
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



JPL PUBLICATION 82-30'

(NASA-CH-169369) CORUELATION OF DESIGN WITH	 H83-14504
PERFORMANCE OF PRIBARY LITtllUd-SULFUR
OXYHALIDE CELLS (Jet Propulsion Lab.) 142 p
hC A07/KF A01	 CSCL 10C	 Unclas

G3/44 35516

Correlation of Design with
Performance of Primary
Lithium-Sulfur Oxyhalide Cells
H.A. Frank

r•	 Jg
81

CEF l'f 0

June 1, 1982

.National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California



JPL PUBLICATION 82-30

Correlation of Design with
Performance of Primary
Lithium-Sulfur Oxyhalide Cells
H.A. Frank

June 1, 1982

RY%M
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California



The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

Reference to any specific commercial product, process, or service by trade name or
manufacturer does not necessarily constitute an endorsement by the United States
Government or the Jet Propulsion Laboratory, California Institute of Technology.

MAN



ACKNOWLEDGMENTS

1. Tables I and II are reprinted with permission from D. I. Chua, J. 0. Crabb
and S. L. Deshpande, "Large Lithium-Thionyl Chloride Cells: Cell
Performance snd Safety," Proceedings of the 28th Power Sources Symposium
Conference (1978). This paper was originally presented at the June 1978
meeting of the 28th Power Sources Conference, held in Atlantic City, N.J.

2. Table III and Figure 20 are reprinted with permission from N. Marincic,
A. Lombardi and C. R. Schlaikjer,."Progress in the Development of Lithium
Inorganic Batteries," Proceedings of the 27th Power Sources Symposium
Conference (1976). This paper was originally presented at the June 1976
meeting of the 27th Power Sources Conference, held in Atlantic City, N.J.

3. Table XVIII is reprinted with permission from C. Schlaikjer and C. Young,
"Lithium Corrosion and Voltage Delay in Li 2B10C1 ii0/S0C1 and LiA1C14/S0C12,"
Proceedings of the 29th Power Sources Symposium Conference (1980). This
paper was originally presented at the June 1980 meeting of the 29th Power
Sources Conference, held in Atlantic City, N.J.

4. Figures 25 and 26 are reprinted with permission from C. C. Liang, M.
Bolster and R. M. Murphy, "Discharge Characteristics of the Li/C1 2 in
SO2C1 22 Inorganic Battery System," Proceedings of the 29th Power Sources
Symposium Conference (1980). This paper was originally presented at the
June 1980 meeting of the 29th Power Sources Conference, held in Atlantic
City, N.J.

5. Table XVII, Figures 34, 35, 36, 37, 38, 39, 40, and 41 are from D. Gilman
and W. Wade, Jr., "The Reduction of Sulfuryl Chloride at Teflon-bonded
Carbon Cathodes," J. Electrochem. Soc. 127 (1980), pp. 1428-1432. Reprinted
by permission of the publisher, The Electrochemical Society, Inc.

6. Table XIX is from S. Dallek, S. J. James and W. P. Kilroy, "Exothermic
Reactions Among Components of Lithium-Sulfur Dioxide and Lithium-Thionyl
Chloride Cells," J. Electrochem. Soc., 128 (1981), p. 513. Reprinted by
permission of the publisher, The Electrochemical Society, Inc.

7. Figure 1 is reprinted with permission from J. Auborn and N. Marincic,
"Inorganic Electrolyte Lithium Cells," Power Sources 5, Proceedings of the
9th International Symposium on Power Sources (1975), p. 684. Copyright:
Academic Press, Inc. (London) Ltd.

8. Figures 2, 3, 4, 5, and 6 are reprinted with permission from K. A.
Klinedinst, "Cathode-Limited Li/SOC1 Cells," Proceedings of the Symposium
on Lithium Batteries (1981), pp. 10 and 	 11. These figures were originally
presented at the Spring 1981 meeting of the Electrochemical Society, Inc.,
held in Minneapolis, Minn.

9. Figures 17, 18, 19, :22, and 23 are reprinted with permission from C. C.
Liang, P. W. Krehl and D. A. Danner, "Bromine Chloride as a Cathode
Component in Lithium Inorganic Cells," Journal of Ap2lied Electrochemistry,
Vol. 11, pp. 563-571 (1981). Copyright 1981, Chapman and Hall, Ltd., London.

iii



10. Figures 7 and 8 are reprinted with permission from K. M. Abraham, P. G.
Gudrais, G. L. Holleck and S. B. Brummer, "Safety Aspects of Li/SOC1
Batteries," Proceedings of the 28th Power Sources Symposius Conference
(1978). This paper was originally presented at the June 1978 meeting of
the 28th Power Sources Conference, held in Atlantic City, N.J.

11. Figures 9 and 10 are reprinted with permission from M. A. Domeniconi and
K. A. Klinedinst, "Lithium Thionyl Chloride High Rate Reserve Cells,"
Proceedings of the 28th Power Sources Symposium Conference (1978). This
paper was originally presented at the June 1978 meeting of the 28th Power
Sources Conference held in Atlantic City, N.J.

12. Table VII and Figure 12 are reprinted with permission from A. Dey and P.
Bro, "Primary Li/SOC1 Cells III. The Effect of the Electrolyte and
Electrode Variables in the Energy Densit.," Power Sources 6, Proceedings of
the 10th International Symposium on Power Sources (1976). Copyright:
Academic Press, Inc. (London) Ltd.

s

1

^l

iv



TABLE OF Comm

1. SUMMARY	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 1-1

2. INTRODUCTION	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 2-1
,t

3. DESCRIPTION OF CELLS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 3-1

4. ENERGY DENSITY AND.DISCHARGE RATE CAPABILITY 	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-1

4.1	 GTE FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-2

4.2	 HONEYWELL FINDINGS . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-5

4.3	 MALLORY FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-5

4.4	 ELF.CTROCHEM INDUSTRIES FINDINGS	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-12

4.5	 ERADCOM FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-13

4.6	 JPL FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 4-16

5. SAFETY	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-1

5.1	 EIC	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-1

5.2	 HONEYWELL FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-2

5.3	 GTE	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-3

5.4	 MALLORY	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-6

5.5	 ELECTROCHEM INDUSTRIES FINDINGS 	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-8

5.6	 NAVAL SURFACE WEAPONS CENTER FINDINGS	 . . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-8

5.7	 JPL	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 5-11

6. VOLTAGE	 DELAY	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 6-1

6.1	 EIC	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 6-2

b.2	 HONEYWELL FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 6-2

6.3	 GTE	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 6-3

b.4	 MALLORY	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 6-6

6.5	 SAFT	 FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 6-8

v



TABLE OF CONTENTS (Cvntd.)

6.6 UNION CARBIDE FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 6-9

6.7 ALTUS FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 6-9

6.8 JPL FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 6-10

7. STORAGE LIFE	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ..	 .	 .	 . 7-1

7.1 GTE FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-3

7.2 MALLORY FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ..	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-8

7.3 ELECTROCHEM INDUSTRIES FINDINGS 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-10

7.4 JPL FINDINGS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-12

8. REFERENCES	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 8-1

Tables

I. Storage Evaluation Program Results - Anode Limited Cells 9-1

II. Cathode °1.1aluation Program Performance Summary .	 .	 .	 .	 .	 .	 .	 .	 . 9-1

III. Typical Computer Printout for D Size Cell	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-1

IV. Maximum Capacities Obtained with Various Cathodes 	 . . . . . . . 9-2

V. Electrode Parameters 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-2

VI. Test Results with Different Designs	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-3

VII. The Factorial Matrix for the Empirical Optimization of the
Li/SOC12 	 Cells	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-3

VIII. Extended Factorial Matrix for the Optimization Studies . . . . . 9-4

IX. Cell Capacity After One Month Storage at 55°C	 .	 .	 . .	 .	 . .	 . . 9-4

X. Cell Capacity After One Month Storage at 72°C	 .	 .	 . .	 .	 .	 .	 .	 . 9-5

XI. Compatibility Studies of Metallic Material with 1.5 (M)
LiA1C14 -SOC1 2 Ii.organic Electrolyte at 85°C (185°F)	 .	 .	 .	 .	 .	 . 9-6

XII. Compatibility Studies of Insulating Materials with 1.5 (M)
LiA1C14-SOC12 Inorganic Electrolyte at 85°C (185°F)	 .	 .	 .	 .	 .	 . 9-7

XIII. Voltage Delay After One Month Storage At Room Temperature 	 . . . 9-8

vi



TABLE OF CONTENTS (Contd.)

Tables (Contd.)

XIV. Voltage Recovery on Discharge After Storage of One Month
at 55°C	 . . . . . . . . . . . . . . . . . . . . . . . . . . . .	 9-10

XV. Voltage Recovery on Discharge After Storage of One Month
at 72°C	 . . . . . . . . . . . . . . . . . . . . . . . . . . . .	 9-12

XVI. Voltage Delay After Storage of Partially Discharged Cells
Time of Recovery co 2.OV Storage Time 30 Days . . . . . . . . . 	 9-13

XVII. Teflon-Bonded Carbon Cathodes (16% TFE) . . . . . . . . . . . . 	 9-14

XVIII. Voltage Delay, Capacity, and Capacity Loss in AA Bobbin
Cells Containing LiA1C14 or L1 2B10CllO Discharged Fresh
or After Storage at 55% for Two Weeks . . . . . . . . . . . . . 	 9-14

XIX. Summary of DSC Results for Li/SOC12 System . . . . . . . . . . . 	 9-15

XX. Possible Electrode Materials for High Rate SOU 2 Electrode	 9-16

XXI. Voltage Delay of Mallory "D" Cells After Various Periods
of Storage . . . . . . . . . . . . . . . . . . . . . . . . . . .	 9-17

XXII. Film Thickness and Voltage Delay of Lithium Samples
Stored for Increasing Periods of Time at 55°C . . . . . . . . . 	 9-18

Figures

1. Schematic presentation of cell construction . . . . . . . . . . . . . 	 9-19

2. Li/SOC12 polarization curves with 2 mil and 50 mil cathode

	

thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 9-19

3. Li/SOC12 cathode utilization vs cathode thickness . . . . . . . . . . 	 9-19

4. Li/SOC12 polarization curves with standard and alternative
cathode materials . . . . . . . . . .	 . . . . . . . . . . . . . .	 9-20

5. Li/SOC1 2 discharge capacity vs discharge rate with standard

	

and alternative cathode materials . . . . . . . . . . . . . . . . . . 	 9-20

6. Li/SOC1 2 polarization curves with varying separator thickness . . . . 	 9-20

7. Galvanostatic discharge and .;verdischarge of spiral wound

	

C-size Li/SOC1 2 cell (C-14) . . . . . . . . . . . . . . . . . . . . .	 9-20

vii

i



TABLE OF CONTENTS (Contd.)

Figures (Contd.)

8. Galvanostatic discharge and overdischarge of spiral wound
C-size Li/SOC1 2 cell (C-9) . .	 . . . . . . . . . . . . . . . .	 9-21

9. Discharge capacity per unit cathc,4e thickness (for 'thin' cathodes)
as a function of electrolyte composition . . . . . . . . . . . . . . 	 9-21

10. Discharge capacity per unit cathode thicknes.; (for 'thick'
cathodes) as a function of electrolyte composition . . . . . . . . . 	 9-21

11. Limiting Specific Cathode Capacity as a Function of Discharge
Rate for Various Cathodes . . . . . . . . . . . . . . . . . . . . . . 	 9-22

12. Semilog plots of capacity vs current of type A, B and C cells
with 1.0 M and 1.8 M LiA1C14-SOC1 2 electrolyte . . . . . . . . . . .	 9-23

13. Cut-out View of the Inorganic Electrolyte "C" Cell . . . . . . . . . 	 9-24

14. Cell Capacity (Q) vs. Log Current (I) Plots of "C" Cells
with 1 (M) UA1C14 LPS Electrolyte for 	 20% and 30%
Teflon in the Cathode . . . . . . . . . , . . . . . . . . . . . . . . 	 9-25

15. Cell Capacity (Q) vs. Log Current (I) Plots of "C" Cells with
1 (M) LiA1C14 and 10% Teflon for LPS and Foote Electrolyte . . . . . 	 9-26

16. Cell Capacity vs. Log Current Plots of "C" Cells with 10%
Teflon in the Cathode at 0.5, 1.0, 1.5 and 2.0 (M) LiA1C1 4 LPS
Electrolyte . . . . . . . . . . . . . . . . . . . . . . . . 	 . . . .	 9--27

17. Short-circuit current and skin temperature of C- and D -size
Li/BrCl, SOC1 2 cells during short-circuit tests . . . . . . . . . . . 	 9-28

18. Voltage and skin temperature of D-siz= Li/BrCl, SOC12 cells
durii.g forced discharge at 1 A and 5 A . . . . . . . . . . . . . . . 	 9-28

19. Voltage and skin temperature of a D-size Li/BrCl, SOC12 cell
during forced discharge and charge at 1 A . . . . . . . . . . . . . . 	 9-29

20. Self Discharge Rate of Anodes in Contact with Stainless Steel
and Cold Rolled Steel . . . . . . . . . . . . . . . . . . . . . . . . 	 9-29

21. Capacity-Rate Behavior of Lithium/SOC12 Cells After One Month
at Room Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 	 9-30

22. Stcrage tests for the AA-size Li/BrCl, SOC1 2 cells . . . . . . . . .	 9-31

23. Comparison of the room-temperature discharge characteristics
of Li/SOC1 2 AA-cells and Li/BrC1, SOC1 2 AA-cells . . . . . . . . . . 	 9-31

viiiY



TABLE OF CONTENTS (Contd.)

24. Ambient Temperature (24 ± 3°C) Discharge Curves for D Cells . . . . .	 9-32

25. Heat dissipation (microwatts) versus time (months after cell
fabrication) for both Li/C1 2 and Li/SO2C12 spirally wound
AA cells at 37°C	 . . . . . . . . . . . . . . . . . . . . . . . . . . 	 9-33

26. Discharge curves for spirally wound Li/C1 2 in S02C12AA cells

	

before and after storage conditions . . . . . . . . . . . . . . . . . 	 9-33

27. Energy Density-Rate Curves of the Medium Rate and the Low
Rate Li/SOC1 2 D Cell	 . . . . . . . . . . . . . . . . . . . . . . . . 	 9-34

28. Short-Circuit Currents of Hermetic D Cells With Various

	

Cathode Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 9-35

29. Polarization Characteristics of D Cells with 20 Inch Cathodes of

	

Various Current Collector Designs . . . . . . . . . . . . . . . . . . 	 9-36

30. Polarization Characteristics of D Cells with 25 Inch Long

	

Cathodes of Various Current Collector Design . . . . . . . . . . . . 	 9-37

31. Capacity Loss in Lithium-Limited DD Cells After Storage at 55°C . . . 	 9-38

32. Capacity Loss in Cathode-Limited DD Cells After Storage at 55°C . . . 	 9-39

33. Capacity Loss of Lithium-Limited D Cells After Storage at 55°C . . . 	 9-40

34. Polarization Curves for Teflon-Bonded Carbon Cathodes

	

(16% TFE, Uncompressed) . . . . . . . . . . . . . . . . . . . . . . . 	 9-41

35. Polarization Curves for Teflon-Bonded Carbon Cathodes
(16% TFE, Uncompressed) Normalized with Respect to BET
Area	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 . . . .	 9-41

36. Capacity-Porosity Relationship for Teflon-Bonded Carbon
Cathodes (16% TFE, Uncompressed) 	 . . . . . . . . . . . . . . . . . . 	 9-41

37. Discharge Curves (1 = 5 mA/cm 2 ) for Cathodes Formulated with

	

Varying Amounts of TFE (Uncompressed) . . . . . . . . . . . . . . . . 	 9-41

38. Discharge Curves for Optimized Cathode Using Various Volumes
of Electrolyte	 . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 9-42

39. Dependence of Cathodic Charge and Solvent Utilization on
Electrolyte Volume 	 . . . . . . . . . . . . . . . . . . . . . . . . . 	 9-42

40. Comparison of Cathodic Polarization Curves for SO2CL2
and SOC1 2 . . . . . . . . . . . . . .	 . . . . . . . . . . . . . .	 9-42

41. Comparison of Cathodic Discharge Curves for SO 2CL2 and SOC1 2 . . . .	 9-42

Fir

ix



TABLE OF CONTENTS (Contd.)

42, Primary Lithium Battery Task - Voltage Delay Experimentation 	 . . . . 9-43

43. Experimental Li-SOC12 "D" Cells	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-44

44n Theoretical Heat Generation Rates	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-45

45. Heat Generation During Constant Current Discharga of "D" Size
Li-SOC1 2 	Cell at	 1.0 amp	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-46

46. Heat Generation During Constant Current Discharge of "D" Size
Li-SOC1 2 Cell at	 3 amps	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-1+7

47. Simplified Empirical Equation for Predicting Heat Generation
Rates	 in Li-SOCl 2 	 Cells	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-48

48. Constant Current Discharge of Li-SOC1 2 "D" Cell at 3 amps Under Near
Adiabatic	 Conditions	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-49

49. Constant Current Discharge of Li-SOC1 2 "D" Cell at 4 amps Under Near
Adiabatic	 Conditions	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-50

50. Forced Overdischarge of Li-SOC12 to
	 Cell	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9 -51

51. Primary Lithium Battery Task - High Rate Cathodes Gold
Plated Porous Nickel Cathode	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-52

52. Primary Lithium Battery Task - High Rate Cathodes Addition
of	 C1 2 	 to	 SO 2C1 2 	.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 9-53

x



ABSTRACT

This document presents results and assessments of a focused literature

review of primary lithium sulfur oxyhalide cells. Major emphasis is placed on

the effect of component materials and designs on performance (energy density

and rate capability`, , safety, and storage life of these cells. This information

is a reference guide for the design of high energy batteries for future use on

NASA missions.
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SECTION 1

SUMMV Y

The objective of the Advanced Primary Lithium Battery Task of NASA

RTOP 506-55-55 is to develop primary lithium batteries that operate safely

under all conditions while delivering higher energy and longer life than

existing primary batteries. he type of lithiva battery that appears most

attractive and has been selected to meet this objectiva is based on the

lithium-sulfur oxyhalide system (Li-SOC12 or L{-SO2C1.2).

One element of this Task is concerned with development of prototype

cells based on this electrochemical system. These cells will a) serve as test

vehicles to verify recommendations from r_he research element of this task on

methods to improve safety and ,life ; and b) provide engineering data for the

design of optimized cells for flight batteries.

Although lithium-sulfur oxychloride cells are relatively new, a

sizeable amount of information has already been published on them. This in-

formation was gene.ra+.ed primarily by several battery developers and research

organizations during the course of government spousored R 6 D programs on

these cells. Results have been published both in contractor reports as well

as publications in the open literature. (Refs. 1 through 28).

In order to avoid duplication of effort and to take advantage of

prior findings, this literature was reviewed and assessed as well as JPL's

own efforts to date, before beginning development of the prototype cells.

Specific areas of interest were the effects of cell materials and design on:

a) energy density and discharge rate capability, b) safet y , c) voltage delay,

and d) storage life.
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Ifcaulto of thin review and aoaooament are prouantod within thin report.

Millilighto in cacti of the above areas of intaroot are atumnarieed below.

llterflY _penn ity and Diachnrkta	 to Calla^i_ LitzTj

The moat diatinguiolilog feature of Li-SOC1 2 and USO2C12

cc in are their exceptionally high theoretical and practical

energy dannitien. Some varoiona of thoso calla have been

shown to deliver outputu in oxcoon of 600 W-h/kg. Thio value

of energy donnity in aignificantly higher than that of tho

currently employed acroapaee AS-xn cell, which can dolirur a

maximum output near 200 10-h/kg.

