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SUMMARY

This report deals with the problem of controlling the vibrations of large space
structures by the use of distributed sensors and actuators. It specifically
addresses the synthesis and implementation of Low-Authority Control (LAC)

systems which arise when the above structural vibration controllers introduce

only a moderate amount of damping (10 to 25 percent) in the structure.

The LAC gain synthesis is achieved by an exact algebraic optimization of a
weighted quadratic cost function based on the fundamental LAC root-shift
prediction formula. The cost function is the sum of two disparate design
objectives, making its optimization a special case of a pareto-optimal design [1].
To broaden the applicability of the LAC synthesis procedure, the LAC theory
has been generalized to arbitrary linear time-invariant systems which include
general filter equations. The ensuing LAC synthesis procedure is then
applicable to structures which already have some natural damping or some
embedded attitude or structural control systems. In turn, this makes it possible
to formulate and implement a sequential LAC synthesis procedure in which the
perturbation method is applied sequentially in a manner analogous to the Newton-
Raphson method. In this sequential procedure, the small amount of control
synthesized at each step is embedded in the total dynamics, and the total

system complex eigenvectors are recomputed for the next step.

The robustness of LAC active damping systems is examined and analyzed for
realistic (finite~-bandwidth) actuation systems. The stability characteristics of
idealized and increasingly more realistic "structure-with-actuators" models is
analyzed, leading to the fundamental LAC Stability Theorem for already damped
structures equipped with both (finite-bandwidth) active and parallel-mounted

passive actuators.



The LAC synthesis procedure is applied to the design of LAC controllers for
vibration control of simply-supported rectangular plates for which frequencies
and mode shapes are given analytically. Two aspect ratios are considered:

(1) a 3:1 ratio plate, for which it is shown that at least 10 percent damping
can be achieved in the first five modes with only three colocated sensor/actuator
pairs, and (2) a \/5_/5:1 ratio plate, for which a similar objective is met with
five sensor/actuator pairs. The special difficulty encountered for the second
plate is the double-root frequencies of the fourth and fifth modes, leading to
eigenvector indeterminacy. It is shown how the LAC sequential synthesis

resolves that difficulty.

A newly conceived linear actuation device, the pivoted proof-mass (PPM) damper,
is described and analyzed. It consists of a flexure-pivoted mass (proof-mass)
driven electrodynamically in an ac-coupled fashion, dissipating structural

energy through electrical network heat losses. Detailed scaling laws are pre-

sented for feasibility of extrapolation to large space structures.



INTRODUCTION AND OVERVIEW

In an earlier companion study [2], a general theory was developed for a class
of control systems called Low—Authority Control (LAC) systems. When applied
to structures, these are structural vibration control systems consisting of
distributed sensors and actuators with limited damping authority, i.e., the
control system is allowed to modify only moderately the natural modes and
frequencies of the structure. This basic assumption, combined with Jacobi's
root perturbation formula, leads to a fundamental LAC formula for predicting
algebraically the root shifts produced by introducing an LAC control system.
Specifically, for an undamped, open-loop structure, the predicted root shift
dkn is given by the quadratic form

1 .
a, = -3 z Dar %n %m M
a,r

where the coefficient matrix Dg, is a matrix of (damping) gains, and Pan» ®rn

denote, respectively, the values of the nth mode shape at actuator station a and

sensor station r.

Formula (i) may also be looked upon as (a set of) equations for the unknown
gains D ar if the d}\n are considered to be known (desired) root shifts or,
equivalently, desired modal dampings. While an exact "inversion" of (i) does
not generally exist, least-squares type solutions can be devised to determine
the actuator control gains Dar necessary to produce the required modal damping
ratios. This determination of the gains is the synthesis of LAC systems, and is
the basic problem addressed in the present study. In order to make such an
LAC synthesis as useful as possible for practical application to large space struc-
tures, the LAC "scenario" has been generalized to arbitrary linear time-invariant
systems of the form given in Eq. (1), p. 13, which, in this application ,
corresponds to already damped (controlled) structures equipped with
distributed actuator/sensor systems, and for which the basic plant also



includes filter equations which may be used to model either sensor dynamics,
actuator dynamics, state estimators, or any combination of them. In this most
general case, the analog of formula (i) is the bilinear form

1 A R .
dAn = 772 2 Dorn ®an ®en (i1)
a,r

where the terms D = D__(n) now depend on the mode number n and are
arn -~ ar A R . th th
generally complex, and where ¢an’ ¢rn are, respectively, the a ™ and r com-

ponents of generalized actuator and sensor mode shapes ¢>ﬁ and ¢§.

When the eigenvalues of the filter become large compared to those of the
structure, it can be shown that the terms Darn become independent of n, and

(i) then reduces to

. 1 A R
dxn = 2 z Dar ¢an ¢rn (i11)
a,r

which is the most useful formula to use when sensor, actuator, or filter dynamics
can be ignored or are already embedded in the system. Formula (iii) applies to
already damped structures and is the basis for the general LAC synthesis pro-
cedure (LACSYS) and its iterative version (sequential LACSYS) discussed in

the first chapter of this study.

The synthesis procedure is based on optimization of a weighted quadratic cost
function related to (iii), and, in its implementation, is qualitatively similar to

the classical optimal control gain synthesis procedures where a "dialogue" between
the user and the free parameters of the system (in this case the weights in the
cost function and the desired target modal damping ratios) is necessary to ensure
that the control objectives are met. Even though synthesis of the control gains
(for each set of specified weights and desired dampings) is achieved by exact
linear algebraic processes, the resultant root shifts will only approximate the



desired ones because of the approximations inherent to the perturbation method
employed. To improve the accuracy of the process, the perturbation method is
applied sequentially in a manner analogous to the Newton-Raphson method. At
each step, the small amount of damping due to the synthesized gains is "embedded"
in the total dynamics, and the total system (complex) eigenvectors are recomputed.
Because the synthesis procedure is applicable to already damped systems, it

can indeed proceed in small steps such that the eigenvector shifts corresponding
to the incremental damping added at each step remain small. This is particularly
useful for the case of multiple roots for which the corresponding eigenvector

indeterminacy produces large eigenvector shifts when damping is introduced.

The second chapter deals systematically with the robustness of LAC active
dampers. Robustness is that quality of a controller of remaining stable in
the presence of parameter variations in the structure and/or control system
parameters. For example, a stability condition independent of mode shapes and
frequencies, such as the negativity of all root shifts in the fundamental LAC
formula (i) for the case of colocation (a = r), is an example of robustness
when idealized (i.e., infinite bandwidth) actuators and sensors are used.

The generalized LAC theory developed in the first chapter makes it possible
then to examine various stability characteristics of idealized and increasingly
more realistic (finite-bandwidth) systems, starting from ideal dampers in un-
damped and damped structures, actual active or actual passive dampers in
undamped and damped structures, to the final case of both actual active and
passive dampers in damped structures. The different cases considered lead
to the final Stability Theorem for LAC active dampers in the presence of both
natural structural damping and parallel-mounted, device-implemented passive

damping.

The third chapter is devoted entirely to an application of the LAC theory in
order to illustrate the LAC synthesis procedure. To this end, the structural
model used is that of a simply-supported rectangular plate. For this model,
the availability of analytic expressions for its frequencies and mode shapes



alleviates the need for finite-element models and their attendant numerical data-
processing pitfalls, The 3:1 aspect ratio plate is treated first, and it is shown
how three actuator/sensor pairs can easily produce (at least 10 percent damping

in each of the first five modes. The.5/3: 1 aspect ratio plate is treated next

its characteristic feature being that its fourth and fifth modes correspond to a
double-root. The sequential LAC synthesis procedure is applied again in this

case and a complete tabulation is given for the desired dampings, modal weights,
and cumulative LAC gains occurring at each step. For this plate, 5 actuator/
sensor pairs are used to produce (at least) 10 percent damping in each of the

first five modes.

The fourth and final chapter deals with the mechanization of LAC systems, and
focuses in particular on the proof-mass actuator as the device closest to the
linear analog of the gyrodamper studied previously in [1]. Proof-mass actuators
operate by the principle of inertial reaction: they apply a force to a small mass
(proof-mass) and the d'Alembert reaction force is transmitted back to the struc-
ture. While this concept is quite straightforward, its practical implementation
leads to numerous mechanical difficulties (e.g., friction, suspension stiffness,

nonlinearities, ete.).

Rather than attempting to model these various pathologies (which most often are
not even reproducible in a systematic way), the approach was taken to place

a control system around the actuator itself in order to force it to behave in the
desired linear manner. Furthermore, a much cleaner mechanical design was
obtained by approximating linear motions via a small-angle pivoting device, the
pivoted proof-mass (PPM) actuator. An electrodynamically driven prototype
was built and is described in this chdpter, and detailed scaling laws are pre-

sented for feasibility of extrapolation to large space structures.
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LOW-AUTHORITY CONTROL (LAC) FOR STRUCTURES
Generalized Low Authority Control (LAC) Theory

The LAC theory originally developed for uncontrolled and undamped structures

Refs. [2] and [3]. may be generalized to any linear time-invariant system of the form:

X = FX + Gu

y = HX (1)
z = Az + By

u = Cz

where X is the state vector [c'l q]T (q: modal amplitudes), u the control

vector, y the measurement vector, z the filter state vector, and F, G, H,

A, B, and C are constant coefficient matrices. In this formulation, the =z

equation (filter) may be used to model either sensor dynamics (in which case

z 1is the actual sensor output), actuator dynamics (in which case z is the

actual force/torque output), any type of linear filtering including state estimators

(in which case z is an estimate of the state X), or any combination of the above.
There are two reasons for extending the LAC theory to these more general

systems:

(1) The introduction of the general matrices F and G (representing
the dynamics of the system) allows the handling of structures which
already have some natural damping or some embedded attitude or
structural control systems. As will be seen subsequently, such
generalization of LAC will make it possible to develop a sequential
algorithm for the control synthesis.

(2) The introduction of a "filter" equation provides a convenient way to
model sensor or actuator dynamics or controller roll-off, and has led
to a very important result concerning the stability of real-life active
LAC dampers.

13



It will be shown that when the general LAC formulas are applied to undamped,
open-loop structures, they reduce to the simpler forms obtained directly in previous

studies (Refs. [1] and [2]).
In order to apply the perturbation theory, the matrix C (or B) in (1) is
assumed to be "small" in some sense, so that the shift in the nth root of the open-

loop system will be (shown to be) given by

M = 77D DPorn Pan O (2)

arn an rn
a,r

t
where Darn is the (a,r) h element of the matrix

— -1
D = C(A-Knl) B (3

and ¢‘:n and ¢§n are respectively the ath and rth components of the generalized

actuator and sensor mode-shape vectors given by

G" L (D

A T
%n

R _
9, = HR, (3)

where L, and R_ are, respectively, the left and right eigenvectors of F

corresponding to the nlCh root Ay of F.

