The Cell and Module Formation Research Area technology session opened with a presentation by Spectrolab, Inc., on its new metallization contract. Work is just beginning on this contract; the presentation was an outline of the program, with test-flow and work-flow diagrams.

Bernd Ross Associates announced that they have noted that the firing of base-metal pastes in reducing atmospheres is dramatically influenced by hydrogen. Apparently the surface of the silicon becomes hydrogenated and does not react with the metal. Carbon monoxide has been found to give excellent results as a reducing atmosphere that will not hydrogenate the silicon surface. Silver fluoride continues to be the leading fluxing agent for glass-free silver-metal systems. The hygroscopic nature of AgF presents a problem; packaging methods are important. Recently fabricated experimental cells have again shown that copper-metal pastes containing AgF make satisfactory back metallizations on silicon cells. This system works well on aluminum-back-surface field cells as well. Insufficient firing temperatures have been shown to result in an anomalous S-shaped I-V curve. This curve characteristic has been modeled satisfactorily using a second diode at the insufficiently fired surface.

Ron Daniel of the JPL FSA Analysis and Integration Area presented a method for optimization of metallization patterns. Individual contributions to cell power losses are considered, as are diffused-layer sheet resistance, metal-to-silicon contact resistance, grid-line conductive loss, bus-bar conductive loss, and metal shadowing of active cell area. An optimization can also include metallization area costs.

Photowatt reported on the status of its development of a process sequence involving an AR coating and thick-film metallization system capable of penetrating the AR coating during firing. The sequence produces solar cells with excessive series resistance. Efforts to build up the metallization using electrolytic copper plating have resulted in chemical attack upon the fired-metal-to-silicon interface. Photowatt has reorganized this effort and is investigating new formulations of thick-film metal pastes that were inspired by developments by other contractors in the Process Development effort of FSA.

Spire Corp. has completed the design of the NMA implantation machine to a point where construction is under way and is scheduled for completion in September 1982. The design incorporates a defocusing and steering device to spread the ion beam and make it more uniform. This technology is attributable to JPL leadership. It has potential usefulness to the semiconductor industry as well as to the photovoltaic industry.

JPL in-house NMA activity has been dealing with implanted back-surface fields and with NMA primary (front) junctions. The effect of thermal pretreatment was also investigated. Experimental cells previously fabricated did not produce open-circuit voltages (V_{oc}) as high as those of cells.
CELL AND MODULE FORMATION RESEARCH AREA

processed conventionally. Among the possible causes was that metallic contamination was being introduced into the ion beam from the NMA source. Graphite parts were fabricated to eliminate this possibility, but the performance was not affected. Further experimentation has led to the opinion that implanted back-surface fields are not heavy enough under present methods. New work is starting in an effort to apply NASA pulse-thruster technology to the development of a pulsed-plasma epitaxy machine. This concept has possibilities far beyond silicon back-surface fields, and encompasses advanced semiconductor materials as well.

Solarex presented the last of its work under the MEPSDU (Module Experimental Process Development Unit) contract. It has recently completed the development of three processes: the use of glass beads in a sand-blasting type of process to remove the oxides that remain after firing the aluminum into the silicon back surface; the use of a commercial wave-soldering device to solder-coat the front cell nickel-plated contacts (unsuccessful in coating both sides of the cell), and the use of ion milling (heavy-duty plasma etching) to clean up the n-on-p junction edges of cells that are stacked tightly on top of one another when loaded into the chamber. Solarex performed a cost analysis, using the IPEG methodology, to determine that the current MEPSDU process sequence results in $0.56 per watt add-on cost up to but not including cell assembly into modules. The new contractual thrust is toward specific processing characteristics unique to polycrystalline silicon. Semix material processing will be emphasized but the other types of polycrystalline material will also be tested (if not by Solarex, by JPL).

Westinghouse also presented the last of its MEPSDU work (that contract was also revised drastically in this reporting period). The Westinghouse effort involved processing through the module fabrication and environmental testing of its design. The previously reported passing of environmental tests at Westinghouse was repeated at JPL; the Westinghouse design more than passed the tests. The cost calculations have a direct inverse relationship to module operating efficiency; the Westinghouse goals include a 12% efficient module. Over the last year the efficiency of Westinghouse panels has increased from 7.5% to 11.2%; it is believed that Westinghouse would have achieved its 12% goal if the contract had not been redirected. The new contract activity focuses upon the junction formation process; the company is developing lower-cost diffusion sources based upon liquid application rather than the present gaseous sources. Ion implantation is also being pursued as a particularly applicable process for dendritic web silicon.

The University of Pennsylvania has completed assessment of metallization patterns by mathematical optimization. Prior work was limited to rectangular geometries. At the end of the assessment, the Westinghouse fan-shaped geometry was analyzed and found to be capable of the same optimization as rectangular geometries. The next assessment activity was directed toward determining the adequacy of currently accepted minority-carrier-lifetime measurement techniques and what, if any, errors are responsible for confusion in cell mathematical modeling activities. Apparently there is sufficient confusion in the accepted literature to cast doubts upon present ability to model advanced photovoltaic structures.
CELL AND MODULE FORMATION RESEARCH AREA

THICK-FILM METALLIZATION
BERND ROSS ASSOCIATES

Bernd Ross

Progress

1. Since hydrogenated silicon surfaces tend to reject metal coatings, an alternative reducing ambient was sought.

2. Previously fabricated pastes as well as new formulations were fired in nitrogen and carbon monoxide gases.

3. SEM analysis showed excellent structure for CO fired copper electrodes.

4. Electrical characterization gave good results for contact resistance studies as well as solar cell performance (back contacts only).

5. Experiments with silver fluoride containing different amounts of moisture were performed.

5. A silver fluoride activated copper paste electrode was observed to penetrate a 70μm silicon nitride layer.

Silver Fluoride Experiment

Silver fluoride from two sources was utilized.

Type "H" silver fluoride, packed in a plastic bottle appeared quite wet, with visible liquid moisture in evidence.

Melting occurred at approximately 300°C (melting point for dry material approximately 435°C) for "H" material, accompanied by bubbling and after reaction to metallic silver a glassy residue was in evidence.