An with other typos of calla, the energy density of

lithium calln in diutiniahed with incrennad rate of dinehargo

(and eorroaponding incronno In specific power output). Thin

trond in due in aoatt, dogroo to lower diochargo voltagen and,

to it lnril,i dogroo, to diminlnhed utilisation of tho active

tuitorinlo tit the higbar ratan of dincbargo. In the cane of

Lithium calla the utilisation problem han been traced to the

cathode (typienlly a Teflon bondod carbon black mix) rather

tluin the lithium nnode. Roautta have nhown tluit onargy density

^-	 of the colln rids be markedly incranned tit the higbor ratan by.

n) docrunning cathodo thicknono (to a limit), b) uric of 502012

(ospocially with C1 2 added to thin cathodic tiolvent) in place

of 8011120 e) uno of inerentod .iumbor and improved location of

cathode current collector ttihn, d) uoo of very high surface

4	 tiros carbon black nuU ertnl for the cntheda, c) one of LiAlcl4

locteolyto (which has born found boot to (late), d) docreaniog

r'
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cathode _.ickness, and e) using optimum material ratios for

the components, especially the solvent-to-carbon ratio. Other

factors that have been found to have a lesser but yet measurable

effect on energy density at higher rates are: a) using an

optimum concentration of UA1C14 electrolyte near 1.0 M, and

b) using an optimum Teflon content in the cathode (near 10% by

weight of the weight of carbon black).

The E-3-called "spiral wound" or "jellyroll" configuration

is well suited for delivering high energy densities at the

higher rates of discharge (at least much more so than the so-

called "bobbin" design). The "spiral wound" design is not,

however, the only conf igurat ion that can be employed for this

purpose (as one might be led to believe from a cursory eor; i-

nation of the literature). An equally attractive alternate

is the parallel plate configuration, with either a prismatic

or disc shape.

With current technology, it appears that cells can be

designed to deliver an energy density of 300 W-h/kg at a dis-

charge rate approaching the I-hour rate (with higher energy

densities near 600 W-h/kg at very long discharge rates of

100 hours or more).

Safety.

These lithium cells have been found on occasion to either

vent (expel internal gases and liquids) or to explode, sometimes

violently. For this reason the cells have not received wide-

spreae use. Only when these phenomena can ba eliminated
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altogether, or at least prevented from occurring, will the cells

be employed in a variety of applications, including spacecraft

power.

Numerous investigations have been carried out to establish

conditions under which the cells vent or explode. These in-

vestigations may be diviled into two categories consisting of

environmental abuse and electrical abuse.

For the case of environmental abuse it was found that the

cells do indeed vent or explode under _onditions such as

crushing, penetration"with a nail or bullet, or incineration.

These findings are pertinent to terrestrial applications of

the cells wherein they may conceivably be exposed to such

conditions. The findings are not, however, pertinent to

aerospace applications where such conditions can most assuredly

be avcided.

For the condition of electrical abuse it was found that the

cells can vent or explode under two conditions. These consist

of: a) the condition of short circuit or exceptionally high

rate of discharge, and b) the condition of overdischarge or

reversal. These findings are pertinent for both terrestrial

and aerospace applications of the cells sin=e these electrical

abusive conditions could arise in either case.

Based on an assessment of the findings of the electrical

abuse as well as supporting investigations, the following

guidelines are suggested for the safe design and operation of

these cells:

14



a) The cells should be designed and operated in a manner

such that internal temperature will never exceed an upper limit

during discharge. There is a difference of opinion as to the

value of the upper limit and values range from .112°C (the

melting point of sulfur) to 179°C (the melting point of lithium).

To be on the conservative side, the limit should perhaps be

near 100°C. The internal temperature can be estimated with a

fair degree of accuracy based on known or projected cell

voltage - current characteristics, internal heat generation

rates (which can be predicted by equations given herein),

thermal mass of the cell, and the thermal environment. For

the case of cells designed to deliver very high rates, it

may be necessary to provide active cooling. Also, it may be

advisable to incorporate a fuse in very high rate cells to

limit current and hence internal temperature rise in the

event of an accidental short circuit.

b) Li-SOC1 2 cells should be desired with a sufficient

quantity of SOC12 such that there is enough of this solvent

remaining at the end of discharge to dissolve the product

S02 gas and thereby keep pressure to tolerable levels of less

than about 100 psig (an equation is given .`or the solubility

of SO2 in SOU 2).

c) Cylindrical case designs are preferable to prismatic

case designs since the cylinder can withstand greater pressure.

d) It may be well to incorporate a pressure relief valve

in the cells. These should be designed to open at a pressure

near 100 psig.
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e) Precautions should be taken to avoid the condition of

overdischarge or "reversal". All cells in a battery should be

designed with a goal of uniform overall capacity, as well as

anode-to-cathode capacity ratio. Care should be exercised in

handling the cells to insure that one or more of them is not

partially discharged and thereby imbalanced from the others.

Finally, the depth of discharge should be limited to about 80

or 90% of rated capacity.

f) An extra precaution that may be taken where reversal

must be taken into account is to vary the anode-to-cathode

capacity ratio by varying the relative weights of the active

materials at these electrodes. In the case of Li-SOC1 2 and

Li-SO 2C12 cells these materials are the lithium and the carbon.

(The carbon rather than the solvent usually controls capacity

of the cathode). Some claim that cells are less likely to ex-

plode on reversal if the ratio is less than 1 (anode limited).

Others claim the risk is very unlikely if the ratio is greater

,:han i (cathode limited). Reasons for these beliefs are

described herein. Most of the experimental data indicates the

latter (cathode limited) to be the safest with a ratio of about

1.2/1.

Some investigators add material, such as metallic copper (Cu)

or bromine-chloride (BrCl) to SOU 2 cells for safety purposes.

Their justification is that these compounds react with product

sulfur, which is believed to be associated with the explosions

that occur during electrical abuse. Although cells with these

additives appear to be safer, there is no conclusive evidence to

snow that they are safer for the above reason.
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Other investigators have suggested the use of additives

to decompose suspected explosive intermediates formed during

normal discharge. Before seriously considering use of these

additives, JPL is first trying to establish the existence of

these proposed intermediates and their identities.

Some additional points regarding safety of these cells

are as follows:

a) Lithium can react with nitrogen in the atmosphere to

form the explosive compound Li 3N. The reaction does not

readily occur under good dry-room conditions, but does occur

quite rapidly when humidity is increased beyond a few percent.

On this basis the humidity in a lithium battery dry room must

be closely controlled and exposure time of lithium to the

atmosphere be kept to a minimum.

b) Undischarged Li-SOU 2 cells appear to be quite stable

over a range of temperatures while partially or fully discharged

LiSOC12 cells exhibit exothermic reactions in the temperature

range of 80 to 100°C. This suggests that discharged Li-SOC12

cells offer more of a safety threat than fresh, undischarged

cells.

c) To date there is no convincing evidence to show that

Li-SO 2 C1 2 cells are safer than Li-SOC1 2 cells or vice versa.

It is postulated that Li-SO 2C1 2 cells are safer because they

do not generate any potentially dangerous intermediates (such

as SO), or end products which may be generated in Li-SOCl 2 cells.

.JPL is conducting in situ spectroscopic analyses of these sys-

tems in order to identify these species and resolve the issue.
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Voltage Delay

Like some other types of primary cells, both Li-SOC1 2 and

Li-SO2C12 cells exhibit the phenomena of voltage delay. This

refers to transient decline and then recovery of cell voltage

at the onset of discharge. The time from the start of discharge

until voltage recovers to a specified level is designated as

the voltage delay time.

Magnitude and duration of the voltage delay has been found

to increase with: increase in current density, increase in

storage time, increase in storage temperature, and decrease in

operating temperature. The magnitude of the initial decline

can vary from a few millivolts to 2 or 3 volts, and delay times

can vary from a few milliseconds to several minutes.

Although the phenomena are not completely understood from

a fundamental point of view, it is known to be associated with

a film of LiCl which is formed on the surface of the lithium

anode. The film is known to grow with time and . its thickness

and morphology can be correlated with the magnitude of the

delay.

Numerous investigations have been carried out to determine

methods for minimizing the delay phenomena. These have met

with a fair degree of success and are summarized below.

a) The use of a new lithium-boron electrolyte, Li B Cl ,
2 10 10

in place of the currently employed LiA1Cl V has been found to

markedly reduce delay.
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b) The application of one type of film on the surface of

the raw lithitum has been found to markedly reduce delay. This

film is a copolymer comprised of 86% vinyl chloride and 14%

vinyl acetate.

c) The application of another type of film on the anode

has also been found to minimize delay. This film is comprised

of either methyl or ethyl cyanoacrylate.

d) The use of a new electrolyte, Li2Al2C160, in place of

LiA1C141 has been found to reduce delay.

e) The addition of S02 to Li-SOU 2 cells reduces delay.

f) The addition of some sulfur compounds including S,

Li2S, S 2 C1 2 , and SC1 2 are claimed to reduce delay.

g) It is essential to employ very pure solvents (SOU 2

or S02 C12 ) in order to minimize delay. Reagent grade solvents

are not pure enough for this purpose and will cause significant

delays. These must be purified even further by distillation in

order to obtain the minimal delays.

h) An operational technique which has been found quite

effective in reducing delay consists of subjecting the cell to

a short discharge (about 0.25% of its capacity) shortly before

it is intended for use.

i) Iron impurit_es in the cell at levels of 200 ppm cause

extremely severe delays. Iron concentration well below this

level is required to prevent severe delays. A major source of

iron contamination can be the AM 3 , which is one of the

starting materials used to prepare the LiA1C1 4 electrolyte.

The AM 3 employed must be extremely pure.
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Storage Life

Very limited information is available on the storage life

capabilities of Li-SOU 2 and Li-SO 2C12 cells. This lock of

information is attributed to the facts that these cells are

relatively new, and also that most of the prior work on these

cells has been focused on their performance and safety char-

acteristics.

What little information that is available may be divided

into two catagories. The first of these is compatibility type

data i.e., stability of materials of construction in the

corrosive environment of these cells. The second is accelerated

life data obtained by measuring cell capacities after varying

periods of storage at elevated temperatures, or by the more

recently developed technique of microcalorimetry.

The most important findings regarding stability of

materials are summarized below.

a) There are several metals that are suitable as materials

of construction for the case, cover, and grids. These metals

include nickel, stainless steels (types 302, 304, 306 and 316),

nickel plated stainless steels, cold rolled steel, and Inconel.

b) There are a rather limited number of insulating

materials that may be employed as a separator, bonding agent,

a terminal seal, or for other purposes. These insulating

materials include glass, glass fibre mats, Kel-F, and Teflon.

Most other rubber and plastic materials are very unstable in

the cell environment.
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The most important findings regarding the accelerated life

tests on these cells are summarized below:

a) There is a great deal of scatter in results of accelerated

life tests on what may be called the baseline Li-SOC12 cells which

contain LiA1C14 electrolyte, carbon black cathodes, nickel grids,

and no special additives. Due to this scatter, it is not possible

to make a life projection that will cover all of the experimental

data. It is, however, possible to make a projection based on the

best results reported in the literature. This projection is as

-1.03 x 104
follows:	 In R -	 T	

+ 32.23, where R - loss rate in %/

month, and T - absolute temperature, K. By application of this

equation, one obtains a loss rate of 0.1%/month at 25°C which

approximates results obtained in a real-time 2-year life test at

ambient temperature.

b) The addition of C1 2 to Li-SOC12 cells is found to markedly

accelerate their capacity loss rate. Since C1 2 is a known impurity

in SOC12 , the C12 should be removed from the solvent during the

pLrification process.

c) The new Li2B10C110 electrolyte, which is effective in re-

ducing voltage delay, may even improve life of Li-SOC1 2 cells.

d) The electrolyte, LiA1C1 49 must be made with stochiometric

proportions of LiCl and AM 3 or with a slight excess of LiCl.

Electrolytes made with an excess of AM 3 will cause a rapid loss

in capacity in an amount equivalent to the excess of AM 3.
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e) The use of BrCl to improve the safety of Li-SOU 2 cells

does not adversely affect their storage life.

f) The addition of calcium salts as well as SO 2 to SOC12

ceps tends to diminish their life.

g) The life of Li-SO 2CL2 cells with LiA1C14 electrolyte

does not appear to be less and may even be greater than life of

Li-SOC12 cells with LiA1C1 4 electrolyte.

1-12



SECTION 2

INTRODUCTION

One task under NASA RTOP No. 506-55-55 is the "Advanced Pr!mary

Lithium Battery Program". Objective of this program is to develop safe, high

energy, and long life primary lithium batteries by FY 86. Because of their

very high energy density, these batteries will enhance a number of NASA's

planned planetary missions by appreciably reducing power system mass. This

reduction in mass will improve cost effectiveness of the missions by reducing

costly thrust capability and/or permitting increased scientific payload mass,

both of which increase the amount of data obtained per unit of mission cost.

In addition, these batteries may enable selected missions which are severely

maso constrained.

The program is divided into two subtasks, one of which is research

oriented and the other of which is engineering oriented. The research subtask

is aimed at obtaining a fundamental understanding of the materials and processes

that govern some unresolved safety and performance problems with these batteries,

and with this understanding to generate methods to insure that they deliver high

performance in a safe and reliable manner. The engineering subtask is aimed at

developing practical prototype cells that incorporate the above innovations and

demonstrating their improved safety and performance by testing them under

simulated loads that may be encountered on the spacecraft.

Of the numerous types of lithium battery systems that have been

described in the literature, the one that has been selected for this application

is the lithium oxyhalide type and in ,articular the lithium-thionyl chloride

(Li-SOC12 ) system. As a potentially attractive alternate, the lithium-sulfuryl

chloride (Li-SO2 C12 ) system is als.; being considered. The reasons for
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narrowing the choice to these two particular candidates are: a) their energy

densities are the highest of all lithium batteries (up to 600 W-h/kg); b)

they have the potential for supplying power at high rates of discharge (at rates

approaching 1 h, and c) there is already some data base to show that completely

packaged hardware versions of these cells can already deliver most of the high

performance capabilities described above (although not always in a safe manner

and not after lengthy periods of storage in excess of 2-3 yrs).

Although the operation of lithium-oxyhalida cells is not yet complete-

ly understood from a fundamental chemical and electrochemical point of view, a

great deal of practical information is known about the relationship between cool

design and performance. These relationships include the effects of factors such

as electrode geometries, dimensions, and materials as well as electrolyte

materials and concentrations on electrical performance, safety, and life. A

great deal of this information has been obtained during the past several years

by indus-.rial organizations under government sponsored R 6 D programs. The

information has been published and is available in the form of technical reports

as well as publications in the open literature.

In preparation for the prototype cell development subtask of this pro-

gram, a review and assessmeni: wa p made of this literature. Pertinent find.#n;s

from this material were extracted, analyzed, and are summarized within this

report. Also included are some related findings of investigations carried out

by JPL. The material was organized into four categories which consist of factors

that affect: a) energy density and rate capability, b) safety, c) voltage delay,

and d) storage life. Most of the material is based on studies of the lithium-

thionyl chloride (Li-SOC1 2 ) system which has received most of the attention during

the past several years. A limited amount of the material is based on studies of
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the somewhat newer lithium-sulfuryl chloride (Li-SO 2Cl2 ) system. The report

should serve as a useful reference guide not only for development of prototype

cells but also for general design purposes of lithium oxyhslide cells.

2-3



SECTION 3

DESCRIPTION OF CELLS

The cells of concern are comonly referred to in the battery industry

as lithium cells with a "liquid" cathode. Like all other electrochemical cells,

they are comprised of an anode, cathode, and solvent/electrolyte. In this case

the anode is lithium metal, the cathode is the liquid SOCl 2 or SO2C12 solvent in

combination with a carbon current collector, and the electrolyte is a lithium

salt, which is typically LiA1C14' The major difference between these and other

types of primary cells, aside from the fact that they contain lithium anodes, is

that the cathode material is a liquid rather than a solid such as 
M60  

or AgO.

A schematic diagram of two alternative designs of this cell is given

in Figure 1 (Ref 28). The one on the left, designated as the "High Energy

Cell", is intended for low current drain applications. This is commonly referred

to as the "bobbin" type configuration and is characterized by having very thick

electrodes with low internal electrode surface area (since it does not have to

deliver much current) and high energy density (since it contains a relatively

high percentage of active electrochemical materials and a small percentage of

inactive or inert materials). The one on the right, designated as the "High

Power Cell", is intended for high current drain applications. This is commonly

referred to as the "spiral wound" configuration and is characterized by having

very thin electrodes with high +-xiternal electrode surface area and high power

density (since At is intended to operate at hign currents and therefore deliver

high power outputs) and somewhat lower energy density than the "bobbin" type

(since it contains a higher percentage of inactive inert materials and less

active materials than the bobbin type cell).
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It should be pointed out that theme cells can and have been made with

configurations other than the above two. One of these is the so called "prismatic"

configuration which is comprised of a stack of alternately spaced rectangular

anodes and cathodes. Another is the so called "disc" configuration. This is

similar to the prismatic in that it contains alternately spaced anodes and

cathodes. The major difference is that the shape of these electrodes is circular

rather than rectangular. Both of these configurations can be designed to deliver

either high energy or high power as discussed above. The high energy (and corre-

sponding low rate) type is made by employing a small number of thick electrode

plates while the high power type is made by employing a large number of very

thin electrode plates.

Regardless of the configuration, the cells all employ essentially the

same types of materials for the various components. The anode is comprised of

lithium metal foil which has been pressure bonded onto a current collector, which

is typically a nickel screen or expanded metal grid. The cathode collector is

comprised of a Teflon-carbon black mixture that has been bonded on both sides of

a screen or expanded metal grid as for the anode. A layer of separator material

is located between the anodes and cathodes. This is typically comprised of a

non-woven glass fabric material. The cathode solvent is either SOC1 2 or SO2C12,

both of which are liquid at room temperature. Electrolyte salt is typically

LiA1C14 which is quite soluble and is dissolved in either of the cathodic sol-

vents. The solvent/electrolyte solution is usually added an a last step in the

assembly procedure by a vacuum filling technique. Case and cover are typically

made of stainless steel. One of the electrodes, usually the cathode, is elec-

trically connected to the case which serves as one terminal. The other electrode

is electrically connected to an insulated feed-through seal, which serves as the

other terminal. The cells are hermetically sealed and are usually equipped with

some form of a pressure relief device.
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SECTION 4

ENERGY DENSITY AND DISCHARGE RATE CAPABILITY

One of the major objectives of this program is to develop cells that

simultaneously deliver high energy density and high rate (or correspondingly

high power density). From the discussion in Section 3, it would appear that

these objectives conflict with one another in that the high energy designs (with

thick electrodes) yield low power densities, and the high power designs (with

thin electrodes) yield low energy densities. Apparently it would appear neces-

sary to design cells with some intermediate thickness that optimizes both fea-

tures. This would not be the case if the high energy design (with thick elec-

trodes) were able to operate at very high current densities so as to compensate

for its limited electrode area and deliver high currents and power outputs.

