 0.22 rF + (U.5 - 0.22 rF ) fie 	 (2.27)

	

Oe 	Oe	 Oe

TO 	is the total temperature at the edge of the boundary layer and r 
e

is the recovery factor, assumed equal to 
3 

r
L

. The parameter v is

the kinematic viscosity evaluated at T = T. The incompressible shape

factor Hi is computed from

H = TT__ H i 1 + Z Me +	 Me	 (2.28)
0	 \
Oe

where

H= e
The wall temperature is either given, or computed assuming an

adiabatic wall from

u2

	

TAW = T  + r  7-c
e	

(2.29)
^

•e

The viscG^ity at the wall is then found from Sutherland's formula,

equation (2.32). Finally, the wall density is computed from the equa-

tion of state by assuming ap/ay = 0 across the initial boundary

layer.

For both laminar and turbulent flow, the temperature profile in

the boundary layer is given by the Crocco-Busemann relation (Ref. 28),
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u2
1^ = TW + (TAW- TW) u - rF 7e	 (2.30)

e	 pe

where rF - ^rL for laminar flow and VrL for turbulent flow.

The density profile is then found by assuming ap/ay = 0 across the

boundary layer. That is,

Pe

	

p = -U
	

(2.31)

Finally, the cross-flow velocity v is set equal to 0.0.

2.2.4 Molecular Transport Properties

In addition to equations (2.13)-(2.16), equations are needed rela-

ting 
PL

, k
L

, and c v to temperature. The molecular viscosity

is determined from Sutherland's formula,

u
L
	 T r + 110.3 T 312

yr - ^ — Tr	 (2.32)

where T is in K. The specific heat at constant volume is found from

the empirical formula of Reference 34, which for air with an average

molecular weight of 28.97 kg/mole can be written as:

c v = 1.44103 - 3.94x103 T-1/2 - 1.943x105 T-1 + 4.09x1U7 T-2 - R

(2.33)

where T is in K and c 	 and R are in m2 /sec 2 - K. The

molecular coefficient of thermal conductivity is given by the

I'
	 empirical formula of Reference 35:
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k 	 a
(2.34)

1 +Tx10-

where, for T in K and k in kg-m/sec 3 - K, a - 0.002646, b - 245.4,

and c - 12.

2.3 STREAMWISE PRESSURE GRADIENT

2.3.1 Viscous Pressure Correction

Equations (2.13)-(2.16) form a set of four coupled, nonlinear,

partial differential equations to be solved for p, u, v, and T.

However, by rewriting the streamwise pressure gradient in the form of

equation (2.12), an additional unknown, pE, has been introduced. The

standard procedure for computing p, during a matching step is as

follows (Refs. 9, 20):

1. Guess p^.

2. Solve some form of the streamwise momentum equation for the u

velocity distribution at the new station (after uncoupling and

linearizing the equation by lagging quantities one step).

3. Compute the mass flew rate through the duct at the new station

(which, in general, will be incorrect) rising

J	
pu dA - m	 (2.35)

A

where A is the duct area and m is the total mass flow rate.

4. Correct p^ to give the proper mass flow rate.

L-
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In this analysis, however, the differential continuity equation is

to be solved simultaneously with the momentum and energy equations.

The mass flow rate through the duct is automatically conserved during

a marching step no matter what value of p,' is used, at least within

the truncation error of the numerical method. Conservation of total

mass flow rate, therefore, cannot be used to compute p,' after equa-

tions (2.13)-(2.16) are simultaneously marched one step. It can still

be used, however, if pE is computed before each main marching step.

Then, once p	 is known, equations (2.13)-(2.16) can be solved simul-

taneously with pi treated as a source term.

In this analysis, in other words, a preliminary marching step is

taken using a modified form of the procedure outlined above to compute

p^. The streamwise momentum equation is uncoupled from the continu-

ity, cross-flow momentum, and energy equations and linearized by lagg-

ing certain quantities one step, just as above. The total mass flow

rate equation is written as

fAP E n	 E u* dA - m
	 (2.36)

The superscript * is used on u to distinguish it from the stream-

wise velocity computed during the main marching step. Better results

were obtained using the equation in this form rather than equation

(2.35). Then, instead of iterating to find the value of pi that sat-

isfies total continuity, the streamwise momentum equation and equation

(2.36) are solved simultaneously as a coupled set to get pE.

This procedure for computing pi is not completely rigorous, at

least not as rigorous as the rest of the solution, since an uncoupled

form of the streamwise momentum equation must be used. However, p'

I
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is only a correction to P, ti;z imposed pressure field, to account for

viscous blockage. Thus, small percentage errors in p' will give

much smaller errors in P + p'. In addition, in deriving a set of

equations that can be solved by forward marching, it was assumed that

the flow is primarily in the E direction. The errors in computing

the increase (or decrease) in viscous blockage over one marching step

by using the uncoupled streamwise momentum equation should be small.

2.3.2 Imposed Pressure Field

In this analysis, the computational mesh fur a gene-al case is

computed using a planar potential flow solution, as described in

Section 2.1. Thus, for planar two-dimensional flows a potential flow

velocity can be directly related to the mesh through

V P
	1	 1
	

(2.37)

For axisymmetric flows a separate potential fow solution is required.

Using the method of Re •̂ erence 36, the axisymmetric potential equation,

 (
t, h-2  3 iA { + h-

 VAX 
n = 0	 (Z. 38)

\ 1	 E	 2	 n

is solved using an iterative alternating-direction implicit method. An

axisymmetric potential flow velocity is then computed from

1( 1	 ) + 072 'V xn)

2	 2 112

The "real" incompressible inviscid velocity is found from

(2.39)
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	V i . V rVN	(2.4())

where

V
iAVE

V r . V---

PAVE

The subscript AVE here denotes the average value at the initial sta-

tion. The average incompressible velocity V	 canes from
iAVE

M

Vi AVE	 PiA1

where in is the mass flow rate, Al is the duct area at the initial

station, and of is the incompressible, or total, density. For

compressible flows, the velocity given by equation (2.40) is modified

using the Lieblein-Stockman compressibility correction, which was de-

veloped specifically for internal flows (Ref. 37). This compressibility

correction has been shown to yield very good agreement with data over

d wide range of flow conditions, including high Mach number subsonic

anc even transonic flow (Refs. 38-41). good agreement with data was

obtained in Reference 39 for local Mach numbers as high as 1.3 in small

renions of supersonic flow. The details of this compressibility cor-

rection are given in Appendix C.

The inviscid pressure itself, then, is computed from

2 YI(Y-1)

P	

I(VC

	 (1.41)
PO	au
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where p0 is the total pressure. a0 is the *otal speed of sound,

VC is the compressible velocity, and y is the ratio of specific

heats.

It should be noted that, for a given geometry, the potential flow

needs to be computed only once. The velocity field given by equation

(2.37) or (2.39) can be saved on a mass storage device. A pressure

field can then be computed for any initial tlow conditions from equa-

tions (2.4U) and (2.41).

2.4 TURBULENCE MODEL

The Reynolds stresses and the turbulent heat flux are modeled using

an eddy viscosity approach to relate these terms to the mean flow (see

Appendix A). A two-layer irodel is used. In the outer or wake region,

the turbulence model of Cebeci and Smith (Ref. 43) is used. In the

inner or near-wall region, either the model of Cebeci and Smith or of

McDonald and Camarata (Ref. 44) can be used. The computer code in-

cludes subroutines for both of these models, which are known as alge-

braic, or zero-equation, turbulence models. A more complex multi-

equation turbulence model (i.e., one that solves partial differential

equations for the turbulence length and/or velocity scales) could be

incorporated into the code at a later date. However, given the current

status of multi-equation models and the past success of algeuraic mod-

els, this probably is not warrented at the present time (Refs. 29, 45).
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2.4.1 Uuter Regionon Model

In the outer region, the eddy viscosity is given by

c o • auea k 	 (2.42)

Here, for internal flows, the subscript a implies a value at the

point of the first maximum streamwise velocity away from a wall. For

most applications, this is simply the maximum velocity in the duct.

Also, 6  is the kinematic displacement thickness,

fyea k	 (1 - ^ )dy
0	 \	 e

where y is distance from the wall. The parameter a i; given by

1+a0

Ul +u

where a0 = 0.0168 and u0 = 0.55. The parameter n is

Coles' profile parameter, defined as

R = a 0 11 - exp(-0.243 Y`1 - 0.298 z l )]

where

z1 R	 Rea - 1

k

Re	
ue _

ke
k	 W
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r
ek.	

e 
^ 1-^ dy.f

0
e^	 e^

Here v is the kinematic viscosity and the subscript W denotes a

wall value. The factor (1 + no ) /(1 + a) is essentially a low

Reynolds number correction to a0.

In conventional boundary layer analyses, the eddy viscosity given

by equation (2.42) i s often multiplied by an intermittency factor.

This accounts for the expe r imentally observed fact that, as the free

stream is approached, the fraction of time the flow is turbulent de-

creases. For inter A. flows, however, this is not necessarily true.

In fully-developed pipe flow, for example, the eddy viscosity in the

outer regic: is essentially constant (Ref. 46). Also, in their calcu-

lation of developing turbulent pipe flow, Richman and Azad (Ref. 47)

used both a constant outer-region eddy viscosity and a variable eddy

viscosity that decreased as the centerline was approached. They found

that the computed mean velocity profiles were insensitive to the outer-

region eddy viscosity distribution. It was therefore decided not to

use an intermittency factor in this internal flow analysis.

2.4.2 Cebeci-Smith Inner Region Model

In the Cebeci-Smith model, the inner-region eddy viscosity is

given by

Ei	
s2layl	

(2.43)

where t, the mixing length, is given by
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I = Ky(1 - e y/A )	 (2.44)

Here K is the von Kaman constant, set equal to 0.40, and y is

distance from the wail. The parameter A is the well-known Van Driest

damping parameter. As modified by Cebeci for flows with pressure
t

gradient, heat transfer, and mass transfer (Refs. 48-49), A is given by
3

1/2

A' 
A+^ 

ut \ W1
s

where

A = 26

TW

T	 PW

au
TW = uW aylW

11L
	 +	 u	 u

N2 - u P 1 - exp x11.8 u 
vW	 + exp (11.8 

NW 
vW

	

e W	 \	 /	 \

+	 v vW - u 
T

UL e 1	 1p+ _	 1
p = DO ^ E ^3E1W

T

For flows without bleed ( v+ - 0),

v
N2 = 1 - 11.8 uW p+

L
e
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2.4.3 McDonald-Camarata Inner Region Model

The inner-region eddy viscosity in the McDonald-Camarata model is

still given by equation (2.43), but the form of the mixing length is

different. They use

a tanh ( ^ 	 (2.45)

where nm = 0.09, K = 0.43, and 6 - y at the point where

U = 0.99 ue . The damping factor .9 is given by

	

_ 
112 (yy -1	 (2.46)

1	 /

where 9 is the normal probability function, y = 23, and o 1 = 8.

The parameter y+ is found from

+ yu
Y = ^

V

where

FTE
uT

Note that in this model, the friction velocity u 	 is computed

from local values of density and shear stress, not wall values.

The boundary between the inner and outer regions is determined by

requiring that the eddy viscosity be a continuous function of distance

from the wall. In other words, starting at the wall, c - c i until

c i > c o , then c - co.
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For axisymmetric flows with a centerbody and for nonsymmetric

planar flows, the eddy viscosity is computed separately for each wall.

In general this leads to a discontinuity in the two outer-region val-

ues. In this case, the eddy viscosity is made continuous by linearly

interpolating between the two values over the outer 50 percent of each

outer region. If c i never reaches co for either boundary

layer, the point of maximum c i is used. In addition, the interpo-

lation region is forced to include at least the outer 50 percent of

each boundary layer.

An example of a typical eddy viscosity profile is presented in

Figures 2-2a and b. This particular profile is for developing turbu-

lent flow in a pipe. Figure 2-2a shows the entire inner region, with

c i increasing from zero at the wall to the constant outer region

value co. In Figure 2-2b, the profile very near the wall is pre-

sented, showing the damping effect in the viscous sublayer.
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e

40

----..... n s ne IC

I^I -i .AN^M k:?

0

s	 a
'n^ ^ IAVWsM km



41

ORIGINAL. PAGE r3
OF POOR Q'-jAL !TY

SECTION 3

NUMERICAL METHOD

3.1 BASIC DIFFERENCING PROCEDURE

3.1.1 Computational Mesh

The governing equations presented in Section 2 are solved using a

finite-difference method. A computati onal...^ grid, or mesh, is thus re-

quired in the (E,n) coordinate system. Since the method is to be

applied to viscous flow problems, grid points should be closely spaced

near the walls, where the velocity gradients in the n direction are

expected to be largest. For convenience when applying difference

formulas, however, a uniformly spaced mesh is desired norm,,.l to the

walls. The desired grid is obtained by employing the following trans-

formation (Ref. 2):

/	 \	
C+1

[ C + 1 ) exp 2 ^ Y - ^ } 1 n —^ - ( C
\	 /	 /	 C .^

n	 (3.1)

``	 C+1
1 + exp 2^Y - JIn --T

C -

where

C =	 (1 - 2D)-1/2
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and D is given by

D- - -D In
S

In equation (3.1), Y is the equally spaced, or transformed, coor-

dinate normal to the walls and n is the packed, or untransformed,

coordinate. Note that Y is a function of n only. The transforma-

tion is implemented by using chain rule differentiation in the form

a	 dY a

an 13 	 aY

where dY/dn can be derived from equation (3.1) as

1

dY	 1	 1	 +	 1+^	 {3.2)3n-^ C+--T T lnC_T

For geometries with two walls (e.g., an axisymmetric flow with a cen-

terbody or a nonsymmetric planar flow), both Y and n in equation

(3.1) vary from 0 to 1. Then, for uniform spacing in Y, the trans-

formed coordinate, equation (3.1) will pack the n points close to

both walls. For cases with only one wall, Y, and thus n, are allowed

to vary only from 0.5 to 1. The n points are then packed only at

the outer wall. This mesh is then expanded down to the centerline,

where Y = n = 0. The degree of grid packing is controlled by the

parameter DS , which would typically be between 5 and 500. Increas-

ing DS packs more points near the walls.

It should be noted that no transformation is used in the streamwise

direction, since the locations of high gradients in that direction will

vary from case to case. However, the marching step size at is not

assumed constant. The user can therefore tailor the distribution of
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grid points in the c direction to the particular case being

studied.

The relationship between the (E,n) and (C,Y) coordinate systems

is shown in Figure 3-1. Also shown in the figure are the indices used

in the finite-difference grid. An "i" is used as the index for the

C, or marching, direction, with i - 1 at the initial station. A

"j" is used in the cross-stream direction, with j . 1 at the lower

wall or symmetry line and j - J at the upper wall.

3.1.2 Difference i"ormulas

Standard difference formulas can be derived using Taylor series

expanFions. The derivations can be found in any basic reference on

finite-difference methods (e.g., Refs. 50-52). Therefore, only the

resulting formulas are presented here.

First derivatives in the marching direction are represented by

(
IF 	 Fi+1	 F 	 (3.3)
3 /i+w	 eE

This expression is either first or second order in E, depending on

the value of the implicit weighting factor w. This will become

clearer in Section 3.2.

Derivatives in the Y direction at interior points (2 < j < J-1)

are all represented by standard second-order centered differencing

formulas. For first derivatives the f ormul,^ is

(aF	
3 6F .	 FJ+1
	 FJ-1	 (3.4)

^	
Y	

nJ	 J

P"
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and for second derivatives it is

2F + -2F +F
a F	 a 62F = _,j- 1	 -1	 (3.5)
Y 

j	
Y j	 (AY)

Mixed second derivatives are simply given by a combination of

equations (3.3) and (3.4). That is,

2

aE a^ i+w	 " sE (dYF i + 1 ' j - BYFi.j)	
(3.6)

.J

t
Difference formulas for Y-derivatives are also needed at boundary

points (j	 I and j = J) in order to apply some of the boundary con-

ditions described in Section 2.2.2. These formulas are presentee in

Section 3.4.

With the above difference formulas, the resulting set of coupled

algebraic equations will have a block tri-diagonal coefficient matrix

with 4x4 submatrices.

3.2 LINEARIZATION PROCEDURE

When a marching step is taken from station i, where the solution

is known, to station i +1, where it is unknown, the finite-difference

equations are written at the intermediate station i +w. Here w is

the implicit weighting factor, 0 < w < 1. For w = 1 the difference

formulation is therefore fully implicit, while for w - 112 it is of

Crank-Nicholson type. This explains why the difference formula for

E-derivatives (eq. (3.3)) can be either first or second-order. For

v: - 112 it is a second-order centered difference formula, while for
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w - 1 it is a first-order backward difference formula. Different

values of w can be used in each of the four governing equations.

