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evaluation of superimposed predictor s)_bology in computer-generated pictorial

displays. The display under investigation, is a tunnel display for the

four-dimensional commercial aircraft approach-to-landing under instrument

flight rules. It is investigated t_hether more complex predictive information

such as a three-dimensional perspective vehicle symbol, predicting the future

vehicle position as _'ell as future vehicle attitude angles, contributes to a

better system response, and suitable predictor laws for the predictor motions,

are formulated. Methods for utilizing the predictor symbol in controlling

the for_a:'d \,elocity of the aircraft in four-dimensional approaches,are

invest i gated.

'i qq_e simulator tests show, that the complex perspective vehi¢!e symbol

yields improved damping in the lateral response as compared to a flat tl¢o-

: din'ensional predictor cross, but yields generally larger vertical deviations.
,¢

Hethods of usin F the predictor symbol in controlling the for_,'ard velocity of

the vehicle are sho_,n to be effective. The tmmel display with superimposed

',, perspective vehicle symbol yields very satisfactory results an_ pilot
i
: acceptance in the lateral control but is found to be unsatisfactory in the

vertical control, as a result of too large vertical path-angle deviations.g

7_e research is carried out in the frame_,'ork of the T._erminal Configured

Vehicle (TCV) program at loa.ngley Research Center, llampton, Va., as part of an

ongoing research on integrated advai_ced displav concepts fox" t_e future corn-

mercial aircraft flight-deck. "l]_e development and qu,mtitati:'e simulator
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evaluation of the predictive information, has been carried out at the Flight

Control Laboratory of the Technion - tlaifa, Israel. In parallel, all

developments are implemented in the tunnel display software package at Langley

Research Center, for operation in the TCVresearch cockpit, and in a later

.stage, for operation in the TCVB-737 research aircraft, At Langley Research

Center, a qualitative simulator evaluation has been carried out.
m
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Computer-generatedpictorialdisplaysfacilitatethe integrationof control

informationin a format,analog to the through-the-windshieldvisual field. I
{
|

The tunneldisplay,in which the three-dimensionalapproachpath is displayed I

perspectivelyas a windingand descending"tunnel-ln-the-sky"is useful in

particularfor followingcomplicatedcurvedtrajectories. In previouswork

[i], [1980),the tunneldisplaywas successfullyimplementedto the steep

and curvedhelicopterapproach-to-landingunder instrumentflightrules. It

is shown in Ref. [I] that pictorialdisplays,withoutfurtheraugmentation,

, yield impairedsystemdampingdue to the lack of peripheral_isual cues. It

is also shown,that superimposedpredictors)_bologyfurnishesthe system

with the necessarydempingcues.

This researchdeals with the implementationof the tunneldisplayto the

fixed-wingcommercialaircraftapproach-to-landingand with the exploration

and developmentof more complexpredictiveinformation. In a curvedapproach,

the trajectorycurvatureconstitutesthe main forcingfunctionto the pilot/

vehicle systemand is responsiblefor a largepart of the pilot activity.

_e predictiveinformationserves the pilot in copingwith this forcing

function.Two predictorlaws are considered: (I) a non-linear,basic

' predictorlaw,based on a circularfuturevehiclepath which is formulated

such that it enablesfollowingsteadycurves of the trajecto.-_-with zero steady-

. state error in the lateraldeviationand (2) a linear,more sophisticatedfull-

statepredictorlaw which providesa more accuratepredictionbut yields a

steady-state error in steady curves. A linear/non-linear predictor law is
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. formulated which combines both the advantage of a zero steady-state error

given by the basic predictor law, with the advantage of a more accurate

prediction given by the full-state predictor law.

In addition to the future vehicle position, displayed by a flat two-

dimensional predictor cross, the three dimensional perspective vehicle s}_bol

also displays the future vehicle attitude angles. Since the intercept angle

between the vehicle and tunnel trajectory is equivalent with the rate of
!

deviation from the trajectory, the display of the future attitude angle is

expected to contribute to the system damping.

In addition to providing the necessary damping cues, the perspective

vehicle symbol is utilized in controlling the forward velocity of the aircraft

in four-dimensional approaches. This is accomplished by using the changes in

predictor distance, resulting from changes in forward velocity as a control

cue. The advantage of using the perspective vehicle s_nbol for controlling

the fo_¢ard velocity is that all control information, necessary for lateral,

vertical and velocity control remains concentrated in the central area of the

display.
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' II. DESCRIPTIO_IOF THE DISPLAY

Tunnel with Perspective Vehicle Symbol

• _ The basic tunnel display configuration for the 4-D approach-to-landing,

is shown in Fig. i. The wlnd_ng and descending three-dlmenslonal approach _

_ _ath ts presented to the pilot as a tunnel-in-the-sky, which is inertlally

fixed in space. In order to follow the desired approach path, the pilot

_ust keep the vehicle inside the tunnel. The image shown in Fig. i is

analog to the "through-the-windshle!d" visual field and shows th'ehorizon

(a) and the tunnel image with cornerlines (b). The tunnel cross-sectlon

is constant and square and of 300 ft width and remains at all time upright

with respect to inertial space and thus parallel to the horizon, Analog

to the natural visual field, a left bank is visualized by a clockwise

rotation of the image about the monitor center and a nose-up pitch motion

is visualized by a vertical downwards displacement of the image, perpendicular

tO the horizon.