Under these conditions, however, the voltage of the high energy cell falls to

unacceptably low levels well before all of the electrode materials are utilized

so that it cannot deliver its inherent high energy. The problem is primarily

associated with the positive carbon electrode, the utilization of which is

highly dependent on its thickness and current density. (The lithium anode can

deliver high current densities with high utilization for a wile range of thick-

nesses). A key challenge, then, is to develop a cathode that simultaneously

delivers high current density and utilization at high thicknesses. A number of

investigations have been carried out with this purpose in mind and are described

herein.

In addition to properties of the cathode, there are a number of other

factors that influence energy density and rate capability. These have also been

investigated and are described herein.
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4.1 GTE FINDINGS

GTE has obtained data on the effect of cathode thickness on its polarization

(voltage-current) and also utilization characteristics (Ref. 1, pp. 1-11). Fig-

ure 2 indicates that cathode thickness has a relatively small effect on polari-

zation (and hence rate capability) for a given range of thicknesses. As cathode

thickness is increased from 2 to 50 mils, operating voltage is noted to increase

by about 0.1 volt over a range of current densities from 0 to about 60 mA/cm2.

Figure 3 shows that cathode thickness does not have much of an effect on utili-

zation (and, hence, energy density) for thicknesses in the range of 0.2 to 1.0

mm (8 to 40 mils). Utilization is noted to decrease about 25% as thickness is

increased from 0.2 to 1.0 mm. However, it is noted that utilization increases

appreciably as thickness is reduced below 0.2 mm (8 mils). An appreciable

increase in utilization of about 50% can be achieved by reducing thickness from

0.2 mm (8 mils) to about .05 mm (2 mils). Alternative types of cathode materials,

other than the conventional carbon/Teflon black, have been shown to yield

improved polarization and utilization as shown in Figures 4 and 5. Although the

material has not been designated by GTE, it is shown in Figure 4 to increase

voltage by about 0.3 volts at current densities from 1 to 150 mA/cm 2 . Also, in

Figure 5, it is shown to markedly increase utilization, especially at moderate-

to-low current densities of 1 to 10 mA/cm 2 and for thin, 2-mil thick, cathodes.

The effect of electrode spacing on voltage-current characteristics is given in

Figure 6. The spacing was varied by changing the thickness of the glass fibre

separators between electrodes. Therein it is noted that spacing has a pronounced

effect on voltage-current characteristics. For example, at a current density of

300 mA/cm2 , average discharge voltage is noted to increase from 1.2 volts to

2.3 volts as thickness of the separator is decreased from 17.9 mils to 2.7 ,4_ls.
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In other investigations GTE examined the effect of electrolyte type

and concentration on utilization or specific capacity of the carbon cathode

(Ref. 2, pp. 262-265). In this study they were comparing the performance of

LiA1C14 and AM 3 electrolytes for reserve type cells. We are only interested

in the LIAM4 electrolyte because it can, and is, employed in active cells

whereas pure AM 3 cannot be used in active cells because it causes excessive

self-discharge rates for the long term. The lower curve in Figure 9 gives the

variation of discharge capacity with concentration of LiAM4 in the range of

0 to 4 mols/liter with a 37-um cathode thickness (1.5 mil). Therein it is noted

that capacity exhibits a maximum near 5x10 2 mAh.f-.,2 Nm at a concentration of

1.5-mo/ LIA1C14 . Figure 10 gives the same type of relationship for a cell with 	 3

much thicker electrodes of 950 um (37 mils). Inspection of the lower curve in

this figure for LiA1C1 4 reveals a maximum in capacity near 4x10 
2 
mAh/cm2/um at

f

a concentration of 4.0 mols/liter. These results indicate that the optimum elec-

trolvte concentration increases with increase I.% cathode thickness. As thickness

is increased from 1.5 to 37 mils, optimum electrolyte concentration increases

from 1.5 to 4 mols/liter.

In another investigation GTE carried out analytical design optimization

studies to size the components of spiral wound "D" cells (Ref. 3, pp. 37-42).

one important finding of this study was the predicted relation between electrode

thickness (anode and cathode) on capacity as shown in Table III. Therein it is

noted that as combined thickness of anode and cathode plus two layers of separa-

tor is decreased from 2.83 mm (111 mil) to 1.23 mm (48 mil), capacity is pre-

dicted to decline from 18.49 Ah to 12.75 Ah. The predicted decrease is attributed

to the fact that as electrode thickness is decreaa(.d (and length is correspond-

ingly increased) there is a lower ratio of "active material" (carbon and

lithium) to "inactive material" (current collectors and separators). :accuracy
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of the predictive technique was tested by assembling a cell with the indicated

dimensions of Cell No. 6 in Table III. The cell was found to deliver 13.4 Ah at

100 mA as compared with a predicted capacity of 14.18 Ah at this current. The

discrepancy between predicted and actual capacity is not too large (about 6%)

and the predictive technique, therefore, appears to have some merit. Energy

density of the above cell was found to be 461 Wh/kg at the current of 100 mA.

GTE mentioned in this same study that cell capacity, and hence energy density,

declines at higher currents. They pointed out that energy density is high and

independent of rate to current densities of 1.8 mA/cm 2 . At a. current density of

10 mA/cm2 they find capacity and hence energy density decline to about 75 to

80% of that at the lower current densities.

In a final report from a prior investigation, GTE presented additional

findings regarding energy density and rate characteristics (Ref. 5). One series

of constant current runs was carried out on cathode limited button cells .;{th a

range of cathode thicknesses from 0.023 in. (23 mil) to .052 in. (52 mil) (pp. 1.9-

22). Results are shown in Figure 11 and Table IV. Inspection of Figure 11

reveals snacific cathode capacity, in terms of mAh/cm 2 , is independent of current

density for all thicknesses tested to about 2 mA/cm 2 and that specific capacity

for all thicknesses decreases markedly at current densities from 2 mA/cm2 to

10 mA/cm2 . Inspection of Table IV reveals that the maximum capacity at low

currents (<2mA/cm2 ) in terms of Ah/g of carbon blend, increases with decreases'--a

cathode thickness from 1.19 Ah/g for 52-mil cathodes to 3.14 Ah/g for 23-mil

cathodes. In another series of rL^is, GTE examined the effect of electrode dimen-

sions on output of spiral wound "D" size cells (Ref. 5). Table V gives the

dimensions employed for what are designated as types "A," "B," and "C" designs.

These designs are noted to contain progressively shorter and thicker electrode

dimensions from "A" to "C", respectively. Each of these was discharged at three
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different current levels which corresponded to current densities of 0.9 to 3.8

mA/cm2 . Results shown in Table VI revealed a trend toward increased capacity

from Designs A to C. For example, at a current density of 0.9 to 1.0 mA/cm2,

capacities were 7.35, 9.45, and 11.38 Ah, respectively, for Designs A, B, and

C. For the indicated range of dimensions and current densities, then, the

shorter and thicker electrodes yielded higher capacities. This trend might at

first appear to be contrary to previous discussions abovt., where it was pointed

out that the thinner electrodes deliver higher utilization. The apparent dis-

crepancy is explained, however, by the fact that cells with the thinner electrodes

contain a higher percentage of inactive grid material and hence less active

carbon material and capacity.

4.2 HONEYWELL FINDINGS

Honeywell obtained data on the utilization of relatively thick cathodes

in cathode-limited cells over a range of operating temperatures (Ref. 2, pp. 247-

251). Results of their investigation are given in Table II. Inspection of this

data reveals that utilization increases with temperature in the rang- cf 4°C to

43°C, and decreases with thickness; in the range of 1.6 cm to 0.45 cm. It is

interesting to note that cells with cathode thicknesses as large as 0.81 cm

(320 mils) can deliver utilization as high as 2 Ah/g at 24°C. It should be

pointed out, however, that the current densities employed in this investigation

were quite low, i.e., 0.5 to 1.0 mA/cm2.

4.3 MALLORY (DURACELL) FINDINGS

Mallory carried out a factorial designed experiment aimed at determining

the effect of carbon weight, electrode area, and electrolyte concentration on capacity

and energy density of spiral wound "D" size cells (Ref. 4, pp. 493-510). Factors

kept constant were the weight of lithium and cathode composition (Shawinigan Black
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90% and Teflon 10X). The factorial matrix for the cells is given in Table VII.

Results for cell types A, B, and C with 5-6 g of carbon are shown in Figure 12.

Therein it is noted that at high rates of discharge (>1.0 amp) cell capacity

increased with increasing electrode length and hence area. Capacities of these

cells at low rates (<.3 A) ranged from about 13 to 16 Ah. Cell types D, E, and

F with 2.5 to 3 g of carbon were found to deliver nearly 8 Ah or about one half

the capacity of types A, B, and C. In all of the above cells there was found to

be no significant difference in either capacity or rate capability with either

1.0 or 1.8 M LiA1C1 4 concentrat±^n. It was found, however, that rate capability

was diminished for LiA1C14 concentrations below 0.5 M.

In another parametric study Mallory examined the effects of three

variables on performance of Li-SOC1 2 "C" size cells (Ref. 6, pp. 5-11). The

variables of concern were: a) concentration of LiA1C1 41 b) purity or source of

LiA1C141 and c) Teflon content of the Shawinigan Black cathodes. A schematic of

the "C" cells employed in these studies is given in Figure 13. Anodes were pre-

pared by pressing .022-in. (22 mil) lithium foil onto nickel Exmet with overall

length and width of 7.5 in. and 1.5 in., respectively. Cathodes were prepared

by pressing and sintering 1.65 g of a Shawinigan/Teflon mix onto nickel Exmet

with overall length and width of 8.0 in. and 1.5 in., respectively. The factorial

matrix for this investigation is given in Table VIII. (The only parameter that

is not readily apparent in this matrix is the type of electrolyte. The term

"LPS" refers to electrolyte that was prepared at Mallory by fusing an equimolar,

anhydrous mixture of LiC.'. and A1C1 3 to form LiA1Cl4 . The term "Foote" refers

to LiA1C14 that was prepared by Foote Mineral Co.) Major findings and conclu-

sions that were drawn from this study are summarized below:

a) Capacity and rate capability increase with decrease in Teflor.

content of the cathode mix from 30% to 10% as shown in Figure 14.
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On this basis, the lowest Teflon content, 10%, yields beat

performance.

b) Capacity and rate capability are higher for the LPS (Mallory pre-

pared) LiA1C14 than the Foote Mineral prepared LiA1C14 , as shown
	 1

in Figure 15. On this basis the Mallory prepared L3A1C14 yields

better performance than the Foote Mineral prepared LiA1C1 4' (The

method by which Foote prepared the material was not specified in

this report. Their process should be investigated for future

reference.)

c) Capacity and rate capability show a trend of f'-st increasing,

then decreasing as electrolyte concentration is increased from

0.5 to 2.0-mol LiA1C1 4 (the Mallory prepared type), as shown

in Figure 16. On the basis of the curves shown in this figure

it appears that the optimum electrolyte concentration is near

1.0-mol LiA1C14 in terms of capacity and rate capability.

In this same investigation Mallory fabricated and examined performance

characteristics of spiral wound Li-SOC12 
It
	 cells (Ref. 6). Details of con-

struction of these cells is given in Section 7.2. Two general types were evalu-

ated in terms of energy density and rate capability. These were designated as the

"low" and "medium" rate types. The "low" rate types employed 10 to 15-inch-long

electrodes with 0.5-mol LiA1C1 4 electrolyte and the "high" rate types employed

20-inch-long electrodes with 1.0-mol LiA1C1 4 electrolyte. Energy densities of

these cells are given as a function of discharge rate in Figure 27. Maximum ca-

pacity of the "low" rate cells was found to be 18 to 19 Ah, which corresponds to

energy densities of 1.22 Wh/cm 3 (20 Wh/in 3 ) and 660 Wh/kg (300 Wh/lb). SOU 2
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utilization was about 95-98x. These energy densities were deemed to represent

the upper practical limits obtainable in spiral wound "D" cells. The "medium"

rate cells were, on the other hand, found to deliver essentially constant energy

densities of 0.79 Wh/cm3 (13 Wh/in3) and 418 Wh/kg (190 Wh/lb) at discharge rates

up to 1.0 amp. Energy densities of these cells were found to drop sharply with

discharge rates beyond 2.0 amps. SOU 2 utilization for these cells was found to

be in the range of 70 to 75%.

In a follow-on investigation Mallory examined methods for improving

energy density of spiral wound Li-SOC12 "D" cells, especially at the higher rates

of discharge (Ref. 13, pp.4-31). These cells were intended for use in two Army

applications including a radio and a laser designator. Most of their work was

focused on improving design of the cathode which had been shown to be the compo-

nent that was primarily responsible for the limitations on energy density and

rate capability. In particular, they were interested in examining potential

benefits that could be derived from modifying the cathode grid/tab configuration

in that the existing configuration (single tab at one end) was known ^o contribute

significantly to internal resistance (which causes lower cell voltages) and non-

uniform current distribution (which can result in diminished utilization and

capacity). On this basis they proceeded to evaluate cells with eight different

cat $-ode grid/tab designs as shown in Figure 28. All of the cathodes were com-

pri.sed of a mixture of Shawinigan Black with 10% Teflon pressed onto an expanded

nickel metal grid. Two different cathode lengths of 20 in. and 25 in. were

employed as shown in Figure 28. Cathode widths were 1.75 in. for all designs

and thicknesses were 0.025 in. for the 20-in.-long cathodes and 0.011 in for the

25-in.-long cathodes. Anodes were prepared by pressing lithium onto expanded

nickel metal grid. Anode widths were 1.75 in. for all designs and thicknesses

were 0.015 in. for the 20-in.-long design and 0.010 in. for the 25-in.-long
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design. Solvent and electrolyte for all cells was SOC1 2 with 1.8-mot LIA1Cid.

Performance of the cells with the various cathode designs is given in Figure 28

In terms of short circuit current and in Figures 29 and 30 in terms of voltage-

current or polarisation characteristics. Inspection of these results reveals

that the cathode grid/tab configuration has a marked effect on cell performance.

For example, by simply changing location of the single vertical tab configuration

from one end (Design No. 1, which has been the standard employed to date) to the

center (Design No. 2), the short circuit current is increased mare than three-fold

and the operating current is increased more than two-fold at voltages between 2.5

and 3.0 volts. Somewhat more moderate additional improvements In performance

are noted to result from use of two equally spaced vertical tabs (Design No. 3).

Use of an additional horizontal tab across the length of the cathode (Design

Nos. 4 and 5) did not yield much improvement In performance. .Also, the use of

x
longer 25-in. electrodes (Designs 6, T, and 8) did not appear to yield much

improvement in performance over the shorter (20-inch) electrodes with correspond-

ing config-4tations (Design Nos. 1, 2, and 3). Based on the above as well as the

fact that Design No. 2 was the easiest to assemble, they selected this design

and assembled s*.veral cells based on it for the above-mentioned application.

The optiaized cells were evaluated on special duty cycles for these ap-

plications and found to perform significantly better than the previous state-of-

the-art cells. For example, the new cells were found to deliver: a) 8 Ah at 10 A

and 3 voits, or an energy density of 264 Wh/kg (120 Wh/lb) and, b) 12 Ah at 3 A

and 3.3 V, or an energy density of 396 Wh/kg (180 Wh/lb). By comparison, the pre-

vious state-of-the-art cells could deliver essentially no output at 10 A and only

about 6 Ah at 3 A and 3.0 volts, or an energy density of about 220 Wh/kg (100 Wh/lb).

In the same investigation Mallory examined additional methods to

further improve performance of the spiral. wound "D" cell and also initiated
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preliminary development and evaluation of an entirely different disc type call

design (Ref. 13, pp. 1? 59). One of the additional methods to improve performsnce

of the "D" cell involved use of additives to the cathode mix. Five such additives

were examined at one or more concentration levels. Composition of the additives

was not identified in this report. They were, however, referred to as Ni, Cu,

Cr, Co, and Mn. This would imply that the additives were comprised of thi above

-mention>d metals although they may very well have been compounds of these metals.

In any event, Mallory showed that two of these, Ni and Cu, did show sosm signs

of improving high rate performance of the "D" cells. On the particular duty

cycle for this application, they found that use of these additives could increase

output up to 22%. The second method examined to improve performance was to

reduce electrolyte concentration from the previously employed level of 1.8-uQl

LiA1C14 . Justification for this change was based on the fact that the 1.8-aol

concentration corresponds to the maximum conductivity in the concentration — Mon-

ductivity relationship and that during the course of discharge, the concentration

increases, which results in lower conductivity and, hence, more internal resistive

loses. For this purpose they assembled and evaluated cells with 1.4-mol rather

than 1.8-mol LiA1C14' Results, however, showed negligible improvement in high

rate performance with the lower concentration of electrolyte. This implies that

the high rate capability is influenced more by the cathode and other factors

than the electrolyte. Mallory's developmental efforts on the disc type cell

were not as comprehensive as those on the "D" type cell in this investigation.

Their incentive for examining this configuration was that it has a higher ratio

of surface area to volume than the cylindrical "D" size configuration, and should

therefore be safer than the "D" configuration in that it will dissipate heat

more readily and thereby operate at lower temperatures. This is shown by the

expression for the surface-to-volume ratio of a c;lindcr as follows:

E
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Surface Area 2^rr2 + 2wrL 2 2
R	

Volume	 s	 wr2L	 L + r

Where "r" is the radius and "L" is the

length of the cylinder

The ratio can thus be increased either by decreasing the length or radius of the

cylinder. Fabrication difficulties arise in making a thin narrow cell so that

the preferred method is to work with a "flat" cylindrical cell with shorter

length. Overall dimensions of the cell that were employed here were 3 in.

diameter and 0.9 in. thick. The cell was assembled by sandwiching 40 each disc

shaped anodes, cathodes, and separators inside a stainless steel disc shaped

can with wall thickness of 0.032 in. Thicknesses of the anodes and cathodes

were 0.005 in. and 0.015 in., respectively. Diameter of the electrodes was

approximately 2.6 in. The cells employed a glass-to-metal terminal seal with the

pin negative and the case positive. The cells were filled with SOC1 2 + 1.8-mol

LiA1C14 and overall weight of each cell was approximately 225 g. Despite some

problems in reproducibility, Mallory was able to show that this cell did indeed

have a very high rate capability. Short circuit current was found to be near 1700

amps. The cell was found to be capable of operating continuously at currents to

100 amps while delivering appreciable energy densities. For example, at a cur-

rent of 20 amps, the cell maintained an output voltage near 3.0 volts for 1 h with

corresponding energy density near 260 Wh/kg (120 Wh/lb). The cell could

maintain a potential near 3.0 volts while delivering even higher currents near

100 amps. Due to excessive internal temperature rise the cell could not, however,

operate continuously at these very high currents without developing excessive

internal pressures that caused it to vent. Although this disc cell configuration

has higher heat transfer capability than the "D" cell configuration, its excep-

tional high rate capability causes its heat generation capability to exceed its
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heat loss capability. Hence, the cell must be actively cooled at the very high

rates of discharge.

4.4 ELECTROCHEM INDUSTRIES FINDINGS

Electrochem Industries indicated that their Li-SOC1 2 cells with BrCl

additive, as described in Section 5.5, yielded higher capacities than conven-

tional Li-SOC1 2 cells (Ref. 9). Their basis for the above is the discharge data

for "AA" size Li-SOC1 2 cells, both with and without the BrCl additive as shown

in Figure 23. Inspection of their product data sheets reveals, however, that

this new type of cell with BrCl additive (designated as their type "BCX" cell)

does not necessarily have much higher capacity than other types of Li-SOC1 2 cells.

