PV LARGE SYSTEMS PROJECT
AEROSPACE CORP.
S.L. Leonard
Utility Oil Conservation
A Near-Term PV Central-Station Market

- PRIMARY MARKET AREAS
 - CALIFORNIA, FLORIDA, HAWAII, PUERTO RICO
 - OIL-DEPENDENT
 - HIGH INSOLATION
 - PRESENT (1978) OIL USE: 500,000 BBL/DAY (30% of U.S. UTILITY OIL CONSUMPTION)

- SECONDARY MARKET AREAS
 - LOUISIANA, TEXAS, OKLAHOMA
 - DEPENDENT ON NATURAL GAS, OIL
 - GOOD INSOLATION
 - PRESENT (1978) OIL USE: 85,000 BBL/DAY
 - PRESENT (1978) NATURAL GAS USE: 1,000,000 BBL/DAY (OIL EQUIVALENT)

- CONCLUSION
 - IF BASELINE TECHNOLOGY COMMERCIAL READINESS GOALS ARE REACHED, IT WILL BE COST-EFFECTIVE BY THE LATE 1980's IN THE PRIMARY MARKET AREAS TO CONSTRUCT PHOTOVOLTAIC PLANTS SOLELY TO REDUCE OIL CONSUMPTION, EVEN IF THE REAL (INFLATION-ADJUSTED) PRICE OF OIL DOES NOT INCREASE OVER 1980 VALUES.
Issues

- QUESTION: IS THIS APPARENT OPPORTUNITY REAL, OR IS THE ANALYTICAL APPROACH TOO SIMPLIFIED?
 - RESPONSE: DETAILED ANALYSES OF VALUE OF PHOTOVOLTAIC GENERATION IN SPECIFIC OIL-DEPENDENT SUNBELT UTILITIES

- QUESTION: ARE THESE RESULTS CREDIBLE TO THE INDUSTRIES THAT WOULD BE INVOLVED?
 - RESPONSE: EXTENSIVE IN-DEPTH DISCUSSIONS WITH REPRESENTATIVE ORGANIZATIONS IN THE UTILITY, PHOTOVOLTAIC MANUFACTURING, AND CONSTRUCTION INDUSTRIES

- QUESTION: HOW CAN TECHNICAL AND ECONOMIC RISKS BE REDUCED TO THE POINT THAT THE PRIVATE SECTOR WILL TAKE ADVANTAGE OF THIS OPPORTUNITY?
 - RESPONSE: ANALYSES OF INNOVATIVE FINANCING ARRANGEMENTS THAT COULD LEAD TO HAND-OFF TO THE PRIVATE SECTOR AT CURRENTLY ACHIEVABLE SYSTEM COSTS, ONCE TECHNICAL FEASIBILITY HAS BEEN DEMONSTRATED

 SUPPORT OF FEDERAL PARTICIPATION IN INITIAL UTILITY-SCALE PROJECTS THAT DEMONSTRATE TECHNICAL FEASIBILITY OF LARGE PHOTOVOLTAIC SYSTEMS FOR UTILITY APPLICATIONS

Value Analysis Methodology

- COST OF PRODUCTION PROGRAM
 - UTILITY SYSTEM OPERATION MODEL
 - THERMAL PLANT DETAILS
 - OPERATING RANGE
 - FUEL TYPE
 - HEAT RATE CURVES
 - STARTUP/SHUTDOWN COSTS
 - SYSTEM OPERATING RULES
 - SPINNING RESERVE
 - MUST RUN UNITS
 - HOUR BY HOUR ECONOMIC DISPATCH

- LOSS OF LOAD PROBABILITY PROGRAM
 - UTILITY SYSTEM RELIABILITY MODEL
 - UNIT FORCED OUTAGE RATES AS FUNCTIONS OF OPERATING LEVEL
 - MAINTENANCE SCHEDULE
 - HOUR BY HOUR COMPUTATION OF LOSS OF LOAD PROBABILITY (LOLP)
 - DETERMINATION OF EFFECT OF PHOTOVOLTAIC GENERATION ON LOLP

- FUEL SAVINGS
- VALUE OF PHOTOVOLTAIC GENERATION
 - FUEL SAVINGS
 - CAPACITY VALUE
- PHOTOVOLTAIC LOAD CARRYING CAPABILITY

114
Value of PV Power Plants in the Southern California Edison System

ASSUMPTIONS

- All costs in 1980 dollars
- General inflation rate
 - 1981 - 1987: ~8.4%/yr
 - 1988: ~5%/yr
- Real fuel price escalation
 - 1981 - 1984: ~2.7%/yr
 - 1985: ~2%/yr
- Photovoltaic system life: 30 yr
- Photovoltaic penetration
 - Energy: 5%
 - Capacity: 11%