When this type of implicit weighting is used on a simple linear model

equation, st.'bility analyses show the method to be unconditionally

stable for 112 < w < 1, but only conditionally stable for 0 < w <

112 (Ref. 52). For tie complex system of nonlinear equations consid-

ered in th's analysis, however, these stability conditions can only be

used as guidelines (Ref. 51). The results to be p ,sented in Section

4, ther-f ore, were computed using w • 1 throughout because of its

greater margin of stability.

When the governing equations are written at i +w, the unknown

terms are, in general, nonlinear functions of the unknown dependent

variables a, u, v, and T. For example, in the st ye anwise momentum

equation the terms au 
2E 

and av -,87u appear. These nonlinear terms

must be linearized in order to solve the final set of algebraic equa-

tions by matrix inversion.

One method of linearization would be to simply evzl uate the coef-

ficients at the known station i and only evaluate the derivatives at

i +w. However, this is only a first-order method, unless iteration is

applied. In the present analysis, a second-order linearization proce-

dure is desired, but without requiring iteration.

This is accomplished by expanding each unknown nonlinear term in a

Taylor series in c about the known station at c i . This same proce-

dure has been used in other finite-diff,,rence marching analyses (kefs.

2, 53-54). ;.et G - G(o,u,v,T) represent a general nonlinear term.

Expanding in a Taylor series gives
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G i+1 - G i + (.!G) at + O ( '
&E) 2	(3.7)

i

where aE - E i +1 — E i and

aG - aG ap + aG au + aG av + aG aT
at ap at au at av at W at	

(3.8)

Note that for G i+1 to be second-order accurate, 
(2G) 

and therefore

(

a	 '

aE )1 , etc., need only be first-order accurate. Note also that a

general term G will include metric scale coefficients and the grid

stretching parameter dY/dn. However, these are known a priori and can

be evaluated at i +w directly.

In the governing equations, there are six basic forms of nonlinear

terms, as follows:

a
V, 

a
	 i4
	 agl a( f -

aQ )
f, 

f	 , aF (f 4Y	
g

f aE' a7 ( f aE/' aE \ ar

Here f is a function of p, u, v, and T. In the second and third

basic forms, Q is also a general function of p , u, v, and T. In

the last three, however, it is identically equal to p, u, v, or T.

The first three forms, which do rot include E-derivatives, are

written at station i+w as

Gi+w = wG i+1 + (1 - w)G i	(3.9)

(For all equations in Section 3, terms without an "i" or "j" subscript

are understood to be at grid location i or j, unless stated

otherwise).

App .ring equations (3.7) and (3.8) to the first basic expression,

simply f, gives
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f	 ' f 
+ (of)

i+1i	 i

f i+1 f + 
C 

of !p + of au
at 

+ of av + of a 
+l	 i	 aP at	 au 	 av at	 a1` a€

Then, using forward difference formulas for the €-derivatives ana

applying equation (3.9) gives

if i+w = f i + w ( ao AP + au eu + 
av 

ev + of AT 	 (3.10)
\	 i

where (aC)j s a i
+l - P i , etc. The nonlinear term f i+w is thus

represented as a linear combination of the dependent variables at the

unknown i+1 station. As an example, using a term from the stream-

wise momentum equation, let

h1

f = F--n Pu v
12

The subscript n denotes partial differentiation. Writing the

metrics at i + w directly, and using equation (3.10),

h1

n_	 f
f i+w	 h I h 2	 PjUjyj + w[U j v j(P i +1 - Pi) + 0i 1 i ( u i+1 - Ui)

i+w

+ Piui(1i+1 - CAI

The second basic expression is f 3, where both f and Q can

be functions of P , u, v, and T. Equation (3.7) gives

1(f aT 
)i+1 

r (f ay + ac (f aY )^ at

47

Now
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a (f aQ } = o f aQ + f 
a ( 1341 )aE \ a	 aE a	 ^ 

Combining, and using equation (3.b), gives

(f 
ap )	 : (f	 ^ + (La p

- as + of au + of av + of aT 1 1 jaQ
a 	 a i 	 at au at av at Z aE 

+ a (ac ap + Lq au + aQ av + a4 	 At
f i a71 ap at au aE	

LT

 av at a7 at )i

Finally, using forward differences for the E—derivatives and apply-

ing equations (3.9) and (3.4),

\f 37^.+	 (fa YQ) i i w (- p e p 
+ au Au + av ev + of °T^iaYQi

iw

+ w i 6 \ a4 °p + 2a 
A  + ?Q A  + a 4 AT 	 (3.11)

au	 av	 3 i

The third basic expression is 2^ (f 	 Its linearized and

differenced form can be written directly using equation (3.11).

[
a

	

	 f a	 : a (fa Q). + w(af ep + of eu + of ev + at AT1 a Qi]
a \ aY!] i+w	 Y[ Y i	 ap	 au	 av	 a^	 Ji Y i

+ wf iaY (2q to +	 eu +	 ev +	 t,T) + w(a Yf) iaY \ ap °pap	 au	 av	 a i

(3.12)+ f eu+^ev + a AT)
au	 i

The fourth expression to be linearized is f Aq. This is written

at i+w as

Qi+1 — Qi
(f at i +w

a 1	 f i+w	 At
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Recall that for the last three basic expressions to be linearized, Q

is identically p, u, v, or T. To evaluate f i+w , equations (3.7)-

(3.9) are used. That is,

f i+w . wf i+1 + (1 - w)f i

where

a f

	

f i+1 a f  +	
eE i at

However, to maintain linearity of the difference equations, 
at 	

must
i

not contain terms at i+1. Therefore, backward differencing is used in

this case. Thus,

jj of	
f
i - 'i-1

\at^ -i	 nth

where at, - t i -  E i-1 . Then

f i+w : ; i + wa(f i - fi-1)

where a	 e . Finally, the original expression becomes
B

(
af	 )	 a [fi+ WA(f i - f i-1 ) ]	 at

Q i+1 - Qi	 (3.13)at i+w

The fifth expression to be linearized is -a'Y (f aQ). Its linear-

ized and differenced form can be easily written using equation (3.13).

	

Q +	 ^.
a	

f ll
l 	 * f. + wa(f. - f. ) a	

t l	 t
a y	at / +w	 L t	 t	 t-1	 Y	 et

u

+ ^ t+ et	 t aY[f i + wa(f i - f i-1)^	 (3.14)
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Finally, the sixth expression is a^ (f 2,4). This is written,

using equations (3.13) and (3.8), as

[23T (f oY )1 •+ 0 If
 i + wa(f i - f i-1 )^ sY\^ i+oE- 4i)^w

+ (6 Q) +	 ((af	 pi+1 - p i + (af	 ui+1 - ui

Y i w [l ap )i+w	 of	 \ au)i+w	 at

Q8 f
yi+1 - v i ( of	 Ti+1 - 

Ti
+	 v )i+w	 at	 + l 7)i+w	 et	

(3-15)

where the combination (6YQ)i+w 
u	

is given b_y)
i+w

(6 YQ) i+w \ a p )i+w 
	

1 ap 6 YQ /i
 + wX [Q—fs 6YQ )i - 1 2a 6YQ)i-1]

etc.

Every term in the governing equations was linearized and differ-

enced using equations (3.10)-(3.15), with two exceptions. The first is

the effective viscous dissipation in the energy equation, given by

equation (2.10). While this term could also be linearized to second-

order in t, the resulting difference form would be quite complex.

It was therefore decided during the initial code development to use a

first-order linearization, evaluating the viscous dissipation at the

known station i. For the cases computed to date, this has proved to

be sufficient.

The second exception is the turbulent viscosity NT (and there-

fore the turbulent thermal conductivity k T , also). The turbulent

viscosity is too complex a function of the dependent variables to lin-

earize using the formal procedure presented in this section. It is
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therefore computed using the turbulence model equations of Section 2.4

with the dependent variables evaluated at the known station. The lam-

inar viscosity u
L
, however, is treated formally as a function of

temperature during the linearization procedure.

The difference equations resulting from the application of this

linearization procedure are quite long, even when the difference oper-

ators 6Y and 6Ya re used. Therefore, they are not written here,

but instead are presented in Appendix D.

3.3 BOUNDARY CONDITIONS

3.3.1 Derivatives at Boundaries

In order to solve the difference equations, difference forms of

the boundary conditions presented in Section 2.2.2 are needed. In par-

ticular, a difference formulation for -, where Q is one of the de-

pendent variables, is needed at j - 1 and j - J. A three-point,

second-order, one-sided difference formula can be derived using Taylor

series. Thus,

(aQ	
+3Q. *

4Q 1 +Q
^ 

2
aY )j g ( 6YQ )

j 
=	 e*-----	 (;3.16 )

where the top sign is used for the j = 1 boundary and the bottom sign

is used for the j = J boundary. Solving for Q j gives

Q	 [T(2aY)j (24)
a 	 + 4Qjt1

 - Qj32	 (3.17)j	 J
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With this formula, the tri-diagonality of the coefficient matrix is

retained.

When the cross-flow momentum equation is evaluated at a wall to

derive the density boundary condition, a one-sided difference formula
2

is also needed for 	 Unfortunately, a second-order one-sided dif-
aY

ference formula would require more than three points and thus destroy

the tri-diagonality of the coefficient matrix. Thus, a first-order

formula was employed, given by

(ILV ) . 2v•tl ^ v't2^ 	 (' 2v  a —^—i^(3.18)
aY 
jY 

j	 (AY) 

^

where, again, j = 1 or J. Note that this first-order formula at the

wall is the same as the second-order formula one point away from the

wal 1.

3.3.2 Symmetry Line

At a symmetry line, the boundary conditions are given by equations

(2.17). Using equation (3.17) with j - 1, these are expressed in oif-

f erence form as

pl = 3 (402 - 03)

u l -	 ( 4 u2 - u3)

T l -(4T 2 - T3)

vl = 0

where the subscripts refer to j-locations in the grid.
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At a solid surface, the usual boundary conditions for u, v, and

T are given by equations (2.18). The conditions for u and v in

difference form are simply

uj = u 	 (3.20)

vj	vW	(3.21)

where j = 1 or J, and u W and vW are known functions of t. For

no slip and no bleed, u W = V
W 

- 0. The condition for specified

wall temperature is

Tj = T 	 (3.22a)

For a specified temperature gradient at the wall, equation (3.17)

gives

Tj - 3 +(2aY) (7) + 4Tjtl - Tjt2	 (3.22b)

CJ

For an adiabatic wall, of course, 	 ) = 0.
W

The density at a solid surface is found by evaluating the cross-

flow momentum equation at the surface. The difference equation at the

wall is the same as the difference equation at interior points, and is

presented in Appendix D as equation (D.3). At the wall, however, the

a Y and aYo perators in equation (D.3) are given by equations (3.16)

and (3.18). When the resulting algebraic equation is solved for pj,

the result has the form
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pJ 
8 CW

(1W20j*1 + 
CW3pJ*2 + CW4uJ + CW5uj*j + CWbuJ + CW7vJ'

1

+C v.	 +C v.	 +C	 T	 T. +C	 .	 +C	 T.	 +1
W8 J*1	 Wg J*2	

W10 J
	 W 11 J*1	

W12 
J*2	 :^ (

323 )

where, again, j = 1 or J. Details on the derivation of this equa-

tion are presented in Appendix E.

The boundary conditions on p, u, v, and T that are normally

used at a solid surface are thus given by equations (3.23), (3.20)11

(3.21), and either (3.22a) or (3.22b).

3.3.4 Wall Functions

In turbulent flow, if it is assumed that the streamwise velocity

near the wall obeys the logarithmic law-of-the-wall, a slip velocity

(or wall function) boundary condition can be derived. The velocity

gradient normal to the wall in _..e law-of-the-wall region is given by

equation (2.20). Applying this equation, in difference form, at the

first point away from the wall gives

u.*2 - u 
	

uT. 1

uJ*2	 = h	 —^
`"'

	 ( dY )j.1
an 	 2 ";1 K jy*1

J

Solving for u 	 gives

h2	 ut . 1
uj = uj*2 -	

dY/dn
(2eY)	 ^ 

y	
(3.24)

j*1	 j*1

where j = 1 or J, and yj*1 is the distance from the appropriate

wall. The friction velocity u 	 is computed from the results at the
J

previous station by a secant iteration procedure.
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If a wall function boundary condition is used for u, it must

	

also be used for T if the wall temperature T 	 is specified.

Applying equation (2.23), in difference form, at the first point away

from the wall gives

Tj* ^^

T . dY	 T .tl - TW

	

( dn)j*1 	 h2j*1 Ky .* Pr .1 In y+} + c

	

J l t T K	 J 1	 1)

Solving for Tj gives

	

h2	 T . t1 - T 
T  = Tjt2 - Ray) (-dy7d—n_	 +	 (3.25)

)j*l Kyj.1 (PrT K In Yj* + cl)

where again j	 1 or J, yjtl is the distance from the appropriate

utY
wall, and y 

+ 
= -.

V 
The other conditions are the same as those given in Section 3.3.3.

Thus, when wall functions are used at a solid surface, the boundary

conditions on p, u, v, and T are given by equations (3.23), (3.24),

(3.21), and either (3.25) or (3.22b).

3.4 TRI-DIAGONAL MATRIX INVERSION ALGORITHM

When the boundary conditions are applied to equations (D.5)-(D.8),

the resulting equations can be written as

62 X 2 + C 2 X 3 = S2

A.
JJ
X•	

J-1 
+ B.X + C•

J
X.

+l
	S.	 (3 < j < J - 2)	 (3.26)

	

j	 J	 J	 - -

AJ-1 X J-2 + 
8
J-1 XJ-1 = SJ-1
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where'the A's, B's, and C's are known 4x4 matrices whose elements

are the coefficients of equations (U.5)-(U.8), the 5's are 4-element

vectors made up of the source terms in equations (D.5)-(D.8),

SC

SX

S= S
Y

SE

and the X's are the 4-element solution vectors,

P

u
X=

v

T

The A's, B's, C's, and S's are presented in Appendix F. Equations

(3.26) can be written in matrix form as

B2 	C 2 	X2.

A 3 B3 C3	X3

\^	 I

I

AJ-2	 6J-2 CJ-2 XJ-2

AJ-1	
B
J-1	 XJ-1

S2

S3

I

_	 !	 (3.27)

SJ-2

SJ-1
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The equations thus have a block t ri-diagonal coefficient matrix whose

elements are 44 sub-matrices, and can therefore be solved using a

standard tri-diagonal inversion algorithm ( Refs. 51, 55). The algorithm

for a block tri-diagonal matrix is the same as for a scalar matrix, but

with scalar divisions changed to multiplications by matrix inverses.

With the indexing as used in equation (3.26) and (3.27), the

algorithm is as follows. First let

F 1 = E21E2
	

(3.28)

G 1 = 62 1 52 	(3.29)

Then, for j increasing from 3 to J-1, compute and store

-F 1	 ( B - A.F 2)-1C	 (3.30)
j-	 j	 J j-	 j

Gj-1 a
	

5j - AjFj-2)-1 S  - 
AjGj

-2) 	 (3.31)

The X's themselves are computed by back substitution. First

XJ-1 . GJ-2	
(3.32)

Then, for j decreasing from J-2 to 2,

Xj = 
Gj-1 - Fj-1Xj+1	

(3.33)

Finally, X1 and XJ are found by using the boundary conditions.

1
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3.5 VISCOUS PRESSURE CORRECTIUN

3.5.1 Streamwise Momentum Equation

The viscous pressure correction is computed by solving the stream-

wise momentum equation, equation (2.14), and the total mass flow rate

equation, equation (2.36), during a preliminary marching step, as

described in Section 2.3.1. In order to do this, the streamwise momen-

tum equation must be uncoupled from the differgntial continuity, cross-

flow momentum, and energy equations. The uncoupling is done by treat-

ing u and pE as the only unknowns, evaluating p , v, and T at the

previous station. The equation is differenced using the difference for-

mulas of Section 3.1.2, and the unknown terms are written at i+w

using equation (3.9). The resulting difference equation is fairly

long. It is presented in Appendix G as equation (G.1).

After collecting terms, equation (G.1) can be written as

b2 u2 + c 
2 

u 3 + d 	

a sX2

	

aj uj-1 + bj uj + c j uj +l + diPE as 	 (3 < j < J - 2)	 (3.34)

J

a J-l uJ_2 + bJ-1 UJ-1 + dJ -ipE	 sXJ-1

The "i +1" and "i +w" subscripts have been omitted from the unknowns u

and pE, respectively. Here the a's, b's, c i
s, i.nd d's are the

known coefficients and the sXs the known source terms that come from
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collecting terms in equation (G.1). They are written out in full in

*
Appendix G. The supersc ript * is used on u to distinguish it

from the streamwise velocity computed during the main march ; --i step.

3.5.2 Total Mass Flow Rate Equation

The total mass flow rate equation, equation (2.36), is written at

station i+1 as

P1+1(E.n) + Pi+1(E)

	

RT	
u1+1 dA i+1 = m	 (3.35)

Ai+1

Note that the temperature has been lagged one step, jest as in the

streamwise momentum equation. The differential area is given by

dA= 
h2

h3 (2,r)
U dY	 (3.36)

dY/dn

where W x- 0 for planar flow and 1 for ax i symmetric flow. The pres-

sure correction p' is related to the gradient pF by

P 	
P1+lips

	

E i+w
	

At

Substituting the above expressirt into equation (3.35) gives

P i+1 + P ! + p , 	 at

RT i	

i+w	
*	 .