For example, their "D" size version of this cell (designated as type BCX 72) is

listed as having rated capacity of 14 Ah at a current of 175 MA. Comparable

"D" size Li-SOC12 cells from both GTE and Mallory are found to deliver capacities

of 12 to 16 Ah at comparable discharge rates to the above. Energy density of

this Electrochem BCX cell is near 400 Wh/kg, which is also comparable to the

energy densities of the GTE and Mallory cells at the indicated discharge current.

Electrochem Industries has also developed another new lithium cell

which is claimed to have higher rate capability than existing Li-SOC12 cells (12).

This new type is based on t:ie lithium-sulfuryl chloride couple (Li-SO 2C12 ) and

contains chlorine as an additive. Construction of this cell is very similar to

conventional Li-SOC1 2 cells except for the solvent. The anode is made by press-

ing lithium foil on nickel screen. The cathode is made by bonding a mix of 93%

Shawinigan acetylene black and 7% Teflon onto a nickel screen. LiAlC1 4 electro-

lyte is made by fusing an equimolar mixture of LiCl and A1C1 3 . Electrolyte con-

centration is 1.1 mol. rklorine was added to ache solvent/electrolyte by con-

densing it in a liquid N 2 /ethanol trap and then adding it directly to the
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solution. C1 2 concentration was 0.46 cool. Cel.a were assembled in the spiral

wound configuration employing two layers of a non-woven glass separator between

electrodes. Discharge characteristics of "D" size versions of this cell are

given in Figure 24 (Ref. 12). Inspection of this figure reveals that output of

this type of cell is relatively high, 13 to 14 Ah, and that output is relatively

independent of load in the range of 1 ohm to 150 ohm (3 A to 0.02 A). These

results are indeed quite impressive, especially the fact that the cells can

deliver the high output at the higher rates to 3 A. "D" size Li-SOC1 2 cells

described by GTE and Mallory are found to deliver outputs of only 6 to 8 Ah at

these higher discharge rates. On this basis then, it appears that the Li-SO 2C12

cell with C12 additive does indeed have higher rate capability than Li-SOC1 2 cells.

4.5 EPADCOM FINDINGS

The U.S. Army ERADCOM obtained a great deal of useful information on

the relationship between properties of c-rbons and their effectiveness in the

reduction of S0 2C1 2 (Ref. 15). The four different carbons that were employed are

listed in Table XVII. Cathodes were prepared from these carbons by mixing them

with Teflon and pressing them onto nickel Exmet screens. In all cases the over-

all cathode length and width were 2.5 cm and 2.0 cm, and thickness was 0.89 mm.

These were discharged in S02 C1 2 cells with 1.5-mol LiA1C1 4 electrolyte and with

lithium counter anu lithium reference electrodes. Physical properties of the

electrodes, including carbon loading, surface area, and porosity, are given in

Table XVII. Figure 34 gives the polarization cnaracteristics of cathodes with

the four different types of carbons based on geometric surface area. There is

noted to be a significant difference in polarization characteristics amongst the

four different carbons with the "United" type yielding the highest voltages and

the Shawinigan type (most commonly employed in existing lithium batteries)
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yielding the lowest voltages. When the polarization characteristics are

normalized in terms of surface area, however, as shown in Figure 35, the polari-

zation characteristics of all are found to be about the same. Therefore, it

appears that polarization characteristics and hence rate capability of all

carbons are essentially the same when expressed on a true surface area. Fig-

ure 36 gives the capacities of electrodes as a function of porosity of the dif-

ferent carbons. This indicaLes that capacity (and hence energy density) is

directly proportio.al to porosity and that Shawinigan black, with the highest

porosity of 87%, gives the highest capacity. The effect of Teflon content of the

c^!'hode mix on output of the cathode is given in Figure 37. The particular car-

bon employed here was the United type which was shown to exhibit a significantly

higher voltage and slightly less capacity than the Shawinigan black and was

therefore thought to be more attractive as a cathode material. Results revealed

that the cathode output increases and then decreases as Teflon content is

increased from 6.7% to 14.3%. Maximum output is noted to occur where Teflon con-

tent is 10 . 7%. This finding is in agreement with that of Mallory in Section 4.3

where it was also shown that cathode output is a maximum with a Teflon content

near 10%. Next, ERADCOM carried out a series of runs aimed at determining the

effect of electrolyte volume on output of the cathode. Results are given in Fig-

ures 38 and 39. Figure 38 gives the discharge curves of the cathodes as a

function of the ratio of the volume of electrolyte to the geometric surface area

of the cathode. Therein it is noted that as the amount of electrolyte is

increased, the operating time and hence capacity is increased. The discharge

curves exhibit two plateaus which are typical for Li - SO 2 C12 cells. The upper

plateau is associated with the reduction of C1 2 and the lower plateau is associ-

ated with the reduction of SO 2C1 2 . They define the output of the cathode to the

end of the high plateau as "Q" and the output of the cathode to the end of the

E
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lower plateau as "Q'." The data from Figure 38 was reduced and is plotted in

Figure 39 in terms of output, mAh/cm 2 , versus ratio of electrolyte volume to geo-

metric surface area, ml/cm 2 . The output curves are given in terms of both "Q"

and "Q'." Also shown in this figure are the percentages of the solvent utilised

both for "Q" and "Q'." These results show that output or capacity increases

markedly with amount of electrolyte. Output is noted to be essentially 0 mAh/cm2

until the electrolyte ratio is 0.1 ml/cm 2 as this is apparently the minimum amount

required to wet the electrode. Output is noted to increase sharply with amount

of electrolyte in the range of 0.1 to 0.4 ml/cm 2 . Thereafter, output is noted to

increase more slowly with amount of electrolyte in the range of 0.4 to 1.0 ml /cm2

where output is near 135 mAh/cm2 for "Q" or full discharge. The solvent utiliaa-

tion, which is the percentage of solvent utilized in the electrochemical reaction,

is noted to decrease gradually from 30% to 20% as electrolyte ratio is increased

from 0 to 1.0 ml/cm 2 . This type of parametric data is very useful in optimizing

energy density of a cell with regard to electrolyte-volume-to-carbon ratio. From

Figure 39 it would appear that energy density would increase to a point as elec-

trolyte-volume-to-carbon ratio was increased in that specific capacity increases

while utilization drops very slowly with increase in this ratio. As specific

capacity increases at a lower rate with respect to the electrolyte volume ratio

while utilization continues to decline with this ratio, the energy density

obviously passes through a maximum with regard to this ratio. Most commercial

Li-SOCl,, cells employ a ratio of about 10 to 20 cc/g of carbon which would corre-

spond to a ratio of from 0.15 to 0.30 cc/cm 2 in Figure 39 (the carbon loading

for these curves Is 0.0146 K /cm` ). This would imply that the optimum volume/

area ratio would be near the low end in Figure 39 (i.e.. near 0.2 ml/cm 2 ) with

regard to energy density. This may or may not be the case in that this ratio

may 1w emploved for reasons other than energy density. Nevertheless, the data
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in Figure 39 remains useful in showing how energy may at least hypothetically

be increased by varying the electrolyte to area (or carbon weight) ratio. Finally,

ERADCOM compared the performance of SOC1 2 and S02 C12 solvents in these cells.

Electrolyte to area volume ratio was 1 ml/cat in all cases while the SOU 2 cells

employed Shawinigan black cathodes and the S0 2 C12 cells employed the United car-

bon black. Results, given in Figures 40 ar d 41 reveal that the SO,C1 2 cells

yield appreciably higher voltages and slightly higher capacities than the SOC12

cells. Therefore, the S02C1 2 cells should yield a somewhat higher rate capabil-

ity and energy density than the SOCl 2 'ells.

4.6 JPL FINDINGS

In a prior JPL-sponsored study, Eagle Picher examined methods for

improving the rate capability of the existing carbon black cathode (which limits

rate capability of the overall cell) (Ref. 27). Their approach consisted of

selecting candidate new metals and then comparing their electrochemical polariza-

tion characteristics (for the reduction of SOC1 2 ) with those of carbon black

cathodes. As part of their initial selection criteria they examined compatibility

of several metals with SOC1 2 by elevated temperature corrosion tests. Results of

these tests are given in Table XX and are discussed in Section 7.4. The most

stable metals were then characterized electrochemically by measuring their

voltage-current characteristics in a conventional three-electrode cell employing

a lithium counter electrode, the working test electrode, and a silver chloride

reference electrode (with 1.4-mol LiA1Cl 4 and SOC1 2 electrolyte). As a result of

the above two screening test series they concluded that the most promising new

cathode metal was gold. This was found to be suitably stable in the electrolyte

and to exhibit markedly less polarization than carbon at very high current

densities.
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In order to take advantage of the high current capabilities of gold to

an even further i.egree, it would be desirable to develop 	 porous type	 old elec-P	 P	 yP	 g

trode which has high internal surface area per unit weight and volume of electrode.

This would enhance the current density to an even larger degree based on geometric

surface area.	 A porous electrode based on pure gold is, however, not feasible

because of the exceptionally high cost of gold.	 A more economical approach would

consist of applying a very thin film of gold to a less expensive porous substrate

via electrodeposition, vapor deposition, or other technique.	 With this approach

in mind Eagle Picher proceeded to develop and evaluate cathodes based on gold

plated porous nickel substrates (the material commonly employed in nickel-cadmium

- cells).	 Although the cathodes delivered ,ery high current densities, as antici-

pated, their specific capacities were appreciably lower than capacities of carbon

black cathodes.	 For example, the specific capacity of the nickel-gold cathodes

was found to be 1.15 Ah/cm 3 as compared with 3.23 Ah/cm3 for carbon black

cathodes.	 In addition to delivering high current and hence high rate capability,

the nickel-gold electrodes also delivered high operating voltages which contrib-

utes to improved energy density.	 Their marked low specific capacity however

offsets their higher voltage advantage so that their overall energy density is

less than that of the carbon black electrodes. 	 This result signified that the

high surface area associated with the carbon electrodes is essential for high

specific capacity and in turn high energy density. 	 On this basis it was then

R` believed that a most promising cathode would be a carbon black type which has

t
been coated with a very thin film of gold. 	 This type of cathode should simul-

taneously deliver high current and hence rate capability due to its gold film and

high specific and hence energy density due in most part to its high surface area

associated with the carbon black and to a lesser degree to its nigher voltage,

which is also associated with the gold film. 	 Eagle Picher was not successful in
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developing such a cathode during the course of this rather limited program. 01

of their major recommendations however was to explore techniques for making a

suitable gold-carbon type cathode.

In order to verify the above findings JPL examined the polarization

characteristics of the gold-nickel cathodes and compared their performance with

that of conventional carbon black cathodes. This work was carried out in glass

laboratory cells with a lithium anode, a carbon or gold-nickel reference elec-

trode, and SOC1 2 with 1.5-mol LiA1C1 4 electrolyte. Results, given in,Figure 51,

established that the gold-nickel cathodes do indeed yield significantly less

polarization than the carbon black cathodes. For example, at a polarization near

0.5 volts (which would correspond to an operating cell voltage near 3.1 volts),

it is noted that the nickel-gold cathodes yield a current density of 40 mA/cm2

while the carbon black cathodes yield a current density of only about 13 mA/cm2.

Under these conditions then, the gold-nickel cathodes yieid 300% more current (and

hence 300% more rate capability) than the carbon cathodes. These results confirm

the findings of Eagle Picher regarding the effectiveness of gold as a cathode

material for Li-SOC12 cells, and also give support to their recommendation for

development of improved gold-carbon black cathodes. JPL is therefore planning to

pursue development of these cathodes in the near future.

In order to examine the claims of Electrochem Industries on the merits

of the Li-SO 2 C12 cell with C1 2 added to the electrolyte, JPL examined the polari-

zation characteristics of carbon. _xthodes with this particular solvent and C12

additive. This work was carried out in the same type of laboratory cells as

described above but with SO 2 C12 + C1 2 instead of SOC1 2 . Results of these cathode

polarization studies are given in Figure 52. Inspection of these curves reveals

two significant points. First, it is noted that the polarization characteristics

with pure SO2 C1 2 + LiA1C1 4 are lower than those of pure SOCl 2 + LiA1C1 4 given in
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Figure 51. For example, at a polarization of 0.5 volts the current densities

with SO2C12 and SOC1 2 are noted to be 35 mA/cm 2 and 13 mA/cm2 , respectively.

Therefore, the current and hence rate capability of the SO 2C12 cell is almost

300% that of the SOU 2 cell under these conditions. Second, it is noted that the

polarization characteristics of SO 2C1 2 + C12 are lower than those of S0 2C12 alone.

For example, at a polarization of 0.5 volts (which corresponds to an operating

cell potential near 3.3 volts), the former yields a current density of 70 mA/cm2

while the latter yields a current density of 35 mA/cm 2 . On this basis the addi-

tion of C12 increases the current and hence rate capability of S0 2 C1 2 cells by

about 100% under these conditions. These results verify the exceptionally high

rate capability of S02 C12 cells with C1 2 additive and show that this improved

rate capability is a result of diminished cathode polarization with this solvent

combination. Further, since Electrochem Industries has shown that cells with

this solvent combination yield high capacities at the high rates, it would appear

that these are the most attractive from an energy density-rate point of view.
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SECTION 5

SAFETY

Numerous safety incidents have been attributed to lithium batteries and

cells, especially those with liquid cathode materials. These incidents have

ranged from mild venting (expulsion of internal liquids and gases) to violent

explosions and fires.

For this reason, this particular type of lithium battery has not been

widely distributed and is used only in applications where safety is not a prob-

lem or is of secondary importance. For the same reason, these batteries have

not heretofore been employed on spacecraft even though they offer exceptionally

high performance. Only when the safety problem with these batteries is com-

pletely understood and resolved will they be considered for use in space.

Numerous investigations have been carried out to determine the con-

ditions under which the batteries and cells exhibit -atastrophic failure and to

examine practical means for avoiding the phenomena. Although these studies

have not shown why the cells fail from a fundamental point of view, they

have at least provided some guidance to the safe design and operation of these

cells. Results of these studies are described herein. In addition, there

have been other studies of a more fundamental nature to explain why the cells

fail under the observed conditions and to suggest possible new means for prevent-

ing failure. Although these fundamental explanations and proposed solutions have

not been .erified, they appear plausible and worthy of consideration. On this

basis some of this more fundamen^al work is also presented herein.

5.1	 EIC FINDINGS

EIC examined the effect of anode-to-cathode material ratio on safety of

cells for the condition of reversal (Ref. 2, pp. 255-25 71). This study was
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carried out on hermetically sealed "C" size Li-SOU2 cells. They found that all

cathode limited cells (where capacity is limited by the amount of carbon rather

than the amount of SOC1 2 solvent) did not vent or explode during reversal. In

these cases, terminal voltage dropped to near 0 volts at the end of discharge and

remained at this level during the period of reversal as shown in Figure 7. The

constant voltage was attributed to development of internal short circuits caused

by plating of lithium metal on the carbon electrodes during reversal, with

resultant growth of metallic paths between the anode and cathode. In the case

of anode limited cells (where capacity is limited by the amount of lithium),

they did however observe explosions on several occasions. With anode limited

ce'.ls, operating voltage decreased markedly during reversal below -5 volts as

shown in Figure 8. The shift in cell voltage was shown to be attributed to the

shift in anode voltage as per reference electrode measurements, and the

fluctuations were attributed to periodic contacting of residual lithium metal

with the anode current collector. As indicated in Figure 8, the cells were

observed to explode during reversal without any prior rise in internal temperature.

5.2	 HONEYWELL FINDINGS

Honeywell believes that anode limited cells are safer than cathode

limited cells because; a) the Ii-S reaction is the most likely one to initiate

a thermal runaway, and b) anode limited cells contain very small amounts of Li

at the end of discharge so that the Li-S reaction cannot reaiily take place

(Ref. 2, pp. 247-251). The fact that little lithium is left in anode limited

cells is demonstrated by the results of storage and discharge tests given in

Table I. Therein are shown results of discharge tests on cells containing an

equivalent of 220 Ah of lithium at currents near 0.35 amp (0.28 mA/cm 2 ) after

various periods of storage to 90 days at 54°C. Inspection of this table reveals
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that in all cases the anode efficiency (% of theoretical anode utilization) was

greater than 90%. On this basis then, there is very little lithium left to react

with the product sulfur and there should be little chance of the Li-S reaction

taking place in discharged anode limited cells. Honeywell does not make any

mention of the safety of anode limited cells during reversal as does EIC above

in Section 5.1. On this basis then, it must be assumed that Honeywell's belief

in the superior safety'of anode limited cells must be qualified with the con-

dition that the cells will not be reversed.

5.3	 GTE FINDINGS

In a prior study GTE attributed the major safety problem of high rate

cells to thermal effects that result from internal heating (Ref. 3, pp. 37-42).

In particular they suggest that a cell will vent or explode when internal heating

from the electrochemical reaction raises cell temperature to the melting point of

sulfur, 112.8°C, at which the sulfur, which is a product of reaction, reacts

with the lithium. By application of principles of thermodynamics and heat

transfer they derived an equation relating internal temperature to operating

current and discharge time. With this equation they predi-ted that a "D" cell

will explode in 23 minutes if it is discharged at a constant current of 10 amps.

In practice they found that when a "D" cell was discharged at 10 amps, it exploded

after 28 minutes which is not far removed from the predicted time. On this basis

their analyses appear to be quite well founded. Conclusions that follow from

this study are: a) that high rate cells be equipped with fuses to limit current

to a safe value, and b) that provision be made to cool the cells to limit internal

temperature rise.
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In another investigation GTE examined means by which a cell may become

over-pressurized and hence pose a safety threat (Ref. 8). The means consisted of

thermal (due either to exposure to a high temperature environment or to internal

generation of heat) as well as a chemical and electrochemical means (gas produc-

ing reactions) and combinations of these two means. Several significant con-

clusions were drawn from these studies. For a sealed undischarged cell the

internal pressure is dependent upon the vapor pressure of SOU 2 and the pressure

of the entrapped air (from the assembly operation). At 25°C the total pressure

is 1 atm and is comprised of 120 mm of SOC1 2 and 640 mm of air. At 79°C, the

boiling point of SOC1 2 , the totai pressure is 2 atm and is comprised of about

760 mm of SOU 2 and 760 mm of air. At 180°C, the melting point Of lithium, the

total pressure is estimated to be about 12 atm (200 psig) and is comprised of

9,333 mm of SOU 2 (based on an extrapolated vapor pressure data) and 973 mm of

air. For a discharged cell the total pressure is the sum of the above pressures

of SOC1 2 and air as well as the pressure of S0 2 which is a product of reaction.