Type "I" silver fluoride, packed in a plastic bag within a glass jar, showed considerably less moisture, however, grain agglomeration indicated a moisture problem still exists.

Type "A" material melted closer to the published melting point, and no macroscopic amounts of residue were seen.

SEM micrography showed evidence of the existence of small amounts of glassy material for type A silver fluoride also.
Solar-Cell Experiment

F31 copper paste with 0.1 wt % AgF, 10 wt % Pb and 0 wt % Al-Si eutectic

F32 copper paste with 0.1 wt % AgF, 10 wt % Pb and 5 wt % Al-Si eutectic

<table>
<thead>
<tr>
<th>Paste</th>
<th>Firing Temperatures (°C)</th>
<th>Qty</th>
<th>Ambient Gas</th>
<th>Average Uncorrelated Efficiency at 1%</th>
<th>Average Fill Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>F31</td>
<td>550</td>
<td>3</td>
<td>N2</td>
<td>5.9</td>
<td>0.476</td>
</tr>
<tr>
<td>F31</td>
<td>550</td>
<td>3</td>
<td>CO</td>
<td>7.7</td>
<td>0.637</td>
</tr>
<tr>
<td>F31</td>
<td>600</td>
<td>3</td>
<td>CO</td>
<td>6.5</td>
<td>0.551</td>
</tr>
<tr>
<td>F31</td>
<td>650</td>
<td>3</td>
<td>CO</td>
<td>8.1</td>
<td>0.676</td>
</tr>
<tr>
<td>F32</td>
<td>550</td>
<td>3</td>
<td>CO</td>
<td>7.1</td>
<td>0.660</td>
</tr>
<tr>
<td>F32</td>
<td>600</td>
<td>3</td>
<td>CO</td>
<td>8.0</td>
<td>0.722</td>
</tr>
<tr>
<td>F32</td>
<td>650</td>
<td>3</td>
<td>CO</td>
<td>7.5</td>
<td>0.739</td>
</tr>
</tbody>
</table>

366
CELL AND MODULE FORMATION RESEARCH AREA

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>CELL ID</th>
<th>PROCESS</th>
<th>AREA</th>
<th>INFO</th>
<th>PROCESSED</th>
<th>AREA</th>
<th>INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-APR-02</td>
<td>14:28</td>
<td>C17</td>
<td>32,880</td>
<td>C0</td>
<td>BRA</td>
<td>32,880</td>
<td>C0</td>
<td>BRA</td>
</tr>
<tr>
<td></td>
<td>18:59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Param</th>
<th>Value</th>
<th>Param</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ioc</td>
<td>81.7</td>
<td>Voc</td>
<td>571.1</td>
</tr>
<tr>
<td>Poc</td>
<td>34.4</td>
<td>Pop</td>
<td>33.7</td>
</tr>
<tr>
<td>Isc</td>
<td>75.4</td>
<td>Imp</td>
<td>73.5</td>
</tr>
<tr>
<td>Voc</td>
<td>572.0</td>
<td>Vap</td>
<td>458.4</td>
</tr>
<tr>
<td>EFF</td>
<td>4.6</td>
<td>EFF</td>
<td>4.4</td>
</tr>
<tr>
<td>Cell Area</td>
<td>4.50</td>
<td>Cell Area</td>
<td>4.50</td>
</tr>
<tr>
<td>Filler Factor</td>
<td>0.737</td>
<td>Filler Factor</td>
<td>0.729</td>
</tr>
<tr>
<td>Ro @1</td>
<td>0.525</td>
<td>Ro @1</td>
<td>0.597</td>
</tr>
<tr>
<td>Rsh @1</td>
<td>236.2</td>
<td>Rsh @1</td>
<td>249.8</td>
</tr>
</tbody>
</table>

![Graph of data](image)
CELL AND MODULE FORMATION RESEARCH AREA

ORIGINAL TEXT IS
OF POOR QUALITY
CELL AND MODULE FORMATION RESEARCH AREA

ORIGINALLY PRINTED ON POOR QUALITY

Image 1: 500°C N. 1975X

Image 2: [Image Content Not Legible]
Phase Diagram of Al-Cu System, from "Constitution of Binary Alloys" by M. Hansen, 2nd Ed. p. 85
Mc Graw Hill, New York '58
CELL AND MODULE FORMATION RESEARCH AREA

ORIGINAL PAGE IS OF POOR QUALITY

[Image of a sample or material under a microscope]

[Image of another sample or material under a microscope]
Conclusions and Problems

1. Carbon monoxide reducing ambients provided well sintered coherent copper structures with relatively large grain at the lowest temperatures.

2. Adherence of Cu fired copper electrodes was significantly superior to hydrogen fired specimen.

3. Electrical properties of devices and test structures are satisfactory.

4. Electrode structures containing aluminum resulted in discolored appearance with little or no sintering and small grainsize. Electrical properties, however, appeared unaffected.

5. Procurement and storage of silver fluoride requires special care.
Introduction

- There is extensive literature about the series resistance losses associated with the solar cell grid pattern; however, there have been no reports that assist the grid pattern designer to design an optimal grid pattern of two or more design variables.

- An APL program has been developed that uses a non-linear optimization technique to find optimal design values for the grid; the power losses analyzed include photoconductor sheet losses, fine grid and bus resistance losses and shadow losses, and contact resistance between the sheet and the fine grid lines.