	

u i+1 dAi+1 = m	 (3.31;
/Ai + 
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The nonlinear term 

pEt+wui+1 
has thus been introduced. This term

is linearized following the procedure described in Section 3.2, but for

a general function of p.1 and u	 instead of p, u, v, and T. The

60

result is

Pt i+w tf l	 t	
(q

i-1 +w t
	 '	 i +w	 t i-l+w)	 E i-l+w ( u*+'t 	 i)

s 
utp ` ; +w + pt i-l+wut+1 -

 pi:+w

Note, in this equation, that the streamwise velocities at the known

station i are those from the previous completely-coupled main march-

iag step. Substituting into equation (3.31) and using equation (3.36),

1

0

	

t i-1 w t
	 t l	 i	

t i-1 w	
t l

+ u i pE 	 At h^^	
(2A)"' dY - m	 (3.38)

t +w	 i +1

The unknowns in this equation are u i+1 and p^
t+w

When equation (3.38) is integrated numerically using Simpson's

rule, and the boundary conditions on u	 are applied, the resulting

equation can be written as

	

e 
2 
u 2 + e 

3 
u 3 +	 + eJ-2u J-1 + eJ-l uJ-1 + fps s 

5

where again the "i + 1" and "i+w" subscripts have been omitted. Uetails

on the derivation of this equation are presented in Appendix G.

Equations (3.34) and (3.39) represent a system of J-1 equations in

J-1 unknowns (J-2 u j 's a,td p).
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In matrix form, equations (3.34) and (3.39) are

b2 c2	d2

a3 b3 c 3	 d3

\N\

	

aJ-2 bJ-2 cJ-2 dJ-2	 uJ-2	
sXJ-2

aJ-1	
b -I	 dJ-1	 UJ-1	 sXJ-1

e2 e3 — — —	 -- — eJ-2 J-1 f	
p{	 SM -

(3.40)

The system thus has a scalar coefficient matrix that is "almost tri-

diagonal". An efficient solution algorithm can be derived using

Gaussian elimination, in the same way the standard tri-diagonal in-

version algorithm is derived. With the indexing as used in equation

(3.4U), the resulting algorithm is as follows. First let

	

F  = c2 /b2	(3.41)

GI	 S  /b2	(3.42)
2

HI	d2/b2	(3.43)

Then, for j increasing from 3 to J-1, compute and store
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Fj-1	
c j/( bj - ajFj -2)	

(3.44)

Gj-1 - ( sx - ajGj-2) A b  - a3F3-2)	
(3.45)

H j-1 - (dj - ajH j-2 ) Ab i - a3F3-2 )	 (3.46)

e  = e  - F
j-2 

ej_1 	(3.47)

f = f - Hj_2 ej_1	 (3.48)

sM 
= S  - Gj-2ej- 1

	(3.49)

In equations (3.41)-(3.49), and in equations (3.5U) and (3.51) below,

the "equals" sign is used in the FORTRAN sense to mean "is replaced

by". Next, compute

f = f - HJ-2eJ-1
	

(3.50)

s  = S  - GJ-2eJ-1	 (3.51)

Then

PE = SM /f	 (3.52)

x

uJ-1 = GJ-2HJ-A'	
(3.53)

Continuing the back substitution for j decreasing from J-2 to 2,

u 	 G j-1 - r ,-I uj *1 - H; -lpf	 (3.54)

Finally, u 	 and uJ are found by using the boundary conditions. Note

that, for this application, the algorithm can be stopped after equation

(3.52) since only p^ is needed for the main marching step.
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The viscous pressure gradient correction	 p{	 computed by this

procedure tends to oscillate for the first few marching steps. This is

probably due to starting the calculation with the physically unrealistic

value of	 pE = 0.	 Under many flow conditions, these oscillations tend

to damp out as the calculation proceeds.	 In some cases, however, they

can become severe enough to stop the calculation. 	 To prevent this from

happening, the value of p{	 was "underrelaxed" using

(P^) i+w = (1 - fd (P^ ) i-l+w + f R (Pt ) i +w 	(3.55)

where ( po i+w is the value computed using equation ( 3.52), and f 	 is

the relaxation factor. It was found that with f  = 0.1 the oscilla-

tions in p{ damped out within the first several marching steps. In

addition, the comp uted results with and without o nderrelaxation were

essentially the same for cases in which the oscillations would have

damped out naturally. The value of f 	 was therefore set equal to 0.1

for all the test cases presented in Section 4.
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SECTION 4

RESULTS

To validate the marching analysis described in Sections 2 and 3,

several test cases were run. In this section, computed results are

presented and discussed for five cases: (1) developing laminar flow in

a circular pipe; (2) laminar flow in a two-dimensional converging

channel (Jeffery-Ha.ael flow); (3) developing turbulent flow in a cir-

cular pipe; (4) turbulent flow in a two-dimensional S-duct; and (5)

turbulent flow in a typical subsonic diffuser for a supersonic inlet.

For all cases, the results are compared with experimental data and/or

exact solutions.

4.1 LAMINAR DEVELOPING PIPE FLOW

A basic test case for a subsonic viscous internal flow analysis

is lamirar developing flow in a circular pipe. Experimental data suit-

able for comparison with analysis are plentiful (Refs. 56-58). Other 	 =

numerical results are also available (Ref. 55). In addition, the com-

puted results should approach the exact Poiseuille solution far down-

stream of the pipe entrance.
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4.1.1 Gr 4 ' and Initial Conditions

The obvious orthogonal coordinate system for a straight pipe is a

cylindrical coordinate system. Therefore the metric scale coefficients

used were simply

hl=h2=1

h 3 = r

For this coordinate system, the computational (E,n) and physical

(z,r) coordinates coincide so that E = z and n = r. The configu-

ration is illustrated in Figure 4-1.

The imposed pressure P(t,n) was set equal to a constant every-

where in the duct, since for this case there are no elliptic effects

due to geometry. The streamwise pressure gradient is then completely

determined by the viscous correction pE(t). This case is thus an im-

portant test of the method used to compute pE during the marching so-

lution.

The entrance length L e for developing pipe flow (i.e., the

distance from the entrance at which the flow can be considered fully

developed) is given by (Ref. 59)

L

re=O.U8Rep

where U is the the pipe diameter and Rep is the Reynolds number

based on D and uO, the average velocity in the pipe. The pipe diam-

eter and flow conditions were chosen to give a Reynolds number low

enough to allow the computation of the entire entrance length within a
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reasonable number of pipe diameters. A pipe radius of 0.061 cm (0.002

ft) was used as the reference length L r . The reference velocity Ur

was 6.10 m/sec (20 ft/sec). This corresponds to the centerline veloc-

ity for fully-developed flow, which is twice the average velocity in

the pipe. Standard atmosphere values of 288 K (519 0 R) and 1.2246

kg/m3 (0.07645 lbm /ft 3 ) were used for the reference temperature Tr

and density pr , respectively. The reference Reynolds number Re 	 was

thus 254.151, which corresponds to an entrance length of 40.66 radii.

The calculation could not be started exactly at the pipe entrance

because the u and v velocity profiles would be singular at the

wall. It was therefore started slightly downstream of the actual en--

trance, at z/R = 0.254. The initial streamwise velocity, nondimen-

sionalized by the average velocity u 0 , is presented in Figure 4-2.

This profile was given by the tabulated finite-difference results of

Hornbeck (Ref. 55), with weighted average quadratic interpolation used

to get values between the tabulated points. The interpolation resulted

in a slight kink in the profile near the edge of the boundary layer.

This kink was quickly eliminated, however, thrount, viscous effects and

had no appreciable effect on the computed results. The initial cross-

flow velocity v was set equal to zero. It should be noted that this

is not physically realistic. In fact, the v-velocity should be

largest near the pipe entrance. However, it should still be small

compared to the u--velocity. In addition, it was felt that setting v

equal to zero was representative of the way this analysis would be

used in a practical situation, where the initial v-velocity profile is

usually unknown. Finally, since the flow in this case is essentially
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incompressible, the initial dimensionless density and temperature were

both set equal to one.

No-slip and no-bleed boundary conditions were used for u and v

at the wall. An adiabatic wall boundary condition was used for the

temperature.. Fifty-one grid points were used between the centerline

and the wall. The points were lightly packed near the wall using the

transfornation given by equation (3.1) with D S = 5. The marching step

size at was 0.05. This grid is plotted in Figure 4-3. Since the

same grid was used through the entire pipe, only a short section near

the entrance is shown. To reach the end of the estimated entrance

length at t = 40.66, 809 marching steps were required. The calcula-

tion took 3.5 minutes of CPU time on an IBM 370/3033. It should be

stated, however, that a mesh size study was not done for this case.

Based on the results to be shown in the following section, it is felt

that at could be increased considerably, especially downstream of the

region very near the entrance. The number of transverse grid points

could probably also be reduced.

4.1.2 Results

The computed axial velocity profiles are presented in Figure 4-4.

Profiles are plotted every ten marching stations, with the abscissa

displaced by 1/4 of the interval width for each successive profile.

The boundary layer thickness increases rapidly near the entrance and

soon reaches the duct centerline. It takes much longer, however, for

the centerline velocity to reach its fully-developed value.
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The computed cross-flow velocity profiles are presented in Figure

4-5. Although the initial v-velocity was set equal to zero, the anal-

ysis quickly generates a realistic profile. The computed v-velocity

is negative, with the flow moving away from the wall, and its magnitude

is a maximum near the edge of the boundary layer. As the boundary

layer thickness increases, the point of maximum v-velocity moves out

from the wall. Further downstream, where the flow in the duct is com-

pletely viscous, the v-velocity Is essentially zero.

The computed u-velocities are compared with the numerical results

of Hornbeck (Ref. 55) in Figure 4-6. Note that the abscissa in Figure

4-6 is z/(R Re 
R)' 

where Re  - pu OR/u
L
. This removes the Reynolds

n ,imber dependence from the problem, allowing the present results to be

compared directly with other results or data. Hornbeck solved the

incompressible streamwise momentum equation, minus the diffusion terms

involving v, along with the total mass flow equation, for the stream-

wise velocity distribution and the pressure. The agreement between

the present results and those of Hornbeck is excellent. The velocity

near the centerline increases continuously until the flow becomes

fully-developed. Near the wall the velocity decreases continuously.

In-between (at r/R - 0.6 and 0.7) the velocity first increases to

compensate for the increasing boundary layer blockage. Then, as the

boundary layer thickens further, including these points, the velocity

decreases gradually to its fully-developed value.

The present results are compared with the experimental data of

Pf enninger (Ref. 56), Reshotko (Ref. 57), and Nikuradse (Ref. 58) in

Figures 4-7 to 4-9, respectively. In these figures the streamwise

velocity ratio u/u0 is plotted as a function of z/(R ReR ) at six
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radial locations. Note that Pfenninger's data are all near the duct

entrance and thus an expanded abscissa is used in Figure 4-7. The

agreement with Pfenninger's data is excellent. The agreement with

Reshotko's data, presented in Figure , 4-8, is also excellent, except at

OR - 0.8 and 0.9. However, the accuracy of the data at these radial

locations, as plotted in the figure, is questionable. The data in Ref-

erence 57 are presented as velocity profile plots at various Vial sta-

tions. The disagreement in Figure 4-8 can be explained by assuming that

the data near the wall were actually taken at slightly lower values of

r/R than 0.8 and 0.9, either intentionally or because of a systematic

error in determining the probe location near the wall. (The radial

locations are Riot explicitly stated in Reference 57, and the plots can

only be read to an accuracy of about 0.02 in r/R). As an indication

that this may be the case, note that the experimental velocity near

the wall does not approach the Poiseuille profile value. (The computed

velocity does, as will be shown in a later figure). The agreement be-

tween the analysis and Nikuradse's data is excellent in the downstream

half of the pipe, but not as good near the entrance. However, these

data may also be questioned, since they do not agree with the results

of Reference 55, or the data of References 51 and 52. The present re-

sults are also compared with the data of References 56-58, in the form

of velocity profiles at various axial stations, in Figures 4-10 to

4-12, respectively.

In Figure 4-13, the computed axial pressure gradient, in the form

d(p'/pu2
of	 z	

e	
is plotted as a function of z/(R ReR ). Also shown are

R

the results of Hornbeck (Ref. 55), the data of Reshotko (Ref. 57), and
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the fully-developed Poiseuille value. Recall that since the imposed

pressure is a constant for this case, the axial pressure gradient is

determined completely by the viscous correction aE. The starting

transient near the entrance is a result of -starting with the physically

unrealistic (but, as with the cross-flow velocity, realistic in prac-

tice) value of pE - 0. The pressure gradient rapidly reaches the cor-

rect value, however, and slowly approaches the fully-developed value

far downstream. The agreement with the results of Reference 55 and the

data of Reference 51 is excellent, indicating that the method used to

compute the viscous pressure correction pil is valid.

In Figure 4-14 the computed skin friction coefficient is plotted

as a function 3f axial distance. The shear stress at the wall was

found by second-order one-sided numerical differentiation of the com-

puted axial velocity. Also shown in the figure is the value for fully-

developed Poiseuille flow. As one would expect, the skin friction

starts out high, where the boundary layer is thin, decreases rapidly

as the boundary layer thickens, and then slowly approaches the fully-

developed Poiseuille value.

Finally, in Figure 4-15 the computed streamwise velocity profile

at the last station is compared with the exact Poiseuille profile.

The agreement is excellent, indicating that a fully-develped state has

been reached.
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4.2 JEFFERY-HAMEL FLUW

Another useful test case is laminar incompressible flow in a two-

dimensional wedge-shaped channel, known as Jeffery-Hamel flow. When

self-similarity is assumed, an exact solution to the Navier-Stokes

equations exists for this flow. The streamlines are radial, inter-

secting at a line source (for diverging flow) or sink (for converging

flow). The solution for the velocity, derived in terms of Jacobian

elliptic functions, is given by Millsaps and Pohlhausen (Ret. 6U).

4.2.1 Grid and Initial Conditions

The configuration and coordinate system for converging Jeffery-

Hamel flow is illustrated in Figure 4-1b. The particular geometry

used in this study was a converging channel with a half-angle a of

5 degrees. A polar coordinate system, centered at the intersection of

the wall and symmetry plane, was used as the orthogonal coordinate

system for the analysis. In Figure 4-1b, R S is the radial coordinate

measured from the center of the polar system, and V is thF angular

coordinate measured in the clockwise direction from the symmetry plane.

Since the flow is in the -R S direction, the computational streamwise

coordinate is

E - RS1 - RS

where R
S
	is the radial coordinate at the initial station. The com-

1
putational cross-stream coordinate is simply



82

n - 9/a

The metric scale coefficients are then

h1=hi=1

h 2 = R 
S 
a

This flow, unfortunately, violates one of the basic assumptions

made in formulating a set of equations that can be solved by spatial

marching. The streamwise pressure gradient cannot be represented by

an inviscid pressure gradient plus a one-dimensional viscous correction

;f self-similarity is to be main ,:ained. For this reason the exact so-

lution was used to compute the imposed pressure gradient P{(&,n).

The derivation of the equation for P C from the exact solution for u

is presented in Appendix H. Under these conditions, the computed vis-

cous pressure correction p^ should be essentially zero throughout the

duct.

The Reynolds number used in Reference 60 was defined as

u CL R S
Re -	 V

where uCL is the centerline velocity at a given R S . For this case,

a value of Re 0 = -5000 was used. (The value is negative because uCL

is in the negative R S direction.) An initial channel half-wioth of

U.Ubl cm (0.002 ft) was used as the reference length L r . The value

of R S	was thus 0.6995 c+u (0.02295 ft). Standard atmosphere values
1

of 288 K (519 * R) and 1.2246 kg/m3 (0.07645 lbm /ft 3 ) were used for the

reference temperature and density, respectively. The centerline veloc-

ity at the initial station, which for Re  = -5000 was 10.45 ..,/sec
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(34.29 ft/sec), was used for the reference velocity. The reference

Reynolds number was thus 435.8.

The exact solution was used for the initial streamwise velocity

profile. (See Appendix H for the equation). The initial dimensionless

values of cross-flow velocity, density, and temperature were zero, one,

and one, respectively. No-slip and no-bleed boundary conditions were

used for u and v at the wall. An adiabatic wall boundary condition

was used for the temperature. Fifty-one grid points were used between

the symmetry lane and the wall. The points were lightly packed nearY	 9	
l

the wall with DS - 10 in equation (3.1). One hundred marching
l

steps were taken with a step size of of 0.05. The fin4l area was

thus 0.56 times the initial area. The computational grid is shown in

Figure 4-17 with every other streamwise station plotted. The inset in
a

the figure shows the grid near the wall magnified by a factor of five.