Since eigenvectors are only defined to within a (complex) scalar multiplicative
constant, defintions (4) and (5) depend upon the choice of separate normalizations
for Ln and Rn' However, Eq. (2) is valid for any normalization of these vectors
as long as, together, they satisfy the condition LE Rn = 2. This particular choice
is made so that Eq. (2) be formally compatible with Eq. (16) of Ref. [2] and

Eg. (27) of Ref. [3].

14



The indices a,r in Eq. (2) refer, respectively, to the ath

input u, controlling
the system of actuators and the rth measurement v, of the system of sensors. ¥
In simple cases, the indices a and r may be directly associated with (respectively)
single~degree-of-freedom actuators and sensors. In more general cases, however,
a single input u, may drive several actuators, and/or a single measurement Ve
may be a linear combination of several sensor outputs.

The derivation of Eq. (2) proceeds from first rewriting Eq. (1) as the single

matrix equation

X F 1GC X
=]---- (6
Z BH: A Z
and considering the open-loop (unperturbed) matrix
F+0
oA =|--1-- <)
BH » A
and the perturbation
O 1 GC
acA = |- -- -~ (8)
O+ 0

In order to apply Jacobi's formula (Refs. [1] or {2], Eq. (5)) the right and left
eigenvectors Rn and £n of of are needed. As can be easily verified,

*The suffix "s" for sensor is not used in order to avoid confusion with the common
usage of s in Laplace transforms.

15



these are

R
/S T
0 = s (9)
n
O
=|-o- (10)
n o
where
-1
H = - -
Rn = (A 7\nI) BHRn (11)
Jacobi's formula is then written as
[LT 'o] o 'agcllr
ni 1 n
_ TR I S (12)
@, = oo ||r
. n
or
a = -Lfgca-antlear (13)
n n n n

which leads to Eq. (2) when the definitions (3), (4), and (5) are used.
It is interesting now to apply Eq. (2) to an undamped, uncontrolled structure,

for the case where

(i) Sensors and actuators are physically colocated*
(ii) Sensors and actuators are consistent, i.e., are of corresponding
types: translation/force, rotation/torque

(iii) Sensors measure rates

*This does not necessarily require that the sensor-to-actuator feedback is also
colocated.

16



In that case, we have

H

e} 0]
(14)

GT

[2! 0]

where & is the matrix of (real) structural mode shapes ¢n. In addition, if we
normalize the eigenvectors Ln and Rn s0 that (compare to Eq. (11) of
Ref. [2]1)

-_— 1 .
Rn = [00...010...0 , 00...0...1/1(;)n 0...0]
(15)

L = 100...010...0

(for which Li Rn = 2, as required), then Egs. (4) and (5) reduce to

A _
%an = %an
(16)
R _
% = %en
so that Eq. (2) becomes the quadratic form
Ay = -3 Do 6 (1
n 2 arn 'an rn

a,r

The above formula is very similar to Eq. (16) of Ref. [1], but the filter
[third equation in Eq. (1)] introduces two main differences:

(1) The coefficients Darn = Dar(n) now depend upon the mode number n
(2) They are now complex quantities so that, in general, the dA's are also
complex, i.e., first-order shift in frequencies may be obtained along

with damping,

17



When the eigenvalues of the filter (i.e., the eigenvalues of A) become large
compared to those of the structure, Eq. (3) shows that Darn becomes independent
of n and thus Eq. (17) converges to the old Eq. (16) of Ref. [1] and corresponds
to the reduced equations

Dynamics: X FX + Gu
Sensors: y = HX (18)

Controls: u = -Dy

The above equations, along with definitions (4) and (5) for generalized actuator
and sensor modes, and the revised Eq. (17) for large filter eigenvalues (large

filter bandwidth), i.e.,

A R
o ¢

an rn

D

ar (19)

DO =

ax_ = -
n

a,r

are a convenient set to use when sensor, actuator, or filter dynamics can be
ignored or are already embedded in the system. Indeed, in this latter case,
using the definition (6) for of, Eq. (1) can be rewritten as

C
X X G
=Al. .+ |...]u
z Z L_O_
_ (20)
vy = [0o:1] [x]
7

u = Cy

which has the same form as Eq. (18). Equations (18) and (19) are the basis for
the general LAC synthesis (LACSYS) procedure and its iterative verson (sequential
LACSYS), which are discussed in the next section.

18



Low Authority Control Synthesis (LACSYS)*

Equation (19) of the previous section is the basic LAC prediction formula for
the root shifts (hence closed-loop damping) produced by sufficiently "small" con-
trol (damping) gains Dar' To synthesize the gains Dar’ let (d>\,n)p denote
the predicted root shifts given by the above formula, i.e.,

1 A R
- = D _ o ¢
2 ar "an 'rn (192)

(dhn)
p a,r

3 1
function (Dar s)

and let (d?xn)D (given numbers) denote the desired root shifts imposed by the

LAC controller design. Then the gains Dgr are chosen so as to minimize the

weighted quadratic cost function

_ _ 2 2
J(D) = z W [(dxn)p (dxn)D] +S 2 (20)
n a,r

in which the modal weights Wn help specify pole locations, and the term aZ’r DZr
improves robustness** of the controller, as will be shown later. Since the cost
function J(D) is quadratic in (d)\n)p and hence, because of Eq. (19a), also
quadratic in the elements of D, the gains can be obtained algebraically by

solving the linear equations

"aJ(d) _ "
5D =0 (21)

for (the elements of) D.

*The material in this section is a continuation and elaboration of the short section
on Damper Design and System Robustness appearing on p. 21 of Ref. [1].
“**¥Robustness is that quality of a controller of remaining stable in the presence of
parameter variations in the structure and/or control system parameters. For
instance, a stability condition independent of mode shapes and frequencies, such
as the negativity of all root shifts in the fundamental LAC formula, is an expression
of robustness.

19



‘To carry out this procedure, the double-indexed gain matrix Dar is relabeled

as a singly indexed gain vector di and the multiply indexed (generalized)

. . A R . . . .
modal coefficients Pon %rn 2T relabeled as a coefficient matrix S, » using

the same correspondence between the single index i and the pa.i;:' of indices a,r,
used above. The single-index relabeling scheme (a,r)—i , for actuator and
sensor labels which excludes those pairs for which Dar is chosen to be zero#*,

produces a correspondence between a,r, and i such that:

di = Da.r.
ii
(22)
_1 A R
Shi T 7 %n ¢rin

Finally, let W denote a diagonal weighting matrix whose diagonal elements are Wn,
and for simplicity, denote the desired root shifts (dkn)D by - énwn’ considered

as components of a vector - (.
With the above relabeling, the weighted quadratic cost function in Eq. (20)

can be rewritten as
2
I@ = YW, s d -t DY & d, (23)
n i i

or in matrix form

J(d) = [8d - (é’w)]T W [Sd - ¢Gw] + de (23a)

From Eq. (23) we can calculate the partial derivatives 9J /8dj (where j is an index

having the same range as i) as follows:

1 ad _ .
75 = V| 25u% " faln|Smt Y o
n i

*For instance, when colocated feedback is desired, Da r = O for a=r.

20



or equivalently in matrix form (I: Identity matrix)
2 - Tws+na-s'wew (25)

Thus, the condition 5J/0d = 0 leads to the LAC gain synthesis formula

a = sTws +0 ! sTw @ (26)

In general, W is a diagonal matrix. If we assume further that the weights Wn
are all equal, W becomes a scalar matrix, say W = wl, and Eq. (26) can then be

written as
T, 1.\1.T
d = (S S+—I) ST (¢w)
w
so that
im d = (s78) ' sT ¢w
W= (27)
= ST (&w)

where ST = (STS)_1 ST is the least squares pseudoinverse of S. This is the

direct generalization of Eq. (18) of Ref. [2].
The purpose and effect of the term Za r Dzr
merits further clarification. Its genesis was the purely empirical observation that,

for colocated feedback, when an ex_act inverse solution exists (i.e., when the

in the cost function, Eq. (20),

number of actuator/sensor pairs is equal to the number of modes to be controlled),
an arbitrary specification of the desired damping ratios almost invariably leads

to gains Do with large magnitude and mixed signs. In other words, the result-
ing control system removes energy from some parts of the structure while adding

energy to other parts in order to achieve the desired (specified) modal
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damping distribution. This situation is, of course, very undesirable for achiev-
ing robustness because all dampings gains must be positive to ensure uncondition-
al stability.

It was further observed that some overall damping is always obtained by
setting all the gains to some positive value of much lower magnitude, even though
the resulting modal damping distribution is then quite different from the desired
one. It appeared, therefore, that adding a penalty cost for large gains to the
cost function J would tend to prevent the occurrence of negative gains and thus
ensure robustness. This tendency can be seen directly in Eq. (26) and its
limiting form, Eq. (27), for large weights. While, for large weights, nothing can be
readily said concerning the sign distribution of the gains (components of the
vector d), for small (positive) weights W such that W = wl we have

- 1 2 2
sTws+nt = 1-wsTs+3w?sTe) - ...

so that Eq. (26) reduces, to first-order in w, to

d = wST(tw)

Since, for all n, §n @, > 0, Wn > 0 and the elements of ST (i.e. ,
Sni =1/2 q)z n) are also positive, it follows that all the gains (components of d)
are also pos’itive, and this is precisely the robustness condition which the second

term in the cost function J in Eq. (20) or (23a) is intended to bring about in the

LAC gain synthesis.

Remarks: In the above synthesis, the feedback (damping) gains Dar were chosen
to minimize the cost-function J in Eq. (20) which is the sum of two disparate design
objectives: the magnitude of the errors between predicted and desired closed-loop
damping, and the magnitude of the feedback gains. In this sense, an LAC system

is a special case of a pareto-optimal design [1] in which multiple-objective cost
functionals are optimized: the design is pareto-optimal if none of the multiple

objectives can be further improved without degrading any other. While there exist
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numerical techniques for multiple-objective optimization by linear programming
methods using equality and inequality constraints, Ref. [4], the exact (and relatively
simple) algebraic solution given by Eq. (26) is, for the case of LAC systems, a far

superior synthesis method than the more general approximation techniques.

Sequential Low-Authority Control Synthesis Procedures -

The low-authority controller design synthesis method discussed in the previous
section is valid for a general class of linear systems, which includes, in particular,
structures in which damping may be present. These systems are described in

state-space form by the matrix Eqs. (18), which result in the closed-loop dynamics

X = (F + GDH)X (28)

For sufficiently "small" controls (or damping) D, written now as 6D, let

dF = G(6D)H (29)

be considered as a perturbation of the dynamics matrix F consistent with the
assumptions implicit in Jacobi's formula (ef. Eqs. (4), (5), lof Ref. [2]. The closed-
loop dynamics Eq. (28) can then be written

X = (F+dF)X (30)

The perturbation dF of the dynamics matrix introduces root shifts d}‘n of the

nth (complex) root An of F. When the corresponding eigenvector shifts are

small, LAC theory establishes linear relationships Eq. (19) between the dA's and

6D. Conversely, synthesis of the control gains 6D corresponding to desired values
of the dMs (or ¢w's) is also obtained by linear algebraic processes shown in

Eq. (26) where the d's are obtained from a single-index relabeling of the doubly

indexed quantities Dar (now designated as small quantities 6D ar)' However,
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because of the approximations inherent to the perturbation method employed, the
resultant root shifts will only approximate the desired ones.