Typical design parameters might be:
- Fine grid line width
- Fine grid line spacing
- Bus bar width
- Metallization thickness

Assumptions

- Current uniformly generated on the surface of the cell
- Power loss between the fine grid lines is found using sectional integration
- Fine grid lines and bus bar(s) are orthogonal
- Bus bar same thickness as the fine grid (or strapped)
- Fine grid line width and metallization thickness at a predetermined ratio
Cell Shape and Grid Geometry

MULTIPLE-BUS RECTANGULAR CELL

ROUND CELLS

ONE-BUS CELL

TWO-BUS CELL

Power Loss Equations

General Form of Resistive Losses

\[P = \int i^2 \, dR \]

Sheet Loss to One Line

\[P_{SH} = 2 \int_{0}^{\frac{sl}{l_x}} \frac{(J_M l_x y)^2}{l_x} \rho_s \, dy \]

Fine Grid One Line

\[P_{FG} = \int_{0}^{l_B} \frac{(J_M x y)^2}{bt} \rho_m \, dx \]

Bus Bar

\[P_B = 2 \int_{0}^{\frac{J_M l x}{W_B t}} \frac{(J_M l x y)^2}{W_B t} \rho_m \, dy \]

Shadow

\[P_{SD} = J_M V_M \text{(Area Bus and Fine Grid)} \]
CELL AND MODULE FORMATION RESEARCH AREA

Contact Resistance

\[P_c = I^2 R_c \]

or

\[R_c = \frac{\rho_c}{\text{Area Fine Grid}} \]

(Inverse Area Relationship)

\[R_c = \frac{(V_m \rho_s \rho_c s)^{1/2}}{1 \times 3^{1/2}} \]

(Current Crowding)

where:

- \(J_m \) (mA/cm²) Current Density at Maximum Power
- \(V_m \) (volts) Voltage at Maximum Power
- \(\rho_m \) (Ω cm) Resistivity of Metal
- \(\rho_s \) (Ω cm) Resistivity of Sheet
- \(\rho_c \) (Ω cm²) Contact Resistivity
- \(W_B \) (cm) Width of Bus Bar
- \(s \) (cm) Spacing Between Fine Lines
- \(b \) (cm) Width of Fine Lines
- \(t \) (cm) Metal Thickness
- \(l_x \) (cm) Length of Fine Line
- \(L_B \) (cm) Length of Bus Bar

Optimization Method

- Procedure Uses the Power Loss Equations as the Objective Function \(P_T = \sum P \) (All Losses).
- Then, the First Partial Derivative of the Function With Respect to the Design Variables is Set Equal to Zero.

 \[\frac{\delta P_T}{\delta \theta_i} = 0 \quad (\theta_i \text{ are the design variables}) \quad i = 1, 2, ..., n \]

- These Equations Are Solved by a Modified Newton-Raphson Method.

 \[f_i(X) = f_i(X^K) + \Delta f_i(X^K)(X - X^K); X^K \text{ is a Given Value} \]

- Matrix Notation

 \[A_K + B_K(X - X^K) = 0 \]

 \[X = X^K + B_K^{-1} A_K \]

\[180 \]
Rectangular Cell Example

![Rectangular Cell Diagram](Not to Scale)

<table>
<thead>
<tr>
<th></th>
<th>OPTIMAL DESIGN</th>
<th>4 GRID LINES</th>
<th>10 GRID LINES</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_T, Total Power Lost (mW)</td>
<td>1.68</td>
<td>1.70</td>
<td>2.02</td>
<td>Length</td>
</tr>
<tr>
<td>% Loss</td>
<td>4.48</td>
<td>4.5</td>
<td>5.4</td>
<td>Width</td>
</tr>
<tr>
<td>A, Fine Grid Spacing (cm)</td>
<td>0.140</td>
<td>0.125</td>
<td>0.050</td>
<td>No. Buses</td>
</tr>
<tr>
<td>Wg, Bus Bar Width (μm)</td>
<td>142.0</td>
<td>147.8</td>
<td>202.45</td>
<td>J_M 0.03 A/cm2</td>
</tr>
<tr>
<td>B, Fine Grid Width (μm)</td>
<td>32.3</td>
<td>29.9</td>
<td>15.90</td>
<td>V_M 0.5 Volts</td>
</tr>
<tr>
<td>T, Metal Thickness (μm)</td>
<td>10.4</td>
<td>9.6</td>
<td>5.1</td>
<td>ρ_M 1.7x10^{-6} Ω cm</td>
</tr>
<tr>
<td>My, Metal Volume (cm3)</td>
<td>7.6x10^{-5}</td>
<td>6.4x10^{-5}</td>
<td>4.5x10^{-5}</td>
<td>ρ_C 0.001 Ω cm2</td>
</tr>
</tbody>
</table>

| | | | | ρ_s 60 Ω/m |
| | | | | B:T 3.1 |
Rectangular Cell: Sensitivity to Number of Grid Lines

Graph 1: Power Output vs. Number of Grid Lines

Graph 2: Power Loss and Metal Volume vs. Number of Grid Lines
Round Cell: 2-Bus Example

![Cell Diagram](image)

<table>
<thead>
<tr>
<th>SINGLE METALLIZATION</th>
<th>STRAPPED BUS (50 μm)</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (mW)</td>
<td>219.3</td>
<td>169.7</td>
</tr>
<tr>
<td>% Loss</td>
<td>20.68</td>
<td>16.00</td>
</tr>
<tr>
<td>A (cm)</td>
<td>0.443</td>
<td>0.331</td>
</tr>
<tr>
<td>V_B (cm)</td>
<td>0.184</td>
<td>0.096</td>
</tr>
<tr>
<td>B (μm)</td>
<td>396.0</td>
<td>218.0</td>
</tr>
<tr>
<td>T (μm)</td>
<td>15.9</td>
<td>8.7</td>
</tr>
<tr>
<td>Bus Vol. (cm³)</td>
<td>5.4×10^{-3}</td>
<td>1.5×10^{-3}</td>
</tr>
<tr>
<td>Grid Vol. (cm³)</td>
<td>9.1×10^{-3}</td>
<td>3.7×10^{-3}</td>
</tr>
<tr>
<td>Deg. ($α$)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>J_M</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>V_M</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>$δ_m$</td>
<td>1.6×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>$δ_B$</td>
<td>1.7×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>$δ_c$</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>$δ_s$</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>B:T</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- The Program Brings Together Two Standard Analyses: The Power Loss Equations and the Newton-Raphson Technique
- The Result is a Program That Will Provide an Optimal Grid Design, i.e., One That Minimizes the Total Power Loss
- Program Can Also Be Used to Do Sensitivity Analysis
- Operation of the Program Is Being Prepared for COSMIC
- Experiments Are Under Way to Verify the Predictive Accuracy of the Power-Loss Equations
- Program Can Be Extended to Include Other Cell Shapes, Design Geometries, Cell Characteristics and Rudimentary Cost Sensitivities
CELL AND MODULE FORMATION RESEARCH AREA

THICK-FILM METALLIZATION

SPECTROLAB, INC.