Basically, the square tunnel elements are drawn at 200 ft intervals, i

Ho_,ever,to prevent clutter, all elements are omitted in this configuration,

and on].,/the interconnecting cornerllnes are shown. These lines are of

200 ft length and the points at whch =hese lines are connected, appear as

bright spots, i_qxiletnovlngthrou#x the tunnel these spots highly contribute

- to the impression of forward motion.

Superimposed on the tunne! _ma_,eis the perspective vehicle symJ_ol(c).

" l_aecenter of gr.av£tyof the vehicle symbol indicates the predicted vehicle

location, T seconds in advance, and the angular•orientation of the symbol
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indicates the predicted a=tltud_ angles of _he veh£cle. This predictor !

symbol is located at a distance D ahead of the vehicle, where D is

predicted from the actual vehicle velocity, vehicle states and control in-

puts, T seconds in the future. The wlng-span of the vehicle symbol is

identical to the tunnel width, i.e. 300 ft., which is about three times as

i large as the wlng-span of the actual aircraft. The bars (d) are positioned

i on theverticalaxisof thevehiclesymbol,and serveasa verticalreference.

The distance between these bars is identical to the height of the square,

i.e. 300 ft. In contrast to the tunnel image, the vehicle symbol is not

a "wlre-frame" structure. A wlre-frame symbol, in which all llnes are

visible, is ambiguous and can equally well be interpreted as pointing towards

the observer, as well as away from the observer_ An unambiguous vehicle

symbol is obtained by removing the '_idden lines" from the vehicle symbol

fuselage. .M%efficient technique for removing the hidden lines is given

in the appendix.

The four corner "tlck-marks" (e) indicate a cross-sectlon of the tunnel,

which moves along, ahead of the vehicle, at the same distance D as the

predictor symbol. The solid square (f) is a cross-sectlon of the tunnel

as well bu_ is i_sitloned at distance Do = T/Vo ahead, where Vo is the

desired velocity. Since the solid square corresponds to _he desired velocity

and the corner tlck-marks to the actual velocity, the velocity of the vehicle

in 4-D approaches is controlled by matching the tick-marks to the solid square.

In addition, an increase in velocity and thus an increase in predictor distance,

mnnlfests as an apparent thrln'_ingin size of the predictor symbol and a

decrease in velocity manifests as an apparent growing in size of the predictor
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sy_=ol. In order to augment the difference between the tick-marks and

the solid square, the tlck-marks are drawn at three times the intensity

of the solid square. Furthermore, the tlck-marks are blinked at a 3 Kz

frequency, when the velocity error exceeds a 5 ft/eec threshold.

: A digital read-out of the vehicle velocity [g) is displayed in

i the bottom center of the dlspLay. In F_g. 2 a-.c this display configuration

: is sh_n for D0= 900,Do = 1500and Do " 2000ft.

; Tunnel with Two-Dimenslonal Predictor Cross.

The tunnel display with a flat two-dimenslonal predictor cross is

__hown in Fig. 3 a-c for three nominal predictor distances. The height

and wic._thof the cross are identical to the tunnel square, i.e. 300 ft.

The center of the cross is identical with the center of gravit5" of =he

perspective vehicle symbol. However, in contrast to the perspective sy__5ol,

the predictor cross remains at all times upright with respect to the display

and thus does not display the future attitude angles of the vehicle.

•Roll-Stabilized Tunnel

In Fig. 4 the roll-stabillzed tunnel display is shown. In contrast

to the roll-version of the display, the horizon and tunnel i=age rema_in

. at all times levelon the displayand the roll-motionis visualizedby

banking the vehicle symbol. A disadvantage of this configuration _s r._hat

• the vehiclesymbol displaysthe predictedbank-anglerather than the actual

bank-angle. The bank-angle information is correct in the steady state only,

since then the pr,_dicted and actual bank-angle are identical.
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• i 7
Banked Tunnei

In Fig. 5 a configuration of the rolI-stabi]__zed tunnel display ks

shown, in which the tunnel elements are banked in curves. _he trajectory

bank-angle corresponds to the bank-angle which is required in a coordinated

eurn at the desired vehicle ve_oc£ty. Thus, the trajectory bank-angle pro-

v_des a bank-angle command. Both in level flight, as well as in a steady

•turn, the actual bank-angle will be identical to the commanded trajectory

bank-angle and the wings of the perspective vehicle symbol, will be parallel

to the base of the tunnel square.

In Fig. 6 the roll-version of the banked tunnel ks shown. In a steady

turn both the wings of the vehicle symbol a_ well as the square will be

parallel to the base of the monitor. In this situation, the inclined

horizon provides the only actual bank-angle information.

In Fig. 7 the roll-verslon of the banked tunnel is shown for a tunnel

width of 450 ft. The perspective vehicle sy_._ol and tunnel cross-section

are enlarged accordingly.
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III EXPERIIIEI_TALEVALUATIONi

A. OBJECTIVESOF THEFO{PERIME_ALPROGPAM

The objectives of the experimental program are:

(I) To compare the performance of the tunnel display with a

3-D perspective vehicle symbol with the one with a flat 2-D

predictor cross.

12) To evaluate the use of the perspective vehicle s)nnbol with

veloci=y tick-marks for controlling the velocity of the aircraft.