A circle is centered at corresponding locations in the full grid and

the inset. This calculation required 28.9 seconds of CPU time on an

IBM 370/3033.

4.2.2 Results

The computed streamwise velocity profiles are presented in Figure

4-13. Profiles are plotted every other marching station. The flow

accelerates through the duct and the boundary layer thins somewnat.

Self-similarity is maintained in the calculation, as shown in Figure

4-19, where the computed solution after 100 marching steps is compared

with the exact solution. The two solutions are the same to within the

resolution of the plot.
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The cross-flow velocity profiles are presented in Figure 4-20.

Except for a slight starting transient, where it reaches a dimension-

less value of about 0.0005, the cross-flow velocity is essentially

zero everywhere in the duct.

The viscous pressure correction also remains essentially zero.

It reaches a maximum at the last station of about 0.0018 (nondimen-

sionally), compared to an overall level of about 757. The viscous cor-

rection to the pressure gradient at this station is -0.0017, compared

to the exact values of -0.49 at the centerline and 0.73 at the wall.
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One of the most basic test cases for turbulent flow is developing

flow in a circular pipe. Although no exact solution exists, the prob-

lem has been studied experimentally by several investigators (Refs. 47,

61-64). The data of Barbin (Ref. 62) were chosen for comparison with

the present analysis.

4.3.1 Grid and Initial Conditions

As in the laminar developing pipe flow cast, a cylindrical coor-

dinate system was used, as illustrated in figure 4-1. Again, the com-

putational (E,n) and physical (z,r) coordinates coincide, so that

C = z and n = r. Also, as in the laminar case, the imposed pres-

sure P(t,n) is equal to a constant everywhere in the duct. The

streamwise pressure gradient is completely determined by the viscous

correction p{( O.
The pipe radius in Reference 62 was 10.16 cm (4.0 in). This was

used as the reference length L 	 in the analysis. The reference

velocity Ur was 29.9 m/sec (98.1 ft/sec), the average velocity in the

pipe. The reference temperature T r that was used was the standard

atmosphere value of 288 K (519" R). The Reynolds number in Reference

62, based on pipe diameter and average velocity, was 388,000. In order

to match this, the reference density was set equal to 1.143 kg/m3

(0.07138 lbm/ft3 ). The reference Reynolds Number was thus 194,000.

The measured velocity profile at the first experimental station,

1.5 diameters downstream of the pipe entrance, was used as the initial
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streamwise velocity profile for the analysis. Weighted average quadra-

tic interpolation was used to obtain values between the tabulated ex-

perimental data points. In addition, the method outlined in Section

2.2.3 was used to obtain realistic velocity values between the wall

and the first experimental point away from the wall. The initial

cross-flow velocity v was set equal to zero. The initial dimension-

less density and temperature were both set equal to one. This case

was run using both the Cebeci-Smith and McDonald-Camarata turbulence

models in the inner region.

ho-slip and no-bleed boundary conditions were used for u and v

at the wall. An adiabatic wall boundary condition was used for the

temperature. Fifty-one grid points were used between the centerline

and the wall, with the points packed near the wall using equation (3.1)

with DS = 100. A constant marching step size ac of 0.1 was used.

The grid near the pipe entrance is plotted in Figure 4-21a. The grid

was the same through the entire pipe. The boxed region near the wall

in Figure 4-21a is shown magnified 20 times in Figure 4-21b. A circle

is centered at corresponding locations in the two figures.

In the experiment of Reference 62, the last data station was

8.84 m (29.0 ft), or 87 radii, from the pipe entrance. The data indi-

cate that the flow, although close, was not quite fully developed at

this point. The calculations, therefore, were extended to 120 radii

downstream of the entrance. Thus, 1170 marching steps were needed

between 4 - 3 and t = 120. The value of At could probably be

greatly increased, especially downstream of the near-entrance region,

to cut down the number of steps, and therefore computer time, required
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40
3

for this case. The case as run took 4.1 minutes of CPU time on an IBM

370/3033.

4.3.2 Results

The computed streamwise velocity profiles are shown in Figure 4-22.

Profiles are plotted every 20 marching steps, with the abscissa dis-

placed by 1/4 of the interval width for each successive profile. These

results were computed using the Cebeci-Smith turbulence model in the

inner region. The differences between these results and those obtained

using the McDonald-Camarata turbulence model were too small to be dis-

tinguished in this tyre of plot. The boundary layer growth along the

wall can be clearly seen in Figure 4-22. The edge of the boundary

layer reaches the pipe centerline about halfway through the pipe. From

this point through to the end of the pipe the velocity profile changes

shape very gradually. The dimensionless centerline velocity, for

example, only increases from 1.210 at t	 70 to 1.215 at t	 120.

The computed cross-flow velocity profiles are presented in Figure

4-23. As in the laminar developing pipe flow case, the analysis

quickly generates a realistic profile even though the initial

v-velocity was set equal to zero. The point of maximum v-velocity

moves away from the wall as the boundary layer thickness increases.

Once the flow becomes completely viscous, the v--velocity quickly de-

creases and remains essentially zero. Although no experimental values

for the cross-flow velocity are given in Reference 62, these profiles

are qualitatively the same as those obtained experimentally and ana-

lytically by Richman and Azad (Ref. 47).
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The u-velocities computed using both the Cebeci-Smith and

McDonald-Camarata turbulence models are compared with the data of Ref-

erence 62 in Figures 4-24 and 4-25, respectively. Streamwise velocity

is plotted as a function of axial distance at five radial locations.

The agreement between theory and experiment is generally very good.

The two turbulence models give essentially the same results, except

very near the wall where the McDonald-Camarata model is in slightly

better agreement with the data. These results are also compared with

the data of Reference tit, in the form of velocity profiles at five

axial locations, in Figures 4-26 and 4-27.

It should be noted that in the present analysis the centerline

velocity continually increases and approaches its fully-developed value

asymptotically from below. Several authors (Refs. 64-0- 7) have reported

that the centerline velocity in developing turbulent pipe and channel

flow typically overshoots its fully-developed value slightly, and then

approaches it from above. This overshoot phenomenon is not apparent

in the data of Reference 62, perhaps because measurements were not

made far enough downstream. The exact cause of this behavior is not

clear, but it apparently cannot be predicted with an algebraic turbu-

lence model, at least without some strictly empirical problem-dependent

modifications (Refs. 65, 68).

The computed and experimental pressure coefficients are plotted as

a function of axial distance in Figure 4-28. Recall that since the im-

posed pressure in this case is a constant, this pressure coefficient is

determined by the viscous correction p'. The agreement between theory

and experiment is fai ► ,,, good, with the experimental results falling

about halfway between the computed results from the two turbulence



92

models. This again indicates that the method used to compete the vis-

cous pressure correction is valid, and that the slight disagreement in

Figure 4-28 is an effect of the turbulence model.

In Figure 4-29, the computed ski: ► friction coefficient is plotted

as a function of axial distance for both turbulence models. The shear

stress at the wall was found by second-order one-sided numerical dif-

ferentiation of the computed streamwise velocity. Also shown in the

figure is the expe,.:ed fully-developed value computed from Prandtl's

formula for wall friction (Ref. 28). This formula is

1	 2 log (k% -,rA J- 0.8	 (4.1)

where

8t W

ea4cfp 

AVE

	

Re	
uAVED

	

D	 v

A curve fit to equation (4.1), accurate to t3 percent, is given by

White (Ref. 28) as

A z 1.02 (log Re D)-2.5
	

(4.2)

Equation (4.2) is the one actually used to get the fully-developed skin

friction value presented in Figure 4-29.

With both turbulence models, the skin friction decreases rapidly

near the pipe entrance, where tr,e boundary layer thickness is in-

creasing rapidly. Unlike the results in laminar developing flow,

however, it dips below the final fully-developed value and then gradu-

ally increases. Although no direct skin friction measurements were



93

made in the experiment of Reference 62, and the data are not detailed

enough to compute reliable %alues, these results are qualitatively

similar to those obtained in other experiments (Refs. 66-67). Of the

two turbulence models, the results obtained using the Cebeci-Smith

model are in better agreement with equation (4.2).

Finally, the predicted Reynolds stress profiles are compared with

data at four axial stations in Figure 4-30. The Reynolds stress, in

the form u'v^ 
TF-U

/(u	 )2, is plotted as a function of normalized dis-

tance from the wall. Here u
tF-D 

is the friction velocity for fully-

developed flow, given by

u	 =
C-pTF-D

For the predicted values of Reynolds stress, equation (4.2) was used to

compute T 	 . The experimental values were taken directly from Ref-
F-D

erence 62, where the value of z	 is not given. The experimental
WF -D

and theoretical values presented in Figure 4-30 may therefore be norma-

lized by slightly different values. It's interesting to note that the

Reynolds stress curves for the two turbulence models would essentially

coincide if each were normalized using its own predicted value of u
It

The agreement between theory and experiment is qualitative, at

best, at z/R - 9 and 33, but is fairly good at z/R - 51 and 81. In

the experiment, transition from laminar to turbulent flow was artifi-

cially promoted using a strip of sand grain roughness near the pipe

entrance. This could be the cause of the disagreement at the first

two stations in Figure 4-30. Of course, the disagreement could also

be due simply to inadequacies in the turbulence models.

L
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4.4 S-SHAPED DUCT FLOW

The next test case stu-led was turbulent flow in a two-dimensional

S-shaped duct. This is a fairly complex flow, with the boundary layer

on each wall seeing both favorable and adverse pressure gradients. In

addition, the curvature terms in the equations become important since

the metric scal p coefficients vary in both coordinate directions. The

particular geometry used for this case vis the 30* 45' S-duct studied

experimentally by Butz (Ref. 69).

4.4.1 Geometry and Computatio nal Coordinates

The geometric configuration is presented in Figure 4-31. Two 	 i

circular arc bends, both with a centerline radius of 0.508 m (20.0 in),

were used to make up the S-duct. The first bend covered an arc of 30% 	 3

and the second an arc of 45 0 . The duct width was 0.1016 m (4.0 in).

Tne computational coordinate system for this configuration was

computed using the o-.ethod of References 2 and 3, as described in Sec-

tion 2.1. In order to satisfy the uniform inflow and outflow boundary

conditions that are used with this method, straight sections four

inches, or one duct width, long were added upstream and downstream of

the S-duct. The resulting coordinate system is shown in Figure 4--32.

Distances have been nondimensionalized by the outer wall radius. (As

a check, a coordinate system was later constructed using straight sec-

tions that were two duct widths long. The metric parameters for the

two cases were essentially identical). The coordinates were generated

with 51 cross-stream points and 100 streamwise points, evenly spaced
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(in the computational coordinates t and q ) in both directions.

During the viscous marching solution, the metric parameters at each

point in the viscous grid were found by interpolation over this evenly

spaced grid.

The metric coefficients generated by the method of References 2

and 3 are, unfortunately, not smooth. In Figure 4-33 the metric scale

coefficient h (recall h 1 • h2 with this method) is plotted along

both walls as a function of axial distance. It was found that the com-

puted streamwise velocities were not affected by the oscillations shown

in Figure 4-33a. These oscillations were, however, reflected in the

computed cross-flow velocities, although the calculation did not go un-

stable. To eliminate the sharp oscillations in the metric coeffi-

cients, they were smoothed by splitting the h . h(E) curve at each

constant n-line into several sections, separated by "knots," and using

a cubic spline smoothing within each section. The knot locations were

chosen to yield tld best overall fit, in the least squares sense, to

the original h - h(E) curve at n - U. The same knot locations

were then used for all thi n-lines. (New knot locations could not be

used for each n-line because this led to sharp changes in h in the

n-direction at a given t). The smoothed metric coefficients, using

10 knots, are plotted in Figure 4-33b. The smoothing removed the sharp

oscillations, although a couple of stretched out "bumps" remain. These

caused no difficulties in the viscous calculation, however.
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4.4.2 Imposed Pressure Field

Since the computational mesh consists of the streamlines and

potential lines from a planar potential flow solution, the imposed

pressure was computed directly from the metric scale coefficients, as

described in Section 2.3.2. The imposed, or inviscid, pressure coef-

fic.ent on each wall is compared with the experimental data in Figure

4-34. Here cp is defined as

p - prefc P ` 1 U2

where 
P  

is the dEnsity, U r is the average velocity at the duct

entrance, and 
pref 

is the static pressure at the first measurement

location on the upper wall.

The gradients given by the inviscid pressure distribution match

the experimental pressure gradients very well. In particular, the

eilipZic effects of the geometry on the pressure field are correctly

reproduced. The pressure along the top wall starts to decrease ahead

of the inflection station, at 30 degrees, and increases ahead of the

exit, at 75 degrees. The pressure along the bottom wall, of course,

does just the opposite. This imposed pressure field, therefore, cor-

rectly introduces the elliptic effects of the geometry into the viscous

marching solution.

One additional point should be mentioned here. In the experiment

of Reference 69, the S-duct was constructed from two separate circular

arc sections. Flow surveys were made by inserting a 3.81 cm (1.5 in)

long survey section, containing a translating probe, at either end of

a circular arc section. Since straight sections were added upstream
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and downstream of the S-duct when generating the computational mesh

(and therefore the pressure field), the effect of this survey section

on the flow is properly accounted for when comparing with the data at

the entrance and exit of the S-duct. Putting the survey section at

the inflection station, however, changes the geometry slightly. This

change turns out to be important, as will be shown later, because the

inflection station is where the streamwise pressure gradients are the

largest. A second computational mesh and imposed pressure field were

therefore generated, with the survey section between the two circular

arc sections, for use when comparing with the data at the inflection

station.

4.4.3 Initial Conditions

The reference conditions used in the analysis were chosen to

match the flow conditions in the experiment of Reference 69. The

average inlet velocity of 19.2 m/sec (63 ft/sec) was used as the

reference velocity Ur . The reference length L  was 0.5588 m

(1.83333 ft), the outer wall radius at the inlet. To match the exper-

imental conditions, a reference Reynolds number Re  of 7.216x10 5 was

then required. The reference temperature was assumed to be 288 K

(519* R), and the reference density was computed to be 1.2042 kg/m3

(0.075173 lbm/ft3).

The measured streamwise velocity profile at the entrance station

was used to start the marching procedure. This profile is shown in

Figure 4-35. Interpolation was used to get values between the data

points. The initial cross-tlow velocity was set equal to zero, ano
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the initial dimensionless density and temperature were both set equal

to one. The marching calculation was started 3.33 cm (1.3125 in) up-

stream of the start of the first bend. This is the actual measurement

location for the entrance station, accounting for the presence of the

survey section and the 1.429 cm (0.5625 in) upstream extension of the

probe itself (Ref. 70).

No-slip and no-bleed boundary conditions were used for the veloc-

ities at ti;e walls. An adiabatic wall boundary condition was used for

the temperature. Fifty-one grid points were used between the two

walls. Because the boundary layers were thin, the points were tightly 	 3

packed near both walls, with 0 S	200 in equation (3.1). The stream-

wise step sire at was U.U5. The actual mesh used in the viscous cal-

culation, for the case without the survey section in the middle, is

shown in figure 4-3b. For clarity, only every other streamwise station

is shown. The inset in the figure shows the grid near the wall magni-

fied by a tactor of 25. A circle is centered at corresponding loca-

tions in the full grid and the inset. For this case IQ marching steps

were needed to reach the end of the duct, requiring 48.5 seconds of CPU

time on an IBM 370/3033. For the case with the survey section, 17U

marching steps were needed and 50.6 seconds of CPU time were required.

4.4.4 Results

This case was run using both the Cebeci-Smith and McUonald-

Camarata turbulence morsels. The results were virtually identical, so

only t l)e results obtained for the Cebeci-smith turbulence model will

L)e shown in this section.

L-
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The computed streaunNise velocity profiles are shown in Figure

4-31a. The boundary layer growth through the duct can be clearly seem,

although it's still relatively thin at the exit station. The slope of

the velocity profile in the essentially inviscid core region is consis-

tent with a potential vortex flow, with the velocity inversely propor-

tional to the distance from the center of curvature of the duct sec-

tion, lhis can be seen more clearly in Figures 4-37b and 4-31c, where

the predicted profiles midway through the first and second bends are

piotted to a larger scale. The velocity near the bottom wall (i.e.,

the inner wall in the first bend and the outer wail in the seeono benu)

increases as they flow Enters the first band, decreases around the in-

flec.tion station, and increases again leaving the second bend. Near

the top wall, of course, the opposite occurs.

The computed streamwise velocity profiles at the inflection and

,xit stations are compared with the experimental profiles in Figure

4-3t'. The computed value's at the inflection station are for a cont ig-

uration with the survey section between the two circular sections, as

described in Section 4.4.1. The actual locations of the inflection

ant exit stdt1011-1, to inq into account the survey section and the up-

Ctream extension of the probe. are 0.470 cm (0.18l 15 in) downstream eft

the entts of the first and Second bends. 1n general the agreement be-

tween theory and experiment is vary good, 	 l

It is interestlnq to note now important it is to lncluele the et-

fects of the survey section and probe, especiall; when cumparinq with

the data .it the int section station. The velocity profile chanQvs

ti h.1pe rapidly in this region because of the steep favorable  dnu aki-

verse pressure , yraoients on the toll and bottom walls, respectively.
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In Figure 4-39, the theoretical results exactly at the inflection

plane, ignoring the effects of the survey section, are compared with

the data. The agreement is not nearly as good as that shown in Figure

4-38a.