To improve the accuracy of this process, the perturbation method is applied
sequentially in a manner analogous to the Newton-Raphson method. At each step i,
the small amount of control due to cSDi is "embedded" in the total dynamiecs, and
the total system (complex) eigenvectors are recomputed. The corresponding
control matrix gain increment <SDi then reduces the difference between predicted
and actual closed-loop poles. This is possible because: (1) the linearity-implied

additivity of the process allows one to rewrite Eq. (30) as

X = [F+ dF1 + dF2 LI an]X (31)
where
dFi = G(GDi)H
and where the corresponding final gain matrix is given by

D = 6D, +6D, +...+ 6D (32)

2

after an n-step iteration; and Eq. (2), because of the applicability of the LAC
procedure to general systems, in particular to already damped structures. A
geometric interpretation of the sequential LACSYS procedure is shown in Fig. 1.
The sequential procedure is particularly useful for systems in which multiple
roots occur. For such systems, the introduction of small amounts of damping
generally results in large eigenirector shifts for which the LAC theory is no longer
applicable. However, once a small amount of active damping has been introduced,
the eigenvector indeterminacy (resulting from multiple roots) is removed, and
further iterations will then make it possible to accurately synthesize the control
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WHERE: dF‘ = GbDI H

CLOSED-LOOP SYSTEM: X = |F+dF, + sz T an] X

GAIN MATRIX IS: D = 6D, + 6D, +...6D

PREDICTED

_a—DAMPING ‘o
.| OPEN-LOOP
FAN POLE
6D,
P
“\1
80,
ITERATION NO. 1 /;
2 3 ACTUAL
CLOSED-LOOP POLE 3 p CLOSED-LOOP
PREDICTIONS POLE
y
ITERATIONS GAIN MATRIX

1 6D,
2 601 + 602
? 8Dy + 6D, + 6D,

Fig. 1 Sequential Low-Authority Control Synthesis (LACSYS)
gains. This method will be applied in the sequel to illustrate an LAC design for a

simply-supported rectangular plate of aspect ratio such that double-root modes

occur early in the sequence of modes ordered by increasing vibration frequencies.
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ROBUSTNESS* OF LAC ACTIVE DAMPERS

The generalized LAC theory makes it possible to examine various stability
characteristics of idealized and incresingly more realistic systems (i.e., systems
with finite bandwidth). The different cases considered lead to the final Stability
Theorem for LAC active dampers in the presence of both natural structural damping

and implemented passive damping.

Ideal Dampers in Undamped Structures

This case is only mentioned for completeness, since it has been largely
documented in the original LAC papers Refs. [2] and [3]. Briefly summarized,
for a colocated and consistent** set of actuators and sensors using rate feed-
back, the root shifts

dn = - fw = -
n nn

D] =

2
Z Da ¢an (33)

are always toward the left of the iw-axis for all the modes if all the gains D, are
positive. This robustness result obviously assumed that both sensors and actuators
have infinite bandwidth, and also that the structure was initially undamped. Several
departures from this idealization occur in actual practical cases and will be examined
next.

*See footnote, p. 19
**See statement (i), p. 16
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Ideal Dampers in Damped Structures

Since some émall amount of natural damping is usually found in any structure,
or could have been already introduced by passive means, it is of interest to determine
whether the addition of active dampers can still meet robustness conditions. In the
case of an already damped structure for which gon denotes the existing small

damping ratio of the nth mode, the dynamics matrix F in Egs. (18) now takes the

form (see Eq. (10), Ref. [3]):

~ P~ 7
\\ | \\\
! S
N )
- ~ 1
2 gonQJn | “n.
\\I \\\
F o= —_——__—:——_—"—-“_" (34)
I . 0
] |
| | d
with its eigenvalues given by:
A= -t w ki 1~ (35)
n onn n on

and its right and left eigenvectors are given by <1et w;E wn\/ 1- §02n> :

T
. : 2
= .. e - + i ...0]
R_ _[0...1. 010 (;onwn m;‘l)/wn .
T
. * ) o *
Ln = [0...1+1§onwn/wn...0:0... n lwn...O]
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as can be verified by inspection. Note that L;I;Rn = 2; see discussion below
Eqgs. (4) and (5). Using now Eq. (14), the generalized mode shapes Eqgs.

(4) and (5) for consistent sensor/actuator systems are given by

R _ A
on = ®m
(37)
¢A = 1+1 _g_on_ ¢an
an 2
1-%n
J
Thus, the real part of the root shift is
— ~ _ 1
Re(ar) = -tw = -3 2 D_o 9 (38)
a,r

which remains always negative for colocated systems. It is to be noted, however,
that in this case, there is an additional first~order shift in frequency due to the

presence of the Con term.

Actual Passive Dampers in Undamped Structures

Because of the flexibility inherent in all materials, a passive damper must be
modeled at least as an ideal damper in series with a spring, as shown in Fig. 2.* As
a result, the force/displacement relationship, instead of being a pure rate-feedback,

p
f k -—-l -f
n X

Fig. 2 Passive Damper Model

p/k

*Ind:eed., for high frequencies, the "dashpot” part is basically locked, only the
springiness of the device remains.
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has a transfer function of the form
f(s)/x(s) = - ps/(1+7s) (39)

where p is the damping gain, and To = p/k where k is the spring constant.
This means that the actual device behaves like a pure spring rather than a damper
at frequencies large compared to 1/2 T In terms of control theory, the dynamics
of such devices can be represented by the first-order lag (or first-order "roll-
off") 1/(1 + Tos) , placed at the output of the idealized device. Equivalently,

it can be interpreted as a perfect rate-feedback system [the ps term in Eq. (39)]
where the sensed rate has been "filtered" by the first-order lag filter 1/(1 + 'ros) .
This second interpretation is convenient for applying the generalized LAC formulas

to this example. Indeed, the total system equations in this case are

X = FX+Gu |
y = HX .
. 1 } (40)
z = - (z -vy)
o]
u = -pz J
Comparisons of Egs. (40) with Egs. (1) yields the corresponding Eq. (3),
written for P, = P!
1- i'ro wn
D = p (41)
aan alq _H_Z wz
o n

and thus, for a system of passive dampers (with colocated sensing) having the

same time constant To’ we obtain from Eq. (2)

Jie(d?\n)E - w2 - 1? ) zPastn (42)
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which again is always negative. However, in contradistinction to the ideal damper
case, the root shift now depends on the modal frequency W and the passive

damping §np becomes very small as Town becomes large.

Actual Active Dampers in Undamped Structures

This is the most complicated case, but also the most interesting in terms of
practical implementation of LAC systems. There are quite a number of differences
between actual active dampers and the passive damper model previously described.
These stem from the usually complicated dynamics of the actuator itself (e.g.,
nonlinearities). However, most of these unwanted characteristics can be sup-
pressed by various methods (e.g., servo-loops around the actuator itself,
electronic compensators, etc.), but one characteristic always remains, namely, the
finiteness of the bandwidth. While it is reasonable to assume, for the purely
passive damper, that the response f(s)/x(s) for all practical purposes is not
zero at very high frequency, the same assumption cannot hold in the active case
where it is necessary to introduce, at the very least, another "roll-off" filter
in the model.

The frequency response of such active systems will be described by the trans-
fer function shown in Fig. 3:

cs
(1+7;8) (1+7,8) (c > 0) (43)

f(s) /x(s)

where ST and where c is the active control gain. For frequencies smaller
than 1/2 T the system behaves like a damper, then more like a spring, and

a final roll-off occurs after 1/27 79 with the response going to zero with a -1 slope,
as shown in Fig. 3. Unfortunately, this last roll-off may introduce enough phase
shift to create instabilities if there are modes present in the roll-off region.

This problem can be treated by introducing a filter, as in the previous case.
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Fig. 3 Frequency Response of Active and Passive Dampers (Bode Plot)

This time the filter and control equations are

. 1 1
A - = 0 Z
1 Tl 1 T 1
= + v (44)
1 1
Zg = z2 0

c
]
Q
(=)
—J po
| m——|
N
=
| I

and application of Eq. (3) yields a result analogous to Eq. (42) for a system of
identical active dampers (ca = ¢) with colocated sensing

1-7 w2

Re(d}\n) = “fenn ® ~2(1+1~ )2(1 +T w )Zc 952111 (45

1

This last expression for the active damping é exhibits the frequency-dependent
term (1 - wz) which changes sign for wi >1/ Tl 9° Thus, if there are any
modal frequencies beyond 2 7/ T T 9 the corresponding modes will always be

destabilized.
This very disquieting result appears to put an end to any thought of achieving
robustness or even stability in active damping of structures. But, however hopeless

it may seem, it is not really serious because nature and engineering ingenuity come
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to help in two ways. First, the above result is valid only for undamped structures,
and will undoubtedly change if natural damping is taken into account. Second, as

is graphically suggested by the curves of Fig. 3, a combined use of active and

passive damping in the actuator itself could prevent this instability. *

Actual Active and Actual Passive Dampers in Damped Structures
This is the most general case, where a real structure, i.e., one which has
some small amount of natural damping, is controlled by a feedback loop whose

transfer function is of the type (¢ > o, p > 0):

cs + _Ps
(1+’rls) (1+ 7,8) 1+’Tos

f(s) /x(s) (46)

2

where ¢ and p are, respectively, the active (controlled) and passive gains of
the damping actuator. For instance, c¢ can be implemented via some electro-
dynamic motor while the p may be realized by inherent back e.m.f. damping
(produced by a low impedance power amplifier) or by an actual passive device
mounted in parallel with the actuator. The time constants 71 and 7, are chosen
to roll-off the active compensation well before additional-poles due to actuator
and amplifier dynamics are encountered.

The total real part of the root shift Ke(d?\n) = - én w, ~can now be obtained by
summing up the contributions in the previous cases. For instance, assuming there
are a number of similar actuators, with identical active and passive gains c¢ a= C

P, =P and with colocated sensing, we have:**

* This solution was originally proposed in 1978 by J. N. Aubrun and M. G. Lyons
on the basis of root loci considerations. The ensuing stability theorem is due to
Aubrun.

**The case of nonsimilar actuators is conceptually straightforward, but computa-
tionally quite involved since, for that case, 7; (i = 0, 1, 2) must be replaced by

Tia (actuator-dependent) and the corresponding terms can no longer be pulled
out of the summation Za in Egqs. (42) and (45).