(3) To evaluate a more co_lex full-state predictor law.

(4) To investigate the effect of the tunnel width.

(5) To evaluate the effect of displaying the commanded bank-angle by

: banking the t_nnnel elements in curves.

(6) To compare the roll-version with roll-stabilized version.

o

B. E}L=ERI_NTAL SY_TF_

i The. exq_erimental progr_n was carried out at the Flight-Control Laboratory

of the TecImion, .;laifa,Israel. During the sum-n,er of 1981 all developments

were _plemented in the tunnel softx_are package at Langley Research Center,

Hampton, Virginia, for operation in =he T__erm_lnalConfigured V_ehicle (TCV)

research cockpit. At Langley P.esearch Center preliminary qualitative

simulator tests _-ere carried out.

• A functional diagram of the experimental system at the Technion is

sh_.:n in Fig. $. The vehicle response was corr_uted in t_o pmrts: Linear

cor_utations, such as velocities and angular rates in the body coordinate

system, were carried out hy analo_ simulation, and non-linear co_-_,utatio_s,
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i.

such as transformations from body to intertial system as well as the computa-

° tlon of the vehicle path were carried out digitally. Two EAI-580 hybrid-

analog computers served for simulatlng the linear part of the lateral and

vertical dynamics, disturbance input shaping, as well as simulating engine

dynamics, servo-actuators and stability augmentation system. Analog

random processes for the dlstrubance inputs, _re _enerated by a Hewlett-

Packard HOI-3722-A noise generator. The analog signals were converted to

digital by a RTP 7431/30 analog-to-dlgltal converter. All the digital

computations were performed by a Data General CorporatiorL Eclipse computer

with a 16-bit word length and 128-K extended memory. Vehicle path compu-

tations were performed in floating point _¢ith 32-bit precision, l'ne integ-

ration timing was controlled by a real-time clock, and the analog system

was fully slaved to the digital system. About 80% of the Eclipse C__entral

Processing Unit (CFU) capability was devoted to the generation of the

images of the various display configurations. Optimised, special pro-

gramming techniques were developed, based on efficient assembly written

subroutines, using 16-blt fixed point arithmatics, for obtaining a sufficlent i

ly fast update rate. The generated images, digitally coded in a sequence

of move/dra,_ co_nds, were translated into analog voltages:by a Kewlett

Packard }_. 1350A graphics translator, for drawing the stroke-written image

on a }[ewlett Packard HP-1310A cathode ray tube, %"ith electrostatic deflection

system measuring 19 in. dlagonnlly. Vehicle motions, thus Dresen=ed to the

pilot, were utilized in generating the contro! co,T:mqndswhich, in their

turn, were i_arted to the analog co_uters.

Control manipulators consisted of a two-axis spring-loaded control stick

and an unloaded throt-_le control lever. The range of the t_'o-azds control
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stick was from +2 to -2 cm and the maximum spring torque was 0.3 ?_, for both

axes. A forward stick displacement created a pitch motion and a lateral stick

: displacement a roll motion. Rudder pedals were not present and turn eoordina-
[

' tion'was carried out by the stability augm,_tation system. The :ange of the

throttle control lever was from +8 to -8 cm.

Recorded time-histories of vehicle motions, control commands and

disturbances were recorded on-line in extended memory of the CPU, and memorized

after each run on a I00 ..egabyte magnetic disk. The memorized time-histories

were retrieved off-line for further reduction. Condensed results, such as run

averages and scores were tabulated and printed on a line-printer; time-historic=

and graphs, were plotted on the CRT screen and photographed for documentation.

All condensed results were permanently stored on magnetic tape.

..-:;L,,I_G_OF*"IIEEXPKRD_J2_S

The experimentswere concernedwith the approach-to-landingin the range

from 30,000 to 1,000 ft from the touch-doom point. A plan view of the desired

trajactoryis sho%_ in Fig. 9 and the verticaldescentprofilealong the

trajectoryis sho_ in Fig. I0. _e co_mnded velocity V0 was set at

2_3.6 ft/sec over the complete approach path. A description of the two types

of experimentsthat were conductedis givenhereafter.

i. Trajectory follo_fng in the presence of random lateral and vertical gust

disturbances; _e subjects were instructed to minimize the lateral and vertical

deviations from the trajectory with minimum control effort. Each run started

from initial location 7 w_th an initial lateral deviation of 200 ft to the left
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of the tra3ectory, a vertical deviation of I00 ft below the trajectory and zero

intercept angle. Thus, control action was required from the subject, immediately

after starting the simulation run, to bring the vehicle back on the trajectory.

The lateral gust disturbance components v and and the longitudinal

g Pg
i gust disturbance components u and w were generated by passing band-limited

white noise with a band-limit of 1.5 Hz, through first-order shaping filters.

The R_ value of Vg was 13.5 ft/sec, of pg 0.086 rad/sec, of ugwas 9.0 ft/sec

and of wg was 12.2 ft/sec, and the break frequency of all shaping filters was

0.2 rad/sec.

Each run lasted 128 seconds, during which the means and auto-covariances of

deviations _ state variables and control commands, were computed.