Mark Gillanders

Test Flow Diagram

*Note: The percentage indicated from one test area to the next is the percentage of the total cells produced from each of Tanks 14 and 23.

**Note: The number indicated from one test area to the next is the number from each of Task 15 and 24.
CELL AND MODULE FORMATION RESEARCH AREA

Objective:

Work Flow Diagram

PREVIOUS CONTRACTS 954653 AND 955725

TASK 10: OPTIMIZE Mo-Sn FRONT METALLIZATION

DEVELOP FRONT INTERCONNECTION TECHNIQUE

FABRICATE PROTOTYPE CELLS

DEMONSTRATE PROCESS

TASK 30: METALLIZATION TESTS

TASK 40: APPLY METALLIZATION TO WAFERS

TASK 20: OPTIMIZE Mo-Sn BACK METALLIZATION

DEVELOP BACK INTERCONNECTION TECHNIQUE

FABRICATE PROTOTYPE CELLS

DEMONSTRATE PROCESS
NICKEL/COPPER METALLIZATION
PHOTOWATT INTERNATIONAL, INC.

Goals

* TO DEVELOP A RELIABLE METALLIZATION WHICH:
 -- USES NICKEL PASTE PRINTED OVER Si_3N_4 AR COATING
 -- WHEN SINTERED PENETrATES THROUGH Si_3N_4 AND BONDS TO SILICON
 -- USES BRUSH PLATING OF COPPER FOR ADDITIONAL CONDUCTIVITY
 -- PRODUCES 4" DIAMETER CELLS OF EFFICIENCY IN EXCESS OF 10% UNDER AMI 28°C
 -- HAS PULL STRENGTH WITH 5 mm WIDE STRAP OF > 2 LBS WHEN PULLED 90° TO SURFACE

* TO PROVIDE COST DATA ON THE ABOVE SYSTEM

Process Sequence

1. TEXTURE ETCH
2. POCl₃ DIFFUSION
3. BACK ETCH
4. DEPOSIT NITRIDE
5. PRINT & FIRE ALUMINUM BACK
6. PRINT & FIRE NICKEL GRID
7. COPPER PLATE
8. TEST

Series Resistance Problem

1. CONTACT RESISTANCE THRU SILICON NITRIDE
 A. AgF NOT ATTACKING NITRIDE
 B. AgF DEPLETED BY REACTING WITH FRIT

2. LOSS OF CONTACT BY REACTION WITH PLATING SOLUTION

3. OTHER
TFS #5517 Ni + 30% EMCA #7069 Ag Fired at 700°C for 5 min

Graph showing current density (mA/cm²) vs voltage (volts) for before and after plating.

Before plating:
- Current density decreases as voltage increases.

After plating:
- Current density decreases more sharply than before plating.

The graph illustrates the change in current density due to plating.
ESL Paste E + 5% EMCA Ag 7069 Fired at 700°C for 6 min

CURRENT - AMPERES

VOLTAGE - VOLTS

AFTER COPPER PLATING

BEFORE PLATING
CELL AND MODULE FORMATION RESEARCH AREA

Plating

1. REACTION OF PLATING SOLUTION WITH FRIT
2. POROSITY OF PLATED LAYER

New Directions

- FRITLESS PRINTING INKS
- ADDITIVES TO PENETRATE NITRIDE
 \(\text{AgPO}_3 \)
 \(\text{NiF}_2 \)
- ADDITIVES TO IMPROVE ADHESION
 \(\text{T}_{1} \)
 \(\text{Au} \).
CELL AND MODULE FORMATION RESEARCH AREA

ION IMPLANTATION AND PULSE ANNEALING

SPIRE CORP.

Program Description

OBJECTIVES

1. To develop junction formation processes using Ion Implantation and pulsed annealing using equipment designed especially for solar cells.

PROGRAM PLAN

1. Develop 4" Capability Pulse Annealer
2. Develop 4" Capability NMA Ion Implanter
3. Use this equipment to develop junctions on Advanced Sheet Materials

Non-Mass-Analyzed (NMA) Implant Cells (Spire Test Facility)

<table>
<thead>
<tr>
<th></th>
<th>Lot 3969 Non Analyzed Implant</th>
<th>Lot 3969 Standard Implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc (mV)</td>
<td>578 ± 1</td>
<td>573 ± 1</td>
</tr>
<tr>
<td>Jsc (mA/cm²)</td>
<td>28.7 ± 0.16</td>
<td>28.2 ± 0.08</td>
</tr>
<tr>
<td>Fill Factor (%)</td>
<td>75.7 ± 0.3</td>
<td>76.0 ± 0.2</td>
</tr>
<tr>
<td>(\eta) (AMO) (%)</td>
<td>9.29 ± 0.05</td>
<td>9.08 ± 0.04</td>
</tr>
<tr>
<td>(\eta) (AM1)⁺ - Extrapolated (%)</td>
<td>15.4 ± 0.08</td>
<td>15.0 ± 0.07</td>
</tr>
<tr>
<td>(R_{\text{sheet}}) (OHMS per square)</td>
<td>61.6 ± 3.1</td>
<td>55.4 ± 0.6</td>
</tr>
<tr>
<td>(\rho) (ohm-cm)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

*No A.R. coating
⁺ Times 1.4 for A.R. coat and times 1.18 for AM1
Ions Produced by Commercial-Grade Solid Phosphorus
CELL AND MODULE FORMATION RESEARCH AREA

Ion Implanter Types

CONVENTIONAL ION IMPLANTER

NMA Implanter Advantages

- Simple Machine
- Higher Throughput of Solar Cells
- Easily Automated (Continuous vs. Batch)
- Custom made for Solar Cells
Solar-Cell Ion Implanter Specifications