33



2
P 1 - Tl 2(.0 c
2 w_ =2¢ W +2 2+ n_a |2 (47a)
n n on n (1+7.2 2) (“,rzwz) (1+72w2) an
a on 1 n 2 n
2
' (1 T W )c'
= 9¢ b + (47b)
on n 2.2 2 2 2 2
(1 +Tow ) (1 +len> (1 +T2wn)
where p' = z P SDZ = p ¢>2 2 2L w ]
- a "an an pn n
a a ’ (48)
' = 2 z 2 ~ w
and ¢ z Ca®an = © ¢an = 2 écn n
a a J

The question now arises: does there exist a relation between the parameters
7'0, Tl’ 7'2, Zon’ p, and c¢ such that, when satisfied, 'the RHS of Eq. (47) is always
positive for any wn? The answer is in the affirmative, and is given by an inequality
which places an upper bound Rmax on the ratio R of the active/passive LAC
damping ratios c'/[p' + 2 gon wn] , and this in turn puts an upper bound on the

achievable active damping ratio £or This inequality is characterized in the

following theorem:

LAC Stability Theorem (Aubrun): Unconditional stability of an LAC system is

guaranteed if and only if, er each mode n, the active damping ratio gcn is less

than a certain maximum £ gn . ThlS maximum active damping ratio in 1 any of the

modes within the bandwidth of an active LAC controller is proportional to the
sum of the natural structural damping fon and the dampmg £on introduced

by a passive damper mounted in parallel with the actuator Spe01flca11y,

¢ * =R 5
en < Loy T max Con * pn)

where the value of the proportlonahty constant R ax is given by:

34



R 23
Rmax = min <K + 2 x/I-{, 7'1 TZ/‘TO)

where K 71/7'2 + 72/1-1 + 2

and where 1/7 1’ 1/7'2 are the poles of the active damper, and 1/‘1'0 is the pole

of the passive damper.

Proof: Conditions are sought under which the RHS of Eq. (47b) is positive for
all W (robustness condition). Using the following definitions:

= T T
Q = Ty/M
qo = To/Tl
_ 2 2)] L (49)
R = cl/[p' + 2§onwn (1 +Town
— T
X = lwn J
the robustness condition can be rewritten as
(1+xH a+a?%H +R 1 -ax?) A+q2xhH >0
which simplifies to
(qz—qug) X4-[R (q-qcz))- qcz)—ll X2+ R +1>0 (50)
for all X. This is a quadratic (parabola) in the variable XZ, and a necessary
condition for positivity is the positivity of the coefficient of X4
2 _ , 2
R < q/qo =T "'2/7'0 (51
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We assume this condition can always be satisfied by the controller design.
Inequality (50) will be satisfied if either of the following two conditions holds:

positivity of the coefficient of Xz, i.e.,

R < &é—/& (52)
1-q,/q

or negativity of the discriminant of the quadratic, i.e.,

2
(@ +1/q) (1-q_/q)+ 2 2
R -2 o " pilatli)" -4 (53)

(1+ q?,/q)2 (1+q§/q)2

To simplify the result, it will be assumed that qg << q, i.e. 'rg << 717'2. In
other words, the bandwidth of the passive damper is assumed to be much larger

than that of the actuator. We define now

Z = q+1/q (54)
and since qi/q << 1, conditions (52) and (53) become

R < Z (52a)

Z+2—2~/Z+2<R<Z+2+2\,/Z+2 (53a)

The left inequality in Eq. (53a) may be ignored. Indeed, from Eq. (54) and
Eq. (49) it follows that Z = (ri +T§)/Tl'r2 =2 and hence Z +2 - 24Z + 2 <Z,
so that if the left inequality in Eq. (55) were violated, it would simply be sub-
sumed in condition (52a). Combining then inequalities (51) and (53a), the maxi-

mum value of R is chosen to be

o 2)
R e = Win(Z+2+27%2, T,/ (55)
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Now, within the controller bandwidth, we have wnTi <« 1, for i=0,1,2. In

this bandwidth, the robustness condition is thus achieved when

¢ < Rpax (P'F 28 (56)

since R < Rmax’ and using Egs. (48), we finally obtain

+
gc:n < Rhax (gon gpn)

as was to be shown.

Note. In the statement of the theorem, Z + 2 is denoted by K. The expression
K+ 2 \E{— may also be written, after some manipulation, as (1+1/q9) (1 +Jq)2.
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LAC ACTIVE DAMPING FOR SIMPLY-SUPPORTED RECTANGULAR PLATES

Simply-Supported (SS) Rectangular Plates

This chapter illustrates the synthesis of LAC active damping systems which
was discussed at length in the last two sections of the first chapter. Because
the strategy employed in any controller synthesis process is always dependent
upon the characteristics of the structure to be controlled (i.e., actuator/sensor
selection depends on controllability /observability, which in turn depends on
structural mode shapes), it was suggested®* that application of the LAC theory
be made to simply-supported rectangular plates. The primary reason for this
choice was that, for this class of structures and boundary conditions, there
exist simple analytical expressions for both frequencies and mode shapes. This
fact obviates the need for finite-element structural models and the ensuing
numerical data processing which might obscure the controller synthesis process.
A secondary reason for choosing simply-supported rectangular plates lies in the
fact that, by proper choice of aspect ratio, double-roots can be made to occur
early in the frequency-ordered sequence of modes. While there is, in fact,
no unique eigenvector which corresponds to a double-root frequency but
rather an eigenplane (invariant subspace of dimension 2), plate theory provides

in that case two linearly independent orthogonal eigenvectors which span the
corresponding eigenplane. This makes it possible to examine the continuum of
mode shapes corresponding to multiple roots and, if these occur early in the
sequence of modes, to address the actuator/sensor location problem accordingly

in a reasonably low-order model.

Frequencies and Mode Shapes of SS Rectangular Plates

Consider a simply-supported rectangular plate with the following parameters:

Length: a (m) Poisson Ratio: v
Width: b (m) Surface Density: p(kg/mz)
Thickness: h (m) Flexural Rigidity: D (N-m)

Young's Modulus: E (N/m2) D =Eh>/[12 (1 - v2)]

*By Dr. Larry D. Pinson, NASA Langley Research Center.
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and let one of its corners coincide with the origin of a rectangular coordinate

system (x,y,z), as shown in Fig. 4, where a typical point of the deformed plate
has coordinates x,y, and z (x,y). It
is thus assumed that the deformation

Y field is one-dimensional, i.e., all deforma-

tions occur along the z-axis.

zix,y)

It is well-known from plate vibration
theory (e.g., Ref. [5]) that the vibration

2

frequencies of such SS-SS-SS-SS rectangu-
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= (g)ng(mZ + r2 n2) J

where r = a/b is defined as the aspect ratio of the plate. The plate deformations
Z.n (x,y) which satisfy the boundary conditions and correspond to these frequencies
are given by

Zon (x,y) = 8 n sin (mrx/a) sin (nry/b) (58)

where the amplitudes a n are determined from the initial conditions of the problem.
The two parameter families wmn and zZ o can always be linearly ordered by a

single index i when the index pair (m,n) is ordered as (mi,ni) =1,2...)
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according to some rule (e.g., increasing frequencies). Using such a correspondence

(mi,ni) —(i), we define

i m, n,
(59
Z, = Z
i m.n
ii

In order that the deformation functions (or surfaces) given by Eq. (58) be mode
shapes, proper normalization is required. In particular, we must then have
id=1,2...;j=1,2...)

ff z;(X,¥) zj(x,y)p dx dy = 6ij (60)
Plate
which is equivalent to the standard normalization "tI>T M® =I" wused in structures
(see Ref. [6]) where ¢ is the matrix of eigenvectors (mode shapes), M is the
generalized mass, and I is the identity matrix. Since the functions z; are
orthogonal, the normalization conditions of Eq. (60) reduce to
b a

2 .2 x\ . 2 y) _
Pa . fjsm (mTr E) sin (nvr 5 dxdy =1 (61)
oo

which leads to (for all indices m,n)

a =J_4_ = _2
mn pab = Vu (62)
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where M is the mass of the plate. Using the transformation

X = x/a
Y = y/b (63)
the mode shapes for the plate can be written as:
2 . . .
Zon (X,Y) = sin m7X sin nr¥
M (64)
x,ye [0,1]

The affine transformation Eq. (63) maps the rectangular plate onto a square
plate for any value of the aspect ratio. The surfaces Zon (X,Y), displayed in
Fig. 5 for selected values of m, n thus represent (except for scale) the mode
shapes of any rectangular plate. However, any specific ordering of the frequen-
cies mn (and corresponding mode shapes Zmn) can only be obtained by specifying
first an aspect ratio r in Eq. (57).

LAC Active Damping For 3:1 Aspect Ratio Plate

To illustrate LAC active damping for a plate for which (at least) 10 percent
damping is required in the first five modes, with at most five colocated actuator/
sensor pairs, an aspect ratio of 3:1 is chosen. The physical parameters for this
plate are as follows:
= 3m
= 1m
= 1cm
= 6.9x 10 N/m2 (aluminum)
= 27.6 kg/m2 for 1 em thick
= 1/3
= Eh3/[12 (1- vz)] = 6.46875 x 103 Nm

D/p 15.3093 m2/s
M = pab = 82.8 kg

10

gluv*omsc‘m
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and its first ten modal frequencies in Eq. (57) for r2 = a2/b2 =9 are given by

W, = (7r2/a2)~lD/p m.2+ 9 nz)

; : (65)

where the correspondence (mi, ni)—— (i) is obtained as follows:
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Table 1. FREQUENCIES FOR 3:1 ASPECT-RATIO PLATE

. 2 2 .
Mode No. i | m, | n, (mi +9 ni) wi/zn (Hz)
1 1 1 10 26.7
2 2 1 13 34.7
3 3 1 18 48.1
4 4 1 25 66.8
| 5 16| __34 __1_90.8 _________
6 1 2 37 98.9
7 2 2 40 106.9
—- 8 3 2 45 120.2 "‘] Double Root
- 9 6 1 45 120.2 ~
| __10__ _ 1412 __»52 _ _ ] 1389 __ __ _ _ _ __

The choice of actuator/sensor locations is based on the locations of maximum

modal deflection amplitudes of the plate, as shown by the modal controllability

surfaces of Fig. 6. In J. N. Aubrun's Low Authority Control Theory, these arise
from the fundamental root shift formula (e.g., Eq. (16), Ref. [1]) for undamped

structures.