2. Entering the trajectory from a random chosen, unknown location outside the

trajectory: The experiment attempted to simvlate a sudden confrontation with

the situation of being located ortside the trajectory. The subjects were

instructed to bring the vehicle back on the desired trajectory, as fast as

possible, as smooth as possible and with minimum control effort. Gust

disturbances were not present in this experiment. In order to prevent the

subject from knowing his initial position before the start of a simulation run,

the display was initially blanked and was made visible only immediately after

starting the simulation run.

Each run started randomly from one of the 6 initial locations shown in
l

Fig. 9. For all locations the initial lateral deviation was 2,000 ft to the
t

left or to the righ of the trajectory and the initial vertical deviation was

300 ft above or below the trajectory. The initial intercept angle was set

between 0 and 60 degrees.



-' _: ;. ' , : "-"_" _.--r'_ m'''_ _" _. "" . : ' t.. " . . • "" -.... , :-_ "'_"v_v:r_+'_-"___¢_"_"€__,... : . ... _.. , . . . . .,

• i
I :
I "

- ii -

- i

; Each entry run lasted 38,4 seconds during which the following performance

scores were computed. I. The lateral settling time T8£ defined as the time

from the start of the run to the moment the lateral deviation settles within

a ±100 ft settling tolerance about the desired trajectory and the vertical

settling time Tsu , for which the settling tolerance, is ±75 ft. 2. The means

and auto-convariances of deviations, state variables and control commands.

3. The lateral drviation score, defined as the averaged absolute value of the

lateral deviation, computed between t =T, and t =T2, where T1 =i0 sec and

Tt =38.4 sec, according to:

T2

sc(yd)"-"(72-TI)i I IVdldt . (1)
tI=TI

The vertical deviation score was computed in the sam_ way as the lateral one.

The lateral and vertical deviation scores were chosen to be averaged absolute

values rather than averaged squared values, in order to prevent these scores

from being dominated by the large initial deviation. For the same reason the

averaging process only started at t =If sec. T! is chosen to be about 25%

less than the best possible settling time.

D. RESULTS

" Four subjects participated in the experimental program. Apart from

subject A, all subjects were male. Subjects A, C and D were Aeronautical

t

Engineering students with no prior flight or simulator training, and subject B

an Aeronautical Engineer _ith extensive simulator experience. Each subject
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participated in 2-3 2-hours/weeksimulator sessions, All subjects reached a

stable well-trained level after 6 weeks of training. Subject motivation was

largely enhanced by using a reward system, based on a general performance

score, which was displayed to the subject at the end of each run. This score

was composed of the weighted sum of mean-squared deviations and control

commands. The reward, given in the form of extra pay, was determined by the

performance level which was reached and maintained during the session.

The results of the four subjects are treated separately and are

summarized in Tables I-V. The results for each experimental condition

represents the average and standard deviation of a set of six or more repeti-

tions.
.o

D.I RasultsofTrajnctoryFollo,_in_

Comparison of the 3-D perspective vehicle symbol with flat 2-D

predictor cross.

The lateral results of the four subjects are sho_ in Figs. i]-14.

Both for the perspective vehicle symbol, as well as for the predictor cross,

the lateral deviationwas found to increase strongly with the predictor

distance D, whereas the roll activity and lateral stick activity were found to

decrease strongly. _e contribution of the perspective vehicle s}_bol was

fol,_:diL_ particular in the signific_int_y lower roll-activity_ for all

four subjects and almost over the complete range of D, which proves that the

perspective vehicle symbol _ontributes to the system damping. On the other
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hand, tlm p_rspoctlve vehicle _}-mbolyiQldad a .om_what larger latc:ral

" deviation, In tile vertical control theme effet.ttl were le_n pronounced. The

vertical ro_ult.J of the four _ubjecta are shown i,a Figs. 15-18 and indicate

that al_o the vertical deviation strongly increased with D. The per_pective

vehicle s)_bol yielded a somewhat larger vertical deviation than the predictor

cross, Which might be attributed to the fact that the vehicle s._abol with its

complex z;hape i.', h.trder to match to the tunnel square.

TiRe hi_torics of single runs of aubjuct B, for the pergpective vehicle

.q)._nbol and for the 2-D predictor crm;s, are compared in Figs. 19-2l,. l:ig.q.

19 and 20 clearly demonstrate the lower roll aetlvity as well as lateral stick

activity for the imr_pective vehicle _)_bol at _'0-1,500 aud P:-900 ft. At

:)_- 2,000 the difference is leqs pronounced, probably becnmm the lateral

,not ion of the vehicl," s._hol provide_ ,_ufficient damping cues, ,me Fig. 21.

The tirae-hi_tories ._ the vertical control, tdmwu in Fig,q. 22-24.

indicate larger vertical deviations for the perapective vehicle u.xanbol,

wherea.q the pitch aml 8tick activity are the t_ame aa for the predictor cro.qs.

Retmlt.,; of m.mual velocity control

Tht.. rt, sults of auto-throttle control and raanual velocity control by meann

of velocity tick-m.trks, are uhown in Figs. 11-18. Neither in the lateral, nor

in the vt.rticai control did the rezmltt_ for the manual throttlo differ

:,iguific:mtly from the re..;ultu for the auto-throttle, which prove_: theft

vt,!ocity control could be c:_rr.;t,d out without affecting the tu:mel follt_.'_. W

pt, rfol-_:lan_'t_., |-'of comparison, manual velocity control wag citrried out by .._-ean.,;
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of the digital velocity read-out, shown in Fig. I. In this experiment the

: predictor distance was kept constant at D _ Do regardless of the variations

i

in velocity. In contrast _th velocity control by means of the tick-marks,

: velocity control by means of the digital read-out yielded a markedly

deteriorated tunnel following performance, as seen by the significautly

larger roll-activity and lateral and vertical deviations, but also a

significantly larger velocity error auto-covariance and throttle activity.