Expected capital cost range for photovoltaic plants

Baseline technology

Advanced technology

Year of photovoltaic plant installation

Fuel savings

Capacity credit (at $600/kW)
Value of PV Power Plants in the Los Angeles Department of Water and Power System

ASSUMPTIONS

- ALL COSTS IN 1981 DOLLARS
- GENERAL INFLATION RATE
 - 1981 - 85: 9.12% / YEAR
 - 1986 - 90: 8.30% / YEAR
 - 1991: 5.95% / YEAR
- REAL FUEL PRICE ESCALATION
 - 1981 - 85: 0.88% / YEAR
 - 1986 - 90: 1.70% / YEAR
 - 1991: 2.05% / YEAR
- PHOTOVOLTAIC SYSTEM LIFE: 30 YEARS
- PHOTOVOLTAIC PENETRATION
 - 1981: 2.1% OF ELECTRIC ENERGY FROM THERMAL UNITS
 - 1994: 1.5% OF ELECTRIC ENERGY FROM THERMAL UNITS

EXPECTED CAPITAL COST RANGE FOR PHOTOVOLTAIC PLANTS
Third-Party Ownership Option

CONCEPT:
INVESTOR GROUP FINANCES CONSTRUCTION OF PHOTOVOLTAIC POWER PLANT, SELLS ELECTRICITY TO UTILITY, TAKES ADVANTAGE OF TAX INCENTIVES NOT AVAILABLE TO UTILITY.

ADVANTAGES:
INCLUSION OF TAX BENEFITS MAKES INVESTMENT ATTRACTIVE WHEN COST OF PLANT IS STILL TOO HIGH FOR UTILITY PURCHASE.
Investment Evaluation: Third-Party Financing Arrangement

<table>
<thead>
<tr>
<th>Economic Assumptions</th>
<th>13.00</th>
<th>10.50</th>
<th>7.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Cost ($/Wp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Escalation of Electricity Price</td>
<td>5%/yr</td>
<td>3%/yr</td>
<td>0%/yr</td>
</tr>
<tr>
<td>Equity Capital (% of system cost)</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Debt Capital (% of system cost)</td>
<td>75</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Equity Reserve (% of system cost)</td>
<td>50</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>Required After-Tax Return on Equity</td>
<td>15%/yr</td>
<td>15%/yr</td>
<td>15%/yr</td>
</tr>
</tbody>
</table>

Benefit/Cost Breakdown (After-Tax Net Present Value as Percentage of Equity)

<table>
<thead>
<tr>
<th></th>
<th>12.4</th>
<th>12.8</th>
<th>13.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Investment Tax Credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Energy Credit</td>
<td>18.7</td>
<td>19.2</td>
<td>19.6</td>
</tr>
<tr>
<td>California Energy Credit (net of Federal Tax)</td>
<td>16.8</td>
<td>17.2</td>
<td>17.6</td>
</tr>
<tr>
<td>Depreciation: Federal</td>
<td>37.9</td>
<td>38.9</td>
<td>39.8</td>
</tr>
<tr>
<td>California (net of Federal Tax)</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Net Loan Cost (less interest shelter)</td>
<td>(46.8)</td>
<td>(48.1)</td>
<td>(32.7)</td>
</tr>
<tr>
<td>Net Electric Power Revenue (net of O&M)</td>
<td>15.5</td>
<td>15.6</td>
<td>17.4</td>
</tr>
<tr>
<td>Reserve Release</td>
<td>21.8</td>
<td>22.1</td>
<td>12.7</td>
</tr>
<tr>
<td>Reserve Interest</td>
<td>19.4</td>
<td>18.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>101.0</td>
<td>99.5</td>
</tr>
</tbody>
</table>
Before-Tax Cash Flow

- Net Electric Power Revenue
- Net Cash Flow
- Loan Costs
- Reserve Release

Years: 2, 6, 10, 14, 18, 22, 26, 30

Fraction of Investment Equity: 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0, 0.1
Investment Evaluation: Selected Sensitivities