The pressure of S02 in the gas phase is dependent on the amount present (which

can be calculated with known depth of discharge and stoichiometry of the

reaction), the solubility of S0 2 in the SO	 Solsolvent, and the temperature. The

solubility of S02 in SOC1 2 can be obtained by the approximate relationship given

by GTE: In X = (2.147 + O
T1
84) x 103 _ 0.863 where X - mol fraction of S0 2 in

the solvent and T = temp °C. By calculation it can be shown that appreciable

pressures (about 5 atm) can result in discharged cells which are at ambient to

moderate temperatures (25 to 80°C) and very high pressures (greater than 20 atm)

can result in cells which are at higher temperatures (80 to 180°C). GTE further

showed how the amount of heat from the electrochemical reaction can be estimatel

from cell current, voltage and thermodynamic relations and how these relationships

can be used to estimate internal temperature rise. From such analyses they show
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that only moderate temperatures and pressures should result from operation of the

cells at low to moderate rates. They do however, point out that excessively high

temperatures and pressures can result in cells that are designed to and are

discharged	 very high rates (ur accidentally short circuited). They point out

that the heat generation increases markedly as cell voltage declines below 3.0

volts, and that cathode limited cells exhibit longer periods below 3.0 volts than

do anode limited cells near the end of discharge. From this point of view the

anode limited cells would appear to be safer. GTE also reported that SO 2 can be

produced by the reaction between SOU 2 and sulfur, a product of reaction, by the

chemical reaction: 2 SOC1 2 + 3 S -► 2 S2 C1 2 + S02 . They pointed out that this

reaction occurs in the temperature range of 150 to 180% and that it is

catalyzed by the presence of FeCl
3
 . Also, they discuss several highly exothermic

reactions that can take place between lithium and SOU 2 , S, and SO2 at the melting

point of lithium, 180°C, where the protective film no longer separates the

lithium from these species. All of the above findings of GTE have the following

implications regarding cell design: a) that the cylindrical cell case design is

preferable to the prismatic design from a safety point of view in that the

cylindrical design can withstand much higher pressures, b) that there should be

an adequate amount of SOC1 2 present at the end of discharge to dissolve enough

product SO2 so as to keep its vapor pressure tc tolerable levels, c) that a

cell should be thermally designed such that internal cell temperature is kept

below 180°C for the highest anticipated discharge current, d) that anode limited

cells are preferable to cathode limited cells, and e) that iron impurities should

be kept to a minimum.
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5.4	 MALLORY (DURACELL) FINDINGS	 f
i

Mallory examined the use of low pressure vents for preventing explosions

in spiral wound "D" cells duri,ig the condition of accidental shorting (Ref. 4,

pp. 94-114). In earlier work they found that cells equipped with high pressure

vents (500-550 psig) always exploded during intentional short circuiting whereas

cells with open vents did not explode under these conditions. By equipping cells

with pressure transducers and intentionally shorting them, they found that a)

internal press-ire increased at a relatively moderate rate to 200 psig and then

quite rapidly after 200 psig, and b) an explosion occurred shortly after the

rapid rise in pressure beyond 200 psig. On this basis they concluded that cells

equipped with low pressure vents near 100 psig should not explode. They con-

firmed this point by shorting cells with these low pressure vents and found that

they did not explode. As an extension of this work they examined the use of the

low pressure vents in preventing explosions in cells that were forced into the

condition of reversal. In this rase they found the cells to explode unexpected-

1v without much rise in temperature or pressure. They therefore concluded that

low pressure vents did not prevent explosions in cells that were forced into

the condition of reversal.

Mallory also conducted extensive Differential Thermal Analyses on the

starting materials, products, and combinations of these in specially designed

glass cells (Ref. 6, pp. 116-162). Materials included in these studies were

Li, SOC1 2 , S, Li` s, Li 2 503 , ILA carbon cathode, glass paper separator, and

nickel tab,. The major conclusions from this study were: a) that there are

various combinations of materials that react exothermically and that these re-

actions can -ad to thermal runawa y , h) that these reactions occur near the

melting point of lithium (179°C) and sometimes below this teaipeiattire, ') that
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the exothermb are larger with H2O present, d) that safe operation should be

insured if internal cell temperature is kept below 100°C, e) that special care

should be taken to insure that the cells remain hermetically sealed at all times

to eliminate contamination with water vapor which can increase the force of an

explosion, and f) that the use of additives and inhibitors to prevent explosions

remains an open question. In further studies Mallory conducted differential

thermal analyses on complete "D" size cells rather than the c#.xk.  nts of these

cells (Ref. 6, pp. 174-196). Therein they found that fresh undischarged cells

d'.d not exhibit any exothermic behavior while being heated, but that partially

and fully discharged cells exhibited exothermic reaction: at temperatures between

80°C and 100°C. They also found that discharged cells that had been heated

once did not exhibit exotherms upon heating a second time. They concluded from

these studies that a) discharged cells are unstable, b) the instability is

attributed to exothermic chemical reactions from the products listed above, or

other products such as sulfur -oxygen polymer compounds, and c) that it may be pos-

sible to make a discharged cell safe by subjecting it to a controlled heating cycle.

In another series of experiments, Mallory examined the use of de•;ign

changes to prevent explosions for the condition of reversal (Ref. 6, pp. 207-215).

The changes consisted of: a) use of excess lithium, b) use of lithium on both

sides of the current collector rather than on one side, and c) use of multiple

tabs rather than only one tab on the cathode current collector. Results indicated

that all of these innovations tended to minimize, but did not entirely eliminate

the possibility of explosion during reversal. It was speculated that the reason

why excess lithium is desirable for the condition of reversal is attributed to

the fact that it plates -:;t on the cathode to form dendrites, which, in turn, short

out the cell internally and enable it to pass t}_.^ reversal current.
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5.5	 ELECTROCHEM INDUSrRIES FINDINGS

Electrochem Industries has found that the addition of BrCl to Li-SOMI

:ells renders them safe under essentially all operating conditions including

abusive conditions. To demonstrate this point they showed that "AA", "C", and

"D" size Li-SOC1 2 cells (:ontaining 1.0-mol LiA1C14 and 14 mol% BrCl) did not vent

or explode, during severe conditions of short circuit, reversal, and charging

(Ref. 9). Typical results are shown in Figures 17, 18, and 19. During short

circuit, as shown in Figure 17, a "D" cell was shown to operate safely even though

it delivered a peak current near 18 amps, and achieved a maximum surface tempera-

ture near 125°C. During reversal, as shown in Figure 18, a "D" cell was shown

to operate safely while intentionally overdischarged at 5 amps for a period in

excess of 100 hrs. Finally a "D" cell was shown to operate safely while being

charged at a current of 1 amp for a period of over 100 hrs. as shown in Figure 19.

Although Electrochem Industries has no direct proof, they believe the safety of

their cells is attributed to the fact that BrCl reacts with product Rulfur and

thereby eliminates the .lithium-sulfur reaction which is believed to cause the

venting and explosions.

	

5.6	 NAVAL SURFACE WEAPONS CENTER (NSWC) FINDINGS

NSWC carried out a very comprehensive study on the reactivity of

Li-SOCL, cell starting material:-,, products of reaction, and combinations of

these- The reactivity of these materials was examined by Differential Scanning

Calorimetry (Ref. 21). ThiF effort was similar to the differential thermal

analyses described by Mallory in Section 5.4 but covered a wider temperature

range, included more combinations of materials, and yielded somewhat more

quantitative results. Their initial work was focused on the three starting

materials of fresh cells, including Li, SOC1 2 , and LiA1C1 4 as well as
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combinations of these. Fesults revealed that none of these materials by

themselves or in combination with any or all others exhibited any exotherms at

temperatures to 335% (their arbitrary cutoff temperature). Thus it appears

that these initially present components of an undischarged cell are safe at

temperatures even beyond the melting point of lithium. Next, they examined

the reactivity of all of the above starting materials as well as the carbon

cathode material and various combinations of these with known or speculated

products of reaction. Results of these findings are summarized in Table XIX.

Inspection of this table reveals several significant points regarding safety of

Li-SOC12 cells. First, it is found that there is no exothermic reaction between

lithium and sulfur in the presence of SOU 2 at temperatures below at least 395°C.

This finding tends to contradict one of the current beliefs that a cell can

exhibit a thermal runaway when its temperature reaches the melting point of

sulfur, 112°C, where the lithium will react violently with the product sulfur.

Apparently the SOU 2 maintains a film on the lithium which inhibits this

reaction. Second, there are found to be no low temperature exotherms of some

suspected reactive products or combinations of these with starting materials.

Examples are Li 2 S, Li ? SO4 , S2C1 2 , and LiCl by themselves and in combinations

with Li, SOU 2 , and LiA1C14 . None of these materials, or combinations thereof,

gave exotherms below about 400°C. Third, it was found that addition of Cu to

the components of Li-SOC1 2 cells resulted in an exotherm at the relatively low

temperature of 85°C. This finding tends to cast some doubts about the merits

of using copper as an additive to Li-SOC1 2 cells for safety reasons as suggested

by some workers in the field. From this study it would appear that Cu renders

the cells less, rather than more safe. Fourth, the results clearly show that

the combination of the carbon black in conjunction with Li and SOC1 2 is indeed
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quite reactive. This combination of materials was found to exhibit a strong

exotherm at temperatures as low as 40-50°C. This is perhaps one of the most

important findings of this study in that it can explain why Li-SOC1 2 cells can

explode for the condition of reversal. This is attributed to the fact that when

cathode limited cells become overdischarged or reversed, the reaction that takes

place at the cathode is the deposition of lithium metal onto the carbon according

to the reaction: Li+ + E i Li. Thus, for the condition of reversal an intimate

mixture of lithium, carbon, and SOC1 2 solvent (which is usually present in some

axcess) is formed. This combination of materials, as shown above by NSWC, is

highly unstable and can exhibit an exotherm at relatively low temperatures of

40% to 50°C which can be reached quite readily during reversal.

In the same investigation NSWC examined the exothermicity of lithium

nitride, Li 3N, and water, both of which could be introduced into cells during

assembly in a dry room. (The Li 3N by the reaction Lf lithium and nitrogen in the

atmosphere, and the water if there were lack of humidity control in the dry

room). They found that Li3N and SOU 2 gave the largest exotherm of any combi-

nation of materials that they had examined and at a temperature of 130°C. This

finding suggests that it is essential to thoroughly examine all raw lithium

material that is used in manufacture of cells to insure that it is not contami-

nated with Li3N. They found that water contamination does not appear to have any

major effect on the exothermicity of the Li-C-SOC1 2 reaction. In fact at a

water level of 1% they even found some quenching effect on the reaction. This

might suggest that moisture control is not critical from a safety point of view.

Finally NSWC examined the exothermicity of a lithium-boron alloy (51%

Li and 49% B). Incentive for this work was based on the speculation that as an

alloy, the lithium may be less reactive and hence safer than elemental lithium.
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Results did not show less reactivity of the Li-B alloy as compared with pure Li.

In almost all cases the exotherm temperatures and magnitudes were comparable for

pure Li and the Li-B alloy.

5.1	 JPL FINDINGS

JPL has carried out two types of thermal investigations aimed at under-

standing and controlling the safety problems in Ii-SOC1 2 cells. The first of

these involved the use of a calorimeter to measure the heat generation rates in

these cells during operation. The second involved the use of a differential

scanning calorimeter (DSC) to measure the ignition temperature of various

combinations of cell materials.

The specific objective of the calorimeter studies was to obtain data

that would be used to develop a model to predict internal cell temperature as a

function of operating current and voltage. With this model it would then be

possible to establish maximum currents and operating times so as to keep internal

temperature below known or suspected upper limits (such as the melting point of

lithium, 119°C or the melting point of sulfur, 12°C). In addition, the model

could also be used to show how the operating limits could be extended by either

improved external heat transfer or modification of cell design so as to improve

its voltage-current characteristics.

The cells employed in the calorimeter studies were of the spiral wound

configuration with component dimensions, weights, and specific heats as given in

Figure 43.

Two theoretical equations are given in Figure 44 for the heat generation

rate in cells as a function of cell current and voltage.. The first of these is

for the general case of anv electrochemical cell and incorporates constants that

can be determined experimentally (Ref. 24)
	

The second is for the Li-SOC1 ) cell
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in particular and employs previously determined .slues of the constants (Ref. 24).

It should tic pointed out that these equations apply to heat from the electru-

chemical reaction onl y and not to heat from any chemical reactions that may occur

in the cell.

A comparison of the theoretically predicted heat (as per the equation

in Fig. 44 for the U-SQCI, cell) and the experimentally determined heat (from

the calorimeter measurements) is given in Figures 45 and 46 for two different

constant currant discharge tests on these cells. In both cases it is noted that

tike experimentally measured heat is slightly greeter than the theoretically

measured twat. The difference between these two is attributed to heat from

chemical reactions (as opposed to heat from the electrochemical reaction).

By combining terms of the second equation in Figure 44 and then

iterativel y substituting different values for E oc and computing heat generation

rates, it is possible to develop a simple empirical equation that fits the

experimental data. The resultant equation is given in Figure 47.

Accuracy of this empirical equation was checked by using it to predict

internal temperature rise for discharge under adiabatic conditions and then

comparing predicted with experimental values. Results for two such runs on these

cells are given in Figures 48 and 49. inspection of these results reveals that

the empirica, equation yields a fairly accurate prediction of transient temperature

rise (within about 5% for most of the indicated operating regimes). On this

basis it would appear that this equation predicts actual heat generation rates of

Ili-SOCL ) cells quite accurately and can be used with a fair degree of confidence

in estimating internal cell temperatures over a range of operating conditions

and in any thermal environm-nt.
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The objective of the DSC studies was to examine if there are any com-

binations of cell materials that could engage in exothermic chemical reactions

and thereby contribute to the safety problem.

The most significant finding of the DSC studies was that the combination

of either Li, SOC1 2 , and C or Li, SO2CL2 , and C was found to yield a very strong

exothermic reaction at very moderate temperatures in the range of 50 to 55°C.

This finding suggests potential safety hazards for cathode limited Li-SOC1 2 or

Li-SO 2 C1 2 cells for the condition of reversal. This is attributed to the fact

that under these conditions lithium is electrodeposited on the carbon cathode

and since there is always some solvent present we have one of the two potentially

reactive combinations listed above (depending on whether it is an Li-SOC1 2 or

Li-SO,,C1 2 cell). In either case, if cell temperature reaches 50% under these

conditions (which is not too unlikely since there is some heat generated under

these conditions), the DSC results suggest that there may be an exothermic

reaction that can trigger a cell explosion.

In order to test validity of this conclusion a previously discharged,

cathode limited, Li-SOCL, cell was placed in the condition of forced over-

discharge or reversal (under safe conditions while installed in a concrete test

chamber). Results of this test are given in Figure 50. Therein it is noted

that while on reversal at a current of 1.0 amp, cell voltage was stabilized at a

value of -0.5 volts and internal temperature increased to 40°C, and then dimin-

ished during the course of about 270 minutes. At this point the reversal cur-

rent was increased to 5.0 amp at which voltage declined to a value near -2.1 volts

and temperature began to rise. About 10 minutes thereafter with an internal

temperature of about 52°C the cell exploded violently. Although these findings

are not conclusive, they do lend some support to the above conclusion that

cathode limited cells can explode during reversal for the indicated reasons.
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In addition to the above, JPL conducted electrical abusive type tests

on commercially available L1-SOC1 2 cells in order to examine conditions under

which they may vent or explode (lief. 25). The cells were from Altus Co., Palo

Alto, Ca. and were designated as their Model No. 250. These were of the disc

configuration and contained disc shaped lithium anode and carbon cathode plates,

1.5-mol Li.A1C1 4 electrolyte, stainless steel cases, and a ceramic terminal seal.

Overall dimensions were 6.35 cm diameter and 0.95 cm thick. Cell weights ranged

from 72 to 74 gms and nominal capacity was given as 6 Ah. Aside from the above,

no further information was supplied by Altus on these cells.

Two major conclusions were reached in regard to safe operating limits

of these cells. First,'it concluded that the cells can be discharged safely at

high rates up to the 45 minute rate (or 9 amps). At higher rates of discharge,

the cells may vent, but do not explode. Second. it was found that the cells can

be overdischarged or reversed extensively at rates up to the 30 hr. rate (or

0.2 amps). At higher rates of overdischarge, the cells can vent, but do not

explode. Thus it appears that these particular Li-SOC1,, cells can be operated

safel y over a relativel y wide range of operating conditions. Beyond the indicated

operating, limits the cells do pose the threat of venting but not severe

catastrophic explosions. Although neither of these would be acceptable on a

spacecraft, it is at least encouraging to know that Altus has apparently elimi-

nated the severe explosion hazard which is the most pertinent to personnel

safety during handling and test of these cells. Altus has not disclosed the

details of their cell materials and construction, but from the patent literature

it is stsKgested that they ma y employ copper as an additive (lief. 26). In this

particular patent it is mentioned that copper improves safet y of these cells by

supposedl y combining with product sulfur so as to avoid the exothermic lithium-

sulfur reaction.
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SECTION 6

VOLTAGE MAY

Voltage delay is a term that is used to describe the transient voltage

profile of cells at the onset of discharge. The profile consists of an initial

sharp drop from the open circuit potential to some lower potential followed by a

gradual rise to an operating potential. The time for voltage to recover to some

arbitrary level, say 2.0 or 2.5 volts, is referred to as the delay time. Magni-

tude of the initial voltage drop and recovery time have been shown to increase

with storage time and temperature as well as current density. The phenomena are

exhibited by lithium, magnesium, calcium, and other types of cells.

Half cell studies have shown that the delay is attributed to the anode

rather than the cathode. Further studies have shown that it is caused by a

passivating film that encases the anode. In the case of Li-SOC12 and Li-

so 
2 
Cl 

2 
cells, this film has been shown to consist of LiCl.

The delay problem can be very severe with initial voltage drops of

2.0 volts or greater, and recovery times of several minutes to hours. For

this reason the delay phenomena can cause severe voltage regulation problems in

the power system that employs this type of battery. This applies especially to

aerospace power systems wherein voltage deviations outside if certain limits can

cause severe equipment malfunctions.

Numerous investigations have been carried out for the purposes of

understanding the delay problem and devising practical means to minimize or

eliminate the problem. These have met with a fair degree of success and are

described herein.
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6.1	 EIC rINDINGS

In a prior investigation EIC examined two as pects of the voltage delay

problem (Ref. 3, pp. 28-30). First, they found that a special pretreatment cf

the solvent/electrolyte essentially eliminated the delay problem. The pretreat- 	
i

ment consisted of storing SOC12 + 1.5-mol LiA1C14 in the presence of lithium foil

( ,'A cm 
2 
/ml solution) at elevated temperature, 71 •C, for an extended time, 140 hrs.

	 `

Experimental cells which employed this electrolyte exhibited no delay on discharge

at 7 mA/cm2 after storage for 208 hrs. at 71°C. By comparison, cells,stored with

untreated electrolyte for 80 hrs. at 71°C exhibited delays up to 24 sec. at the

same current density, and cells stored for longer periods of 111 hra. at the same

temperature exhibited delay, up to 72 sec., again at the same current density.

Second, EIC examined the effect on voltage delay of alloying the lithium with.

small amounts of other metals. The alloying metals included Ag, Al, Au, Cd, Cu,

Mg, Sn, and Zn in amounts to 10 atomic percent. None of the metals showed any

marked effect in reducing delay. Li/Ag and Li/Mg did, however, show some

improvement over pure Li, in reducing delay.

6.2	 HONEYWELL FINDINGS

Honeywell investigated the effect of SO2 addition to the electrolyte on

voltage delay (Ref. 3, pp. 33-37). They found that addition of SO2 does indeed

minimize the voltage delay problem. Cells containing 5 wt % SO 2 were found to

exhibit delays less than 100 ms when discharged at 3.3 mA/cm 2 after storage for

one month at 74°C. They also found, however, that addition of larger amounts of

S02 (10 to 20 wt %) caused a marked reduction in discharge capability. On this

basis, they concluded that the optimum level of SO 2 addition was 5 wt %.
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6.3	 GTE FINDINGS

During the course of the storage life tests on the "D" cells described

in Section 6.1, GTE also carried out voltage delay tests. These tests were per-

formed by measuring the transient voyage characteristics of the cells at the

onset of discharge over a range of currents and ambient temperatures after

various periods of storage over a range of temperatures (Ref. 5, pp. 123-131).

Results of the voltage delay tests are given in Tables XIII, XIV, and XV.