_lese findings are confirmed by the time-histories sho_ in Figs. 25-27.

The large overshoots in velocity error and throttle displacement sho_m in

Fig. 27 clearly demonstrate the lack of damping for velocity control with

the digital read-out.

Results of the banked tunnel.

_e banked tunnel was investigated, both in the roll-version, as well as

in the roll-_tabilizcd version. _3e performance of the roll-version of the

banked tunnel was very similar to results of the straight tunnel, see Tables

1-IV. _c subjects cormnented, that in the roll-version, the bank-a_gle conmmnd

informmtion, provided by the tunnel elements banked in curves, did not really

contribute to the following performance, and was ignored in most cases.

Furthermore, the bank-angle co-----ma.'ndwas only correct after entering a steady,

coordinated turn. The incorrect bank-angle co_aud in transients to curved

sectmons was found confusing.

• l_e roll-stabilized version of the banked tu_mel yielded generally larger

lateral deviations and roll-activity, than the roll-version, see Tables I-IV.

This was attributed to the fact that the actual bank-angle, which in the roll-



. • _ .2-

?

- 15 -

f

versionis displayedby theinclinationof thehorizon,isno longeravailable

in the roll-stabilized version. The predicted bank-angle, displayed by the

vehicle symbol was clearly not sufficient. These results are confirmed by

comparing the time-histories in Fig. 28 for the roll-stabilized banked tunnel,

with the ti_..e-histories in Fig. 20 and 23 for the roll-version of the straight

tunnel. 8ubjeetopinion of the roll-stabilized version of the banked tunnel was

less favourable than the one of the roll-version of the banked tunnel.

The effect of the tunnel width.

Tile results of the tunnel of 450 ft width varied between the subjects, see

Fables I-IV. For subject B the roll-activity was significantly lower and the

lateral deviation significantly larger for the 450 ft tunnel than for the

300 ft tunnel. Also for subject A the roll-activity was lower for the 450 ft

tLmnel,but the lateraldeviationwas tilesame. lIowever,both subjectsA and

B bhowed a lower predicted lateral deviation for the 450 ft tunnel, which

indicates that the subjects devoted more attention to the lateral error

bet_,een vehicle s)_nbol and tunnel square. Also subject C showed a lower roll-

actlvity for tile 450 ft tunnel, and smaller lateral deviation. The subjects

cot_mented that generally the 450 ft tunnel was easier to control than tile

300 ft tunnel.

Re_,;ults of tim full-.qtate predictor law.

lhe full-state predictor law yielded slightly larger roll-activities and

slightly larger lateral deviations than the basic circular path law. IN,is

might be attributed to the fact that in the full-state law the bank-angle rate
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component of the bank-angle prediction, is much smaller than in the basic law,

° see Eqs. (A. 96) and (A. 97) of the Appendix. However,subjectopinionwas

more in favourof the full-statepredictorlaw, sincedisturbinglyrapid roll-

motions found with the basic law, were missing.

D.2 Results of Trajectory Entry

The entry experiment was conducted in a series of six runs. For each run

tile initial location was chosen at random and without replacement from tile

set of six initial locations given in Fig. 9. Significant differences between

the scores were observed, for the various initial locations. In order to rate

the general entry performance, a series score _,as computed by averaging the

_esults of the 6 runs in each series. For each display configuration at least

6 series of runs were performed. The experimental results are sur:mariaed in

Fat,[e V and Figs. 29-32 and represent the average and standard deviation of

sets of nt least 6 :;cries-scores.

The roll-activity and lateral stick activity tended to be lower for the

!_(rspeetive vehicle s>_mbol than for the 2-D predictor cross. Note the

J_[ference in control strategy between the subjects: in contrast to subjects

1"a_-d D, subjects A and B show less control activity on the account of a

largerlateralscore,see Fig. 29.

ThL_ vertical _e_;ultt;in Fig. 30, clearly show a larger vertiLzal score for

the pt-r.,;pcctlvevehicle symbol, which might be explained by the fact that the

l,,-r:;pectix.es_nnbol is harder to match to the tunnY,| square. Tirrm-hi._tories of

._xng[e entries are sho_q% in Figs, 31 and32. .No significant difference in contro!

strate}'.ybetween the perspective vehxcle ._\-m.,Soland the 2-D predictor cross are

not Ited.
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D.3 Resultsof PreliminarySimulatorTestsat LangleyResearchCenter

In the qualitative evaluation at Langley Research Center the tunnel with

perspective vehicle symbol and basic circular path predictor law, was investigated.

In most runs, no atmospheric disturbances _ere present. The pilot subjects found

the perspective vehicle symbol more difficult to familiarize with, than the flat

2-D predictor cross. After familiarization with the display, the predicted pitch[

and yaw attitude angles, were found useful. However, the predicted bank-angle was

found to be confusing since it was composed of both actual bank-angle as well as

bank-angle rate. It was found preferable to bring the bank-angle rate portion of

the prediction to zero and to display the actual bank-angle only. Note that for

the full-state predictor law, the bank-angle rate portion of the bank-angle

prediction is considerably smaller than for the basic predictor law, see Eqs.