. 1
@, = 2 D (66)

»

ar ¢an ¢rn

where the coefficients Dar are the damping (control) gains, with the indices a,r

denoting, respectively, actuator and sensor locations on the plate so that

¢an = Zy (Xa’ Ya)

t7)rn = Zn (Xr’ Yr)
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for each vibration mode n. For a single colocated actuator/sensor (a =r), the

r.h.s. of Eq. (66) becomes Daa (¢an)2, and for a given root shift, the gain

D is minimum when (¢ )2 =[z (X ,Y )]2 is maximum. Thus, when the
aa an n “a’ "a

actuator location (Xa’ Ya) is varied continuously over the plate, the cor-

respondence (¢an)2_. zi (X,Y) generates a surface whose peaks represent

optimum actuator locations for minimum gain Daa for each mode n. These
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controllability surfaces are thus the "squares" of the mode shapes, and are

shown in Fig. 6. Figure 7 shows five actuators placed very close to the plate's

im =i

121 -

A 74

o' —o"—¢'—o—¢

e
— W AN OV~ 00 O O =

1 12 23 34 45 56 67 78 89 100 111

O ACTUATORS INITIALLY USED, THEN REMOVED.
@ ACTUATORS INITIALLY USED, THEN KEPT.

Fig. 7 Actuator Locations on 3:1 Aspect-Ratio SS-Plate

centerline Y = 1/2. ‘The choice of these actuator locations is heuristic, and
represents a compromise between exact placement on controllability peaks and
available grid locations on the plate when a computationally tractable mesh size is
used for the plate, e.g., 121 possible locations for actuator stations, as shown
in Fig. 7. In general, one may tabulate the values of (¢an)2 versus a and n,
and examine the ensuing matrix for its largest entries. In the present case,
examination of Fig. 8 reveals directly which actuators are most (or equally most)
efficient for the first five plate modes.

This matrix suggests that actuators No. 2 and No. 4 may be superfluous for
damping the first five modes and this is indeed confirmed by the numerical
synthesis of the LAC gains obtained by Eq. (26) of the LACSYS procedure.
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MODE NO.

ACTUATOR NO.

1 2 3 b4 5
1 X
2 X X
3 X
b1 X X
5 X X X

Fig. 8 Actuator Effectiveness Matrix for 3:1 Aspect-Ratio Plate

Table 2 gives results of this synthesis for all five actuators.

Table 2 LAC SYNTHESIS FOR FIVE ACTUATORS

LAC PREDICTED FULL EIGENANALYSIS
Mode | OPEN-LOOP | LACSYS CLOSED-LOOP CLOSED-LOOP
No. | Freq. (Hz) | Weights | Freq. (Hz)| Damping (%) | Freq. (Hz) | Damping (%)
1 26.17 7.50 26.9 11.0 27.7 10.31)
2 34.7 0.75 35.0 11.5 34.7 12.09) noNTROL
3 48.1 7.50 48.4 10.9 48.7 11.27 DESIGN
4 66.8 0.90 67.1 10.0 68.2 11.02
|5 _|_ 90.8_ _ | f 0.75 _J_ 8.3 __| _10.0 __ 3 __ 88.9_ _j11.92) _ _ _
6 98.9 0 98.9 1.1 98.8 1.13)
7 106.9 0 106.9 1.4 106.6 1.43
8 120.2 0 120.2 1.4 116.3 5.52 }SPILLOVER
9 120.2 0 120.2 1.4 120.2 0.63
10 138.9 0 138.9 1.8 137.7 1.09)
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The gains obtained with the above are (let DaaE Da):

D1 = 1,830.0
D2 = 1.9
D3 = 544.0
D4 = 86.1
D5 = 238.0

so that 2_ ID_| =2,700 kg/s. The gains

N-s/m )

N-s/m
N-s/m

N-s/m

N—s/m J

< (67)

D2 and D 4 thus contribute relatively
very little to the control effort, and removing actuators No. 2 and No. 4 yields

the following results for the final closed~loop eigenanalysis:

Table 3 CLOSED-LOOP FREQUENCIES AND DAMPING FOR

ACTUATORS NO. 1, 3, AND 5
Mode Closed-Loop Damping
No. Freq. (Hz) )
1 27.49 10.51
2 34.99 10.58
3 48.58 12.02
4 68. 04 10.03
5 89.07 12.05
with control gains
D, = 1,798.0 N-s/m
3 = 486.0 N-s/m (68)
Dy = 350.0 N-s/m
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for which a measure of the control effort is Za I Dal = 2,635 kg/s.

Remarks: (A) The desired modal dampings in ({w) of the LACSYS Eq. (26)
used in the above synthesis procedure were 11 percent for the first five modes,
and 0 for the remaining ones. The intent was to achieve at least 10 percent
damping in the first five modes only, so no attempt was made to control the other
ones. (This was already evident in the choice* of actuator/sensor locations which

were such that modes Nos. 6, 7, 8, and 10 were essentially unobservable and

uncontrollable, i.e., ¢ = ¢rn~ 0 since the centerline Y = 1/2 is a nodal line

an
for all these modes.) This restriction to the first five modes is quite arbitrary,

and any number of modes could have been selected providing sufficiently many
actuators are used. Indeed, it has been previously shown (p. 21, Ref. [1]) that
in order to specify the damping ratio of Nc structural modes, N e colocated
sensor /actuator damping units are required. The fact that it is possible to use
fewer than five actuators for the SS plate cannot be generalized to arbitrary
structures; whether or not one may use fewer than Nc units in the general case

depends on the mode shape configurations.

(B) Modes Nos. 8 and 9 correspond to a double root for which, strictly speaking,
there is no (unique) associated eigenvector but rather an "eigenplane" in modal
space. That is, any (pointwise) linear combination of the surfaces Zg (X,Y) and
Zg (X,Y) is again a mode shape surface corresponding to the double root Wg = Wg
at 120.24 Hz, and as an example, Figs. 9(a) and 9(b) illustrate the surfaces

z,+z, and z_ - both of which are also vibration modes at that same fre-

24>
qflenc?r. The sspeciagl difficulty with multiple root modes is that the presence of
an actuator on one of their controllability surface peaks cannot guarantee any kind
of damping performance because the vibration pattern simply shifts around so that
the controllability peak reemerges elsewhere, away from the actuator, as can be
seen in Figs. 9(a) and 9(b). From a mathematical point of view, the LAC per-

turbation theory no longer applies because a small root shift can produce a very

*The five actuators were placed slightly "below" the plate's horizontal centerline,
by a distance equal to 1/10 of the plate's width, as shown in Fig. 7. The idea
was to create a very small spillover into modes Nos. 6, 7,8, and 10 without any
attempt to control them. In practice, actuator-mounting errors and resulting
spillover will always occur.
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large eigenvector shift. The method devised to deal with multiple root modes is

a consequence of the sequential LACSYS procedure and is discussed next.
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(b)

z=1/2 [sin(wx) sin(2ry) - sin(6mx) sin(ny)] z=1/2 [sin(37rx) sin(2ry) + sin(6mx) sin(ny)]

Fig. 9 Example of Alternate Mode Shapes Corresponding
to Double Roots

LAC Active Damping For N'5/3:1 Aspect Ratio Plate

In the previous 3:1 aspect ratio plate, modes No. 8 and 9 were double-
root modes. The study of such modes (if they were to be included without
omitting previous ones) would then require a relatively high-order model, e.g.,
of order 20 for the first 10 modes. In order to avoid higher order models, a
new aspect ratio was sought such that double roots would occur last in a five-
mode model. Inspe_ction of Eq. (57) shows that this can be achieved for an
aspect ratio r = J_S—/_?: for which we obtain the frequencies shown in Table 4.
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Table 4. FREQUENCIES FOR+/5/3:1 ASPECT-RATIO PLATE

: 2.5 2\[
Mode No. i m, | n, (mi + Ty ) wi/27r (Hz)
11 2.666... 7.125
211 5.666... 15.141
112 7.666... 20.485
- 31 10.6686. .. 28.501 - Double Root
| _—-5___| 2|2_| 10.666... |28.501 " _ ___ ___
312 15.666. . 41. 861
1(3 16.000. 42,752
411 17.666. 47,205

where the plate parameters are the same as before, except that now b = 2,324 m.
The first three mode shapes and the corresponding modal controllability surfaces
are shown in Fig. 10. The fourth and fifth mode shapes, given by the surfaces

2,(X,Y) = 2/JM) sin (3rX) sin (1Y) (69)
25(X,Y) = 2 NM) sin (27X) sin (27¥) ]

correspond to the double root above at 28.501 Hz. These two surfaces are

orthogonal eigenvectors corresponding to the double eigenvalue 4 =W i.e.,

5-
H 2,(X,Y) z;(X,¥)p dX.dY = 0

Unit square

and hence any (pointwise) linear combination of these surfaces corresponds again to

an eigenvector at the same frequency. Thus, the surface z¢(X,Y) defined by

ze(X,Y) = cosf z4(X,Y) +sin9z5(X,Y) (70)
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is also a mode shape (with the proper normalization) at that frequency. As 6
varies, the one-parameter family of surfaces generated by Eq. (70) sweeps out
the eigenplane corresponding to the double-root w, = W« Figure 11 shows a
sampling of the surfaces IZG(X’Y)I for 6 varying between 0 and 7/2 in 15 deg
increments, and these correspond thus to modal controllability surfaces of the
continuous family Eq. (70). The peaks of these surfaces are shown in Fig. 12
(for the first five modes), together with five actuator/sensor locations chosen
for this aspect-ratio plate. (See Remarks below.)

The final result of synthesizing a low-authority control damping system for

the ~V5/3:1 aspect ratio plate is given in Table 5.