<table>
<thead>
<tr>
<th>Economic Assumptions</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Cost (B/W p)</td>
<td>10.50</td>
<td>6.00</td>
<td>7.60</td>
<td>4.50</td>
</tr>
<tr>
<td>System Service Life (years)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Real Escalation of Electricity Price (3%/yr)</td>
<td>3%/yr</td>
<td>3%/yr</td>
<td>3%/yr</td>
<td>3%/yr</td>
</tr>
<tr>
<td>Equity Capital (percent of system cost)</td>
<td>25</td>
<td>60</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Debt Capital (percent of system cost)</td>
<td>75</td>
<td>40</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>Equity Reserve (percent of system cost)</td>
<td>47.4</td>
<td>9.65</td>
<td>50</td>
<td>21.2</td>
</tr>
<tr>
<td>Rate of Interest on Debt</td>
<td>12%</td>
<td>12%</td>
<td>16%</td>
<td>12%</td>
</tr>
<tr>
<td>Required After-Tax Return on Equity</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Federal and State Solar Tax Credits</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

Benefit/Cost Breakdown (after-tax net present value as percentage of equity):

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Investment Tax Credit</td>
<td>12.8</td>
<td>13.4</td>
<td>12.4</td>
<td>17.2</td>
</tr>
<tr>
<td>Federal Energy Credit</td>
<td>19.2</td>
<td>20.1</td>
<td>18.7</td>
<td>0</td>
</tr>
<tr>
<td>California Energy Credit (net of federal tax)</td>
<td>17.2</td>
<td>18.1</td>
<td>16.8</td>
<td>0</td>
</tr>
<tr>
<td>Depreciation: Federal</td>
<td>38.9</td>
<td>40.8</td>
<td>37.9</td>
<td>55.5</td>
</tr>
<tr>
<td>California (net of federal tax)</td>
<td>4.4</td>
<td>4.6</td>
<td>4.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Net Loan Cost (less interest shelter)</td>
<td>(48.1)</td>
<td>(31.2)</td>
<td>(58.7)</td>
<td>(64.0)</td>
</tr>
<tr>
<td>Net Electric Power Revenue (net of O&M)</td>
<td>15.6</td>
<td>22.7</td>
<td>21.0</td>
<td>51.9</td>
</tr>
<tr>
<td>Reserve Release</td>
<td>22.1</td>
<td>9.2</td>
<td>23.5</td>
<td>24.9</td>
</tr>
<tr>
<td>Reserve Interest</td>
<td>18.9</td>
<td>2.2</td>
<td>25.0</td>
<td>7.6</td>
</tr>
<tr>
<td>Total</td>
<td>101.0</td>
<td>99.9</td>
<td>100.8</td>
<td>100.3</td>
</tr>
</tbody>
</table>
PLENARY SESSION: S.L. LEONARD

Current Large-System Projects

- SACRAMENTO MUNICIPAL UTILITY DISTRICT PROJECT
 - PLANNED CAPACITY: 1 MW (AC)
 - SITE: RANCHO SECO NUCLEAR POWER PLANT, 30 MILES SOUTH OF SACRAMENTO, CALIFORNIA
 - FUNDING ALLOCATION: $12 MILLION -- $6.8 MILLION FROM DOE, $2 MILLION FROM STATE OF CALIFORNIA, $3.2 MILLION FROM SMUD
 - PROJECTED IOC DATE: JUNE 1984
 - FIRST STAGE OF PLANNED 100 MW PHOTOVOLTAIC POWER PLANT

- ARCO SOLAR / SOUTHERN CALIFORNIA EDISON COMPANY PROJECT
 - PLANNED CAPACITY: 1 MW (DC)
 - SITE: LUGO SUBSTATION NEAR VICTORVILLE, CALIFORNIA
 - ARCO SOLAR TO BE BUILDER, OWNER, AND OPERATOR
 - SOUTHERN CALIFORNIA EDISON TO PURCHASE AND DISTRIBUTE OUTPUT POWER
 - PROJECTED IOC DATE: DECEMBER 1982
 - PRIVATE VENTURE MADE POSSIBLE BY STATE AND FEDERAL TAX INCENTIVES
Conclusions

- Detailed analyses of the value of photovoltaic generation to specific utilities confirm the results of simplified analysis.
 - Photovoltaic plants costing $1.50 - 2.00/Wp would be cost-effective in an oil-dependent southwestern investor-owned utility.
 - The breakeven cost in a similar municipal utility would be even larger: $3.00 - 4.00/Wp.

- The progressive elements of the utility industry are keenly interested in photovoltaic technology but require assistance to proceed with large commercial (i.e., non-R&D) projects.
 - Risks arising from uncertainties in system cost and performance are too large to be justified under allowed rates of return.
 - Utilities are, however, willing to enter into agreements with third-party financed projects.

- Under a properly-structured third-party arrangement, constructing a photovoltaic plant at currently achievable costs can be an attractive investment.
 - Current solar tax credits contribute heavily to effective rate of return on investment.
 - Leveraged financing at reasonable rates significantly increases returns.