(A.96) and (A.97) of the Appendix. The pilot's rejection of the bank-angle rate

portion of the prediction, thus confirms that the first order bank-angle predic-

tion of Eq. (A.34) is not sufficient.

The following parameters were varied: (i) Nominal predictor distance Do,

(2) Tunnel width, (3) Predictor size and (4) Trajectory curvature. At a nominal

airspeed of 130 knots, the most suitable predictor distance was between 900 and

1,250 ft. A tunnel width of 450 ft and a perspective vehicle s%_nbolwith a wing

span of 80% of the tunnel width, was found adequate.

• '[k..otrajectories were tested: a strongly curved path yielding steady state

bank-angles of about 27.2 degrees and a moderately curved path, yielding stead)"

- state bank-angles of about 16.6 de_%rees. Both for the stronf,ly curved path, as

well as for the moderately curved path, the perspective vehicle s)Tnbolyielded an

adequate perforn_mce. }{oK'ever,the maximum bank-angle for the strongly curved

path was too large to be acceptable in actual flight.
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Manual velocity control by means of velocity tick-marks proved successful. I

Accurate velocity control was obtained without overshoots and with minimal

throttle activity. The manual velocity control did neither significantly

increase pilot workload, nor affect the tunnel•_ollowing performance.

_le banked tunnel was investigated, both for the roll-version, as well

as for the roll-stabilized version. The roll-stabilized version was found

! preferable due to the fact that the bank-angle command was directly

i perceived as the inclination of the tunnel elements with respect to the
|

! stabilized horizon, and thus only with respect to the monitor frame aswell.ln

i contrast with the simulations at the Technion in which the predicted bank-

angle was displayed, nt the Langley version the actual bank angle was

available, since the bank-angle rate portion of the prediction was set to

zero. Favourable opinion was given to the fact that in a stead)" coordinated

turn the wings of the perspective vehicle s)_bol were parallel to the tunnel

square.

Two main problems were encountered: (i) The vertical control was too

inaccurate and yielded unacceptably large vertical path-angle variations;

(2) In the lateral control transients to and from curx.ed sections of the

path _ere too sudden.

The reasons for the unsatisfactory vertical control are two-fold:

• (a) Since a contact analog display is used, horizontal and vertical picture

scales are identical, i.e., ±45 degrees of visual angle. The visual angle

which is satisfactory in the lateral control, is too insensitive in the

vertical control, ltowever, a reduced vertical visual angle is not possible
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* sinceitwouldseriouslydistorttheimage. (b) The path-angleis not

explicitly displayed.
4

Pilots cor_nented, that although the lateral control was very satisfactory

in straight sections as _Ii as in steady curves, the transients from straight

to curved sections were too sudden. This resulted from the fact that the

curvature along the trajectory was varied in steps, without transients from

one section to the other.
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IV. CORCLUSIONSAHD SUGGESTIONSFORFURTHERRESEARCH

8

i. The perspective vehicle symbol requires a longer time to familiarize with

than the 2-D predictor cross.

2. The perspective vehicle symbol yields a smaller roll-activity and thus

i
contributes to the lateral system damping.

|
3. The perspective vehicle symbol yields generally larger vertical deviations. !

i

4. The perspective vehicle symbol with velocity tick-marks enables accurate i

velocity control, without overshoots, with moderate throttle activity and I"

without increasing the pilot workload or affecting the tunnel following
J

performance.

5. A tunnel width of 450 ft and perspective vehicle s}_bol with a wingspan of

80% of the tunnel width yields the best pilot acceptance.

6. The full-state predictor law yields a better pilot acceptance than the

basic circular path law, in particular with regard to the bank-angle

prediction.

7. _le vertical control in the present display configuration is too inaccurate

and yields too large vertical path-angle variations. Future research

efforts should be directed to the augmentation of the display With super-

imposed symbology, explicitly displaying the vertical path-angle in the

correct scaling. The s)_bology should be located such, that it does

" neither interfere with the lateral control, nor clutter with existing

symbology and yet _s located as centrally as possible on the display.

8. The banked tunnel in the present configuration, is only effective in a

steady coordinated turn. Incorrect bank-angle co, ands in transients are
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found confusing. Future developments should deal with the definition of

. a higher-order continuous function for the trajectory curvature and

commanded bank-angle. This function should be custom-taylored to the

average vehicle response, in order to enable the pilot to follow the

trajectory through straight, transient and curved sections by matching

the actual bank-angle to the commanded bank-angle.
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V. APPENDIX

A. VEHICLEMODEL

The lateral and longitudinal dynamics are assumed to be fully decoupled.

The linearized lateral equations of motion of the vehicle, for small devia-

tions from the nominal trim condition, are given by:

I! o= p r + _a 6r +

,_ 0 1 0 0 0 0

-Y O-
r

+ P _ (A.1)
0 0

' and N'. are given byand the "primed" derivatives Li z

' = N-r = (A.2a,b)

Li l-Jxz_/(i Z ) 7. 'l-J 2/(Z ! )" _X _Z X3 ZZ

where i can be _, -_ 6 6
£'a _'J aJ r"

In this study, the stability derivatives of a DC-8 aircraft are chosen,

in the approach-to-landing, trimmed at a nominal airspeed of 243.5 ft/sec and
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" with flaps extended to 35 degrees. The dimensional stability derivatives

are derived from Ref. [2] and given in Table VI.