Table 5. PERFORMANCE OF LAC SYSTEM FOR
NJ'5/3:1 ASPECT-RATIO PLATE

(FULL EIGENANALYSIS)

Mode | Open-Loop | Closed-Loop | Damping
No. Freq. (Hz) Freq. (Hz) (%)
1 7.125 8.391 37.73
2 15.141 15.184 35.14
20.485 19.275 14.30
—~4 28.501 26.800 10.43

gt 2 B 28.501 _ _ | _ 28.352  _ _ | _ 10.93 _ _|

41.861 41.478 03
42.752 43.197 44
47.205 45.363 6.17

The synthesis was carried out sequentially, and the values of the weights Wn,
desired damping ratios é‘n, as well as the LAC-predicted (P) and actual (A)
damping ratios occurring at each iteration of the sequential process are displayed
in Table 6. The objective, as before, was to obtain at least 10 percent damping
in the first five modes in a "balanced" fashion, i.e., without imposing excessively

high damping in any particular mode.
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Fig. 12 Actuator Locations and Modal Controllability Peaks for~5/3:1 Aspect-
Ratio SS-Plate
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Table 6 SEQUENTIAL LOW-AUTHORITY CONTROL SYNTHESIS FOR
ASPECT-RATIO SS-PLATE

5/3:1

PERCENT CLOSED-LOOP DAMPING

(P: PREDICTED BY LAC THEORY; A: ACTUAL OBTAINED BY FULL EIGENANALYSIS)
Open-Loop . . . . . . . . . : : .
Mode Frequency | lierstion 1] Iteration 2| Iteration 3| Iteration 4 { Iteration 5 | Iteration 6 | Iteration 7{ Iteration 8 | Iteration 9 | lleration 17 Iteration 11|Iteration 12
No.
! (Hz) P | A P| A P | A Pl AP Al P |a P | A P | A Pl A P | A P A Pl A
1 7.1 6.1 | 6.1 20.4 ]21.1(22.3 - {23.6 |23.5 |32.0 - ]39.1 139.8 [35.8 |34.5 ] 43.1]43. 42.6 |42.4 | 31.9 - 133.3 |33.7] 37.5 | 31.17
2 15.1 4.7 | 4.8 |13.2 [13.9 |13.2 - 113.7 {13.0 |14.1 - |16.6 |[14.8 {21.0 |25.2 | 28.5 | 27. 32.4 [32.8 | 30.5 - 133.8 }33.8 35.21(35.1
3 20.5 4.6 | 4.6 9.6 | 9.2 |10.7 - 110.9 |12.6 |10.5 - 110.0 |11.8 |16.0 |16.7 | 16.2 | 16. 15,3 {15.3 [15.0 - |14.3 [14.2 {14.3 114.3
4 28.5 4.8 4.8 9.2 }110.8 9.4 - 9.6 112.7 {10.3 - 9.8 | 5,2 9.0 ]10.8 J11.4 | 9. 11.4 }11.6 }11.8 - ]10.3 (10.4 | 10.5 J10.4
9 28.5 4.8 1 1.3 5.6 4.1 6.4 - 7.0 4.4 7.0 - 9.3 |14.4 |11.4} 8.4 ]10.8 | 12. 11.0 10,7 | 8.1 - 9.8 | 9.7 |10.9 |10.9
£ 5 10 10 10 23 23 - - - 3 30 -
§2 5 10 10 10 11 11 - - - - - -
Desired Dampings
[ S Term
of agsy) Ter ty 5 10 10 10 11 11 - - - - - -
Formulu (26)(1)
!4 5 10 10 10 11 11 11 12 12 - - -
!.’5 5 10 10 10 11 11 11 1 11 - u 11
Wl 1 1 0.5 0.5 1 1 1] 0 0 1 1 0
Modal Weights
W, in LACSYS
Formula (26) W2 1 1 1 1 1 1 0 0 0 0 0 0
(Dimensionless)
W3 1 1 1 1 1 1 0 0 0 4] [} 0
W4 1 1 1 1.2 1 1 1 1 1 0 0 0
W5 1 1 1 1.2 1 2 1 1 1 0 1 1
):6D1 487 624 1,090 1,190 766 600 934 1,090 1,180 1,140 989 989
ZGDZ 195 995 387 317 688 996 818 877 1,070 997 1,230 1,309
Cumulative
LAC Gains (2) 2503 281 544 1,040 1,170 988 870 1,850 1,780 1,880 1,780 1,850 1,886
(N~s/m)
26D4 233 609 212 106 436 714 343 452 324 202 285 348
F.-tSD5 698 592 221 288 486 630 265 492 451 243 169 248
Final Gains

() Desired dampings ¢

n

in (fw) of LACSYS formula (26) have no effect when corresponding weights W = are set to zero.

(2) The gain indices match the actuator names (numbers) shown in Fig. 12. In that figure, an actuator located at X,Y carries the grid label X + Y -1, e.g., Actuator #1
is located at grid point No. 30.




Remarks

1) The sequential synthesis process was carried out for the first five modes only
of an eight-mode model. As shown in Table 5, the "spillover" to modes 6, 7, and
8 produces about 5 to 6 percent damping in these modes. This spillover is a
strong function of the relative location of actuators and controllability peaks for

the "unmodeled"modes.

2) Controllability peaks represent an optimum actuator location for given modes,
but damping in those modes will also occur for nearby (nonoptimum) locations

for somewhat higher actuator gains. For example, as can be seen in Fig. 12,
actuator No. 2 is located at CP4 (controllability peak of mode 4) and is as near

to CP2 as the finite-mesh discretization of the plate will allow. (For this plate,

a discretization of 12 x 12 = 144 subplates was used, with 13 x 13 = 169 grid points,
including the simply-supported boundaries, available for actuator placement.)
Placing another actuator at CP2 would not only be redundant for CP4, but would
provide excessive control on the plate's horizontal centerline where also actuator
No. 5 is located at CP1.

3) For double-root modes, controllability peaks lose their significance because of
the shifting modal pattern (Fig. 11). The choice of actuator locations shown in
Fig. 12 came as a result of some preliminary numerical experimentation based on
placing each of the actuators at a controllability peak. For that choice, sequential
synthesis invariably produced very high damping ratios in mode 1 and very low
damping in mode 5, which has a nodal line (zero controllability) passing through
the actuator located at CP4. On the basis of these numerical observations, the
actuators at CP2 and CP5 were relocated on each side of CP5, as shown in Fig. 12.
With this arrangement, actuators No. 1, 2, and 3 control the double-root mode 4-5,
with actuator No. 2 also controlling mode 2 in a slightly suboptimal fashion.

4) The sequential synthesis process shown in Table 6 reveals that mode 5 is still
the most difficult to control. At iteration step No. 9, 10 percent damping (at least)
is achieved in all five modes. The next three iterations serve only to distribute

the damping more equally between these modes, and in particular to reduce the
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42. 4 percent damping in mode 1. At this point, lack of a more specific control
objective begins to matter because the synthesis could proceed in any of several
ways. LAC systems are not particularly appropriate for specific (relatively high)
modal damping requirements in selected modes, and other techniques (high-
authority control, HAC) ought to be used. It is precisely in the context of

such other controllers that LAC systems are useful, i.e., they provide broadband
damping (in many modes) to absorb the destabilizing spillover of the other mode-

specific controllers.

5) The sequential choices for the modal weights Wn and desired dampings én
at each iteration step in Table 6 reveal a process which is characteristic of all
optimal control synthesis processes, i.e., the heuristic adjustment of weights
(occurring in the cost function) vis-a-vis the control gains obtained. (For
LACSYS, the desired dampings, in a sense, also play the role of weights.)
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PROOF-MASS ACTUATORS

Proof-Mass Actuator Concept

The application of forces to a structure in space can be achieved by three
principal means:

1) Intrastructural actuators, pushing one element of the structure against
another (e.g., member-dampers)

2) Inertial reaction actuators, which create a force on the structure by
reaction against a separate mass element which may either be discarded,
as in the case of jets, or kept connected to the structure, as in the so-
called "proof-mass" actuators

3) Environmental actuators (e.g., magnetic, solar, etc.) obtained by inter-
action of the actuator with the environment

Although any of these methods could theoretically be used for the control of
structures, practical considerations will help suggest the most likely candidate for
each application. Type 3 may be discarded first because the force levels involved
would usually be too low. Type 1is very straightforward and is useful in many
cases. However, it has two important drawbacks: first, because of its intra-
structural nature, it tends to push energy around in the structure, and second,
in the case-of large structures, "member dampers" for instance will have to be of
such size that their own flexible characteristics will come into play and add to the
complexity of the problem. As for type 2, the jet solution may not be acceptable
for various reasons: excitation of higher modes, difficulty of implementation,
contamination of sensitive surfaces, fuel storage, etc.

Thus, the best actuator is a momentum exchange device. In a previous study
Ref. [1], the use of control-moment gyros (CMGs) was discussed and analyzed.
These devices are capable of imparting very large torques to a étructure and thereby

absorbing significant amounts of vibrational energy. Although there does not
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exist an (exact) linear momentum counterpart of the angular momentum storage
devices, the "proof-mass" actuator comes closest to the linear analog of a gyro.

The important characteristic to be remembered is that the force f applied to
the structure is the opposite of the force acting on the mass m of the actuator,
and thus this mass will accelerate with the acceleration - f/m. Therefore, unless
the fbrce is reversed, the mass will continue to travel. This seems an obvious
point, but it is an important distinction from the CMG case, where the gimbal
angle stays constant when no torque is generated. This means that proof-mass
actuators cannot be used for rigid-body control; their main purpose is to control
vibrations, since in this case they will produce a force with no DC content. In
fact, in practical implementations, these actuators will always be AC coupled to
remove any possible bias, and also the mass will have to be physically restrained
by a weak spring so it would not drift.

This being established, proof-mass actuators can apply a very significant
amount of vibrational forces to a structure, and conversely, absorb significant
amounts of vibrational energy with the proper feedback loops. They have the
great advantage of easy implementation, since they are self-contained and can be
attached almost anywhere to a structure. Their only drawback is that they are not

currently available in space technology.

Active Versus Passive Damping

The distinction between active and passive damping may seem very academic
at first. Indeed, let y be the displacement of a point in the structure, then
local damping may be introduced by applying a force

f = - Dy
Now, whether D is due to the viscosity of a dashpot liquid, eddy currents, or

an actuator-electronic compensator combination, makes no difference to the result.

For space applications, however, it is easier to use electromechanical actuators
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than hydraulic or friction systems which are not very reliable. Also, values of
D can be adjusted very easily in the electronics so that values may be achieved
that are not obtainable with mechanical systems. Thus, except for these few
points just mentioned, there does not seem to be a real issue. However, the
situation becomes quite different when one considers how the force f is generated,
and for proof-mass actuators it makes a difference.

Consider the simple case depicted in Fig. 13. The actuator produces a force
f on the structure and a reaction force -f on the mass m. The displacement of
the structure at the actuator location is y, and the relative displacement of the
proof-mass with respect to the structure is x. The dynamic equation of the proof-
mass is then

m(x+y) = -f. (7T1)

STRUCTURE

ELECTRODYNAMIC

FORCE
,//:r PROOF-MASS

Fig. 13 Proof-Mass Actuator Acting on Portion of Structure

We will consider two cases:

1) Passive Damping

The force f is generated by viscosity, eddy currents, or other passive
means, and may be written as

f = Dx (72)
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Using Egs. (71) and (72), the transfer function may be obtained

2
fly = - mDs (73)
y ms + D

Equation (73) does not exactly represent a pure rate feedback; only when s >> D/m

is it approximately one
fly = - Ds

Now assume that damping needs to be introduced at some frequency w/27 .

Letting s =iw in Eq. (72) leads to

mD w2

By = primw
Thus, the imaginary part (i.e., the one which will actually contribute to damping)

is

) 2.| iw = -D'(D) iw (79

3 szwz
D2+m w™]

(£/y) damping

The next question is: how much damping is achievable? Equation (74) shows
that the function D'(D) vanishes both at 0 and infinity, and has a local maxi-

mum a8t D = mw, where the equivalent damping gain is D;nax =1/2 mw. Since

the equivalent feedback law around the frequency w has the form
f=-Dy (75)

the damping introduced by the passive device is limited.
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2) Active Damping

Can this limitation be removed by active damping? If active damping meant
merely to replace the mechanical gain D in Eq. (72) by an electronic one, the
answer would obviously be no. However, active damping means also that sensing
may be done differently. In this case, it is possible to sense y directly, rather
than the natural "sensing"” of x occurring in a dashpot.