In Figure 4-40 the pressure coefficient for the v il ous flow along

each wall is compared with the experimental data. The pressure coeffi-

cient is determined by the imposed, or inviscid, pressure plus the

viscous pressure correction. By comparing with Figure 4-34, it can be

seen that the viscous correction in the first bend yields slightly

worse agreement with the data along the top wall and about the same

level of agreement along the bottom wall. In the second bend the

agreement is improved along the top wall and is slightly worse along

the bottom wall. It should be noted, however, that because of the

scatter in the data, it is difficult to determine exactly how well the

theory matches the experiment. In defining the pressure coefficient,

the pressure at the first measurement location on the top wall was

used as the reference pressure. If this particular measured pressure

were too high or low, all of the experimental values would be too low

or high relative to the predicted values.

JRiG:,'11 1- NAAGE IS
OF POOR QUALITY
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4.5 SUBSONIC DIFFL;ER FLOW

As a final test case, compressible turbulent flow in an axisym-

metric subsonic diffuser typical of those used in supersonic propulsion

systems was studied. The diffuser chosen is called a dM/jz diffuser

because the area distribution is such that the one-dimensional Mach

number distribution through the diffuser is linear. This type of dif-

fuser has been tested as a component of a supersonic inlet system

(Ref. 71), as part of an investigation of various diffuser types

(Ref. 6), and as part of a vortex generator study (Ref. 12). because

of their yredter detail, the data of Shaw (Ref. 7Z) were chosen for

comparison with the present analysis. Two cases were run, both with

the Cebeci-Smith turbulence model, with average inlet Mach numbers r

0.29 and 0.75.

4.5.1 Geometry and Computational Coordinates

The geometric configuration is presented in Figure 4-41. The cowl

radius way constant at 15.24 cm (6.0 in), while the centerboay radius

varied from 11.43 cm (4.5 in) at the diffuser inlet station, where

z = U.U, to 5.387 cm (2.121 in) at the exit station, where z = 22.9

cm (9.0 in). Upstream of the diffuser itself was a slightly uiverging

throat section, with a centerbody wall angle of 3 degrees. ?he diffu-

ser area ratio was 2.U. In this type of diffuser the area change, and

thus the rate of diffusion, is fairly small near the entrance, but

increases rapidly in the downstream halt of the diffuser. Also shown

in Figure 4-41 are the locations of th- five total pressure rakes,
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designated A to E, that were used in the experiment of Reference 72.

These rakes were vertical, and were located at z - 0.0, b.98, 11.4,

17.8, and 22.9 cm (0.0, 2.75, 4.5, 7.0, and 9.0 in).

The computational coordinate system was again computed using the

method described in Section 2.1. A cubic fairing was added along the

centerbody in the region of the diffuser exit to eliminate the sharp

change in wall curvature at that point, which would have caused numer-

ical problems in generating the coordinate system. Straight sections

were again added upstream and downstream of the duct to satisfy the

uniform inflow and outflow boundary conditions assumed by the coordi-

nate generation method. A longer straight section was used at the down-

stream end than at the upstream end because of the larger annular width

and the larger centerbody curvature at that point. The resulting coor-

dinate system is shown in Figure 4-42. Distances have been nondimen-

sionalized by the cowl radius. dear the diffuser exit plane, the ac-

tual centerbody contour is drawn as a dashed line, showing the extent

of the cubic fairing used in this region. The coordinates were gener-

ated using 51 cross-stream points and 100 streamwise points, evenly

spac ed (in the computational coordinates t and n) in both direc-

tions. During the viscous marching solution, the metric parameters at

each point in the viscous grid were found by interpolation, over this

evenly spaced grid.

The metric scale coefficients along each wall are shown in Figure

4-43. Along the straight outer cowl the distribution is smooth. Along

the curved centerbody, however, there are oscillations. It was again

found, as in the S-duct case of Section 4.4, that the computed stream-

wise velocities were not affected by these oscillations. Therefore,



116

for the results presented in this section, no smoothing of the metric

coefficients was performed.

4.5.1 Imposed Pressure field

The imposed, or inviscid, pressure field was computed using the

method described in Section 2.3.2. Since this is an axisymmetric case,

this involved solving the axisynmetric potential equation, equation

(2.38), to yet an incompressible inviscid velocity. The Lieblein-

Stockman correction was used to include the effects of compressibility

on the imposed pressure field. The resulting pressure coefficients

along each wall are compared with the experimental data, for both the

M I s 0.'9 and M 1 -11.75 cases, in Figures 4-44 and 4-45, respectively.

Here c 	 is defined as (p-pret)/Q,, where Q I is the nominal inlet

dynamic pressure and p ref for each wall is the measured static pres-

sure closest to the diffuser inlet station. For the cowl this was

exactly at the inlet station and for the centerbody it was 2.54 cm

(I.0 in) upstream.

In general the agreement between the inviscid pressure coeffi-

cients and the data is fairly good. the bumpiness in the pressure

distribution along the centerbody is a result of the bumpiness in the

metric. scale coefficient. The viscous pressure correction computed

dkirinq the marching solution will tenet to shift the theoretical values

down as axial distance increases. Note the tlatteniny of the experi-

mental pressures al;)r,y the centerbody at the downstream end for both

Mach numbers. lh,^, ind i cates the presence of boundary layer separation
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on the centerbody near z/l r = 1.1. No separation is inuicated along

the cowl.

4.5.3 Initial Conditions

Tht reference conditions used in the analysis were chosen to match

the Clow conditions in the experiment of Reference 72. The cowl radius

was used for the reference length !r . The average inlet values of

velocity, temperature, avid density were used for the reference values.

These reference conditions are summarized in Table 4-1 for the two

cases.

The marching calculation was started at the diffuser inlet, the

location of rake A in the experiment. The initial boundary layer pro-

file could not be determined in detdll from the data, however. There-

fore the init i al streamwise velocity profile was constructed by speci-

fying the free-stream velocity plus boundary layer thickness parameters

on both the cowl and centerbody. The velocity in the boundary layers

was then found using the procedure for turbulent flow described in

Jection 7.2.3. The boundary layer parameters were adjusted by juai-

cious trial-and-error to give a good fit to the experimental profile.

The values used are presented in Table 4-2.

the initial cross-flow velocity was set equal to zero. The ini-

tial dimensionless density and temperature were both set equal to one

in the tree-stream. The values of density and temperature in the

boundary layer were tound using the procedure of Section 2.2.3.

No-shp and no-bleed boundary conditions were used for the veloc-

ities at the walls. An adiabatic wall boundary conuit ion was used for
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the temperature. Fifty-one grid points were used in the cross-stream

direction, packed at both walls with U5 - 50 in equation (3.1).

The streamwise step size at was 0.05. The actual mesh used in the

viscous calculation is shown in Figure 4-46. The inset in the figure

shows the grid near the wall magnified by a factor of 25. A circle is

centered at corresponding locations in the full grid and the inset.

For both Mach numbers the analysis predicted flow separation before

the end of the diffuser was reached. For the 141 - U.29 case, 87

marching steps were taken, requir 4 ng 27.0 seconds of CPU time on an

IBM 370/3033. For the M 1 - 0.75 case, 78 marching steps and 24.2

seconds of CPU time were used.

4.5.4 Results

The computed streamwise velocity profiles are shown in Figures

4-47a and b. For both inlet Mach numbers, the boundary layers on the

cowl and centerbody grow rapidly in the downstream half of the diffuser

until the flow finally separates along the centerbody. The predicted

separation location, taken as the point where negative streamwise ve-

locities first occur, was z/l r - 1.26 for the M 1 - U.29 case

and z/l r - 1.IU for the M1 - 0.75 case. both of these locations

are in good agreement with those indicated by the experimental pressure

distributions shown in Figures 4-44a and 4-45a. The marching procedure

was able to continue past separation, but it quickly became unstable,

giving physically unrealistic results. The results shown in Figure

4-47. therefore, include profiles only up to the separation punt. It

should be noted that by modifying the streamwise convective terms in
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the governing equations a marching procedure can be made stable in

separated flow regions (Ref. 73). However, the resulting equations

are approximate and can be used only if the separation region is small

(i.e., the flow quickly reattaches) and does not appreciably affect

the rest of the flow field. This is clearly not the case for the flows

considered here.

The computed streamwise velocity profiles for the M 1	0.29

case are ctmipared with the experimental results in Figure 4-48. The

velocity ratio is plotted as a ft,nction of fractional distance across

the duct. Comparisons can only L ,e made at the first four rakes since

the flow separates before the last rake :s reached in both the analysis

and the experiment. The agreement between the predicted and experimen-

tal.resuits is generally very good.

The analytical results for the M 1 = U.75 case are compared

with the data in Figure 4-49. Since the analysis predicted separation

slightly upstream of the rake U location for this case, the predicted

results can only be shown for the first three rakes. The agreement

with the data at these rakes is again very good. The experimental v : -

locity profile at rake U, which is also shown in Figure 4-49, does

not indicate separated flow. However, the experimental static pressure

distribution along the centerbody (see Figure 4-45a) indicates separa-

tion close to the rake U location. It's possible that the flow ac-

tedlly was stIparatt'd at rake U, but that the first tube in the rake

was too tar trom the wall to detect it.

The pressure coefficient for the viscous flow along_ each surface

is compared with the experimental data i:, Figure 4-5U for the

M l = 0.29 _ase and in Figure 4-51 for the M 1 = 0.15 ease. by
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comparing with Figure 4-44, it can be seen that the viscous blockage

correction shifts the pressure downward only slightly for the M 1 •

0.29 case. There is a larger shift in the M 1 • 0.75 case (compare

Figures 4-51 and 4-45) because of the thicker boundary layer along the

centerbody. The analytical and experimental pressure gradients along

the centerbody match closely, but the absolute pressure levels them-
-

selves are slightly off. This could be due to not having exactly the

right reference pressure when computing the pressure coefficients.

Along the cowl, the predicted and experimental pressures agree well

near the beginning of the diffuser, but disagree further downstream.

This is probably due to the upstream influence of the separated flow

region in the experiment. The large separation region reduces the

effective flow area, causing the flow along the cowl to accelerate.

This effect cannot be predicted, of course, by a marching procedure.

Finally, the theoretical and experimental Reynolds stresses at

rakes B, C, and 0 for the M 1 • 0.29 case are shown in Figure

4-52. (The Reynolds stresses were not measured fcr the M 1 = 0.75

case, or at rake A for the M1	0.29 case). From the figure, it

can be seen that the Cebeci-Smith turbulence model yields at least

qualitatively correct Reynolds stresses at rakes B and C. The

agreement is much poorer at rake U, which is very near the point of

boundary Dyer separation.
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Table 4-1. Reference Conditions for Diffuser Flow Test Cases

MI = 0.29	 i Ml = 0.75

i Lr 1 0.152 m (0.5 ft)	 1 0.152 m (0.5 ft)

Ur 1 99.40 m/sec (326.1 ft/sec) 	 1 247.0 m/sec (810.3 ft/sec) 	 i

I or 1 2.0055 kg/m3 (0.12520 lbm/ft 3 ) 1 1.6087 kg/m3 (0.10043 lbm/ft 3 ) i
I	 i	 i	 i
Tr 1 292.4 K (526.3 R)	 269.9 K (485.8° R)

i Reri 1.68x106 	i 3.56x106
I	 i	 i	 i

Table 4-2. Initial Profile Parameters
for Diffuser Flow Test Cases

i MI = 0.29 1	 MI = 0.75	 i

(u/Ur)e	 i 1.05 i	 1.03

i	 ( 6/Lr)COWL 0.03 i	 0.03	 i

i	 (6*/Lr)COWL 1	 0.00333 1	 0.00429	 i

i	 ( 8 /Lr)COWL 0.00267 1	 0.00321

i	 ( 6/Lr)C-BODY 1	 0.0433 1	 0.0433	 1

(6*/Lr)C-BODY 0.00394 U.00867	 i

i	 ( s/Lr)C-BODY
I
----------------------------------

1	 0.00328
i

1	 O.UO578	 i
i	 i

------
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SECTION 5

CONCLUSIONS

A new solution procedure nas been developed and used to compute

compressible viscous siAsonic flow in both planar and axisymmetric

ducts. A set of em-' i%-ns that can be solved by forward marching was

derived by neglecting second derivatives in the streamwise direction

and by uncou--?ing the streamwise and cross-flow pressure gradients.

The streamwise pressure gradient was written as the sum of a known two-

dimensional imposed pressure gradient and an unknown one-dimensional

viscous correction computed as part of the marching procedure. The

governing equations were solved simultaneously using an implicit

finite-difference method. based on the results of the test cases pre-

sented in Section 4, a number of specific conclusions can be made about

thp- analysis.

1. The analytical results agree extremely well with experimental

data and/or exact solutions for the laminar flow cases studied. This

indicates that the basic solution procedure is valid since the turbu-

lence model, of course, has no effect in these cases.

2. The analytical results for turbulent flow also agree well with

data, although not quite as well as for laminar flow. Both turbulence

models that were used give equally good results for the cases studied.

a`
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3. The method used to compute the viscous pressure gradient cor-

rection is valid. This was demonstrated by the laminar and turbulent

pipe flow cases, where the streamwise gradient is given solely by the

viscous correction, and by the Jeffery-Hamel flow case, where the vis-

cous correction is essentially zero.

4. When the imposed pressure field is a good approximation to the

actual pressure field, the computed results will be accurate. This

was demonstrated by the Jeffery-Hamel flow case.

5. The analysis can be used for flows with both favorable and ad-

verse pressure gradients. It can also be used to accurately predict

the location of flow separ ,tion, as shown by the diffuser flow test

cases.

b. The predicted streamwise velocities are not especially sensi-

tive to any oscillations present in the metric scale coefficients and

imposed pressure field. These oscillations are reflected in the pre-

dicted cross-flow velocities, but not to the point of numerical in-

stability.

7. The marchin g procedure can be started with the initial cross-

flow velocity set equal to zero when the actual profile is unknown, as

is often the case in engineering practice.	 the analysis will then

generate a realistic profile in the first few marching steps.

H. The analysis is tact enough for use in parametric studies and

design work. A typical turbulent flow case with a 51x1UU mesh will run

in about 30 seconds on an IBM 37U13033.

1
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APPENDIX A

DERIVATION OF GOVERNING EQUATIONS

The general equations for compressible, viscous fluid flow, in

orthogonal curvilinear coordinates, can be found in one form or

another in several references (e.g., References 74-75). Here they are

written as:

CONTINUITY
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In these equations, h l ,h2, and h3 are the metric scal p coef f i-

cients for the orthogonal curvilinear coordinate system; E, n, and a

are the three coordinate directions; u, v, and w are the velocities

in the E, n, and a directions, respectively; p is the static

density; p is the static pressure; and h is the static enthalpy.

The subscripts E. n, a, and t u enote partial differentiation.
i

The shear stresses are given by

 h 	 h+	 +
I1 2UL(Kii uE h^z v Ti.. `, w

	a v
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where

(A.6)

'	 19	 V	 (h, h u) + (h h v) + (h h w)h h h	 1 3 E	 1 3 n	 1 2 9,1 h2 3

and uL is the molecular viscosity. The second coefficient of vis-

cosity, a, i s assumed equal to -2u,/3.
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The heat fluxes are given by

q l 	^- kLTt
1

1
q j	 kLT^

1
q 3 -	 kLT0

(A.7)

where 7 is static temperature and k 	 is the molecular thermal

conductivity.

Finally, the viscous dissipation, VL , is given by

f# L - "L 2̂ (41 + e22 + e33) + 
( ^e23)2 + (2e31)2

+ (2e12 ) 2 1	 14 (e11+ e22 + e33 ) 2	(A.8)

where

(Tmnemr ° 1 	 + a mn 121''L 9	 V^

Equations (A.1)-(A.5) are, in theory, valid tar turbulent as well

as laminar flew. In practice, however, solving them directly for tur-

bulent flow would be a hopeless task. The cxtremely fine resolution

that would be required in both space and time is simply beyond the

rapacity of current and foreseeable computers.