- Ion Energy: 5 - 20 KeV
- Ion Current: 10 - 15 mA
- Implant L.C., P⁺, P₂⁺, etc. @ 2.5 x 10¹⁵ / m²
- Beam Purity: 99% Phosphorous, < 0.69% O₂, < 0.3% Other
- Implant Rate: 4 seconds / wafer
- Uniformity: ± 2.6%, 1σ
- Wafer heating: < 150°C rise
Design of Solar Implanter
CELL AND MODULE FORMATION RESEARCH AREA

NMA Ion Implanter Beam Path

- 10KV INSULATOR
- PHOSPHORUS OVEN
- ARC CHAMBER
- EXTRACTION
- BEAM GATE
- DEFOCUS/STEERING
- CURRENT MONITOR
- WALKING BEAM
- WAFER TRANSPORT
- BEAM CENTERING MONITORS
CELL AND MODULE FORMATION RESEARCH AREA

Electrostatic Beam Defocus

Uniformity Requirements With Walking Beam Track
NMA Ion Implanter Beam Studies

Purpose:
- High Current Modification
- Verify Ion Beam Transport
- Beam Uniformity Measurements
- Sample Solar Cells

Status:
- High Current Modification Defined
- Beam Characteristics Defined
 - Area
 - Uniformity
 - Divergence
 - Energy Dependence
- Sample Solar Cells In Process

NMA Test Implant Chamber
Ion Beam Studies, Phase II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Research Goal</th>
<th>Achieved To Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Current</td>
<td>10 ma in 10 cm width</td>
<td>11 ma in 12 cm @ 10 KeV</td>
</tr>
<tr>
<td>Uniformity on one axis</td>
<td>± 2.1/2%</td>
<td>Standard Deviation: ± 2.6%</td>
</tr>
<tr>
<td>Energy Range</td>
<td>5 - 20 KeV</td>
<td>5 - 20 KeV</td>
</tr>
<tr>
<td>Beam Steering</td>
<td>± 1 cm</td>
<td>Not yet tested</td>
</tr>
</tbody>
</table>

Beam Observed in Phase II Studies at 10 keV

![Graph showing the relationship between extraction voltage and beam current. The x-axis represents extraction voltage in kilovolts (10 to 20) and the y-axis represents beam current in milliamperes (5 to 15). The graph shows a positive correlation between extraction voltage and beam current.]
Uniformity Improvement With Defocus

- Non-defocused beam
- Defocused beam

Uniformity deviation from mean vs. beam divergence angle (degrees)
NMA Solar Cells Test Matrix

<table>
<thead>
<tr>
<th>TEST</th>
<th>IMPLANT ENERGY</th>
<th># OF CELLS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energy</td>
<td>10 KeV</td>
<td>12</td>
<td>Mass analyzed controls</td>
</tr>
<tr>
<td></td>
<td>10 KeV</td>
<td>12</td>
<td>Standard Energy</td>
</tr>
<tr>
<td></td>
<td>7 1/2 KeV</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 KeV</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 1/2 KeV</td>
<td>12</td>
<td>Low Current Beam</td>
</tr>
<tr>
<td>11. Wafer Size</td>
<td>10 KeV</td>
<td>2</td>
<td>4" Wafer</td>
</tr>
<tr>
<td></td>
<td>7 1/2 KeV</td>
<td>2</td>
<td>4" Wafer</td>
</tr>
<tr>
<td>111. PeBA</td>
<td>10 KeV</td>
<td>10</td>
<td>3" Wafers</td>
</tr>
</tbody>
</table>

Plans

- Continue Beam Focusing and Intensity Experiments
- Detail Design Components
- Fabricate Implanter
- Test and Debug - Sept. - Oct.
- Research with Adv. Sheet Materials
Non-Mass-Analyzed Ion Implantation

Jet Propulsion Laboratory

D.J. Fitzgerald

Current Objectives

- Find effect of thermal pretreatment of material on cell efficiency
- Determine cause of lower V_{oc} observed in recent N-M-A ion implants
- Evaluate combined N-M-A ion implanted front junctions and back surface field

Effect of Thermal Pretreatment of Material

![Graph showing the effect of thermal pretreatment on cell efficiency.]

- Back implant: 1×10^{16} ions/cm² @ 20keV (BF₃)
- No back implant
- Front implant: 6×10^{15} ions/cm² @ 15keV (P)

Time, minutes @ 875°C
Evaluation of Low V_{oc} in NMA Implants

PROBLEM:

V_{oc} with N-M-A front implant increased from 500 mV to 550 mV with BF$_3$ back implant. V_{oc} should have been 50 mV higher in both cases.

POSSIBLE CAUSES:

(A) Bad actors such as iron in ion beam

(B) Inadequate front junction dose

(C) Poor back contact (non-ohmic)

(D) Inadequate back surface field (depth, dose, boron activation, etc.)

APPROACH:

(A) Changed S.S. masks to graphite

(B) Evaluated effect of varying front dose

(C) Tested samples for shotky barrier

(D) Tested for presence of back surface field
Effect of Varying Front Dose

![Graph showing effect of varying front dose on V_{oc} millivolts.]

- FRONT STRIPPED SAMPLES INDICATED NON-OHMIC CONTACT ON BACK OF THOSE WITHOUT BACK IMPLANT.

- CELLS WITH BACK IMPLANT STRIPPED OFF WITH NEW GOOD CONTACT INDICATED THAT SMALL BACK SURFACE FIELD WAS PRESENT (<10mV).

- SPIRE SUGGESTED THAT HIGH TEMPERATURE ANNEAL STEP (15 MINUTES @ 850°C) SHOULD BE EXTENDED TO 30 MINUTES TO ASSURE BORON ACTIVATION.

Conclusions

- THERMAL PRE-TREATMENT OF MATERIAL DEPENDS ON PRESENCE OF BACK IMPLANT.

- V_{oc} DEFICIENCY MOSTLY DUE TO NON-OHMIC BACK CONTACT - CAUSE NOT UNDERSTOOD.

- BACK IMPLANT MADE CONTACT OHMIC BUT RESULTED IN SMALL BACK SURFACE FIELD.