Thus, the control law, Eq. (72), can be replaced by

f = -~ Dy : (76)

and in this case, there is, at least theoretically, no limit on what D could be, in

opposition to the passive case in Eq. (75).

Linear Proof-Mass Actuators

A first attempt to build a proof-mass actuator was made using a linear electro-
magnetic actuator (the Ling shaker model 102) which normally is used to shake
structures from a ground base (see Table 7 for specs).

Table 7. LING 102 CHARACTERISTICS

Weight: 1.1 kg

Max. Force Output: 7 N
Max. Travel: + 3 mm

This actuator consists mainly of a powerful, heavy, permanent magnet
and a cylindrical coil free to move in the magnet gap and attached to an output
rod, as shown in Fig. 14. A bellows-type suspension system maintains the coil
centered, while allowing for small axial motions. Because the magnet and its
casing are heavy, this assembly is used as the proof-mass, while the output rod

is attached to the structure being controlled.
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‘ &———— BELLOWS
\ SUSPENSION

Fig. 14 Simplified Cross Section of Ling Shaker Model 102

Y

There are two problems to solve before actually using this type of actuator:

1) The bellows suspension is quite stiff and tends to stick at low force levels,
so that the (force output) /(current input) transfer function is nonlinear,
both in frequency and amplitude

2) Despite this stiffness, it is yet incapable of holding the weight of the magnet
in the gravity field, and is especially weak in off-axis directions

In order to solve the second problem, a cradle had to be built to hold the output
rod in a quasi-rectilinear path (Fig. 15). This is not really good mechanically because
the coil does not exactly translate and thus may come into contact with the magnet for
large motions. As for the suspension stiffness and stiction, which is aggravated by
the cradle system because of misalignments and approximate linear motions, nothing
much could be done mechanically, short of redesigning the whole actuator and
centering system.

However, one interesting solution was to wash out the actuator pathologies by
introducing a feedback loop around the actuator. Ideally, the force output f should
be a linear function of the input current. One possibility is then to measure this

force (say by load cells) and feed it back to the actuator after comparison with the
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LING SHAKER
USED AS
PROOF MASS \C STRUCTURE

(1.1 kG)

/

PROOF MASS MOTION

Fig. 15 Pivoted Cradle Suspension for Ling Shaker
input command. It turns out, however, that this method is not easy to implement
practically. Another solution was thus developed which consists in controlling

not the force, but the velocity of the output.

Velocity-Controlled Actuators

In order to eliminate undesirable dynamic characteristics of the actuator, the
velocity of the output rod of the actuator is controlled by the feedback loop shown
in Fig. 16.

POWER
AMPLIFIER
Y, VELOCITY
e > | SENSOR
I ¢ ACTUATOR
(COMMANDED |V
VELOCITY)

Fig. 16 Actuator Feedback Loop
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Let m be the mass of the proof mass, k the stiffness of the suspension
system, and x the relative displacement of the output rod. The rod is attached
to some structure where displacement is denoted by y. Thus, the equations of

the system, in the s-plane are

msz(x+y)+kx=—f+G(vc—v)
v = SX (77)
y = z(s)f

where 2z(s) is a transfer function characteristic of the structure. If the structure
is very rigid, z(s) is very small in the frequency range of interest (e.g., the
actuator mounted on a test bench). Solving Eq. (77) for v gives the transfer

function

2
viv, = |1+ —22E8 (78)
¢ Gs (1 + ms™ z(s))

Thus, for G large enough, the influence of m, k, and z are washed out and v
basically follows the commanded velocity Ve The bandwidth of such systems is

basically given by

W~ G/m (79

and the minimum achievable velocity is given by

v, = fo/G (80)

where fo is the friction force in the actuator system. Thus linearity in both
frequency response and amplitude is greatly improved by the velocity feedback.

(Typical examples will be seen subsequently in Fig. 20.)

68



In the case of the Ling shaker, it is possible to sense the velocity by
measuring directly the back emf of the driving coil with an impedance bridge,
as shown in Fig. 17. The advantage of this method is that it does not require
additional hardware. However, the adjustment of the bridge may be difficult
to achieve because of temperature drifts, especially when the power dissipation

is large over a period of time.

LING SHAKER ACTUATOR COIL

COMMANDED VELOCITY
INPUT
Ve
5
IMPEDANCE
BRIDGE gf&%ﬁELMF
AMPLIFIERS
{ —AAA~
/ MEASURED VELOCITY

Fig. 17 Velocity-Controlled (VC) Actuator Electronics for Ling
Shaker Model 102

Velocity-controlled (VC) actuators are quite different from force actuators
and thus must be used differently. For LAC implementation, the usual control

law in its simplest form is
f = ~ D'S-T . (81)

If the structural displacement y is relatively small compared to the displacement

of the proof-mass*, then

*This is normally the case because the structure's generalized mass is usually
larger than the mass of the proof-mass.
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f 2 - mx > (82)

and thus Eq. (81) may also be written as

oe ~ D L]
X = =y (83)
and integrating once leads to
D
v -yt constant (84)

This shows that the velocity of the actuator must be proportional to the

structural displacement. Therefore, when using a VC actuator, one should

feedback position and not rate as was the case for force actuators. This is an
unusual, but very important point to be noted. Another way to look at it is to
consider the electronic compensator shown in Fig. 18.

The commanded force fc goes through a gain -1/m and is then integrated
before going to the VC actuator. The velocity of the proof-mass is then
v = - fc/ms and the force outputis f = - msv = fc. Thus the integrating
circuit has transformed the VC actuator into a force actuator. In practical
applications, however, it is important to remember that proof-mass actuators
must be ac ' coupled, and thus the integration in Fig. 18 must be replaced by a
compensation of the type s/(s +a)(s +b), where a and b are small compared

to the frequency of the lowest mode to be controlled.

Pivoted Proof-Mass (PPM) Actuators

Linear actuators are plagued by three main disadvantages: considerable
weight, stiff guiding/suspension systems with inherent friction, and weakness
of that system in transverse loadings. K. Silveira developed a new actuator
concept at Lockheed in 1975 for fast mirror actuation to eliminate these pathologies.
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EQUIVALENT FORCE ACTUATOR
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-D |l Yy -

STRUCTURE

(1) DIRECT USE OF VC ACTUATOR

(2) USE OF VC ACTUATOR AS A FORCE ACTUATOR

Fig. 18 Electronic Compensation for Velocity-Controlled (VC) Actuators

This concept was modified and adapted by J. Aubrun to the present pivoted
proof-mass (PPM) actuator. In this actuator the linear motion of the proof-mass
is approximated by a small circle of arc about a pivot point realized by a flexure,
This type of flex-pivot has three advantages: 1) it is very strong in trans-
verse loadings, 2) it has no stiction, and 3) it is mechanically extremely
accurate. The actuation is obtained by a light electrodynamic motor. Figure 19a
shows a picture of an actual PPM prototype and Fig. 19b a schematic of the
device. Velocity feedback is used also with this type of actuator. Figure 20
shows the open- and closed-loop transfer functions of the actuator.
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a. Prototype of PPM Actuator
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b. PPM Actuator Schematic

Fig. 19 Pivoted Proof-Mass (PPM) Actuator



dB

VELOCITY LOOP OPEN
20

VELOCITY LOOP CLOSED
-20+

1 1

10 100
FREQUENCY

Fig. 20 Open- and Closed-Loop Transfer Functions of a Velocity-Controlled
PPM Actuator (Output Velocity Versus Commanded Velocity)

The dynamics of the PPM actuator are not as straightforward as for the

linear type. A dynamic model of the actuator is shown in Fig. 21.

PIVOTING m: MASS
ELEMENT I: CENTROID INERTIA

T: REACTION TORQUE ON STRUCTURE

f 2]
PIVOT \
_\“[o 4 % | ]— = f_ LONGITUDINAL FORCE
pp————— [ ——————— V
d

ATTACHMENT POINT TO STRUCTURE

/ Vi REACTION FORCE ON STRUCTURE
ELECTRODYNAMIC FORCE
APPLICATION POINT

Fig. 21 PPM Actuator Dynamics Model
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Because of the pivoting, both reaction force and torque are produced on
the structure. Application of D'Alembert's principle shows that

. .. 3

fL = - mb (62c0s9+9sin6)

f = mb (8 cos 6 - 62 sin 8) { (85)
2 .o . .2 R

T = (I +mb“) 6 - mbd (6 cosg - 6” sin 9) J

Since the angular displacement ¢ is usually limited to a few degrees, the
above equations may be conveniently linearized. The longitudinal force fL

may be ignored so that the force and torque applied to the structure by the
actuator are given by

f ~ mbéo (86)
T = (I + mb? - mbd) 6 (87)
where (see Fig. 21):
N rfe
6 = — (88)
I + mb

Equation (87) shows that it is possible to have no torque transmitted to
the structure by choosing the attachment point at the distance

d, = I+ mb2) /mb (89)

Varying d above or below this value will change the sign of the output torque
as well as its magnitude. The mass of the PPM actuator and its CM may be

adjusted by changing the position and mass of a lead piece situated at the distance
£ from the pivot point.

74



Let bo’ m, and 1 o be, respectively, the position of the CM, the mass, and

the inertia with aspect to the pivot of the "unloaded" actuator, and m, the
mass of the lead piece with which it is loaded. Then
m = m, + my
mb +m,&£
- 0o 0 1
b = = r (90)
2 _ 2
I +mb” = Io + mll | )
and using Eqs. (86) and (88) shows that
1+mb /m, £
_ oo 1 r
f/f e = Z (91)

, 2
1+ Io/ml'e

PPM Scaling Laws

We must consider two important parameters in the design and use of PPM

actuators besides the mass/inertia properties mentioned previously:

(1 fem

(2) Bm

maximum electrodynamic force

maximum angular displacement

Since the angular displacement 6 depends upon the frequency, optimal
choices for the design parameters will depend upon the frequency range of
application. From the two conditions

Ifel < fom (92)

o] = Gm (93)
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and Eqs. (86), (90) and (91), two new conditions are found:

1+ mobo/ml.e r, co
£ em

A

I£]
3
1+ Io/ml.e

A

2
| £ (1+m b /m;£) mew” o (95)

when w/27 is the frequency of the output force.

Design regions may be derived from these conditions. The quantities £/r
and «w may be chosen as main parameters and regions of possible values of f
plotted as functions of them. Typical plots were obtained for a prototype PPM
actuator whose characteristic parameters are shown in Table 8.