_e lateral stabili=y is largely improved by a lateral stability augmenta-

tion system including a roll-rate on aeleron feedback, a yaw-rate on rudder

feedback with wash-out and a sideslip on rudder feedback. Aeleron and rudder

servo actuators are modelled by a first-order lag with a i0. rad/sec break

frequency. _le equations of motion of the control system, including ser%,o

actuators,are given by:

= -10.06 + i0.0 c (A.3)c. G O
S

= -10.05 + 10.0e (A.4)
8 S

where ,_ and c are the inputs to the servo actuators given by:

,;= 1.0y+ ,< (A.5)

c = -8.0_+ 8.0:, (A.6)

where . , is the state of the wash-out filter, given by

.... l.o,, + ;, Ca.7)
-; u

and ¢ is the co.-anandinput to the system originating from a lateral control

stick motion. Turn coordination is accomplished by means of the sideslip on

rudder ,eed:,ac__" ' and the rudder pedals are not used

The linearized longitudinal equatlons of motion of the vehicle, for small

deviations from the nom:nal trim condition are given by:
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u o _ z_ o -z -z_ NW Zu Zw o e8• = 4" _ -F U

q I_ M_ M'q 0 q M_e O _ths] -14'u -M'w ;'8 0 0 1 0 8 0 0 0 0

' (A.8)

where u u w u

: I
: M' = M + t%U 0 ; /4; = M6 +I%Z 6 (A.9a-d) !

q q e e e
'. _

The dimensional stability derivatives are given in Table VI. i

: The longitudinal stability is augmented by a pitch rate on elevator feed-

.

back and an angle-of-attack on elevator feedback. _e elevator seFvo is

modelled as a first •order lag and the equations of motion of the control system

are given by:

6 = -i0.0 6 + I0.0 e (A.IO)
8 ,6

where: ee = 6.0 q + 0.05 w + 6 (A.II)e

Throttle and engine dynamics are modelled by a first order lag with a

time constant of i0 seconds. The auto-throttle includes a fee_ack of

velocity error and of forward acceleration. The equations of motion of the

auto-throttle system including engine lag are given by:

6_+h= -0.I6th + 0.i e_h (A.12)
8 8

where:• et;I = -0.05 U - 0.5 ax (A.}_3)
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:7 For manual throttle control et_ is directly connected to the throttle,
?

-. so that eth = 6th"

_ In order to compute the vehicle path, the components of _ in the body

coordinate system, Ub, Vb, _b have to be transformed in the components of _

} in the inertial coordinate system _i' Yi' zl according to:

il--Eb ilil (A.14>

where r_b.+i_ [Ei.,b]T (A,15)

is the transformation matrix for rotation from body to inertial system, which

is the transpose of the Euler matrLx Ei_ for rotation f[om• inertial to body

system. The Euler matrix is composed of a successive yaw, pitch and roll

rotation, in that orde- _ccording to:

_'i'-"i.._J _ [E_][E0][E_,] (A.16)

where :

! i ! --I
I 0 O cos e 0 -sin 0

_10 cos £0 sin ; E0 =A 0 i 0 ;

-sin _ cos in 0 0 cos O

cos _ sin

A , t_, (A.17a-c)

" 0 1
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l
The vehicle path is obtained by integration of xi' i and zi.

The relation between the body rotations p, q, r and the Euler angle

rates_, 8, _ is given by:

= + [_1 + [_][_e] (A.18)

L°J • L*J

and the inverse relations are given by:

= p + q tan O sin k0+ r tan O cos k0

= q cos_ - r sin_ (A.19a<)

= r(cos _/cos e) + q(sin _/cos b)

The Euler angles are obtained by integration of $, e and _. For

relatively small values of 0 and _, Eqs. (A.19a-c) become:

_=p

= q (A.2Oa-c)

_t= 2_
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B. PP-_.DI_II.AL_.S

B .. Pz_d ctor Laus P_ed on a Circular Predxcted Vehxclo P_t_h

The predicted vehicle path is assu_ed to be tangential to the velocity

vector of the vehicle, _. The projections of the predicted vehicle path on

the x_u_ locally level plane and on the x_a_ locally vertical plane, are

hereafter referred to as the lateral and vertical vehicle path, respectively.

The vehicle path is co,_puted from the lateral and vertical path accelerations,

_hich are derived hereafter.

The translator)- equations of motion of the vehicle are given by:

. .... - €,3 sin 0 = 1X = e,
D

i"b + E2,I, :'h' 0 sin * = I m (A.Zla-c)" • _,. - G cos _ ]"_ c:Z_b

_'/, - _';., - ?,Ub -,:, cos 0 cos _ _ _-1,._ = a_ b

vhere n _ m_:='b'a b and ,:zb constitute the specific forces measured by accelero-

meters in xb" "/, and ._ body axis direction, respectively. The inertial

accelerations in body axis direction are given by:

a _ . "^b " R_'bx.h

" ' ":'_'b (h. _.a -c)

: " -,,T',: _ ;,., . rye,

Fro.-: !',is.(?,,21) and Eqs. (A .... ) it fo!lo_,:; that the ir.ertial :,.cceleratio,is

in boAy axis direction can be co_pnred fro.n the measured accelerations by:
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. a%=a=h- g sine

m . g cos O sin {# CA.23a-c)
a!jb = agb
{ m

a ab = a...b . g cos 9 cos ko

The lateral and vertical path accelerations at, and a v are then obtained by:

£ (A.24)
_£ = _ cos O- a sinu_b zb

}

a = a sin tp+ a _ _os £o (A.25)
V !,b Zb

AsstL_,ingthe lateral and vertical pathaccelerations remain constant over

the predictionspan,a circular lateral and verticalvehiclepathisobtained.