- POOR BACK SURFACE FIELD MAY BE DUE TO INSUFFICIENT BORON ACTIVATION.
CELL AND MODULE FORMATION RESEARCH AREA

PROCESS RESEARCH: SEMIX SILICON MATERIAL

SOLAREX CORP.

John H. Wohlgemuth

Change in Program Emphasis

FORMERLY: Development of Cost-Effective Process Sequence

TITLE: Module Experimental Process System Development Unit (MEPSDU)

NOW: Research to Understand the Mechanisms of Photovoltaic Conversion in Semicrystalline Silicon

TITLE: Process Research of Semix Silicon Material (PROSSM)

DATE OF CHANGE: February 25, 1982

REPORT ON: Three Months of MEPSDU

Two Months of PROSSM

MEPSDU Summary

1. Cost Effective Process Sequence Identified

2. Cost Analysis of 6.6MW per Year Line Projected - $0.56 Per Watt Cell Add on Cost

3. Three Specific Processes Developed for Program
 - Glass Bead Back Clean-Up
 - Wave-Soldering of Fronts
 - Ion Milling for Edges

4. Spray Dopant - Good Laboratory Results, but Inconsistent Results and Short Shelf Life. Not Ready for Production.

5. Equipment for Handling and Processing Solar Cells is Available for All Process Steps Identified in This Program.
General Process Description

1. **INCOMING MATERIAL**
 - SEMICRYSTALLINE 10 CM X 10 CM WAFER

2. **SURFACE PREPARATION**
 - NaOH ETCH

3. **FRONT JUNCTION FORMATION**
 - SPRAY-ON DOPANT AND BELT DIFFUSION

4. **BACK JUNCTION FORMATION**
 - AL PASTE BELT FIRE

5. **GLASS BELT**
 - BACK CLEAN-UP

6. **AR COATING**
 - SPRAY-ON

7. **METALLIZATION**
 - NEGATIVE SCREEN PRINT ELECTROLESS NI PLATE

8. **EDGE**
 - (I.E. ION MILLING)

9. **WAVE SOLDER**
 - FRONTS

10. **CELL TEST**
Cost Estimate

ASSUMPTIONS:

- 10% Efficient Cells
- 80% Yields
- Three Shifts/Day
- 345 Days/yr Operation
- Production of 1,000 Good Cells/hr = 6.6 MW Per Yr
- IPG2 Coefficients

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>EQUIP LIFETIME YRS</th>
<th>PT²</th>
<th>WORKERS/SHIFT</th>
<th>DIAB</th>
<th>MATS/yr</th>
<th>UTIL/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETCH</td>
<td>65,000</td>
<td>5</td>
<td>200</td>
<td>1</td>
<td>70400</td>
<td>$ 25105</td>
</tr>
<tr>
<td>DIFFUSION</td>
<td>173,000</td>
<td>10</td>
<td>504</td>
<td>1</td>
<td>70400</td>
<td>48900</td>
</tr>
<tr>
<td>BSF FORM</td>
<td>83,000</td>
<td>10</td>
<td>348</td>
<td>1/2</td>
<td>33000</td>
<td>57017</td>
</tr>
<tr>
<td>BACK CLEANUP</td>
<td>138,000</td>
<td>3</td>
<td>288</td>
<td>1</td>
<td>70400</td>
<td>1,490</td>
</tr>
<tr>
<td>AR COAT</td>
<td>104,000</td>
<td>10</td>
<td>224</td>
<td>1/2</td>
<td>33000</td>
<td>73098</td>
</tr>
<tr>
<td>RESIST PRINT</td>
<td>126,000</td>
<td>10</td>
<td>392</td>
<td>1</td>
<td>70400</td>
<td>282307</td>
</tr>
<tr>
<td>NI PLATE</td>
<td>50,000</td>
<td>5</td>
<td>378</td>
<td>1</td>
<td>70400</td>
<td>282090</td>
</tr>
<tr>
<td>ION MILL</td>
<td>135,000</td>
<td>10</td>
<td>200</td>
<td>1</td>
<td>65686</td>
<td>5880</td>
</tr>
<tr>
<td>WAVE SOLDER</td>
<td>100,000</td>
<td>5</td>
<td>400</td>
<td>1</td>
<td>65686</td>
<td>70268</td>
</tr>
<tr>
<td>TEST</td>
<td>55,000</td>
<td>10</td>
<td>150</td>
<td>2</td>
<td>150543</td>
<td>0</td>
</tr>
</tbody>
</table>

$1,029,000 3064 ft² 10 $699,915/yr $862,255/yr $194,521/yr
CELL AND MODULE FORMATION RESEARCH AREA

Cost per Watt

<table>
<thead>
<tr>
<th></th>
<th>CI x EQUIP</th>
<th>FT² x 109</th>
<th>2.1 x DLAB</th>
<th>1.2 x NABS</th>
<th>1.2 x UTIL</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETCH</td>
<td>6.6 E-6</td>
<td>6.6 E-6</td>
<td>6.6 E-6</td>
<td>6.6 E-6</td>
<td>6.6 E-6</td>
<td>.0417</td>
</tr>
<tr>
<td>DIFFUSION</td>
<td>.0064</td>
<td>.0033</td>
<td>.0224</td>
<td>.0046</td>
<td>.0050</td>
<td>.0417</td>
</tr>
<tr>
<td>BSF FORM</td>
<td>.0136</td>
<td>.0083</td>
<td>.0224</td>
<td>.0089</td>
<td>.0033</td>
<td>.0565</td>
</tr>
<tr>
<td>BACK CLEANUP</td>
<td>.0065</td>
<td>.0054</td>
<td>.0105</td>
<td>.0126</td>
<td>.0016</td>
<td>.0344</td>
</tr>
<tr>
<td>AR COAT</td>
<td>.0174</td>
<td>.0048</td>
<td>.0224</td>
<td>.0029</td>
<td>.0116</td>
<td>.0593</td>
</tr>
<tr>
<td>RESIST PRINT</td>
<td>.0082</td>
<td>.0037</td>
<td>.0105</td>
<td>.0133</td>
<td>.0025</td>
<td>.0382</td>
</tr>
<tr>
<td>Ni PLATE</td>
<td>.0106</td>
<td>.0033</td>
<td>.0209</td>
<td>.0011</td>
<td>.0004</td>
<td>.0363</td>
</tr>
<tr>
<td>ION MILL</td>
<td>.0098</td>
<td>.0066</td>
<td>.0209</td>
<td>.0128</td>
<td>.0011</td>
<td>.0512</td>
</tr>
<tr>
<td>WAVE SOLDER</td>
<td>.0049</td>
<td>.0062</td>
<td>.0224</td>
<td>.0513</td>
<td>.0082</td>
<td>.0930</td>
</tr>
<tr>
<td>TEST</td>
<td>.0043</td>
<td>.0025</td>
<td>.0479</td>
<td>.0000</td>
<td>.0002</td>
<td>.0549</td>
</tr>
</tbody>
</table>

All costs are expressed in dollars.

