Utility Oil Conservation

A Near-Term PV Central-Station Market

CONCLUSION

If baseline technology commercial readiness goals are reached, it will be cost-effective by the late 1980s in the primary market areas to construct photovoltaic plants solely to reduce oil consumption. Even if the real (uninflation-adjusted) price of oil does not increase over 1980 values, the economic advantages of photovoltaics will be substantial in the primary market areas.

PRIMARY MARKET AREAS
- California
- Florida
- Hawaii
- Puerto Rico
- Nevada
- Oregon
- Idaho
- Montana
- Wyoming
- Washington
- Alaska
- Louisiana
- Texas
- Oklahoma
- Utah
- Nevada
- New Mexico
- Arizona
- Colorado
- New York
- Pennsylvania
- Maryland
- Virginia
- West Virginia
- North Carolina
- South Carolina
- Georgia
- Florida
- Alabama
- Mississippi
- Louisiana
- Arkansas
- Missouri
- Illinois
- Wisconsin
- Minnesota
- Iowa
- South Dakota
- North Dakota
- Nebraska
- Kansas
- Oklahoma
- Texas
- New Mexico
- Arizona
- California
- Oregon
- Washington
- Idaho
- Nevada
- Utah
- Colorado
- Montana
- Wyoming
- Alaska
- Hawaii

SECONDARY MARKET AREAS
- Louisiana
- Texas
- Oklahoma
- Utah
- Nevada
- New Mexico
- Arizona
- California
- Oregon
- Washington
- Idaho
- Montana
- Wyoming
- Alaska
- Hawaii

PRESENT (1973) OIL USE:
- 85,000 BBL/DY (OIL EQUIVALENT)

PRESENT (1973) NATURAL GAS USE:
- 18,000 BB/DY

CONCLUSIONS

If commercial readiness goals are reached, by the late 1980s, the economic advantages of photovoltaics will be significant in the primary market areas. Even if the real (uninflation-adjusted) price of oil does not increase over 1980 values, photovoltaics will still be cost-effective.
Issues

• QUESTION: IS THIS APPARENT OPPORTUNITY REAL, OR IS THE ANALYTICAL APPROACH TOO SIMPLIFIED?
 • RESPONSE: DETAILED ANALYSES OF VALUE OF PHOTOVOLTAIC GENERATION IN SPECIFIC OIL-DEPENDENT SUNBELT UTILITIES

• QUESTION: ARE THESE RESULTS CREDIBLE TO THE INDUSTRIES THAT WOULD BE INVOLVED?
 • RESPONSE: EXTENSIVE IN-DEPTH DISCUSSIONS WITH REPRESENTATIVE ORGANIZATIONS IN THE UTILITY, PHOTOVOLTAIC MANUFACTURING, AND CONSTRUCTION INDUSTRIES

• QUESTION: HOW CAN TECHNICAL AND ECONOMIC RISKS BE REDUCED TO THE POINT THAT THE PRIVATE SECTOR WILL TAKE ADVANTAGE OF THIS OPPORTUNITY?
 • RESPONSE: ANALYSES OF INNOVATIVE FINANCING ARRANGEMENTS THAT COULD LEAD TO HAND-OFF TO THE PRIVATE SECTOR AT CURRENTLY ACHIEVABLE SYSTEM COSTS, ONCE TECHNICAL FEASIBILITY HAS BEEN DEMONSTRATED

SUPPORT OF FEDERAL PARTICIPATION IN INITIAL UTILITY-SCALE PROJECTS THAT DEMONSTRATE TECHNICAL FEASIBILITY OF LARGE PHOTOVOLTAIC SYSTEMS FOR UTILITY APPLICATIONS

Value Analysis Methodology
Value of PV Power Plants in the Southern California Edison System

ASSUMPTIONS

- ALL COSTS IN 1980 DOLLARS
- GENERAL INFLATION RATE
 - 1981 - 1987: ~8.4%/YR
 - 1988 - : 5%/YR
- REAL FUEL PRICE ESCALATION
 - 1981 - 1984: ~2.7%/YR
 - 1985 - : 2%/YR
- PHOTOVOLTAIC SYSTEM LIFE: 30 YR
- PHOTOVOLTAIC PENETRATION
 - ENERGY: 5%
 - CAPACITY: 11%
Value of PV Power Plants in the Los Angeles Department of Water and Power System