The way around this problem is to replace the instantaneous quan-

tities in the 4quations with the sum of their average and fluctuating

values. This can be 000e using either conventional time averaged

values or mass averaged values. The conventional time average of a

quantity t is Getined by
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8 f	 f dt	 (A.9)

t0

where 9 is some time period that is long compared to the character-

istic time scale of the turbulent fluctuations. The mass averaged

value of a quantity f is defined by

f = _T 	(A.10)
P

Here, following the procedure of Cebeci and Smith (Ref. 43), mass

averaged values are used for the velocities and enthalpy, and conven-

tional time averages are used for the remaining variables. Therefore,

U = u + U.

vv+v'

w = w+ w'

h = h + h'
	

(A.11)

T = T + T'

P=P+P,

P = P + P"

Note that an overbar and double prime have been used for conventional

time averaging and a tilde and single prime for mass weighted averag-

ing. With mass weiyhted averaging, as shown in Reference 43,

P = pf

PT' = 0	 (A.12 )

Tr =T - f
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The expressions for u, v, w, h, o, and p are substituted into

equations (A.1)-(A.5), and the resulting equations are then time

averaged. At this point, the equations are restricted to steady,

two-dimensional, mean flow. The results are as follows:
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Because of the inherentl y three-dimensional nature of turbulence,

there are correlation terms involving w' appearing in these two-

dimensional mean flow equations.	 In fact, at this point, the

9-momentum equation has not been completely eliminated.

Following the experimental and order-of-magnitude arguments of

Reference 43, several assumptions are now made.

1. Fluctuations in pressure, viscosity, thermal conductivity, and

specific heat are neglected.

2. Triple correlations are neglected. This gives

77 = P 
u12

PuTVT p ^1 v-i

etc.
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i

3. Tildes can be replaced by overbars on u, h, and T, but not

on v. Thus,

u	 u

h * u

TA T

V . v + =V

P

Assuming T . T also means that the time averaged equation of state

for a perfect gas, given by

p = R Q?

can be written as

p • R o T	 (A.13)

The energy equation can be modified by using the definition of

enthalpy,

	

h = e +	 (A.19)

P

where a is specific internal energy, and then replacing	
e 

and 
ae

at	 an

with cv 
at 

and cv 
L. 

Note that this does not imply constant cv,

only a perfect qas.

the 'Op t and V pn terms can be eliminated using the momentum

equations. When this is done, several turbulence terms appear that are

analagous to the terms in the viscous dissipation, ® L (Ref. 76).	 To-

+tether, these tennis are called the apparent dissipation, 'PT.
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The continuity equation can be used to eliminate the p ceriva-

tives in the energy equation and to write the momentum and energy

equations in nonconservative form. When all of this is done, equa-

tions (A.13)-(A.17) become:

CUNTINUITY
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It is now assumed that the Reynolds stresses (p uvT, etc.) can be

modeled in exactly the same form as the viscous stresses (T 121 etc.)

in equation (A.6), by using a turbulent viscosity PT . Thus,

_	 _	
hl	

+
p u t= 

2uT h u^ + h h v- 3 u T v	 V
1	 12

(A.25)
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i 

h2	 h2 hl
E

etc. The turbulent viscosity is defined by

uT = o e	 (A. 26)

where a is an eddy viscosity which comes from some appropriate tur-

bulence model. Note that this formulation assumes the eddy viscosity
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kT = Pr (A.28)
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is an isotropic scalar. At this point, the 6-momentum equation drops

out for two-dimensional flow. It is also assumed that the turbulent

heat fluxes (p 17 V and a v =h r) in the energy equation can be modeled

in the same form as the molecular heat fluxes (q l and q 2 ) in equa-

tion (A.7) by using a turbulent thermal conductivity, k T . Thus,

- puTi'= - FikTat
(A.27)

f	 1	 aT-pvh = - h2 kTan

where

When these modeling assumptions are incorporated into equations

(A.20)-(A.22) and (A.24), and the overbars and tildes dropped for sim-

plicity, the results are as follows:

CONTINUITY

h h h L(h2h3 ° u)E + (h l h3pv) n ]	
U	 (A.29)

123

STREAMWISE MOMENTUM

h2 	hl

h
h

T1puu + hovu n - h h pv2 + h 	 puv = - h pE + hlh. h
1	 2	 1 

2	
1 

2	 1

hl

n

X 
[
(h2 h3-1EII)E + (h1h3TE12)n + h 

1 
h 2 tE12

- h2t z	 - h3E t	 A.30
h 

I 
h 
2 E22	

t	
E33
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h2	
hl

^— auvE + avvn + t auv — hT ou2 = —	 p + 11	 2	 1 2	 1 2	 2 n 72^

h

x [^2 h
	 \E + h l h3 T E	 + 2 E 3 E12)	 22)n 	

h 1 h 
2 TE12	 I

h3	 hl

n
h h	

n	 (A. 31)
23 TE 33	h1 h2 ^E11

ENERGY

1 ucT +1a	 1h l	 v c	 h2 avcvTn —	 h13 p [(h2h3u)E + (hlh3v)n

	

hl h2 
h3 \h2h3gE1){ + (h l h3 gE 2)nl +'#E	 (A.32)

L	 \ J
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APPENDIX B

ORDER-OF-MAGNITUDE ANALYSIS

In order to use a forward marching solution procedure, second de-

rivatives in the E direction, which appear in the shear stress

terms, must be eliminated. An order-of-magnitude analysis is used to

show that this is justified. First, it is assumed that the flow is

primarily in the E direction. Thus v, the velocity in the n

direction, is assumed to be of order 6. (Here 6 is taken to be a

small number representing the order-of-magnitude difference between

the streamwise and cross-flow velocities. It is not necessarily a

boundary layer thickness, since, in this internal flow analysis, vis-

cous terms are included throughout the flowfield and the boundary lay-

ers can gr N to fill the duct.) It is expected that gradients normal

to the walls will be greater than gradients in the streamwise direc-

tion. Therefore, derivatives in the n direction are assumed to be

of order 116. In order to make the largest viscous term the same order

as the convective terms, the effective viscosityu E is set equal

to order 62 . (Equivalently, the Reynolds number is assumed to be

of order 116 2 .) Similarly, k 	 is also set equal to order 62.

All other terms, including the metric coefficients and their deriva-

tives, are set equal to order 1.
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With these assumptions, the magnitude of the effective shear

stresses can be estimated as shown below. The order of magnitude is

written below each term.

D ^
1 au	 2	 •

TE11=2UE 

hl at	 —IMEv v

6 2 	1	 6

	

h2 	 ^
_ 	 av+ E	 2	 •

E22 
2vE(

1,

2 an h lh2 u — ME
v V

62	 1	 1

(B.1)

z	 2v	
h3E 

u+ 
h3n 

v— 1	 Vy v
E 33	 ME hh	 h"	 E

6 2	 1	 6

_	 _	 h2 a	 v + h l a (u
 l

TE12	 T
E21	 u E h l aE Chi,)	 h2 

an \hl/
2

6	 6	 1/a

where

M 	 V = " v E hh h t [aG (h
	 (h

+ an 
(hlh3v)

1 2 3 

a 2 	 1	 1/6	 6 I

Therefore
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TE

11 = 0(6
2) + O(63)

TE	 O(d2)
22

(8.2)

T
E33 = 

0(62 ) + 6P(6
3

 )

TE 12 = TE 21 _ 0(6) + O(d3)

Then, in the streamwise momentum equation,

aE (h2h3TE	
= O(d 2 ) + O;d3)

11
(B.3)

2n ^ h 1h 3T E	
_ ®(1) + O(d2)

12

In the cross—flow momentum equation,

2E \h2h3TE12)	 O(d) + O(a3)

(8.4)

an (h1h3TE 22 ) " U( 6 ) + O(62)

And in the energy equation,

a	 1	 a	 h h2 3 k aT _ V(6 2 )

aE (
h

_ 2 h3 gE 1 1	 aE	 h 1 	E, aE

1	 2 1

(8.5)

(	 a?
h,h

an \h1h3gE2^ a an	 h 23 V an s O(1}

1/6	 62 1/6
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All terms of order 1 and order a, at least, are to be retained.

Therefore, in the streamwise momentum equation, the term 
a^ f h2 3hT

\	
3 11

can be eliminated. In the cross-flow momentum equation, the 6F(6

part of the term L
c 
Ch2h3TE / can also be eliminated. This is

12
enough to eliminate all second deriva..ives with respect to t, and

thus allow the use of a marching solution procedure. Many of the

other terms are high order and could also be eliminated, but it is not

necessary since they can be handled within the framework of a numeri-

cal marching procedure.
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APPENDIX C

POTENTIAL FLOW COMPRESSIBILITY CORRECTION

For compressible flow, the incompressible velocity given by equa-

tion (2.40) is modified using the Lieblein-Stockman compressibility

correction (Ref. 37). This correction was developed specifically for

internal flows. The compressible velocity is g::en by

v./v.
i iAVE

VC	
ppi	

Vi	 (C.1)

CAVE )

where V•
S 
AVE is the average incompressible velocity at a v 	 .

station, pi is the incompressible (or total) density, and p C	is
AVE

the average compressible aensity at a station. One-dimensional

isentropic relations are used to get pi/pC
AVE

. T hus,

2 1/(Y-1j

10C AVE s 1 - Y=—=r 
VCAVE	

(C.2)
p i	 2	 \ a0a0

where a0 is the total speed of sound. The value of VC
AVE 

/a0 is

found from

2

A"	 + 1 ( Y+1) /[2(Y-1)3 VCAVE	 - 1 

( V 

CAVE)(C.3)

A (^	 a^ 1 -	 a0
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where

A* =	 m VIO

2	 (Y+1) /(Y-1) 
1 2

(Y ^ r)	 p0

Equation (C.3) is solved for V C	/a0 by Newton iteration.
AVE



In this appendix, the governing equations are written in finite-

difference form. These equations are the result of the differencing

ana linearization procedures presented in Sections 3.1 and 3.2. The

equations correspond to the differential equations (2.13)-(2.16), with

the shear stress and heat flux terms written out in full. Since the

equations in this appendix are valid at any j-location in the grid, 	 )

the "j" subscript has been omitted. In au. Lion, the metric scale
i

coefficients are unaerstood to be at the i+w,j) grid location, so

these subscripts are also omitted. The a notation from Section 3.2

is used, su that ap = p i+1 - p i , etc. The variable vi+w in the

equations is given by

ui+w = v i + wa(u
i
 - 1ji

-1)

The subscripts t and n denote partial differentiation.
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CONTINUITY

	o•+	 a	 u•+ — u.
[u i + wa(u i — u i-1 ),	 eE	 + ^'[o i + wa(o i — o f-1 ) I	 at

+ ^	 [6 y(av) i + w6Y(vi ea + 
p i ev)]

1
+ h ^ (h2 h3 ) t ra i u i + w(a i eu + u i eo)1

	

123	 `	 J

+ (h1h3)Joivi + w(o
i
 ev + v i ea)

J 	U
	 (D.1)

STkEAMWI SE MUMENI Uhl

u.+ — u.

	

—o i u i + wa(a i u i — o i—l u i—l )]	 l	 +	 d[aivi 6 u i + w

hZ

x ( v i ao + Pi °v)eY u i
 + woivi 6

y (au)1 — hlht ra i v i + w ^v^ ea

h 
+ 

1°ivi 
ev)1 + hl-'—ra i u i v i + w(u i v i ao + o i v i eu + °iui av)^

g	 J	 l

+ ^, )	 ^ 1	 1	 h dY
	 vi+I — vi

	

hl E E i +w ^ ^ 3 On " i +w $ Y 	 At )

-

1+ (6 u	 ) vi+1	
vi	 ' h v .	 vi+l	 v i —
 ti,

 dY

Y +w 	 ac	 3n i+v

x i6 Y (vv) i + 
w[vi 

6
y 
(AV) + (d y v i )ev + (	 /^vi 6y(eT)

i,unt i nued can next page
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!^22

h

+ 6  T v aT]} - 	 ii wIVi av + W) i
 i aTII

n

+ h— do 
J, y

 \fin u i d Yu i) + w ^
dY  

^dfi)i(dYui)dY(aT) +way
2

dY

x^ Idvl dyu
i] aT + w dY v i 6Y(au)+ 	

w 6  (
Tn- vii) 6y(au)J

+

 (

hjh3^h 	

dn[u i 6yui + w \^/ 
(dyu)i AT + wvi 6y(AU)]

2	 \	 ^
n

h3h1

h 
n 

do
idy(vu) i + w[v i 6 y (AU) + ( d y v i )au + \dl,ui 6 y 

(AT)

1

+d 
Y 

duu AT	
- n3h1n	 +qvi 

au+ui °T
() 	 ^

	
jjiui	

i
n

hh l	 vl+l _ vi	 zk	 ^v v

+ 1	 n 1 v	 _	 + w[v i av
h 1 h2 R i +w	 aE	 h 1 h2 t i

+ 
	 val	

+ 1 dYudu+ w	 td	 )41ll( ov
NM i J}	 h1 do [	 Y	 dT

d^	 u
i	 Y i

h

+wv i d Y ( au), - d-F-	 iui
12 v

h.,	
ll

1	 ` f 4 1 aY 	
id v + w ( du}} (d v). aT + wv i dy(av

i e h h.	 h do [JA	 Y	 UT) i Y
r 1 Z

4untinued un next udye
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(

h l	 h3

	

— Tir 	+Fin 	 fiAivi + w v̂ i ° V + lo w v
i 

v i eTI I - 3 N
I- vi+w

	

2	 1	 3	 i	 1

	

u i +1 - u i + 2 

1'	
2E	 3E

x	at	 I F 2 

h

fi — 
h h3

	 + wrv i a:^
1	 2	 3	 l	 L

	

+ (( dvll u°T11	 - 1 h3E _ 2 1	 ui +1 - u  + 2 1
	\mil i	 J 1	 ^ hl- 

F3 
3 F1 v i +w at	 3 h1

i h3h2

X ^2 h3E - h3E Sv
i u i 

+ wrv i Au + ^^)^ui eTl) - h
2 anll 	 L	 JJ 

' h3
xru j 6

y 
V

i
+ 

w (dT),(aY vi)eT + wvi aY (ev)1 + 3 h
2 2 "3

hl

- 
h3n

ujvi + wrv i AV + td _1Vi aT
,) )

CROSS-FLUW MUMENTUM

1	 vi+1 - V i	 1 dY
h1[P i u i + Wa(P

i u i — P i — l u l-1 )]	 At	 + h2 Onn [Pivi a Y v i + w

hZ

x ( V
i AP + P i AV ) 6 V i + WP i V j 6 y (Av), + 

h l-
 

[PiuiVi+ 
W

h1

X ( u j V ^ A P + Pi v au +	 ui AV)^	
FJ-TFZ`Piuj + w (Ui AP

(U.2)

continued on next page
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oR P14BOR 0*14

+ 2a i u i Au 
J1 
	 F--	 R [6y(aT ) i + w aY (o i eT + Tieo)I

2

1	 1	 dY	 u	 +	 ((du 
+ lie FlF2 h3 an 

J[( d
 T 

6Yu)t wa \ T)i 6Yut - 
( du

T i+l - T i + 

u Y ( 

u i+l - 
ui	 + h	 dY

X 6Yui-1 
J	

at	 i+w 6	 At	
E
3 do

h3hl

x (u 6 Y u) i + w 
OdT
 (6Y u) i AT + wu i 6Y (au) — h n

[	 i	 1

x ut+w ut at— ut + r(dT)iut + wa (-dT)iui
 - 

(700 )i-lui-1

hhx Ti +e^- Ti - ^n 

f
utut +wui nu 

+ (JT)i ui aT11]C  

1	 1	 4 h l h3 dY	 dY	 +	 dY ( d-,)
+^	 3 -' 2 3n Y ^dn U i 6 Yv i) w Tn  7

x (6 Yv i )6 Y (aT) + w 6 Y ran 
'd	

6
y 
vi] AT + w an p i 62(av)

+ w 6 (dY u 
16 (AV)
	 + 4 (hlh3) dY [Iji 6v+w/(du

Y do t Y 	 7 h 2 do 	 Y t	 dT i
n

h	 h

X (aYv)i AT +wui 6 Y (av)	 -	

h	

►F— + h3n 
)dY

do2	 1	 3

Continued on next page
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xsy(uv)., + w 

Imi 

ay( eV ) + (syu i ) eV + OT).Vi 6y(AT)

 I

h h	
hl	

h3
'ou	 2 1 3	 n+	 n	 + w

+ sy C T v)1 eT	 — 'j _^ h
l	 h3	

uivi

n

	

u.+	 u.
x u i ev + Or v i 	 — T h3 do ui+w 

6 

	 et
[	 ^	 1

u i+l — 
u 
	

2	
ui+l — u  + 2

+ (aY u i +w )	 AE	 ] 'S h3 nu i +w	 eE	 3 h3

x 2 h2E — h3	
dY
	

[
dY a (uu)• + w u• 6

y 
(AU) + (a

Y 
u•)eu

h2	 h3 c?n Y 

dul	 +	 du	 + ?	 h2^ h3E
* (7 i 6

y 
(AT)a y (dT u )1 AT 	 3 h3 2 h2

\ /	
J	

n

+ 

I	

+ (u1	 l	 1 hl^ 1	 vi+1 — vi
x	

d

	

u i u i w u i °u (^)i u i °T	
+

J 	
Re  h l h2 h u i+w	 at

h2
c	 Tfu.v•	 w u ev	

(dul 
v. e	

1 dY u.	 UihFi i +	 + 	 l +	 ahl an	 Y
12	 JC

hl

+ w (-T)' (a y u i )eT + wuiay(eu)1— 
h l h2 

u i u i T w 

IV i 

eu	 j

Continued on next page



164	 ORIGINAL PMC =I-

OF POOR QUALITY

+ (du u. eT	 - 1 h3n	 - 2 1 u	 ui+l - 

ui + 
2 1\7 t]	 ^ iF2 3 3 T l- t+w at	 3 l

x 2 3^ - 
h2 

)fll u i + w
11, 
.eu +  	 eT	 - 2 1 dY

	

h3 h2 t  	 t
	 (d jA )i u i

	]	 -3 h 2 do

h3

x 
ui 

s Y v i + w (
dT

)t (aY v i )eT + wui aY(ev)] + 3 Fi
t- 1 Fi3^

rl

C

h
In-	 uivi + [,,i+(d,,

1 	 t
	

AT	 (L.3)
 ]