Wave Soldering

- With proper speeds, tilt angle Wave Cells Exceeded Dipped Cells in Performance.
- Simple In-Line Foam Fluxer Works Well.
- Wave Soldering of both sides did not work. First side peeled off during soldering of Second side.
- Solarex has ordered production machine.

407
CELL AND MODULE FORMATION RESEARCH AREA

Spray AR Coating

- Detailed Temperature Time Experiments
 - Temperature Range: 400 - 410°C
 - Time: 45 Second Preheat, 5 Second Spray, No Post Spray Heating
- Results in Excellent Quality AR that is Readily Removed in Fuming HF in Pattern Area

Edging

- Sand Blasting - Good Throughput but Process is Very Sensitive to Operational Parameters
- Diffusion/Plating Barriers - Fuming HF Attacks Most of the Standard Materials
- Ion Milling Remains Best Candidate Although Requires Optimization

Spray Dopant (Emulsitone)

- Short Shelf Life - Breakdown of Vinyl Acetate Producing Acetic Acid
- Very Sensitive to Spray Conditions - Overspraying Means You Can't Remove Oxide
- Inconsistency From Batch to Batch
 - Some Batches Lasted 2-3 Months, Other Degraded in Less Than One Month
 - Some Batches Were Successful on Most Runs, Others Were More Sensitive to Spray Conditions
- Cannot Recommend for Production Now
CELL AND MODULE FORMATION RESEARCH AREA

PROSSM Program

1. Prepare Revised Program Plan

2. Prepare Summary Report of NEPSDU

3. Initiate Effort to Understand Mechanisms Controlling Efficiency in Semix Material

Two Experiments Under Way

1. Using 10 cm x 10 cm Wafer to Produce Matrix of 400 0.5 cm x 0.5 cm Solar Cells. Evaluate Performance (Voc, Isc, Pmax, Diode Factor, etc.) as a Function of Macroscopic Position on Brick and as Influenced by Microscopic, Local Structure Such as Grain Boundaries, Twins, Etc.

2. Fabricating Matrix of Samples at Various Bulk Resistivities in Thickness From 300 Microns Down to 50 Microns. Evaluate and Analyze Resultant Cells to Determine Dependence of Minority Carrier Diffusion Length on Bulk Resistivity and to Determine the Mechanisms Controlling Voltage.
CELL AND MODULE FORMATION RESEARCH AREA

MEPSDU
WESTINGHOUSE ELECTRIC CORP.
C.M. Rose

Goals and Approach

- Design Module Meeting JPL 5101-138 Specifications
- Select and Verify Process Sequence for Fabricating Modules
- Design and Build a Test Facility to Fabricate Modules Using Selected Process Sequence
- Perform Technical Feasibility Experiments
- Acceptance and Qualification Testing of Modules Produced
- Determination of 1986 Module Production Costs

Milestone Schedule

<table>
<thead>
<tr>
<th>MILESTONE</th>
<th>CURRENT PROGRAM PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>START DATE</td>
<td>NOV. 26, 1980</td>
</tr>
<tr>
<td>PRELIMINARY DESIGN REVIEW</td>
<td>MAR. 3, 1981</td>
</tr>
<tr>
<td>PROTOTYPE MODULE DESIGN REVIEW</td>
<td>JULY 14, 1981</td>
</tr>
<tr>
<td>MEPSDU DESIGN REVIEW</td>
<td>MAY 15, 1982</td>
</tr>
<tr>
<td>ECONOMIC ANALYSIS REVIEW</td>
<td>SEPT. 14, 1982</td>
</tr>
<tr>
<td>MEPSDU INSTALLATION</td>
<td>JAN. 31, 1983</td>
</tr>
<tr>
<td>TECHNICAL FEASIBILITY EXPERIMENTS</td>
<td>DEC. 15, 1983</td>
</tr>
<tr>
<td>FINAL REPORT</td>
<td>DEC. 31, 1983</td>
</tr>
</tbody>
</table>
Baseline Process Sequence

Prototype Module Fabrication Progress

<table>
<thead>
<tr>
<th>DATE</th>
<th>AVG. CELL EFFICIENCY</th>
<th>MODULE EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR. 1981</td>
<td>10.8 %</td>
<td>7.5 %</td>
</tr>
<tr>
<td>SEPT. 1981</td>
<td>10.5</td>
<td>9.0</td>
</tr>
<tr>
<td>OCT. 1981</td>
<td>12.3</td>
<td>10.6</td>
</tr>
<tr>
<td>DEC. 1981</td>
<td>12.7</td>
<td>11.2</td>
</tr>
</tbody>
</table>
CELL AND MODULE FORMATION RESEARCH AREA

Module Environmental Tests

<table>
<thead>
<tr>
<th>TEST</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CYCLES (250)</td>
<td>NO MEASURABLE DEGRADATION</td>
</tr>
<tr>
<td>5101-138 HUMIDITY CYCLES</td>
<td>NO MEASURABLE DEGRADATION, NO OBSERVABLE DELAMINATION</td>
</tr>
<tr>
<td>CELL SHADING TESTS</td>
<td>NO MEASURABLE TEMP. INCREASE</td>
</tr>
<tr>
<td>CELL INTERCONNECT FAILURE</td>
<td>NO MEASURABLE POWER DEGRADATION WITH MULTIPLE INTERCONNECT FAILURES</td>
</tr>
<tr>
<td>POS./NEG. WIND LOAD TESTS</td>
<td>NO DAMAGE</td>
</tr>
<tr>
<td>HAIL IMPACT</td>
<td>NO DAMAGE AT IMPACT ENERGY UP TO 5 TIMES DESIGN LEVELS</td>
</tr>
</tbody>
</table>