Table XIII gives the delay times (which is the time from the start of discharge

to the time when cell voltage recovers to 2.0 volts) after storage of the cells

for one month at room temperature. Table XIV gives the delay times after

storage of the cells for one month at 55°C. Table XV gives the delay times after

storage of the cells for one month at 72°C. Although reproducibility of the

results does not appear to be very good, some general trend y "re apparent.

First, there is noted to be a trend toward increase in delay with storage

temperature in the range of room temperature to 55°C. For example, after one

month of storage and at a current of 1.0 amp (3.1 mA/cm2 ) at 20°C, the delay

times for room temperature storage are noted to range from 0.5 to 5.5 sec.,

while the delay times for 55% storage are noted to range from 20 to 28.5 sec.

Second, there is noted, with a few exceptions, to be a trend toward decreased

delay at 72°C storage temperature as compared with 55°C storage temperature.

This trend applies only at currents of 500 mA (1.5 mA/cm ) and below, for it was

found that cells stored at 72°C could not be discharged at higher currents.

Third, there is noted to be a trend toward increased delay time with decrease in

test temperature (in the range of +40°C to -40°C) and with increase in discharge

current (in the range of 0.1 amp, 0.3 mA/cm2 , to 4 Amp, 12.4 mA/cm2).

In this same investigation, GTE examined the effect on voltage delay

of partiall y discharging the cells before storage. This was carried out by
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discharging the cells at 1.0 amp for 1.0 hr. or 1 Ah which is about 20% of the

cell capacity. Voltage delays of these cells after one month of storage are

given in Table XVI at different test temperatures and currents. Comparison of

these results with those in Tables XIII to XV, reveals that the partial discharge

markedly reduces delay. To illustrate this point, it was observed that cells

discharged at high currents of 11.2 mA/cm 2 0.6 amps) exhibited delays of 3.5

min. after storage at 72°C whereas all other cells that were not given the prior

discharge were found to passivate severely and be inoperable at currents above

1.6 mA/cm2 (0.5 amp) when stored at 72°C.

In the same investigation, GTE examined the effects of some electrolyte

variables on voltage delay. These included use of ultrapure electrolytes and

additives to their regular electrolytes. The ultrapure electrolytes were pre-

pared by using triple distilled SOC1 2 and very high purity LiCl and A1C1 3 . The

additives included use of excess chlorine as well as sulfur dioxide (each

bubbled into the solution until saturated), iron (in the form of FeCl 3 at a

level of 200 ppm), and finally, use of excess AM 3 to the extent of 10% greater

than the stoichiometric amount required to form LiAlC1 4 . Voltage delays were

measured with all of these electrolyte variations under the same currents,

temperatures, and storage times as indicated above. With one exception, the

observed delays with these innovations were found to be the same as with conven-

tional electrolytes. The one exception was use of iron additive which was found

to markedly increase delay. Cells to which iron had been added showed significant

delays when discharged within a few days of assembly and essentially infinite

delays after 30 days storage at temperatures from 25°C to 72°C. Clearly, the

Rmount of iron present in the solvent and electrolytes (especially AM 3 ) has to

be maintained at a very low level to insure that the cells will not exhibit

excessive delays.
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In this same investigation, GTE presented additional findings to show

that the lithium electrode is solely responsible for the voltage delay (Ref. 5).

This was demonstrated by showing that: a) the rate of increase of internal

resistance with ti= :z^s: a cell with two lithium electrodes was twice that of

a cell with one lithium and one carbon electrode, and b) a cell with only two

carbon electrodes showed no change in internal resistance with time. (The

implication here is that the increase in internal resistance is associated with

a build up of a film of nonconductive LiCl on the surface of the lithium

electrode. This film is shown to exist and to increase in thickness with ^Lme

by Mallory in Section 6.4. Also, the findings of GTE suggest th? possibility of

using impedance to measure age of a cell. This idea has not been suggested in

any of the references cited in this report.)

In another investigation, GTE examined the capability of SO 2 and Ca

additive; in reducing the delay of Li-SOC1 2 and also Li-SO 2C1 2 cells (Ref. 14,

pp..92-98). These were bobbin type "D" cells with 1.8-mol LiA1C1 4 electrolyte and

with SO 2 and Ca concentrations of 1.0 mol and 0.5 mol respectively ("he latter as

CaA1C14 ) as described in Section 7.1. Their voltage delay in this case was

dEfined as the cell voltage to recover to 3.0 volts (rather than 2.0 volts as

in most other work) at a current density of 1 mAjcm2 after storage for various

periods of time at a temperature of 55 °C. Voltage delays of cells with the SOU 2,

SOC1 2 + Ca, and SOC1 2 + S02 electrolytes were found to deliver similar voltage

delays of from 1 sec. to 1 min. after one month, an,! from 1 to 2 hrs. after two

wnths. Voltage delays of cells with the S02 C1 2 + Ca and SO2 C1 2 + SO2 electro-

lytes were no better than any of the above. The best voltage delays were obtained

with SO2 C1 2 alone (without any of the additives except the LiA1Cl 4 ). After 22

weeks of storage, the SO2 C1 2 cells exhibited delays of only about '.0 sec.
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In another investigation, GTE examined the use of a clovoborate salt,

Li2B10Clio , in place of the commonly employed Li.A1C1 4 in order to reduce voltage

delay (Ref. 11, pp. 129-132, and Ref. 16). Results of voltage delay measure-

ments on "AA" size cells employing this new electrolyte at a concentration of

0.25 mol and also with the standard LiA1C1 4 electrolyte at a concentration of 1.8

mol are given in Table XVIII. After two weeks storage at 55°C, it is noted that

the cells with the 
Li2B10C110 

exhibited markedly less delays than those with the

LiA1C14' For example, it is noted that cells with LiA1Cl 4 delayed severely with

none of them recovering to 3.0 volts during the 1000 sec. test. Cells containing

the Li2B10C1 10 , however, were noted to recover to 3.0 volts in less than 22 sec.

and to exhibit no delay below 2 volts for more than 1 sec.

6.4	 MALLORY (DURACELL) FINDINGS

During the course of the storage life tests on the "D" cells described

in Section 7.2, Mallory also carried voltage delay tests. These tests were

performed by measuring the transient voltage characteristics of the cells at the

onset of discharge over a range of currents and ambient temperatures after various

periods of storage over a range of tem peratures (Ref. 6, pp. 27-52). For fresh

cells (less than one week old) they found no delay when discharged at 25°C and at

currents from 0.25 co 3.0 amp (0.55 to 6.60 mA/cm 2 ). When the fresh cells were

discharged at low temperatures, however, they did observe some delays, especially

at high currents. For example at -54°C, a fresh cell was found to exhibit a

delay of 115 sec. at a current of 0.5 amp (1.1 mA/:m ). At the same temperature

and at 3.0 amp, the voltage of a fresh cell was found to remain below 0 volts

for more than 50 sec. and to reach 2.0 volts after more than 1000 sec. For aged

cells, Mallory found the delays to increase with duration and temperature of

storage as well as discharge current. Some typical rec ..-lts that display these

trends are given in Table XXI. Inspection of the results of this table reveal chat
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cells do exhibit appreciable delays when comprised of the components described by

Mallory in Section 6.2. Further the results establish the trend of incraased

delay with storage time and temperature as well as discharge current and temper-

ature as indicated above for this type of cell.

In this same investigation, Mallory next examined what they labeled as

an "intuitive empirical approach" to minimize the voltage delay with this cell

(Ref. 6, pp. 56-58). This consisted of subjecting the cells to a short partial

discharge before measuring *_heir delays. The extent of this discharge was from

about 0.3 to 0.5 Ah which is a small fraction of the nominal cell capacity of

12 Ah. Results indicated that this technique is indeed effective in minimizing

the delay problem. To illustrate this point they showed that a cell, when given

such a preliminary discharge, exhibited no delay after storage for 6 months at

72°C and discharged at 0.25 amp at -30°C. At the same storage temperature and

discharge temperature and at higher currents (1 to 3 amp) and shorter periods of

time (1 to 3 mo.) the cells did exhibit finite delay times. The magniti2d, • , f the

delay times for these cells were, however, much less than for cells which had not

been partially discharged and op,--rated under the same conditions.

Finally, in this same investigation, Mallory examined the effecto of

some variations of the electrolyte on the voltage delay problem (Ref. 6, pp. 84-

92). These consisted of: a) concentrat±on of LiA1C14 electrolyte, b) addition

of S2 C12 , Rnd c) addition of SO 2 . They found a trend toward reduction in delay

with decrease in electrolyte concentration from 1.8 mol to 0.5 mol, but a somewhat

longer delay with 0.25-mot LiAlC14 . They suggested an optimum concentration near

0.5-mol LiA1C14 for minimum delay. They found that addition of 6% S 2C12 did not

have any significant effect on delay. The effect of SO 2 addition could not be

estabiished because of the leakage problems that it caused during elevated

temperature storage.
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In another investigation, Mallory employed Scanning Electron Microscopy

(SEM) and energy dispersive analysis of x-rays (EUAX) to study the nature of the

film on the lithium electrode in a Li-SOU 2 cell environment and the rate of

growth of this film during storage over a range of elevated temperatures (Ref.

10). In addition, Mallory measured voltage delay characteristics of lithium

electrodes snd correl.ateu these delay characteristics with the thickness of the

film. The work was carried out on samples of lithium in purified SOC1 2 solvent

with purified 1.8-mol LiAlU4 electrolyte. Their major conclusions were: a)

that the film is comprised of LiCl, b) that the thickness of the film increases

with increasing time and temperature on storage, c) that the voltage delay also

increases with increasing time and temperature on storage, and finally d) that

there is a direct correlation between film thickness and voltage delay. Evidence

to suppurt these conclusions is given in Table XXII which gives the film thickness

and voltage delay of samples of lithium stored for increasing periods of time

at 55°C. Therein, it is noted that as storage time increases from 154 to 590

hrs., film thickness increases from 4.5 to 45 pM, and voltage delay corresponding-

ly Increases from < 1 sec to 30 sec. Another significant finding from this stud;

was that film growth was found to be minimal in pure SOC12 without LiA1Cl4 . It

was therefor^. concluded that LiA!C14 contributes to film growth and voltage

delay. On this basis it may be well to search for electrolytes other than

LiA1Cl4 in order to resolve the voltage delay problem.

6.5	 SAFT FINDINGS

In a prior investigation, Saft Co., (from France) reported on the

beneficial effects of a new electrolyte, Li 2Al` C160, in reducing voltage delay

(Ref. 7, pp. 348-355). In tests with bobbin cells they found anpreciable deiays, as

observed elsewhere, with conventional LiAlCl 4 electrolyte. With 0.5-mol Li2Al2C160
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however, they found no delay at a current density of 4.8 mAJcm2 after storage for

a period of one month at 70°C. They did not offer an explicit explanation as to

why this electrolyte eliminated delay, but merely suggested that the nature of

the anion influences the structure of the anodic film, which in turn controls

delay.

	

6.6	 UNION CARBIDE FINDINGS

In a U.S. Patent, Union Carbide described effectiveness of a polymer

anode film in reducing the delay of Li-SOC12 and Li-SO 2C12 cells (Ref. 18). The

film is actually a copolymer comprised of 86% vinyl chloride and 14% vinyl

acetate. This copolymer is available commercially from Union Carbide and is

designated by them as "VYHH". The film is applied by dissolving the copolymer

in SOC12 solvent and then i=ersing the lithium anode in this solution for about

1 minute. Voltage delays of "C" Li-SO 2 C1 2 cells containin t the coated anodes

were found to exhibit delays of 1 sec. or less across 20 hm loads after storage

for one month at room temperature. By comparison, the same type of cells without

the polymer coated anodes were found to exhibit delays up to 18 sec. under the

same conditions.

In another U.S. Patent, Union Carbide described several additives to

the electrolyte that are also effective in reducing voltage delay in Li-SOC1 2 and

Li-SO 2 C12 cells. These are sulfur containing compounds and include elemental

sulfur, lithium sulfides such as Li2 S, and lithium halides such as S2 C12 and SC12.

They cited several examples wherein it was shown that use of these additives at

levels from about 5 to 10% by weight of the electrolyte minimized delays to

the same order of magnitude as with the polymer film above.

	

6.7	 ALTUS FINDINGS

In a U.S. Patent, Altus Corp., described a novel organic anode coating
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that was shown to markedly reduce voltage delay in Li-SOC12 cells. The coating

is either methyl or ethyl cyanoacrylate. These are applied by dipping the

lithium anodes in either of these organic liquids, assembling a cell with them,

and then curing the cell for 12 hrs. at 71°C. Effectiveness of the coating was

shown by measuring delays at 5 mA/cm2 of button cells after various periods of

storage at elevated temperature. After storage times of 1, 3, 8, and 21 days at

71°C, cells with the 10 coatings were found to exhibit delays of less than 1

sec., 5 sec., and 20 sec., respectively. By comparison, cells without the coat-

ings were found to exhibit infinite delays (never recovered) under any of the

above conditions.

6.8	 JPL FINDINGS

In order to substantiate some of the voltage delay claims, JPL con-

ducted its own assessment of the Li2B10C110 electrolyte described in Section 6.5

and the vinyl chloride-vinyl acetate film described in Section 6.6 (Ref. 17).

Results, shown in Figure 42, revealed that the 
Li2B10C110 

electrolyte and the

polymer film are indeed effective in reducing delay. After 3 days of storage at

72°C a Li-SOC1 2 cell with Li2 B10C1 10 electrolyte was found to exhibit a delay of

less than 2 sec. at a current density of 10 mA/cm Z . Under the same conditions a

cell with the vinyl chloride-vinyl acetate anode film was also found to exhibit

a delay of less than 2 sec. By comparison, a Li-SOC1 2 cell with conventional

LiAlC14 electrolyte and without the polymer film was found to exhibit a delay of

15 sec. under identical conditions to th -ibove. I t .s well to point out here

that all of the above delay data was obtained on highly purified solvents and

electrolytes. Delay times of cells containing improperly purified materials

were found to be in the range of 1 to 2 minutes under the same conditions as shown

in Figure 42. These results establish that material purification is an essential

prerequisite to obtain minimal delay times.
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SECTION 7

STORAGE LIFE

Very limited information is available on thb storage life capabilities

and factors that influence this characteristic of Li-SOC1 2 and Li-SO 2C12 cells.

This lack of information is attributed to two causes. Fi rst, these cells are

relatively new aM there has been insufficient time to generate real time, long

term storage life data. Initial exploratory work on these cells began in the

early 1970's. Limited numbers of experimental and demonstration type cells were

made and evaluated (including a limited amount of accelerated life tests) begin-

ning in the mid 1970'x. Only within the past few years have vendors frozen

specific designs of these cells and begun fabrication and evaluation of these

(including the L_iL# c _un of 1c ig t °:m scc-age test.'. The secora reason for

lack of information on storage life is that most of the prior work has been

focused primarily on improving safety and performance (including energy density,

rate capability, and voltage delay) of these cells. The reason for placing initial

emphasis in these areas, especially safety , is that if the cells cannot be shown

to operate safely and simultaneously deliver their inherent high performance

capability, then it would not be worth pursuing the development of these cells to

replace existing primary cells such as zinc-carbon, or zinc-silver oxide cells.

The information that is available on storage life of these cells may be

divided into two categories. The first of these may be classified as compatibility

type data. This refers to stability of various materials of construction in the

very corrosive environment of the lithium-sulfur oxyhalide cells. Results in

this category were sometimes obtained by simple corrosion (weight loss) measure-

ments on candidate materials after storage in the solvents at elevated temperature.

In other cases the results were obtained by electrochemical techniques involving
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the measurement of currents between test materials and counter electrodes held at

the potential of lithium. The second category of information consists of accel-

erated life test data on some of the earlier cell designs. These usually con-

sisted of measuring capacity loss rates of cells while on storage at elevated

temperature (at which self discharge rates are assumed to be accelerated) and

then projecting loss rates and hence capacity of yells stored for given periods

of time at ambient temperature. Another accelerated test technique has been

developed during the past few years and has been applied to several types of cells

including Li-SOC1 2 and Li-SO 2C12 cells. The technique involves use of a micro-

calorimeter t^ measure the small amount of heat generated in a cell while on

stand. The heat generation is attributed to the self discharge reaction so that

a quantitative measure of the heat generation can be converted to an equivalent

self discharge current. By simply measuring heat generation rate, it is then

possible to calculate electrochemical loss rate and residual capacity after any

given period of time. Both of these techniques have been employed to project life

of some of the earlier designs as mentioned above and some of the newer designs

with materials that are intended to improve safety and voltage delay.

The results of the compatibility as well as the accelerated life tests

have provided at least some preliminary guidelines with which to establish storage

life and factors that influence life of these cells. The most pertinent of their

findings are presented herein.

Finally, it is well to mention a few points regarding the merits and

uncertainties of the above accelerated tests, as well as some planned JPL work in

this area. The merits of accelerated testing are quite well known, i.e., they

permit rapid deterrination of life of the cells and provide a convenient method

for rapidly screening candidate new materials and design changes with regard to

their effect on life. The major uncertainty of the tests is also well known,

7-2



accelerating factor (temperature) and hence the test results may lead to faulty

conclusions. In order to help resolve this uncertainty, JPL is planning studies

aimed at establishing the temperature limit below which the mechanism does not

change and hence below which the tests must be carried out to yield valid pro-

jections. This work will involve use of microcalorimetry as described herein.

7.1 GTE FINDINGS

In a prior study GTE pointed out two possible causes for loss of capacity

during storage (Ref. 3, pp 37-42). The first of these is chemical reaction be-

tween the lithium anode and SOM 2 solvent. They indicate that the reaction takes

place quite rapidly during the very early stages of life and that the process

slows to an insignificant rate shortly thereafter. They were not concerned with

methods for impeding the reaction in that it consumes only a small and insignifi-

cant fraction of the total amount of lithium. The second cause is attributed to

electrochemical reduction of SOU 2 on the surface of the anode current collector

or cell case which is in contact with lithi ,,=, i.e., a short circuited local cell.

One factor that was found to influence this siacond mode of capacity loss is

material of construction of the case and collector. Figure 20 gives the current

density as a function of time for two different case materials in contact with

lithium and SOU 2 at 72°C. The current density, which is a measure of the self

discharge rate, is noted to drop sharply after the first few hours for both 304

stainless and cold rolled steel but to level off at a higher current for the

stainless. Therefore, the cold rolled steel appears less reactive and should

yield better shelf life than the stainless steel. Mother factor that is claimed

to affect this second mode of capacity loss is electrode geometry (but nu details

regarding geometric effects are given in this reference).
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I' a final report from :pother investigation GTE examined the shelf life of

spiral wound "D" cells stored at elevated temperatures (Ref. 5, pp 32-123). These

employed lithium-nickel 'cxd2t anodes and Shawinigan Black/Teflon-nickel Exmet

cathodes with dimensions given for "Design B" in Table V. Electrolyte was 1.8-mol

LiA1C14	1C1made from oven dried LiCl and sublimed A 3 . Separator was comprised of

.010-in.- (10 mil) thick non-woven glass material. The components were installed

and hermetically sealed in .020 (20 mil) thick cold rolled steel cans that were

plated with 3 t 4 microns of nickel on their outsides. Figure 21 gives the out-

put of cells of this type as a function of discharge current and temperature to

a 2.0 volt cutoff voltage after one month of storage at room temperature.