ENERGY

T.+ - T.
dY

	

tT—l r°i u i c v i + wX (p i u i c v i - pi-lui-lcvi-1)	 t ° t	 t + F an

x p iv c	 6Y T i + w
IV

i c^	 kep + p i c	 ev + pivi (
ac

v
	 °T

t 	 t	 t 

x 6
Y T i

+ wp i v i c vt 6 Y W) _ - h
l I	 kft

lth3[piTi + wa(piTi

] 
u i+l - u 	 dY r

- 
p i-1 T i-1 ) 	et	 + h1 

h
3do piTi 6 Y 

V i + w(l i ° p + p i °T)

X s Y v i + w p i T i 6 y (ev)1 + (h2h3)E[piTiui + w(T
i u i ep 

+ piTi eu

+ P i u i eT)] + (hIh3)nL
piTivi 

+ w(T i v i ep + p i T i ev + p i v i 
&T)1

Continued on next page
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+	 1	 1	 hlh3 dY	 f dY	 \	 dY (dk l
e>Trr 

1'2 3 -^2	
6Y `^ ki6YTi + w U-n `?TJi(dYTi)6Y(eT)

+ w 6Y[^ 
l/^ 6

YT i]eT + w 
do 

k i 6y(eT)+	 w 6Y 
( d

y ki)6Y(aT)

+(

h)hh3 ^r
k i
 

6 Y 
T
i 

+ w ( k ) (6 YT i )eT + wk i 6y(AT) 	 + tamer 9E
2	 L	 i	 J

n

(U.4)

By expanding the a and 6y operators, and after much collect-

ing of terms, these equations can be written in the following forms.

The dependent variables in equations (U.5)-(U.8) are at the unknown

i+1 station, and the "i+1" subscript has been omitted.

CONTINUITY

CC
1 
°j-1 + CC 

Z 
°j + CC 

3 
°j+1 + CC 

4 
uj-1 + CC 

5 
u  + CC 

6 
u j+1 + CC 7 

vj-1

+ CC vj + CC vj+1 + CC T j-1 + CC Tj + CC T j+1 = S C	 (0.5)

U	 9	 lU	 11	 12

where

1 dY	 AE
CC1 - - h2 do wvi

CC = I u i + wa(u i - u i-1 ) + 1 
^ w(6 Y v i )At + 1- [(h2h3)twui

	

2	 1	 ]	 2	 113

+ (h1h3)nwviIAt

C	 = -C

	

C 3	 C1

CC 4 = 0
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CC5 s I- lp i + wx(p i - p i-1 )̂  + 1 - 3 (h2h34wpi at

CC 6 = 0

CC = h an wp ei eY
7	 Z

dY
CC= 

7-	
w(aYpi )AC 

+ hTlih (h
lh^) nwp i at

8	 2	 123

CC9 = -CC7

C	 — C	 = C,.	 =0
C 10	 C 11	 X12

Sc	 = h
l 

[ui + Wa(U i — u i -1 )] p l + h1 [p i + W7^(p
i
 — p l-1 )l u i 	 h2

dY

x (1 - 2 w )6y( p v) i At - hl—F-h [( h2h3 ),(1 - 2w)p i u i + (h2h3)n

x (1 - 2w)pivilet

STREAMWISE MOMENTUM

c  1 pj- 1 + C  2 p j + 
C  

3 
p j + 1 + C  4 uj-1 + C  5 

u3 + C  
6 

u j+l + C  7 
v3

- 1

+ C X v . + C X v . +1 + C X T . l + C X T - + C X T . +1	 SX 	(U.b)
83	 93	 103-	 11	 123

where

CX	 = 0

1

h2	 h1

CX2 = 
h2 do wv i (d Y u^)eE - h

1 h2 
wvi at + h	 wuivi at
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_ 1 dY 
wp	

eE	 1	 1	 dY	
h l h3	

dY	 )

X4	 22 Un t t 7aT + ^ h l h2 '3 do w 
2 a Y (dn ^' i

(h l h
3 	

h3hl+

	h
 _	 n	 nE	 1	 n dY	 e^^

+	 h2	 u i 	 h2	 u i 2eY	 Rer h h2 dn 
wu i 2eY

n	 12

_ 1 1 	 2	 eE
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 (ddy
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1CXS	 = F-rp i u i
(,

+ wa(p i u i — p i-l u i-1 )^

h2
1	 E
ear h	 +

h3
E	 21

h ln 3	 tom, ui+w,

hl n h3h1n h3hln

+ wpivi At
1	 1+

F- w

dY
h2	 do dYui

+	
h2	

ut At

n

1

h	 2

In

h„	 h.

Z	 ^ E 	2E

h	 h.
3E	

2	 3E
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Rer h l h2
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3 h 2 h,,	 2 h
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E
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2
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+ h3h1 n dY 6y 	 u/ + h3 in (3T u	 e4 + 1 1 w /du
-Fi2 Tn Y (duaT t	 2	 \	 i	 er T1 `^tjn

2

x 
hlnh2 

v - hln 
dY 
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2

+	
h3t	

+
 '3	 v i

+ 1	 1 v i - v i-1 _ h2t v.
h j 3 U  h2F3 vi	 1 At 	 1T2

2

+ L dY 3u	
h1n u
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	 1 ui - u i-1 + h1n v

h2 ^	
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Y	 h1 h2	-5 uE h1	 At 	 h1 h2 i

h2	h3	 h3

+ h2 Fn dY v i + h1FZ ui + 1,^ ui +	
3 vi 2

As described in Section 3.2, the effective viscous dissipation is

evaluated at station i and thus appears in the source term S E in

	

the energy equation. Note also that the source term S 	 in the

streamwise momentum equation contains the viscous pressure correction

computed during the preliminary marching step described in Sections

2.3.1 and 3.5. Although the "j" subscript has been omitted from the

coefficients and source terms, they will be different at each

j-location in the grid.

Equations (D.5)-(D.8) are written for j = 2 to j = J-1. The

values of the dependent variables at j = 1 and j = J are either

known functions of ^ or expressible in terms ^J the dependent

variables at other j-locations (see Section 3.3). These equations

thus represent a system of 4(J-2) coupled linear algebraic equations

in 4(J-2) unknowns. They can also be written as a matrix equation

with a block tri-diagonal coefficient matrix.
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APPENDIX E

DENSITY BOUNDARY CONDITION AT A WALL

The density at a solid surface is found by evaluating the

cross--flow momentum equation at the surface. The difference equation

at the wall is the same as at interior points, and is presented in

Appendix D as equation (D.3). At the wall, however, the 6  and

dY operators in equation (0.3) are given by equations (3.16) and

0.18). When the resulting algebraic equation is solved for aj

it has the form

pj 2. CW (CW2pjtl + CW 3 pjt2 + CW4 u
j + CW

Sujtl + CW6uj+2 + CW^vj
1

+ CW8 vj+1 + CW 9 vj+2 + CW 10 T  + CW 11 Tj+1 + CW 12 Tj+2 + SW 	 (E.1)

where j = 1 or J.

The C 
W 
s and SW can be expressed in terms of the

C 
Y 
s and Sy presented in Appendix D. Their exact form

depends on the type of temperature boundary condition used. For a

specified wall temperature,
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where

1 4 1	 dY ll2 	 At

	

C Y O ° C Y O + ^ -5 	 (dn! wui (AY)2
2

In these equations the top A gn is used for the j = 1 boundary and

the bottom sign is used for the j = J boundary.

For a specified temperature gradient normal to the wall, CW ,
1

C	 -C	 , and S 

W 
change. They become

W1U W12 

C .= C	 1 dY wR(s Ti) et	
1 dY wR
	

aT l	 w	
aT

W 1	 Y2 - tit hn	 Y i	 + h2 an	 \ 75
)w+

(-87 1
i	 i+1

\
nC ± 3CY

\	 1
i

	

C	 =U

WiU

(E.2b)

4	
-

CW11 a

	
Is

C
 Y11

1C

W 12	 Y11

SW = S  +
7	 (-a7)W i+l

am(AY)CW
 11
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APPEENDIX F

COEFFICIENT MATRICES AND SOURCE TERMS

When the boundary conditions presented in Section 3.3 are applied

to equations (D.5)-(D.8), the resulting equations can be written as

B2 X 2 + C 2 X3 = S2
	

(F.1a)

Aj Xj-1 ; B j X j + C j X j+1 = Sj	 (3 < j < J - 2)	 (F.1b)

A	 X	 + BX	 (F.1c)S
J- .1 J-2	 J-1 J-1	 J-,.

where the A's. B's, and C's are the known 40 coefficient matrices,

the s are the known 4-element source term vectors, and the X's are

the 4-element solution vectors given by

For 3 < j < J-2, the coefficient matrices and source term vectors are

g i ven by

CC1
CC4

CC7 CC	 i10

CX1 CX4 CX7 CX10-
Aj . F.	 a(	 3	 )

CY 1 CY4 CY7 CY10

CE1 CE4 CE7 CEL 10
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CC2 cc  cc  CC11

	

B a	 CX2
	

C X 5
	

C X 8
	 CX11	 (F.3b)

J	 Cy	 Cy	 Cy	 Cy
2	 5	 8	 11

CE	 CE
CE5	 CE8	 C 11

C C 3
	 CC6	 CC9	 CC12

	

=	 CX3	 CX6	 CX9	 CX12	 (F.3c)
J Cyr	 Cy6	 Cy9	 Cy12

CE 	 CE 	 CE 	
CE 12

^SC

S

	

Si =	 X(F.3d)

Sy

SE

J

The elements in the above matrices are defined in Appendix D.

The form of the coefficient matrices and source tern vectors at

j = 2 and j - J-1 depend on the type of boundary conditions being used.

In the following discussion, let (B 
2

) m
represent the m'th row of B2.

This notation will also be used for C 2 , AJ-1 , and B1-1.
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For a symmetry line at j - 1, the boundary conditions given in

equations (3,19) are applied to equations (0.5)-(0.8). Each row of

the matrix 62 then has the form

^ 62 )m =

4
Ceg2 + 3 Cegl

4
Ceq, + 3 Ceg4

Ceg8

4

Ceg11 + 3 Ceg10

(F.4a)

For convenience, (B2 )m has been written as the transpose of a column

vector. In this equation, C eq represents CC , , -̂X , Cy, and CE for

m = 1, 2, 3, and 4, respectively. This convention will be followed

throughout this appendix. Each row of C2 has the form

IT

(C2 ) m =

1
Ceg3 - 3 Ceg1

1
Ceg6 - 3 Ceg4

Cegg

1

Ceg12 
3 

Ceg10

(F.4b)

The source term vector S 2 is unchanged from the form presented in

equation (F.3d).

-3
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At a wall with J specified temperature, the boundary conditions

given by equations (3.20), (3.21), (3.22a), and (3.23) are applied to

equations (D.5)-(D.8). For a solid surface at 3 . 1 with a specified

temperature, then, each row of 82 has the form

C	 T

W2
Ceg2	 Ceql

1

(ym.

CW
5

Ceg5 + W Cegl

1

CW
8

Ceg8 + CW1 Ceql

1

C
W11

Ceg ll 
+ W Cegl

1

(F. 5a)

and each row of C2 has the form

1T

( C2 ) m =

CW
3

Ceg3 + W	 Cegl

1

CW

Ceg6 + -CW 6 Cegl

1

CW
9

Cegg +	 .^ Cegl

1

C
C	 W12 C

eg12 + W egl

(F. 5b)
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Similarly, each element of the source term vector S 2 has the form

C

(S2 )m = Seq - S^ Ceq - (eq4+	 Ceq uW+ 	 eq 7W1 1 	 W1 	1	 ^ 1 

+ CW7 C
	 v- C	

+ CW10 C
	 T	 (F.Sc)

W
eql W i +1	 eg10 "W1 eql Wi+1

For a specified wall temperature at j - J, each row of A J-1 has the

form

T

(AJ-1 )m -

CW
3 

CCeg1 + C 	 eg3
1

CW
6

Ceg4 + T-- Ceg3

1

CW
9

CegT + 7 Ceg3

1

C
C	

+ 

W12 C

eg10 C 
1	

eq3

(F. 6d)



and each row of BJ-1 has the form

C 
2

Ceg2 + r7 Ceg3

1

cW
5

Cegs + 7 Ceg3

1

(BJ-1)m (F.6b)
cW

s
Ceq. + T7 Ce

1 g3

C
W1 l

Ceg ll + . Ceg31

Each element of SJ-1 has the form

C

(SJ-1)m ^e4 - $^ Ceq -(Ceq+ 	 Ceq uW+ - eqW 1 	 36	 W 1	 3	 t l	 9

+ CW7 C	 v- C	 + CW10 C	 T	 (F.6c)

W
eq 3 W i+1	 eg12 W eq 3 Wi +1

At a wall with a specified temperature gradient normal to the

wall. the boundary conditions are given by equations (3.20), (3.21).
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(3.22b), and (3.23). For a specified temperature gradient at the

j = 1 wall then, each row of 62 has the form

(B2 )m =

CW
2

Ceg2 + CW Ceal

1

CW
5

Ceg5 + CW 

1 

Cegl

r.W8

Cega + r . Cegl

1

C
Wll	 4

Cegli + ''W C	
+

egl 	 Ceg10

(F. 7a)

I •-

and each row of C 2 has the form

T

(C 2)m=

CW
3

Ceg3 + CW1 Cegl

CW
6

Ceg6 + W1 Ceg1

1

CW
9

Ceg9 + T- Cegl

1

(F. 7b)

CW
	 _ 1

Ceg12 + TW Cegl "ICeg10
1
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Each element of S2 has the form

SW	 + W4
( S2 )m - Seq - 

W C
	

C

eg1 - Ceg4 ^ Ceg1 UW
	- Ceg71	 1

CW	

ll
+ W Cegl vW i +1 + 1j Ceg10 (^/ W	

eY

1	 i+1

(F.7c)

For a specified temperature gradient at the j - J wall, each row

of AJ-1 has the form

CW
3Ceg1 + T--- Ceg3

1

T

(AJ-1 )m -

CW
6

Ceg4 + r  Ceg3

1

C 
9

Ceg7 + r  Ceg3

1

(F.8a)

C
W12	 _ 1

Ceg1C + ^W 1 — Ceg3	 Ceg12
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and each row of BJ-1 has the form

	

C	 T
W2

Ceg2 + Z Ceg3

1

CW
5

-	 Ceg5 + rW 1 Ceg3

(BJ-1 )m =	 C	 (F.8b)

W8
CegB + r-- Ceg3

1

C
WC	 +	 11 C 	+4 C

egll W eq3	 eg12

Each ^ l ement of S 	 the form

(SJ-1)m = S - SW C	 - C	 + CW4 C	 u	 - Ceq CW1 eq3	eq6 

CW1 

eq3 Wi+1
	 eq9

C

+	 Ceg vW	 -	eg	 (
W	 3	 i+1	 C 12 \ ) W.1	 ^+1 AY

	 (F.8c)

When a wall function boundary condition is used for the stream-

wise velocity, and the temperature gradient normal to the wall is
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specified, the boundary conditions are given by equations ( 3.21),

(3.22b), (3.23), and (3.24). Under these conditions at the j	 1

wall, each row of B
2
 still has the form given in equation (F.7a).

The form of each row of C
2 becomes

C

IC 
eq 

+ 
T, . 
3 C 

eql3	 W 
1

IT

C2 )m

C	 C
W4	 W6

 C	
C eqeq4	 eq6	 W 

1	
1

C
9

C
eqg + T7 Ceq

W 
1	

1

(F.9a)

C,q +
	

C	 C 
q 
1

	

12	 W 
1	

eq	 e
1	

01

In addition, the form of each element of S
2 

becomes

SW	
C 
W4

	

(S
2

)M = S 
eq	

W 
1 C 

eq, - (eq 4 
+ T W C 

eq ) F UW - (Ceq 
7

+7 C	 v	 + 2 
C	 lqf^ 	 hy

r—, eq	 W	 7 eqjO k-a V1 W

	

W 
1	 1)	

i+1	 i+1

(F.9b)
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At the	 = J wall, each row of B J-1 still has the form given in

equation (F.8b). The form of each row of AJ-1	 becomes

CW
3

Ceql + t. 