Table 8. CHARACTERISTIC PARAMETERS OF
PROTOTYPE PPM ACTUATOR*

Mass Geometry Electrodynamic
-5 2 _
Io = 1.5 10 © kgm b0 = 0.016 m
m, = 0.088 kg r = 0.021 m fem = 1N
m - 0.067 rad

Two cases were studied, for two different design values of the proof-
mass m: 0.08 and 0.16 kg, respectively. Results for design #1 are shown
in Figs. 22 and 24, and for design #2, in Figs. 23 and 25. Figures 22 and 23
show the output force f as a function of £/r. Depending on the lever arm,
more or less force can be obtained. The zero point (obtained for a negative

value of £) corresponds to the composite center of mass being at the pivot

point.

*Prototype actuator (design #1) delivered to Dr. G. C. Horner, Langley
Research Center.
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The fact that the curves in Figs. 22 and 23 do not go to infinity for £/r =0
but have a maximum is due to the inertia of the unloaded actuator which absorbs
part of the energy going to the proof-mass m,. The straight lines represent
the limits, at various frequencies, due to the angular travel limitation. It is
thus seen that at a given frequency, there is an optimum value for £/r,
corresponding to the intersection of the curve and the straight line. If this

value of £ /r 1is chosen for a given frequency, then the actuator will perform
properly at all higher frequencies. For instance, if actuator (design) #1 has
to control vibrations at or above 5 Hz, a value close to 3 is optimal for £/r.
In this case, design #1 will lead to the values:

£ = 0.062m

b = 0.038 m optimal (96)
m = 0.168 kg for 5 Ha

I = 8.2 x 10°° kg m? J

The effect of increasing the mass m, is to push up the angular travel
limit, as can be seen by comparing Figs. 22 and 23, thus allowing the actuator
to work at lower frequencies with basically the same force output. Obviously
the increase in mass can be traded off against an increase of £/r, but at
the expense of the force level. For instance, to work efficiently at 2 Hz and
above, actuator (design) #2 should have a value of £/r of about 5.3.

Another set of curves is shown in Figs. 24 and 25 where f is plotted

against the parameter m (w/ 27r)2. Again the two limits (maximum electro-

8
dynamic force, maximum ;né'nular travel) define a usable region which is,
this time, a function of £/r. The frequency scale is also shown on the top
of the plot. These plots show that above a certain frequency, the maximum
force output becomes constant. The intersection of the two limits corresponds

to the optimal frequency, for a given value of 4£/r.
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The optimal lever arm (£/r) can be obtained from Egs. (94) and (95), i.e.,

1/2

£
SN en - °2 (97)

mrecu2 m.,r
1" "m

This expression, which defines the abscissa of the intersection of the curve
defined by Eq. (94) and the straight line defined by Eq. (95), is only valid if
this intersection is on the right of the peak of the curve. Otherwise, the peak

itself is the maximum value for f, in which case £/r is given by

1/2

-1 (98)

Corresponding to Eqs. (97) and (98), the values of f are, respectively,

given by
_ 2
fopt = [mobo + rm, (l/r)opt] w 0m (99)
_ 1 1
fm T2 (‘E/I')m fem (100)

As was done in a previous study (Ref . [1])for gyrodampers, scaling laws
may be derived by considering geometric scaling. That is, calling L a
characteristic length* of the system, the following scalings are assumed:

*The parameter L is assumed to be dimensionless by letting L =1 correspond
to the prototype actuator (design #1) described in Table 8, p. 76.
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j
m = K L3
o m
_ 5
IO = KI L
r = Kr L > (101a)
b0 = Kb L
_ 2
fem = Kf L J
and let
X = mllmo (101b)

Thus Egs. (97) and (98) become

1/2
o oy-1/2 -1 _-1/2 ,-1/2 ( -2
(48/1')opt = X Kr Km Bm Kr Kf (Lw) KI Gm) (_102)
1/2
-1 Ky

(£/r) = X K 1+ X -1 (103)
m b 2
K K
m b

¢ decreases, while (.e/r)m is

constant, and there is a critical value of Lw beyond which the optimal

When Lw becomes larger and larger, (.e/r)op

value for (£/r) is given by Eq. (103) instead of Eq. (102). Correspondingly,
the maximum force output of the actuator will be given by Eq. (100) instead
of Eq. (99). These last two equations may be rewritten, in terms of the
parameters defined by Egs. (101), as
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K K K 1/2
2 _ 4 romof 2 1/2 3
© fopt = KK+ <T K1) > * (e (oD

1
x K K
w2 £ = % L7 (Leoy 2 (105)
1.2
2 <1 + X KK Kb> 1

Equations (102) to (105) constitute the basis for PPM actuator scaling and are
graphed in Fig. 26 for the values of the scaling parameters in Eq. (10la) corre-
sponding to the prototype PPM actuator with X = m1/m0 = 0.9. These
curves may be used, for design purposes, in the following way: Assuming that
a value of f of the force output is required for some application at a fre-
quency equal to w/2m™ |, the value of the parameter wzf is computed and
plotted on the right vertical axis. Using either the fopt curve (if W2t is
below the critical point) or the fm curve (if w'f is above it), one obtains
the corresponding value of L on the horizontal axis, and hence the value
of the geometric scaling parameter L . Then, for that value of L , one
determines the lever arm (¢/r) , again using either the (Ur)opt or the
(Jz/r)m curve (the latter being a straight horizontal line). An example of

the procedure will be given in the next section.

PPM-Damped Structure Scaling Laws

The scaling of the actuator will ultimately depend upon the structure to

be controlled. Scaling laws may be derived simply from the rate feedback Eq.
(76) or (81)

= -—D}.7

Thus, the force amplitude at frequency wn is
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f =Dy w (106)

where i is the vibration amplitude. According to Eq. (33), the associated
damping produced by one colocated actuator/sensor pair is

1 2
gn - fﬁan’n

Thus the actuator force for achieving the required damping ratio £ must be

f = _a"n Z (106a)

This relation, in conjunction with Egs. (99), (100), (101), and (102) will

allow the sizing of the required actuators. Although it is not practical or even
possible to define scaling laws for a general structure/actuator system, some
insight may be gained by considering a simple structure and observing the
evolution of the different parameters as mass and length are changed. For that
purpose, a free-free uniform beam damped about one axis by one PPM actuator
is considered. The beam mode shape at the tip and its frequency are given,
respectively, by

2 _ 1
L =4M
3 (107)
_ L2 -1/2 _-3/2 1/2
“n _Bn Ms Ls (EIS)

where LS and MS are, respectively, the length and mass of the structure,

the root of the beam equation, and EIS the classical ‘stiffness parameter.
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Using Eq. (106) leads to a condition on the actuator force output of

the form

1 4 -
£= 5 max(p, v, £,) (BLY L

3 (108)

The 100 m graphite-epoxy beam described in Ref. [1] p. 46 will be used here as
an example of application of these scaling laws. Table 9 gives characteristics of
this beam from which one obtains the quantities L s’ Ms’ and El g° Table 10
gives the value of ﬁn. The following problem is addressed:

Assuming that 10 percent damping is desired in the first mode of the beam, and

that the vibration amplitude of the tip is initially equal to 1 cm, design a PPM

actuator from the results obtained with the prototype.

Table 9 GRAPHITE EPOXY BEAM PARAMETERS

Length Ls = 100 m
Outside radius r = 10.55cm
Wall Thickness e = 2.275 mm
Young's Modulus E = 3.45 1011 N/m2
Density p = 1607 kg/m3
Mass M_= 239.7 kg

S -6 4
Sectional Inertia ls =8.12510 m

Table 10 FREE-FREE BEAM EQUATION ROOTS

n p_’n
4.7124
7.8540
10. 9956
14,1372

17.2788

g =5 W N -
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First, by applying Eq. (108), it is found that a force f~ 0.7 N is
required. Since the frequency of the first mode is 0.405 Hz,

WA f = 4.53

This value is far below the critical point (~4.2 x 104) ; shown in Fig. 26. Thus

the set of curves shown in Fig. 27 which correspond to that lower range will be
L 3

used *# These curves, (!l/r)opt and fopt’

varying from 0.125 to 4. The value of 0.9 corresponds to the prototype PPM

have been parameterized with X = my /m0

actuator. Using this value of X first, the value of Lw is found to be approx-
imately 7.3, corresponding to L~2.9. The (£/r) curve shows an optimal lever
ratio of 13. If instead, one chooses X = 4, , smaller values for L and ¢/r
are obtained. These two designs are compared in Table 11, obtained from the

graphically determined values of L and #/r and from Egs. (101).

Table 11 PPM ACTUATOR PARAMETERS FOR 100 m Gr-Ep BEAM

Actuator
Parameters X = 0.9 X =04
L 2.9 2.3
£/r 13.0 7.5
0.061T m 0.048 m
0.792 m 0.362 m
m, 2.146 kg 1.071 kg
m, 1.931 kg 4.283 kg
m 4.077 kg 5.354 kg
em 8.41 N 5.29 N

*Figure 27, for X = 0.9, represents the same curves (.(?,/r)ogt
and f as appear in Fig. 26, but drawn in a neighborhoo
of thé potrig'in for vastly reduced values of w”f and Lu, and
correspondingly increased values of (&/r). In addition, these
curves in Fig. 27 are now part of one-parameter families
obtained by varying the parameter %.
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The performance of the system for higher modes can be obtained easﬂy by
Eq. (106). If it can be assumed that the modal amplitudes vary with 1/w
(this corresponds to the modal content of a static deflection), then Eq. ( 106)
shows that the maximum achievable value for ¢ n is a constant.

As can be seen, the second design, with X = 4, is a bit heavier but much

smaller in size and requires a smaller electrodynamic force. It can be shown

that for this particular design, and at this low end of the L, range, the

minimum weight design is obtained for X=1/2, in which case the total mass
of the actuator is 3.977 kg. However, with ¢~2 m

,» the corresponding
linear dimensions become prohibitive.
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CONCLUSION AND RECOMMENDATION

The analytical framework has been established for the design and gain synthesis
of Low-Authority Control systems for large space structure vibration suppression
and management. Design implementation of LAC systems have been illustrated

for rectangular plates equipped with infinite-bandwidth sensing/actuation systems,
and robustness criteria established for realistic (finite-bandwidth) actuators.

A newly conceived electrodynamically driven actuator concept is given, together
with an actuator control system (actuator velocity control loop) designed to
minimize spurious mechanical effects which arise with any physical actuator

containing some degree of structural flexibility.

The inclusion of actuator and/or sensor dynamics in these types of study can
only be meaningful in the context of an experimental program in which laboratary
brassboards, equipped with sensors and actuators, are used to demonstrate the
mechanical implementation and performance of such LAC vibration control systems.
It is recommended, therefore, that any future work in this area be strongly
coupled to a laboratory experimental program in which the practical implementation
issues are addressed directly. By doing so, it is hoped that a new impetus will
be provided in the aerospace industry for the conception, design, and manu-
facture of badly needed actuator devices for large space structure vibration
control.
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