Table IX gives the corresponding output of these cells after storage for one

month at 55°C. Results revealed not mush change in output for cells stored at

55°C as compared with cells stored at room temperature at low discharge currents

of 0.1 to 0.2 amps (0.3 to 0.6 mA/cm 2 ). At higher currents the cells stored at

55°C generally gave somewhat lower output than those stored at room temperature.

Table X gives the corresponding output of these cells after storage for one month

at 72°C. Results revealed that capacity of the cells had degraded appreciably

even at currents of 0.2 amp (0.6 mA/cm 2 ) and below. Cells discharged at currents

of 0.5 amp (1.6 mA/cm2 ) and above were found to deliver essentially no capacity

in that their voltages dripped rapidly below 2.0 volts at the start of discharge

and declined even further during the course of discharge. A notable exception to

the above was for cells discharged at 40°C and at currents of 0.._ amp (0.6 m&/cm2

and below. Capacities of at least some of these cells were noted to be essentially

the same as capacities of cells stored for one month at room temperature and dis-

charged at 40°C. These latter results prove that the lithium remains intact

during the course of storage. The loss in capacity during storage of these cells

cannot therefore be attributed to consumption of lithium. Rather, the loss must
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be attributed to other phenomena such as a passivating film on the anode, loss of

electrical contact between the lithium and its nickel current collector or loss

of contact between the carbon black and its nickel current collector, or possibly

some degradation of the solvent and electrolyte. Whether the phenomena responsible

for capacity loss are one of the above or some other phenomena, it is well to point

i
out, however, that their effects can be nullified by raising the cell temperature

to 40°C. Practical significance of this finding is that it may be worthwhile to

investigate heating of aged cells prior to discharge.

As mentioned in Section 6.3, GTE, in this same investigation, examined

the use of C1 2 additive to Li-SOU 2 cells to reduce voltage delay. They found

that addition of C1 2 did not diminish delay but that it did cause severe and

rapid loss of capacity. The extent of the loss was much more than could be

accounted for by reaction of the known amount of C1 2 with the lithium anode, i.e.,

2Li + C1 2-+2LiCl. On this basis it would appear that C12 is very detrimenta.L from

a life point of view. Further, since C1 2 is known to be a contaminant in indus-

trial grade SOU 2 , provision should be made to remove it in purifying the S0C12

for use in Li-SOC12 cells.

As part of another investigation GTE examined the capact.;y retention of

"DD" size cells as a function of a) anode vs cathode limited design, b) S0C12 vs

S02 C1 21 and c) additives used to diminish voltage delay (Ref. 14, pp 2-6). These

cells were of the bobbin type configuration and employed highly purified sol-

vents, electrolytes, and additives. They were discharged of a current density of

1 mA/cm2 for the capacity retention tests. Figures 31 and 32 give the capacity

retention of anode and cathode limited SOC1 2 cells with 1.8-mol LiA1C14 at both

25°C and 55°C. Inspection of Figure 31 reveals that the anode limited cells lose

less than 5% of their capacity after 35 weeks at 25°C. Based a microcalorimetric

studies GTE believes this loss rate at 25°C is not linear with time but diminishes
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markedly after this time. Therefore, the storage life of these cells is projected

to be at least several years at 25°C. At 55°C the cells are noted to lose 50%

of their capacity after about 22 weeks of storage. Inspection of :figure 32

reveals that the cathode limited cells also lose about 5% of their capacity

after 35 weeks of storage at 25°C and 50% of their capacity after only 8 weeks of

storage at 55°C. Since a five fold excess of lithium was used in the cathode

limited cells, it is highly unlikely that the capacity loss can be attributed to

lithium corrosion. Rather, the mechanism is attributed to recrystallization of

LiCl in the cathode pores from the surface of the lithium anode. It is known

that a LiCl film grows on the surface of the anode at elevated temperature due to

recrystallization and crystal growth. The LiA1C14 salt provides the medium for

this process. Therefore, LiCl is speculated to be dissolving at the anode and

depositing at the cathode so as to deactivate the cathode surface. This phenomena

would be expected to have a more pronounced effect on capacity loss of cathode

than anode limited cells because of the lower initial surface area of the former.

The above results indicate that this is the case and give some support to the

hypothesis. The results are also in agreement with the earlier studies by GTE

above which concluded that the capacity loss cannot be primarily attributed to

lithium corrosion.

The effect of some voltage delay additives on capacity retention at 55%

of bobbin type "D" cells employing both SOC1 2 and SO, C12 depolarizers is given in

Figure 33. In all cases the electrolyte was 1.8-mol LiA1C14 and the cells were

anode limited. The SO2 additive was incorporated by adding SO2 directly to the

solvent at a concentration level of 1.0 mol. The Ca additive was incorporated by

adding Ca(A1C1 4 ) to the solvent at a concentration level of 0.5 mol. Inspection

of Figure 33 reveals that both the SO 2 and Ca additives have an adverse effect on

capacity retention. Also, it is noteworthy to point out that the best capacity
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retention is obtained with SO2C12 + 1.8-mol LiA1C14 without any additives. Capa-

E

	

	
city of cells with this solvent is noted to drop about 20% during the first week at

55% and then remain essentially constant for times up to 22 weeks. This finding

is somewhat surprising in that it was previously believed that SO 2C12 decomposes

readily into SO2 and CL  and that the C12 would react rapidly with the lithium as

has been shown to be the case when the C1 2 is added to SOU 2 . The results then

Imply either that there is not much decomposition at cU2C12 or that the lithium

film in S02C12 is more resistive to C12 penetration than it is in SOC12.

GTE carried out limited storage life tests on cells that employed the

new clovoborate electrolyte, 
Li2B10C110, 

which is effective in reducing voltage

delay (Ref. 11, pp 129-132). The tests were carried out on "AA" size bobbin cells

employing 0.25-mol 
Li2B10C110 

electrolyte and, for comparison, conventional 1.8-mol

LiA1C14 electrolyte. The cells were discharged in the fresh condition (3 days

after assembly) and after storage for 2 weeks at 55°C. Results, given in Table

XVIII, indicate that storage life of cells with the new clovoborate electrolyte is

comparable to, if not slightly longer than, storage life of cells with the con-

ventional LiA1C1 4 electrolyte. For example, the average capacity of fresh and

aged cells employing LIAM 4 was found to be 436 and 342 mA-h, respectively (or

a loss of 22% during storage). By comparison the capacity of fresh and aged cells

employing 
Li2B10C110 

was found to be 440 and 391 mA-h, respectively (or a loss of

11% during storage). Thus, it appears that this new electrolyte does not diminish

and even appears to slightly improve shelf life.

Electrolytes containing a ratio of LIM to AM 3 less than one (those

with an excess of A1C1 3 over the stoichiometric one-to-one ratio required for

LIAM4 ) are preferred for reserve type cells in that they impart higher capacities

and rate capabilities than conventional LiA1C1 4 . Explanation for the improved

performance of cells containing AM 3 rich electrolytes is that the excess AM 3
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reacts with the product LiCl and prevents the latter from precipitating in the

pores of the cathode (which has been shown to limit cathode current and capacity).

GTE cautions that such electrolytes cannot be used with active cells because the

excess A1Cl,i will react destructively with the lithium anode (Ref.. 2, pp 262-265).

Although it was not stated here, this implies that the A1C1 3 reacts with the LiCl

film on the anode. The film then continues to grow via reaction of Li and SOC12

and is simultaneously consumed by A1C1 3 until the excess of AM 3 (over the

stoichiometric amount) is depleted and then there is no further reaction. On this

basis it would then appear that electrolytes containing a LiCl to AM 3 ratio of

one-to-one or greater would be preferable from a life point of view. If this is
t

not the case, then the cells will .,uffer a loss in anode capacity equivalent to

the amount of excess AM  during storage. If the cells are anode limited, then

this will be reflected in a direct loss of cell capacity.

7.2 MALLORY (DURACELL) FINDINGS

In a final report of a prior investigation Mallory presented results of

material compatibility studies (Ref. 6, pp 4-5). Two types of materials were

examined and consisted of: a) metallic materials for use as the cell case, cur-

rent collectors, etc., and b) insulating materials for use as separators, insu-

lators, sealants, etc. Findings regarding tha metallic materials are given in

Table XI. Inspection of this table reveals several types 'of metals, including

nickel as well as stainless steel types 304 and 316, that are stable in SOC1 2 and

are therefore candidate materials of construction for long life cells. Findings

regarding the insulating materials are given in Table XII. Inspection of this

table reveals relatively few types of insulating materials that are stable in

SOC12 and are therefore candidate materials for long life cells. These insulat-

ing materials include glass, Teflon, and Kel-F.
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In the same report Mallory presenter' results of an extensive &half life

test on hermetically sealed "D" size Li-SOC12 calls (Ref. 6, pp 27-52). These

were of the spiral wound configuration wir 1 1 anode and cathode length. width, and

thicknesses of 20 in. x 1.i5 in. x 0.017 in. and 20 in. x 1.5 in. x 0.019 in.,

respectively. Nickel was employed as material of construction for both case and

cover. Cathode composition was 90% Shawinigan carbon black and 10% Teflon. Slec-

trolyte composition was 1.0-mol LiA1Cl 4 prepared by fusing pre-dried LiCl with iron

and water free (FlL a) A1C13 . Weight of SOU 2 + A1C14 was 45 gm/cell and weight

of carbon was 5.1 g/cell. The cells were stored at temperatures from 25 °C to

72°C for periods of time from 1 week to 2 years, and were then discharged at cur-

rents from 0.25 amp to 3.0 amp (0.55 to 6.6 mA/cm 2 ) at temperatures of 25°C and

-30°C. Results of this investigation revealed very little capacity loss of the

cells for the indicated range of storage times and temperatures. For example,

fresh cells were found to deliver outputs near 12 Ah and 8 A at currents of

0.25 A and 3.0 A, respectively, at 25°C. After 3 months at 72°^ the cells were

found to deliver outputs near 10 Ah and 5 Ah at the corresponding currents and

temperature. After 6 months at 55°C the cells delivered outputs near 11 Ah and

6 Ah at the corresponding currents and temperature. After 1 year at 45°C the

cells delivered outputs near 10 Ah and 6 Ah at the corresponding currents and

temperature. Finally, after 2 years at 25°C a cell was found to deliver an out-

put near 6 Ah at 3.0 amp (6.6 mA/cm 2 ) at 25% (the data for the output at 0.25 amp

(0.55 mA/cm 2 ) was lost). When the aged cells were discharged at -30°C the cells

were found to deliver diminished outputs, as compared with the above, but about

the same outputs as fresh cells discharged at -30°C. The major conclusion that

can be drawn from these results is that Li-SOC12 cells, made with the materials

and configuration described above, exhibit relatively good storage lives. At

storage temperatures up to 45°C they lose no more than about 20% of their

7-9



capacity for periods up to 2 years. Even at the relatively high storage tempera-

tur,i of 72°C they Lose no more than about 25% of their capacity after 3 months.

It was found, however, that lengthy storage of the cells, especially at elevated

temperatures, did have a pronounced effect on voltage delay. These phenozaena are

discussed in Section 6.4.

The cells employed io thece t e--ts yielded the lowest capacity loss rates

of all Li-SOC12 cells. Results may be used to derive an expression for capacity

loss rate under what might be classified as best case conditions. Capacity loss

rates at 72°C and 45°C are approximately 8% and 1% per month, respectively.

These results are then substituted in and used to determine the constants in an

Arrhenius equation of the form: In R - 
T 
+ b (where R - loss rate %/month, T

absolute temperature °K, and "a" and "b" are the constants). The resultant

equation is In R - 
-1.OTx104 

+ 32.23. Employing this equation one finds the loss

rate at 25°C is 0.06%/month (which is in fair agreement with the real time test at

ambient temperature).

7.3 ELECTROCHEM INDUSTRIES FINDINGS

Electrochem Industries conducted limited storage life tests on AA-size

Li-SOC12 cells with BrCI additive to the electrolyte as described in Section 5.5

(Ref. 9). 'Iesults of these tests are given in Figure 22. Curves A and B compare

the discharge characteristics of a fresh cell and one stored 3 months at 72°C.

Results revealed very little loss in c ,,acity for the cell stored at elevated

temperature but somewhat reduced voltage for this cell as compared with the fresh

cell. Curves C and D compare the discharge characteristics of these cells across

180 ohm loads (0.75 mA/cm 2 ) for one stored 3 months at 72°C and for a fresh one.

Results revealed essentially the same capacity and vuirage levels for the cells at

7-10



this current density. Finally, curve E gives the discharge characteristics of a

cell across a :$0 ohm load (0.75 mA/cm 2 ) after 15 montus storage at rc ,3m tempera-

ture. Results revealed essencislly the same capacity and voltage characteristics of

this cell as compared with a fresh cell at this current density. Compnrison of

these results with those of GTE and Mallory in the preceding Sections 7.1 and 7.2

reveals that addition of BrC1 to USOC12 cells does not degrade and may even

improve their storage fife capabilities to a limited degree.

Electrochem Industries conducted microcalorimetric studies on "AA" size

versions of their Li-SO 2C1 2 (with C12 ) cells described in Section 4.4 (Ref. 11).

Res.'ts of this investigation are summarized in Figure 25. Inspection of this

figure reveals that the heat dissipation on stand at 37°C decreases sharply during '

the first 2 months after fabrication and that the heat dissipation for Li-SO 2C12

cells without Cl, is higher than that for Li-SO 2 C1 2 cells with C12 . With the

assumption that heat dissipation is directly pr •uportional to self discharge, the

results 'zdicate a capacity loss of 14: during the first year of storage and a

projected 5% loss during the second year for Li-SO 2 C12 cells with C12 at 37°C.

The loss rates should be less at ambient temperatures.

Finally, Electrochem Industries carried out real time storage life

tests on the "AA" size Li-SO 2C1 2 (with C12 ) cells described above (Ref. 11).

Results shown in Figure 26 indicated a loss of 8% of capacity after one year

Storage at ambient temperature. These results give some degree of support to the

life projections based on the calorimetric studies above. It should be noted,

however, that although capacity loess of these cells is very small, *_hey do

exhibit lower voltages after storage, especially at the higher currents. On this

basis it appears that the USO2 C12 (with C1 2 ) cells exhibit some loFcs in rate

capability with time as do the conventional Li-SOU 2 cells.
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7.4 JPL FINDINGS

In 1,979 JPL married out an evaluation of some small button type Li-SOC12

cells from a new vendor in the field (Ref. 22). Details of construction of these

cells were not disclosed. They were, however, known to contain a disc shape lith-

ium anode and carbon cathode, SOC12 solvent, LiA1C1 4 electrolyte, and steel cases.

These had a diameter of 1 inch and thickness of 1/8 inch. Nominal capacity of

the cells was given as 200 nAh at a current of 10 mA.

The evaluation included a limited amount of accelerated shelf life test-

ing. This was carried out by storing groups of cells at elevated temperatures

from 40°C to 100*C and then periodically removing them to measure residual

capacity. It was then planned to prepare an Arrhenius plot of "log of capacity

loss rate vs 1/temp" so as to project life at ambient temperature. Reproduci-

bility of results was very poor and It was not possible to obtain a meaningful

Arrhenius plot. This was attributed to nonuniformity of the cells supplied by

the vendor. All t.ie cells stored at 80°C and 100°C vented shortly after being

placed in ovens at these temperatures. This indicated that the upper storage

temperature limit is less than 80°C for this type of cell. Cells stored at 40°C

and 60°C exhibited varying degrees of capacity loss. Those stored at 60°C

generally lost more capacity than those stored at 40°C. After 224 days a few

cells storee at 40% delivered capacities near 125 mAh. This corresponds to a

loss of 60%/yr at 40°C. By comparison, cells stored at 60°C exhibitec capacity

loss of about 600%/yr based on shorter periods of storage of 32 days. The

capacity loss rates of these cells is much higher than the loss rates of Li-SOC12

cells from other vendors. The results are not believed to reflect the true shelf

life capabilities of the Li-SOC12 system. Rather, the results suggest a batch of

:aul.y cells from this vendor. This possibility is most likely the case consider-

ing the fact that these cells were "rom one of tae first lots of cells that were

made by this new vendor.
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Currently JPL is exploring an improved method for carrying out

accelerated life tests of lithium cells. This involves use of microcalorimetry

to measure rate of heat generation on stand which in turn is an indirect measure

of the self discharge rate. Experiments are planned to measure heat generation

rate on stand over a range of elevated temperatures. The resultant data will

then be plotte3 in the form of an Arrhenius plot of "log Rate vs 1/T." We

anticipate a linear relationship up to a certain temperature followed by an

inflection in the curve at this point. This will signify that the mechanism of

self discharge has changed at temperatures above the inflection point. On this

basis we will have established an upper temperature limit for the conduct of

accelerated tests. This in turn should provide a mo-t :-lirble and nondestructive

method for accelerated testing of cells, i.e., by obtaining and reducing micro-

calorimetric data on cells below this upper temperature limit. The technique

will then be employed to screen new materials and designs intended to improve

life.

Some additional findings that are pertinent to storage life were

obtained by Eagle Picher in a prior JPL-sponsored study Ref. 27). This involved

corrosion studies on candidate petals that were being screened as possible sub-

stitutes for, or additives to, carbon black in order to improve rate capability

(as described in Section 4.6). The corrosion rates of these metals, in terms of

mils/yr, were d^termined by weight loss measurements on samples stored in SOU 2

at elevated t ierature, 120°F. Results are given in Table XX. Inspection of

this table revealb that there are two metals, niobium and siJ P er, that are

apparently completely stable in this environment. Further, it is noted that there

are several noble metals, including gold, platinum, and tungsten, that appear to

be quite stable with relatively low corrosion rates of less than 2 mils/yr.