1 

Ceg3

IT

(AJ-1)m

W4 C W 6
Ceo4 + Ceg6 + C W1	 Ceg3

CW
9

Ctg7 + ^-- Ceg3

1

(F. 10a)

C
W12	 _ 1

C	 +eg1G W Ceg3	 Ceg12

and the form of each element of SJ-1 becomes

C

(S J-1 ) m ° Seq CW Ceq - Ceq + CW4 Ceq Fu - CegW1	 3	 6	 W 1	 3	 W	 9
(

C

+	 Ceg vW	 - Ceg	 ^	 eY
W1	 3	

i+ 
1	 12 \	 Wi+1

(F.10b)

The parameter 
FUW
 appear;ng in equations (F.9b) and (F.10b) is

defined by
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where the top sign is used for the j - 1 wall and the bottom sign is

used for the j - J wall.

When a wall function boundary condition is used for the stream-

wise velocity, and the wall temperature is to be specified, the

boundary conditions are given by equations (3.21), (3.23) (3.24), and

(3.25). Under these conditions at the j - 1 wall, each row of 62

has the f orm

(82 ) m -

C	
T

W2
Ceg2 + "W1 Cegl

CW
5CegS + T Cegl

1

CW

^-
8Ceg8 + "W1 Ceg1

C
C
W
	CW

C	
-	

CW10 C	
F

egll + T. — eql	 C eg10 + T.	 eq l	 TW1	 1

(F. 12a)
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has the form

CW
3

Ceg3 + r — Cegl

1

C	 + C	
+ CW4	

W6 C

eq4 eq6 WW1 eql

CW
9

Ceg9 + W Ceg1

and each row of C2

(C2)m

T

(F. 12b)

C	 + C	 + CW 10 	 W12 
Ceeg10	 eg12	 CW1	 gl

In addition, the form of each element of S2 becomes

C
SW	W4

.—0
2 )mm ° Seq _ T. C	

_
egl (eq 4 +
	 C
 C W 1 eq1 F u  - C eq7

+ 
1W  

C	 v	 _ C	
+ CW 10 C	T  FT	 (F.12c)

r—,  eql W i +1	 eg10 W egl 	
W )
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IYI

For these boundary conditions at the J - J wall, each row of AJ-1

has the form

IT

(AJ-1 )m = I

CW
3Ceg1 + r-- Ceg3

1

W4 

C 
W 6

Ceg4 + Ceg6 + --TW Ceg3

CW
,.	 9
peg! + 

T
-- Ceg3

1

C
C	 + C	 + W10	 W12 C

eg10	 eg12	 CW ^
1	

eg3

(F.13a)

and each row of 6J-1 has the form

!T

(8J-1 )m =

CW
2

Ceg2 + T7 Ceg3

1

CW

Ceg5 
+ 'C  

5
-- Ceg3

1

CW
8

Ceg8 + Z.7 
Ceg3

1

C	 + CW11 C	
- C	 +

 CW 10C
	 F

egll W _ eg3	 eQ12 
T.—,
	 eg3	 TW

(F.13b)
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The form of each element ofS J_ 1 becomes

(S ) = S - SW C	 -(Ceq6 +W4C 
) F uW - Ce

J-1 m	 eq ^ eq3 	^, eq3 	 g91	 1

+ CW7 C I v	 -	 C	 + CW10 C	 T F	 (F.13c)

	

eq3) W i+1	 eg12	 w eq 3 	W TW
i

The parameter FT	 is defined by
W

FT	 ([ AY)	
hq	

Ircy^+l (PrT K In yJ±1 + c1^J 

-1	
(F.14)

W	 J+1	 --

..e
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DIFFERENCE EQUATIONS FOR VISCOUS PRESSURE CORRECTION

In this appendix, the difference equations used to compute the

viscous pressure correction p' during the preliminary marching step

are derived. First the streamwise momentum equation, presented in

Section 2.2.1 as equation (2.14), is uncoupled from the continuity,

cross-flow momentum, and energy equations and written in finite-

difference form. The uncoupling is done by evaluating p, u, v, and

T at the known station i. The "J" subscript has been omitted from

all terms in the equation, since it is valid at any J-locati;,n. In

addition, the "i*w" subscript has been omitted from the metric scale

coefficients. The	 notation from Section 3.2 is used, so that

au . 11 i +1-u i . The superscript * is used on u	 to distinguish

it from the streamwise velocity to be computed during the main march-

ing step. Note, however, that the variables at the known station i

are those from the previous completely-coupled main marching step.

The subscripts t and n denote partial differentiation. The

resulting uncoupled streamwise momentum difference equation is as

follows.
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u•+	 u•	
h2

Fi i °i ui t lec t + F2	 °i vi ^ aY u i + w aY (Au)] "	 °ivi

h

+ F	 (ui + w eu) _ - E-(P t
 + Pt)i+w + e tl --1 2	 1	 r l 2 3

	

h3h2 E dY	
h3h2

x h3 Y 6y(uv^)i + h3 u i v{ - ^i t do 6y(uv) i - h t
T1 	 t	 2	 2	 n

x uivi + hhh3 ^ [aY t7 Vi aYui) + w Tr Ili aY(eu) + wdY
2

(	 l	
h h	

h3h1

x \an u i I a Y (eU)] +	
n

42 do u i 16 Y u i + w 6 Y (eu d - —F2
2

dY	
h3h1

X	 [6y(uu)i + wu i aY (eu) + w(y i ) eu^ - --" ui
2

n

xu + w eu + 1 
hl "	 1	 v - h2E	 v + 1 dY

i(	 )	 Rer -h  -1 h-2 h l u t Ei	 h 1 h2 u t i	 h2 do ui

x [a u	
F 1

+ w a (eu)] - hl " u• (u• + w au)i	 - 1	 h2E
Y	 Y	 2 t t	 F172

hl	 h3
n) 	 2 1

x T,

4
 1 2 Tn u i a Y v i 7 F2 Fil— + 3	 u i v i 	 ui

Continued on next page
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*	 h	 h
x ui+eE- ui + 3 1

	
2	 -	 vi(ui + w eu)	 - ^e1	 2	 3	 r

_	 h	 h
_^	 u 

*	
u	 3	 22

x 1F^i3 	-3ri1'ui i eE 
i 
+ 3h 2h	 2—

 f

h3^ hl

x u i ( ui + w eu) -	
an IA' 6y vi + 3 fit 2 Fi3 - F1 1'i vi

(G.1)

After collecting terms and applying the boundary conditions,

equation (G.1) can be written as

b2 u2 + c2 u3 + d 2 ` S 
2

a•
J 
u.J_1	 j J

+b u.	
J J

	

+ c.u.
+1

 +d
j

p
E
'• 

Xj
s	 (3< jJ-2)- 

<-

*	 r

aJ-1 uJ-2 + 
b
J-I uJ-1 + dJ-1 p

E - sXJ-1

where, for 2 < j < J-1,

d j	 eE

1

(G.2)
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Now, for 2 < 3 < J-1, let

1 dY	 e^^ 1 1 dY
Fi 2̂ an w0 1 V i^a * e	 ^n

+
(hlh3)

2
n

h3h1	
e + 1 in dY wu e

u i 	 _- n u i f"nY ^ h , Tn i 2 eY
h2	 1 2

l 1 	
2	

_e1

^er
wu ^

h (dY

	

an	 i
 ON)

2

h2	 h3

b! . 1	 u - { 1
	

+	 2 1 u + hln wpiv i
 At

J ji 1̀̀  ° i	 3 T Fi 1- i NI 

+ >fe 1̂-- w h3h1 n dY a
	

+ h3h1n	
u	 eE + 1

^- an 
Yu 
i ^^ i	 e

n

x	

hl °

	 + 2 h2

12

h2h3	 h3	 h3

2 h WW + 3 2 Fi3—
th

^

2

wui	
2 1

eE + e 7 (
dY
^}

2

2

c! 	 a ^- W
 2 _
	(^	 ' i

2
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h2
S ,	 1 

p u2	 1 dY (1 - w) p v (a u) eE +	 p • v2 AtX^	 trl i i - F do	 i i	 Y i	 hlh2 t t

h

- 7^- (1 - w) p i u i v i At - ^- (7T	 + lie h	 h3 d o1 2	 1	 i+w	 r 1 2 3 f

x a ((uv 1 + h u.v	 - h3h2 E 
dY a (uv). -	 h3h2E	 u.v.

Y \ E/ i 3 n t E i	 2 an Y	 t	 —^	 t i
)TI

+ h lh3 
dY [ 6y(dY1dY	 2	 (dY	 \l

h2 do 	do u i a Y u i J - w T u i a Y u i - w aY 
`an u i j u il

	

 ( 
hln3	

h3h1
+	

dY
-F2	 do (1 - w)u i 6 Y u i - 

h2 n do C(1 - 
w)u i dYui

n

h 
3 

h 
1
	 hl

+ (1 - w)(a Yu i )u il —	 h n	 (1 — w)uiui
	

At
 + to h r2

	

2 n	 r 12

	

h	 hl
2

x 
hl 

uivEt - 
h-- 2 

uivi + h2 do (1 - w)u i a Y u i — hlh2 (1 - w)

	

hh l 	h32
xu•u . aE - 1	 41 dYu ay.-21	 n+	 n u.v•t i	 Rer h,2 3 h2 do i Y t	 3 h2 h l	 h3	 t i

u	 h2	 h3
+ 21	 i+21	 E	 E

3 h l 

Il

ieE 3 hl 2 h2 h3 (1 - w)uiui at

	

h3 	 u.	 h3	 h2 t)
Re h l 	T F u  eE + 3 h 2 h E- h 	 (1 - w)uiui

r 1 3	 1	 1	 3	 2

Continued on next page
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h3	 hl

_ E2
	 Ni ayv i + 2 

2 T3 	
v i v i eE

For 3 < j < J-2, the coefficients in equation (G.2) are simply

given by

However, the forms of the coefficients b 2 , c 2 , aJ-1 , and bJ-1 , and

the source terms s 
2 

and s  J-1 depend on the type of boundary

condition being used. For a symmetry line at j = 1, using equation

(3.19) gives

b2 - b2 + 4 a2
1	 ,

c 2 = c 2	 a2
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For a solid wall at j - 1 with u 1 • uW,

b2 = 
b2

c2 = 
c2

sX

2 = 

sX 
2 - 

a2uW

For a wall function boundary condition at j = 1, using equation

(3.24) gives

b2 = b2

c2=a2+c2

sX	
sX2 

+ a2 FuW

where Fu 
W 

is defined by equation (F.11). For u J = uW at j - J,

aJ-1 = aJ-1

bJ-1 - b5-1

sX J-1	 sX J-1 - 
c5-1 u 

And finally, for a wall function boundary condition at j - J,

aJ-1 - aJ-1 + c5-1

b
J-1 = J-1

sXJ-1 = sX J-1 + 
cJ-1 FuW
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The other equation used tc compute the viscous pressure correc-

tion is the total mass flow rate equation, derived in Section 3.5.2.

It is repeated here.

1

f - pE	 ui °{ + 
P i+1 + p i + pi _	 °E ui+1

0	
i	 i-l+w	 i l+w

+ u• p '	 of	
112

(WW1n),+j
h3 	 (2*)W dY = m	 (G.3)

E i+w 

The unknowns in this equation are u i+l and p
i * 

By moving the
t+w

known terms to the right side, equation (G.3) can be rewritten as

1

	

R^ [(Pi+1 + p i + pE	
nE 
1 ui+1

0	 i-l+w

+ u.p'	 of	

h2h3	
(2^)w dY = m

i E i+w	 (Wwin 1+1

1	 h h+	 1 p^	 u  of	 2 3
	

(2, )w dY	 (G.4)f Rri i-l+w	 i+1

Equation ( G.4) is to be integrated numerically from j - 1 to

j - J using Simpson ' s rule. Since Simpson ' s rule requires an odd

number of grid points, if J is even the integration from J-1 to

J is done by trapezoidal rule. When the integration is performed,

and the boundary conditions are applied, the resulting equation can be

written as

e2u2 + e3u3 + ••• + 
eJ-2uJ-2 + 

e
J-luJ-1 + 

fpE - sM	 (G.5)

{:r
A

t



206	 ORIGINAL
OF 

p0R QUALITY

where

1	 hh

(2s) AY 0

Now, for 1 < j < J. let

1 	 ! +	 h2h3

e 1 17T 	
i + 1P 	 + pI PC,

	
of	 ^n 

i +1

1

s'	 3	 [M+	 1	 p'	 ui At	
h2^

	
(2*) `o dY

m	 AY	 0

Then for even j's from 4 to J-3, the coefficients in equation (G.5)

are given by

ej = W

and for odd j's from 5 to J-3,

ej = 2e^

The exact forms of e 2 and e3 depend on the type of

boundary condition used at j 	 1. For a symmetry line at 
j	 1,

e2 = 4e2 + el

e3 = 2e3 - el

For a solid surface at j = 1 with u 1 = uW,

e2 - 4e2

e3 = 2e3
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And for a wall function boundary condition at j - 1,

e2 - 4e2

e 3 - el + 2e3

The forms of eJ_2 and eJ_t depend on the boundary

condition used at j - J, and on whether J is odd or even. For
J odd and u  - uW,

eJ-2 - e5-2

eJ-1 - eJ-1

For J odd with a wall function boundary condition at j = J,

eJ-2 = 
2e

J-2 + eJ

eJ-1 - 4eJ-1

For J even and u  = u W ,

eJ-2 = 4e3-2

5	 ,
e
J-1 = L eJ-1

For J even with a wall function boundary condition at j - J,

+ 3 ,
eJ-2 = 4e J-22 

eJ

5
e
J-1 = 7 eJ-1

The form of the source term sM depends on the types of

boundary conditions used at j - 1 and at j - J, and on whether

k- 1	 - ---
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J is odd or even. First, for J odd with symmetry conditions at

j = 1,

sm = sm - e^F3

where FJ	
U  

for a specified velocity boundary condition at j = J,

and F^ _ -Fu	for a wall function boundary condition at j = J. For
J

J odd with a solid surface at j - 1,

s  = sM - e1F1 - e JF J

where F 1 = u l for a specified velocity boundary condition at

j = 1, and F 1 = - Fu	for a wall function boundary condition at j	 1.
1

For J even with a symmetry line at j = 1,

s m = sm - 
3
.7 eJFJ

And finally, for J even with a solid surface at j - 1,

sM = sM - eiFl - j e5F^



JEFFERY-HAMEL FLOW STREAMWISE PRESSURE GRADIENT

One of the classical examples of viscous duct flow is laminar

incompressible flow in a two-dimensional wedge-shaped channel, known

as Jeffery-Hamel flow. When self-similarity is assumed, an exact

solution to the Navier-Stokes equations exists for this flow. The

streamlines are radial, intersecting at a line source (for diverging

flow) or sink (for converging flow). The solution for the velocity,

derived in terms of Jacobian elliptic functions, is given by Millsaps

and Pohlhausen (Ref. 60). From Reference 60, the velocity profile for

converging Jeffery-Hamel flow is given by

F(v) = 2 [m2 (k2 - 2) - 1] + 6 m2 (1 - k2 ) dn-2 ( mr, k )	 (H.1)

where

F(®) = uRs
	

(H.2)

2	
1 + Re0/2

m = (H.3)

and k is the largest number satisfying the equation

Re0(1 - 2 k2)

sn2 (ma,k) _

	

	 (H.4)

2k2 [3k
2 
 - 3 + ^ (k2- 2)I
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Here sn(ma,k) and dn(my,k) are Jacobian elliptic functions, which

are evaluated by the Arithmetic-Geometric Mean method of Reference.

77. The Reynolds number Reo is given by

Reo - VCVRS

The polar coordinates RS and 9 are defined in Figure 4-16,

uo
L
 is the centerline velocity at a given RS , and a is the

half-angle of the duct. For the case studied here (Reo - -5000,

a = 5 degrees) the value of k is 0.99988175.

The radial momentum equation for purely radial flow, in the

coordinate system of Figure 4-16, is

au	 l a	 a2u	 1 au	 1 a 2u	 u	
(H.5)

u a^S-'p^+^
 (8R'S

+SS
+Ra

^
 S	 S

Substituting equation (H.2) for u gives

 a 0V 
2 (F2 + d2F	

(H.6)
aR

S
 7T

RS	4

Using derivatives of Jacobian elliptic functions as given by Refer-

ence 17, the second derivative on the right-hand side of equa-

tion (H.6) is given by

d 2F . 12m4 (1 - k2 )k dn-2 (m*,k)	 sn2(mq,k) dn2(mvik)
d7

+ ch2 (mv,k) dn 2(mg,k) + 3k sn 2 (mp,k) cn2(mv,kI



the exact streams

Here cn(ft,k) i!

Since the cf,
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