25 MW/yr Production Facility Cost Analysis

<table>
<thead>
<tr>
<th>PROCESS STEP</th>
<th>PROCESS</th>
<th>VALUE ADDED (1980 $/WATT)</th>
<th>% TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PREPARE INPUT WEB</td>
<td>0.353</td>
<td>49.73</td>
</tr>
<tr>
<td>2</td>
<td>BORON DIFFUSION</td>
<td>0.032</td>
<td>4.51</td>
</tr>
<tr>
<td>3</td>
<td>PHOSPHOROUS DIFFUSION</td>
<td>0.023</td>
<td>3.33</td>
</tr>
<tr>
<td>4</td>
<td>APPLICATION OF AR/PR</td>
<td>0.016</td>
<td>2.24</td>
</tr>
<tr>
<td>5</td>
<td>DEFINE GRID PATTERN</td>
<td>0.017</td>
<td>2.40</td>
</tr>
<tr>
<td>6</td>
<td>METALLIZE WEB</td>
<td>0.037</td>
<td>5.18</td>
</tr>
<tr>
<td>7</td>
<td>REJECTION AND PLATING</td>
<td>0.037</td>
<td>5.26</td>
</tr>
<tr>
<td>8</td>
<td>CELL SEPARATION AND TEST</td>
<td>0.029</td>
<td>4.06</td>
</tr>
<tr>
<td>9</td>
<td>CELL INTERCONNECTION</td>
<td>0.026</td>
<td>3.67</td>
</tr>
<tr>
<td>10</td>
<td>LAMINATION</td>
<td>0.121</td>
<td>17.02</td>
</tr>
<tr>
<td>11</td>
<td>CRATING</td>
<td>0.019</td>
<td>2.62</td>
</tr>
</tbody>
</table>

TOTAL FOR PROCESS – 0.709 1980 $/PEAK WATT
Automated Laser Scribe

CELL AND MODULE FORMATION RESEARCH AREA

CEL:

OF POOR QUALITY

413
CELL AND MODULE FORMATION RESEARCH AREA

DENDRITIC WEB SILICON
WESTINGHOUSE ELECTRIC CORP.

Goals

• ESTABLISH FEASIBILITY OF SUBSTITUTE LIQUID DOPANTS FOR GASEOUS DIFFUSION PROCESS

• OPTIMIZE LIQUID DOPANT DRIVE-IN PARAMETERS

• OPTIMIZE LIQUID APPLICATION TECHNIQUE FOR:
 – DOPANTS
 – SiO₂ PRECURSOR DIFFUSION MASKS
 – AR/PR COATINGS

• ESTABLISH FEASIBILITY OF SUBSTITUTE ION IMPLANTATION FOR GASEOUS DIFFUSION PROCESS

Liquid Dopants: Expected Advantages

• LESS EXPENSIVE EQUIPMENT
• LESS EXPENSIVE CHEMICALS
• FEWER CLEANING OPERATIONS
• SIMPLIFIED PROCESS CONTROLS
• AUTOMATABLE PROCESS
• BASELINE SEQUENCE COMPATIBILITY
Liquid Dopants: Experimental Approach

- DIFFUSION PARAMETER OPTIMIZATION
 - TIME/TEMPERATURE FOR LIQUID BORON DRIVE
 - TIME/TEMPERATURE FOR LIQUID PHOSPHORUS DRIVE
 - TIME/TEMPERATURE FOR SIMULTANEOUS DRIVE

- LIQUID APPLICATION TECHNIQUE INVESTIGATION
 - DIPPING
 - SPRAYING
 - MENISCUS COATING

- LIQUID SiO₂ PRECURSOR FEASIBILITY DETERMINATION

- COST ANALYSIS

Liquid Dopants: Experimental Tools

- CELL FABRICATION – LIGHT & DARK
 IV PARAMETERS

- SHEET RESISTIVITY

- JUNCTION PROFILES
Ion Implantation: Expected Advantages

- HIGHER CELL EFFICIENCY
- IMPROVED CELL PROPERTY UNIFORMITY
- DRY, ENVIRONMENTALLY BENIGN, PROCESSING
- BASELINE SEQUENCE COMPATIBILITY
CELL AND MODULE FORMATION RESEARCH AREA

Conclusions

- MEPSDU WORK STOPPED FEB. 10
- ALL PROGRAM TASKS ON SCHEDULE AND IN BUDGET
- MODULE PASSED ALL ENVIRONMENTAL SPECIFICATIONS
- PROJECTED PRODUCTION COSTS MET 70¢/WATT OBJECTIVE
- REDIRECTED TASKS
 - FINAL MEPSDU REPORT
 - LIQUID DOPANTS AND APPLICATOR STUDY
 - ION IMPLANTATION WORK
- REVISED PROGRAM PLAN SUBMITTED TO JPL
CELL AND MODULE FORMATION RESEARCH AREA

PHOTOVOLTAIC ASSESSMENT

UNIVERSITY OF PENNSYLVANIA

M. Wolf

Approximate Westinghouse Grid Line Pattern

(All Dimensions in cm)
Epoxy Diode

$I_f = I_r = 100 \text{mA}; \quad 1\text{ms/div.}$
Solar Cell #51A

$I_f = I_r = 250 \text{ mA}; \ 2 \mu\text{s/div horiz.}$

$I_f = I_r = 100 \text{ mA}; \ 2 \mu\text{s/div horiz.}$

Solar Cell #51A

$I_f = I_r = 25 \text{ mA}; \ 2 \mu\text{s/div horiz.}$

$I_f = I_r = 10 \text{ mA}; \ 2 \mu\text{s/div horiz.}$