Finally, it is noted that there are two metals, consistin6 of copper and aluminum,
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that are quite unstable with corrosion rates of about 50 to 100 mils/yr. These

results are useful in selecting stable new materials of construction for long

life cells.
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Table I. Storage Evaluation Program Results - Anode Limited Cells

54.44 •C STORAGE
I II NITCI	 f.nu TRO. c	 AM MAY [TnGAGf 	 I	 an MA• CTne•rf	 ennAV ernaArs

CHAMBER NUMBER

CELL NUMBER

AVERAGE	 STORAGE TEMPERATURE

LAST OCV AT DISCHARGE TEMP(o

'C
VOLTS

A18
W10

A19	 A20	 AVG
WI

Al	 A2	 A3 AVG AS

W2

AS	 AT AVG

W ♦
AS
	

AS	 AID
130

3.739	 3.739	 3.738

1
AVG

3.754

N/A

3.614	 3.655	 3.654	 3641

132
3.707	 3.713	 3.713	 3.711

128	 IN

3.703	 3.716	 3.716	 3.712

RISE	 TIME	 TO	 3.111	 VOLTS MIN N/A 0	 0	 0 0 0 0 0 0 0 0 0 0

AVERAGE	 DISCHARGE	 TEMP •C 35.55 29.44 - - 24.44 23.33

AVERAGE 	VOLTAGE (2) VOLTS 3.580 _ - 3.565 3.527 3.525 3 . 529 3 . 527 3 524 3.525 3.518 3.522

AVERAGE	 LOAD	 (3) AMPS 0.358 -- 0.357 0.353 0.352 0,353 0.352 0.357

TIME TO CUTOF F HRS 561.0 578.4 578.7 579.4 575(41 583 504 569 5784 585 578 590 564
CAPACITY DELIVERED AA 200.0 207.1 207.2 2074. 205.0 205.8 206.1 200.9 204.2 205.9 204.0 207.7 2W1

ANODE	 EFFICIENCY % 93.2 92.8 92.6 92.9 91.8 _ 922 92.3 90.0 91.3 92.1 91.4 93.1 92.2

RETENTION VS CONTROL 	 (AVG) % 98.9 -- -- -- 98.3 -- -- -- 99.1N/A

NOTES	 ( 1) OCV JUST PRIOR TO LOADING

12) ALL DATA TAKEN TO A 3.111 JOLT CUTOFF

13) ALL CELLS DISCHARGED INTO A 10 OHM LOAD
(4) ESTIMATED CUTOFF TIME - RECORDER INADVERTENTLY REMOVED FROM THESE THREE CHANNELS PRIOR TO CUTOFF

- ALL CELLS HAVE A NOMINAL ELECTRODE AREA OF 1294 C61 2 ,NOMINAL CURRENT DENSITY IS 0.28.A2cm2

-- ALL CELLS HAVE A NOMINAL 0159 INCH THICK CATHODE, NOMINAL CATHODE MIX WEIGHT OF 1!2.0 GRAMS
WITH A NOMINAL BULK DENSITY OF 0.43991cm 3

Table II. Cathode Evaluation Program Performance Summary

1 44 • C -1!!1 9.0	 ---r . ._-i1J3•C
T..I C

'	
E55

%
RN	 •	 G	 CAe	 (ri

E.1
♦ vG	 CA•	 (r1  •v:	 CAn	 (lF

v0i!S	 I•n1 v C.+	 •w	 14.1 v^-r5	 ^•..;	 1•.v+

O. I S T 2	 I	 S 506	 2J0 S	 1 973 I	 S SIS	 261 9	 2 T7! !.3{7	 250 •	 2 131
C 8	 28	 (	 3 110	 166 5	 1 553 ;	 3550	 246 4	 206{ 3 ^3^	 2701	 ' 923

3666	 141	 '509	 I'll
1 1206	 3 123	 96 4	 001

5ARC	 ;949	 X6911
! 1 69	 113	 1	 93

3556	 2 39 8	 2019
J 503

	

126I	 1 3J0
1 6002	 l	 3 451	 . 1 2 9	 0971 3 466	 S5 5	 65 5 308	 136 2	 1 3`.1

Table III. Typical Computer Printout for D Size Cell

I
1

I

LI	 ..... L enFth of cathode
L	 .... Length of firit separator

Length of an(xie

L.,	 ..... L.enXth of second separator

T,	 ......Fliickness of c:uhode

TI	 .... III it kness of anode

I'	 ..... Dotal thickness +anode. cathode and 2
scpariaors)

ll	 ..... Mandrel diameter
Cell , apa( its•

N Number of turns around mandrel
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Table IV. Maximum Capacities Obtained with Various Cathodes

Cathode
Thickness

in.

Weight of
Carbon
Blend

Gig/=2

Mndmum C%padtY
Obtained

=41/cm2
Ah/C of

Capon Blend

0.023 14 44 3.14

0.034 28 53 1.69

0.052 52 62 1.19

Table V. Electrode Parameters

l,sagth Width Tbicimess
Design/Mectrode inches Inches Inches

A	 Cnlbode 16 1.75 0.023
Anode is 1.75 0.010

B	 Cathode 14 1.75 0.034
Anode 16 1.76 0.016

C	 Cathode 12 1.76 0.052
Anode 14 1.76 0.022

s

9-2



OF PCvi

Table VI. Teat Results vith Different Designs

OYoia>Rt 0=160 21W 41 OMl C 16
CwTed DMNr Oi	 - is % 0 y

Damp A ^

1

s Ah

1.40 3.90 ar 0 4..29
A 0.t0 1.06 169 0.06

4L 36 0. OT a.0 11.36

Lao a. 6a 11.6 k a6
s L" LK 111.& l0.i

3.60 IL 0 4.9
IL I"

1.lb a." is • 10. 0
C 0.6v 6.011 se. 3 la. N

4.0 4L93 A► 3 u.se

Table VII. The Facto: i:l Matrix for the Empirical
Optimization of the Li/SOC12 Cells

Carbrn weight (6)
	

5-6	 2•S-3
CathWe kngth (cm)
	

76. 2	 38 . 1	 25.4	 18 . 1	 25-4	 12.7
Cathodf thirknev (CM)
	

00.78 0076 0. 114 0038	 0.057	 0114
UAICi, (sah)
	

1 .8 N

concentration	 I0w

in SOCI,	 05M

	

A	 A	 C	 U	 E	 F

t
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Table VIII. Extended Factorial Matrix for the Optimization Studies

Teflon Content	 LPS Electrolyte	 Foote Electrolyte
Wt %	 Cone. of LIKICI4 	Conc. of LlAlC14

0.5(M) 1.0 (M) 1. S(M)1 2.0(M)! 0.5(M)  1.0(M) 1.5(M)

O JA 0.1A CA 0.1A O JA O .lA O.IA

1076	 0.3A 0 . 3A 0.3A 0 . 3A 0.3A 0.3A 0.3A
O.SA O.SA O.SA 0.5A O.SA 0.5A O.SA
1.0A LOA LOA 1.0A I.OA 1.0A 1.0A

O.IA 0.1A 0.1A 0. A O.IA O.IA 0.1A

=0%	 0.3A 0.3A 0.5A 0.3A 0.3A 0 . 3A 0.3A
0.5A 0 .5A O. SA. 0.5A 0 . 5A 0.5A O.SA
LOA 1.0A LOA 1.0A LOA LOA 1.OA

G .lA 0.1A 0.1A 0.1A 0.1A 0.1A 0. IA
0.3A 0 . 3A 0.3A 0.3A 0.3A 0 . 3A 0.3.x►

30% 0.5A 0 . 5A O.SA O . SA O.SA 0.5A O.SA
LOA 1.0A LOA LOA 1.0A 1.0A LOA

Table IX. Cell Capacity After One Month Storage at 55°C

80xN
A

Cs C*Wtty at

_WC OrC 20'C 4vC

0.1 10.30 0.80 10.6 8.80
6.60 1.20 016 0.65

0.2 T.40 MOO 10.05 8.80
4.10 0.50 8.00 8.0

0.6 6.50 4.45 7.40 3.0
614 4.30 5.75 7.10

1^ 0 4. !3 L OO 8.2 7.25
1116 1.00 616 6160

0. 0 - 2.50 6.40 6.80
- 1.86 4.10 R.40
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Discharge
Rita
A

Cell Capacity at

-20rC 0'C	 20'C	 4C'C

6.40 540 1.75 8.00
0.05 a 2.60 4.00

7.40 6.00 7.40 8.60
0.1 2.30 6.70 8.40

It

10.50

4.00 9.20 8.6 9.80
0.2 2.75 4.20 0 10.00

_ — -- 4.00
0.5 -- 4.00

ORICr"JAL PAGE IS

OF POOR QUALITY

Table X. Cell Capacity After One Month Storage at 72'C
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Table XI. Compatibility Studies of Metallic Meterial with 1.5 (M) LiA1Cl4 -S0C12
Inorganic Electrolyte at 85°C (185°r)

Metallic Materials 	 Duration of Refluxing	 Condition of the Samples
at 85 ° C (days)	 After Refluxing

i
Ni Span C	 47	 Discolored in contact with air

No sign of corrosion

AM-350	 47	
it
	

of
	 "	 ► '	 "

Ni-A	 47	
if	 it	 ^^	 n	 n

52 alloy	 47	 to	 if

Ni-(99.5x)	 47	 "	 "

Inconel 762	 47	
of
	

of

Inconel 750	 47	 "	 "

Inconel 625	 47	 "	 "

Invar	 47	 "	 "

K-Monel	 47	 "	 "

Incoloy 800	 47	 "	 "

304 Stainless	 45	 "	 "

316 Stainless	 45	 "	 "

Monel 400	 45	 "of

Inconel 600	 45	 "	 to

Inconel 601	 33

302 Stainless	 33

Molybdenum	 33	 Remained shiny in air

No corrosion

Tantalum	 33	 "	 "	 $I

Niclad steel sheet ( edges	 Steel completely dissolved,

not covered by Ni)	 32	 Ni part intact

9-6
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Table XII. Compatibility Studies of Insulating Materials with 1.5 (M) LiA1Cl4-S0C12
Inorganic Electrolyte at 85°C (185°F)

Insulating Materials Duration of Refluring Condition of the Samples
at 85% (days) After Refluxing

1) 'Webril' nonwoven poly- 47 Complete disintegration
propylene fabric

2) 'Celguard' polypropylene 47 if

film

3) Glass filter paper 47 Good, no change

4) Epoxy G-10: Epoxy-filled 33 Class fabric OK; Epoxy
fiberglass woven f.,:bric disintegrated

5) Polypropylene sheet 46 Dark and brittle

6) PVC sheet 46 Complete disintegration

7) CPVC sheet 46 it

8) ABS sheet 46 it	 to

9) Plexiglass sheet 33 of

:0) Rulon rod (a type of 27 Good, no change
teflon)

11) Kel-P rod 27 Good

12) Teflon rod 27 Good, no change

13) Buty l rubber (60 d) 15 Disintegrated

14) Neoprene rubber (50 d) 15

15) Neoprene rubber (70 d) 15 of

16) Silicone rubber 15

17) Viton rubber (70 d) 15 Cracked
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Table XIII. Voltage Delay After One Month Storage At Room Temperature

Discharge Discharge Recovery
Temperature Rite Cell Time to 2.0 V

•C A Ho. second

0.2 1 0
2 0

0.5 11 0
12 0

40 110' 21 2.0
22 6.5

2.0 32 3.0
31 9.0

4.0 -- --

• 0.1 3 O
4 0

0.2 13 1.0
14 1.5

0.5 23 --

RT
24 2.8

1.0 33 5.6
34 0.5

2.0 45 100.0
44 5.0

4.0 60 144.0
51 1260.0

0.1 5 2.0
6 O

0.2 15 14.0
16 6.0

0.5 26 9.0
0 26 2.6

1.0 35 21.0
36 42.0

2.0 47 28.0
46 0

4.0 26 180.0
63 60.0
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Table XIII. Voltage Delay After one Month Storags At Room Temperature (Coutd)

Discharge
Temperature

•C

Discharge
Rate
A

Cell
No.

Recovery
Time to 2. 0 V

0.1 T 2.0
e 0

0.2 IT 1.5
18 2.0

-2WC 0.5 27 5.5
28 9.5

1.0 38 91.0
39 66.0

2.0 42 46.0
48 48.0

0.1 9 120.0
10 4.5

o.2 19 3.5
20 4.5

-40 0.5 29 21.0
30 96.0

1.0 40 115.0
41 106.0

2.0 43 2011.0
37 251.0
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Table XIV. Voltage Recovery on Discharge After Storage of One Month at 55°C

C*U Number Discharge Rate Discbarge TV.*. Time to 2 Volta
Secaeds

mA
•C

64 100 40 0

65 100 40 0

a ,100 RT 0

of 100 RT 0

68 100 0 0

a 100
0 0

i0 100 -20 0

61 100 20 206

it 100 -40 230

93 100 -40 22

64 200 40 0

i5 200 40 0

66 200 20 ?1

67 200 20 216

68 200 0
so

69 200 0 414

To :00 -20 27

n 200 20 0

74 600 40 o

76
500 40 6

76 600 20 0

106 500 20 41

109 Goo 0 0

'r9 do 0 63

so 500 -20 90
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Table XIV. Voltage Recovery on Discharge After Storage of One Month at 55%
(Contd)

Cell Number Discharge Rate
mA

INscharge Toap.
'G

Time to 2 Volts
Seooads

EI 500 -20 260
84 1000 40 45
85 1000 40 114
86 1000 !0 20
87 1000 20 281/2
88 1000 0 Dfscbarp below 2V

04. below 0
89 1000 0 84
90 1000 -20 118

91 1000 -20 103
108 2000 40 816
95 2000 40 270

96 2000 20 321

97 2000 20 324
103 2000 0 114
104 2000 0 408
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Table XV. Voltage Recovery on Discharge After Storage of One Month at 720C

Ceti Number Discharge Rate
mA

Discharge Temp.
'C

Time to 2 Volta
decoads

130 60 40 0

131 b0 40 0

152 50 20 0

133 b0 20 0

115 b0 0 0

136 so -20 0

110 100 40 0

111 100 40 0

142 100 20 0

113 100 30 O

114 100 0 0

115 100 0 0

116 100 -20 0

117 100 -20 7200

120 200 40 0

121 200 40 0

122 200 20 138

123 200 20 0

124 200 0 0

125 200 0 0

in 200 -20 0

127 200 -20 0

162 boo 40 135

163 boo 40 so
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Table XVI. Voltage Delay After Storage of Partially Discharged Cells
Time of Recovery to 2.OV Storage Time 30 Days

Cell Storage Current Voltage
No. Temp Density Delay

*C mA/cm2

121 2.8 0
122 O

123 5.6 -12 sec.
.21 25 6 sec.

125 11.2 12 set.
126 12 aft.

127 2.8 2 min.
128 1 min. 18 sec.

129 5.6 2.5 mitt.
130 55 1 mint. 15 sec.

131 11.2 4 min. 25 aec.
132 4 min,

113 2.8 2 tin. 30 sec.
134 2 min. 48 sec.

135 72 5.6 2 ukin,
136 3 min.

1.17 11.2 3 min. 30 sec.
15a	

(
I 1 min.
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Tabl: `!VII.	 Teflon-Bonded Carbon Cathodes (16% TFE)

an mrtase was of eatleat ea~

Carbon tw teas Per ear a

== #T ^PTV" of arbm Daivetloa liicael

vlat8aa--i07t eoerPreked of acetylene MMI Is 1^ NDart.
^X

w
C431N

^a►et1 of ehareal Me 3011
1^ pUnited Dooemtrodtloa d oU 0.0146 lobo

C 11mus NR 1010 Deeomtwsttlm 011611 0.ot" no as 1^

• ltwd ea (lsawv x *—) area et deekeft ear aldw

Table XVIII. Voltage Delay, Capacity, and Capacity Loss in AA Bobbin Cells
Containing UAIC14 or L12B10C1 10 Discharged Fresh or After
Storage at 55 0 C for Two Weeks

Mitdmum	 Time to	 'lime to	 Potential	 Discharte	 Capacity
Potential	 Mio. Potent.	 Reach	 After	 Load	 to 2V

(V) 2V 3V 100 M. 1000 arc.

Call No. (Dec) (1100 (Dec) (V) (V) (ohm) (u A-br)

Stored I Mt, 550 C
1. SM LiA1C1.

86 1.6 30 110 — 1.9 2.7 82 325
10 1.6 40 250 — 1.7 2.3 172 353
v 1.4 50 290 — 1.5 2.6 340 360
14 0.45 20 — — 0.56 1.3 750 329

0.25M U,B,.C1„
93 2.6 <03 — <0.5 3.3 — 82 368
46 2.9 <03 — <0.5 3.4 — 172 409
94 2.4 <0.5 — 21 3.2 — 340 403
100 2.4 <0.5 —

----------------------------------------------------------------------------------------
2 3.3 — 750 385

Fresh cdb (dacharte started at ambient t0mperatum within 3 days of Nli*
LIM LiAla.

39 82 455
37 172 441
40 340 433
38 730 414

0.23M Li311116C310
79 82 439
77 172 444
80 340 430
78 770 425
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Table XIX.	 Summary of DSC Results for Li/SOC1 2 System

Tra"tion tatgeratru* VC)t
Cutoff to	 r

R"CUon Reactants ature ("la t rndoth'armic ftotha: a."_-

I SOCL "I 113 114
1 IdA1CL 371 143

I
LA + GOCL M TM 117, 111

4 U + LLl1CL 410 131 137(1)
5 L1 + LISO. 400 lal —
4 Ll + SsCI. 349 171
7 SOC6 + LhN 3" — 196(70)

L65
9 SOCL + 301 —

10 Li + 1 SOC1rLiAlCL 1 • 311 177
it ISOCIrL1A1CLI + S 301 130 —
I2 ISOCk LlA1C1.l + L1.N 367 — 131(130)
11 ISOC6LL41C1.) + LIA 307 —
14 Li + SOCI. + C 30 IM —
15 LA + UAIC4 + C $03 179 137(5)
16 LI + (SOC^LtAICI.) + C 330 — K 310(15)
17 Li + ISOCbL1A1C1.1 + C 301 107 IM, 104
18 Ll + ISOCIrLWCLI + C 301 IQ 93
19 LI + ISOCIrLiA)CI.1 + Cu 401 196 —
20 L! + 1SOCIrL1A1Ct.l + 6 414 1" 1t1S(15)
2l ISOC-LIAICI.1 + C + S
22 ISOC1rL1AIC1.l + C + Cu 401 —
23 LA + SOCI. + LICI + C 302 107 —
24 LI + SOCb + LISO. + C 961 131 —
25 Lt + ISOCIrL1A1C1.4A H.O + CI 453 1W 370
24 1.1 + 1SOC6-UA1C1.S0.1 (satd-; + S 414 IM —
27 Li + ISOC6L1A1C1.1 + C + Cu 417 177 13(30), 349(13)
u Li . ISOCIrLtAICL-SO. (said.)I + C + 6 400 101 96, 111(75)
29 L(-B alloy + WIC1. 309 111 137
30 U-B alloy + SOCI. 343 Ila 231.149
31 LI-B alloy + (SOC4-L1AICI.) 343 173 —
32 8 + ISOC4L1AlCl.1 393 — —
33 LA-B alloy + ISOCIrLIA1C1.1 + C 391 173 30(10). 331(73)

• Ingredients within the square brackets are a homogeneous solution.
Temperature at which the DSC linearly programmed temperature scan was terminated.

i Figures in parentheds are the Increase In the ample temperature above the linearly programmed temperature
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Table XX. Possible Electrode Materials for High Rate SOCi 2 Electrode

CORROSION RATES: (in mils/year)

POSSIBLE ELECTRODE MATERIALS
FOR

HIGH RATE SOC1 ELECTRODE

MATERIAL

Cadmium

Cobalt

Copper

Cold

Iron

Molybdenum

Nickel

Niobium

Palladium

Platinum

Silver

Tungstem

Stainless Steel

Al Uni num

CORROSION RATE*

23.0

4.1

103.0

.92

85.0

1.9

1.1

No Reaction

2.2

1.6

No Reaction

0.97

7.8

37.0

PURITY

4N85

4N8

5N

4N85

4N85

3N85

4N8

4N

4N

4N

5N

4N

*Corrosion in Apache Chemical Co.

1.4m LiA1C14 /SOCL2 at 120*F.

9-16



Table XXI. Volta--.2 Delay of Mallory "D" Cells After
Vari(us Periods of Storage

Storage

Temp

( 0 0

Storage

Time

Discharge

Current

(Amp)

Discharge

Temp

(°C)

Delay

(sec)

72 2 wk. 1 25 1000

55 2 wk. 1 25 137

25 1 mo. 1 25 0.5

25 1 yr. 1 25 480

25 2 yr. 3 25 180

72 3 mo. 3 25 1670

72 3 mo. 3 -30 infinite
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Table XXII. Film Thickness and Voltage Delay of Lithium Samples
Stored for Increasing Periods of Time at 55°C

Storage	 Film	 Voltage

	

Time	 Thickness	 Delay

(hrs)	 GM)	 (sec)*

154

	

4.5	 <1.0

	267	 20.0	 10.0

	

406	 50.0	 30.0

	

590	 45.0	 80.0

*Note Measured at 15 mA/cm2 versus a lithium counter electrode

9-18
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