ASSUMPTIONS

- ALL COSTS IN 1981 DOLLARS
- GENERAL INFLATION RATE
 - 1981 - 85: 9.12% / YEAR
 - 1986 - 90: 8.30% / YEAR
 - 1991 - : 5.95% / YEAR
- REAL FUEL PRICE ESCALATION
 - 1981 - 85: 0.88% / YEAR
 - 1986 - 90: 1.70% / YEAR
 - 1991 - : 2.05% / YEAR
- PHOTOVOLTAIC SYSTEM LIFE: 30 YEARS
- PHOTOVOLTAIC PENETRATION
 - 1981: 2.1% OF ELECTRIC ENERGY FROM THERMAL UNITS
 - 1994: 1.5% OF ELECTRIC ENERGY FROM THERMAL UNITS
Third-Party Ownership Option

CONCEPT:
INVESTOR GROUP FINANCES CONSTRUCTION OF PHOTOVOLTAIC POWER PLANT, SELLS ELECTRICITY TO UTILITY, TAKES ADVANTAGE OF TAX INCENTIVES NOT AVAILABLE TO UTILITY.

ADVANTAGE:
INCLUSION OF TAX BENEFITS MAKES INVESTMENT ATTRACTIVE WHEN COST OF PLANT IS STILL TOO HIGH FOR UTILITY PURCHASE.
Investment Evaluation: Third-Party Financing Arrangement

<table>
<thead>
<tr>
<th>ECONOMIC ASSUMPTIONS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM COST ($/Wp)</td>
<td>13.00</td>
<td>10.50</td>
<td>7.00</td>
</tr>
<tr>
<td>REAL ESCALATION OF ELECTRICITY PRICE</td>
<td>5%/yr</td>
<td>3%/yr</td>
<td>0%/yr</td>
</tr>
<tr>
<td>EQUITY CAPITAL (% of system cost)</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>DEBT CAPITAL (% of system cost)</td>
<td>75</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>EQUITY RESERVE (% of system cost)</td>
<td>50</td>
<td>48</td>
<td>21</td>
</tr>
<tr>
<td>REQUIRED AFTER-TAX RETURN ON EQUITY</td>
<td>15%/yr</td>
<td>15%/yr</td>
<td>15%/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BENEFIT/COST BREAKDOWN (After-Tax Net Present Value as Percentage of Equity)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL INVESTMENT TAX CREDIT</td>
<td>12.4</td>
<td>12.8</td>
<td>13.0</td>
</tr>
<tr>
<td>FEDERAL ENERGY CREDIT</td>
<td>18.7</td>
<td>19.2</td>
<td>19.6</td>
</tr>
<tr>
<td>CALIFORNIA ENERGY CREDIT (net of Federal Tax)</td>
<td>16.8</td>
<td>17.2</td>
<td>17.6</td>
</tr>
<tr>
<td>DEPRECIATION: FEDERAL</td>
<td>37.9</td>
<td>38.9</td>
<td>39.8</td>
</tr>
<tr>
<td>CALIFORNIA (net of Federal Tax)</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>NET LOAN COST (less interest shelter)</td>
<td>(46.8)</td>
<td>(48.1)</td>
<td>(32.7)</td>
</tr>
<tr>
<td>NET ELECTRIC POWER REVENUE (net of O&M)</td>
<td>15.5</td>
<td>15.6</td>
<td>17.4</td>
</tr>
<tr>
<td>RESERVE RELEASE</td>
<td>21.8</td>
<td>22.1</td>
<td>12.7</td>
</tr>
<tr>
<td>RESERVE INTEREST</td>
<td>19.4</td>
<td>18.9</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>101.0</td>
<td>99.5</td>
</tr>
</tbody>
</table>
Before-Tax Cash Flow

- NET ELECTRIC POWER REVENUE
- NET CASH FLOW
- LOAN COSTS
- RESERVE RELEASE

YEARS: 0, 2, 6, 10, 14, 18, 22, 26, 30
FRACTION OF INVESTMENT EQUITY: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

Before-Tax Cash Flow
ECONOMIC ASSUMPTIONS

<table>
<thead>
<tr>
<th>Economic Assumption</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Cost ($)</td>
<td>10.50</td>
<td>6.00</td>
<td>7.60</td>
<td>4.90</td>
</tr>
<tr>
<td>System Service Life (years)</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Real Escalation of Electricity Price (%)</td>
<td>3%/yr</td>
<td>3%/yr</td>
<td>3%/yr</td>
<td>3%/yr</td>
</tr>
<tr>
<td>Equity Capital (percent of system cost)</td>
<td>25</td>
<td>60</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Debt Capital (percent of system cost)</td>
<td>75</td>
<td>40</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>Equity Reserve (percent of system cost)</td>
<td>47.4</td>
<td>9.65</td>
<td>50</td>
<td>21.2</td>
</tr>
<tr>
<td>Required After-Tax Return on Equity (%)</td>
<td>12%</td>
<td>12%</td>
<td>16%</td>
<td>12%</td>
</tr>
<tr>
<td>Federal and State Solar Tax Credits</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Benefit/Cost Breakdown (after-tax net present value as percentage of equity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Investment Tax Credit</td>
<td>12.8</td>
<td>13.4</td>
<td>12.4</td>
<td>17.2</td>
</tr>
<tr>
<td>Federal Energy Credit</td>
<td>19.2</td>
<td>20.1</td>
<td>18.7</td>
<td>0</td>
</tr>
<tr>
<td>California Energy Credit (net of federal tax)</td>
<td>17.2</td>
<td>18.1</td>
<td>16.8</td>
<td>0</td>
</tr>
<tr>
<td>Depreciation: Federal</td>
<td>38.9</td>
<td>40.8</td>
<td>37.9</td>
<td>55.5</td>
</tr>
<tr>
<td>California (net of federal tax)</td>
<td>4.4</td>
<td>4.6</td>
<td>4.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Net Loan Cost (less interest shelter)</td>
<td>(48.1)</td>
<td>(31.2)</td>
<td>(58.7)</td>
<td>(64.0)</td>
</tr>
<tr>
<td>Net Electric Power Revenue (net of O&M)</td>
<td>15.6</td>
<td>22.7</td>
<td>21.0</td>
<td>51.9</td>
</tr>
<tr>
<td>Reserve Release</td>
<td>22.1</td>
<td>9.2</td>
<td>23.5</td>
<td>24.9</td>
</tr>
<tr>
<td>Reserve Interest</td>
<td>18.9</td>
<td>2.2</td>
<td>25.0</td>
<td>7.6</td>
</tr>
<tr>
<td>Total</td>
<td>101.0</td>
<td>99.9</td>
<td>100.8</td>
<td>100.3</td>
</tr>
</tbody>
</table>
Current Large-System Projects

- SACRAMENTO MUNICIPAL UTILITY DISTRICT PROJECT
 - PLANNED CAPACITY: 1 MW\(_p\) (AC)
 - SITE: RANCHO SECO NUCLEAR POWER PLANT, 30 MILES SOUTH OF SACRAMENTO, CALIFORNIA
 - FUNDING ALLOCATION: $12 MILLION -- $6.8 MILLION FROM DOE, $2 MILLION FROM STATE OF CALIFORNIA, $3.2 MILLION FROM SMUD
 - PROJECTED IOC DATE: JUNE 1984
 - FIRST STAGE OF PLANNED 100 MW\(_p\) PHOTOVOLTAIC POWER PLANT

- ARCO SOLAR/SOUTHERN CALIFORNIA EDISON COMPANY PROJECT
 - PLANNED CAPACITY: 1 MW\(_p\) (DC)
 - SITE: LUGO SUBSTATION NEAR VICTORVILLE, CALIFORNIA
 - ARCO SOLAR TO BE BUILDER, OWNER, AND OPERATOR
 - SOUTHERN CALIFORNIA EDISON TO PURCHASE AND DISTRIBUTE OUTPUT POWER
 - PROJECTED IOC DATE: DECEMBER 1982
 - PRIVATE VENTURE MADE POSSIBLE BY STATE AND FEDERAL TAX INCENTIVES
Conclusions

- Detailed analyses of the value of photovoltaic generation to specific utilities confirm the results of simplified analysis:
 - Photovoltaic plants costing $1.50 - 2.00/Wp would be cost-effective in an oil-dependent southwestern investor-owned utility.
 - The breakeven cost in a similar municipal utility would be even larger: $3.00 - 4.00/Wp.

- The progressive elements of the utility industry are keenly interested in photovoltaic technology but require assistance to proceed with large commercial (i.e., non-R&D) projects:
 - Risks arising from uncertainties in system cost and performance are too large to be justified under allowed rates of return.
 - Utilities are, however, willing to enter into agreements with third-party financed projects.

- Under a properly-structured third-party arrangement, constructing a photovoltaic plant at currently achievable costs can be an attractive investment:
 - Current solar tax credits contribute heavily to effective rate of return on investment.
 - Leveraged financing at reasonable rates significantly increases returns.