_e instantaneous lateral and vertical path-angle rates X and _ are computed

from:

X[#] = aiCt]/I' and _Ct) : au(#)/V (A.26a,b)

respectively. "/he situation for the horizontal path is sho_,-n in Fig. 33. The

actual path-angle and lateral deviation are denoted by X and u d respectively,and fhe

predicted path-angle and predicted lateral deviation by Xp and udp, respectively.

For relatively sma!l angles of g,, B and X, the predicted path angle and

lateral Jeviation, T seconds in the future, are given by:

X_(t) = X(_) . vCt) CA.27)

:,, (t) : p.;(:) . D X[_) + D ':(r.! (A.2S)
"_z = 1 + VI-'v(:):
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and P is the predictor distance for a prediction T seconds in the future. For I

constant g the distance D is given by D = 2V. Note that the lateral . i

displacement of the vehicle symbol on the display screen is given by the . i

visual angle at which the symbol is seen in the x_.tbZ b body coordinate system,

The lateral visual angle k£ is given by:

I

! x_Ct) = xCt) + .(t) CA.30)

Eqs. (A,29) and (A.30) shows that the variables necessary for.positioning the 'J .

vehicle s>_nbol on the display, are the path angle and path-angle rate only.

For small X, actual path-angle and lateral deviation are related by:

",d(_) : x(t)/v (A.31) ,

Substitution of Eqs. (A.31) and (A.29) in Eqs. (A.27) and (A.28) yields after

I inearlization:

Xp(t) = x(t) + T _({t) (A.32)

1 T2
Yd (t) = Yd{t) + T _d(t) . _ _d(t) (A.33)

P

which are Taylor series expansions, until the first and second derivative.

Similariy, the predicted bank-angle _0p can be approximated by:-

, The circular predicted vehicle path given by Eqs. (A.27) and (A.28) is

useful in particular in following constantly curved sections of the trajectory.
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"i In the steady state, the radius of the vehicle path will be equal to the .

radius of the trajectory which enables a zero steady-state error in the

"- lateral deviation.

The equations for the vertical vehicle path are identical to Eqs° (A.27)

and (A..28). Since constantly curved sections do not exist in the vertical

profile of the trajectory, the linear approximations of Eqs.(A.52) and (A.53)

will be sufficient for the vertical vehicle path.

B.2 Predictor Laws for Forward Veloclty Control

For a given prediction time T, the predictor distance D can be computed

from the present states of the longitudinal dynamics and from the present

control commands. Since the engine dynamics and velocity control are of a

much lower natural frequency than the short-period d)_amics, the computation

of U can be simplified. The engine dynamics are represented by a first-order

iag with time-constant 1/c seconds, given by:

= + k 6_h {A.35)_x -cax

_;here a_ is the folward acceleration, due to engine thrust and $th is the

ti_rettle position setting. The forward velocity // is the integral of a ,

and the travelled distance S is the integral o£ //. The state equation for the

simplified velocity control system is given by:

!;i:t°, " -
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or _Titten shortly as:

¢

. __tCt)= At xtCt) + Bt 6thCt) (A.37) !

Assuming 6th remains constant over the prediction span, a linear prediction,

T secondsin thefuture,fromthepresenttimet onwardsis givenby: !

xt(_+_) = _t(_) xt(t) + Ft(T) Bt _th(t) {A.38) ':- !

where¢ (T)is the transitionmatrixatT and i

T

= ; @t(o)do (A.39)
FtCT) o=0

where

-_T
e 0 0

1 {e-O_ l} 1 o (:_._o)¢t(T) = .

(e"°*+o_-1} • 1

and

1 {e-o_1) o. o_" . -

r tCT) = e + cT -

e1-r(e-cT c2_, ,2- --7--+ cT -" 1) 7 T

- The travelled Histance at (t+T) is _ivenby:
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i

• s(_._)=_ (e-_r.e_-I)_(t).• v(t)*w

)- + eT - 1 6=hCt) CA.42)

For _ = T the predictor distance D is given by:

D = SCr_*_") - S(+_) (A.43)

Expanding the exponential term in Eq. {A.42) until the third derivative and

substituting Eq. (A.42) in Eq. (A.43} yields:

S = 2"Z'(,_). - e a It) * -_-k 6t/:Ct) (A.44)

_ne vehicle s}_bol with velocity tick-marks will be positioned at distance

9 ahead, uhereas the solid reference square at distance Do = I Uo ahead,

where J: is the des:red velocity, see Fig. i. The velocity U is brought to

the desired \'alue_':by bringing the distance between D and Do to zero. Thus

! the error for velocity control is defined as:

-z= r,__ D (A.45)

and the structure 0£ the control system is shown in Fig. 34a.

_.e effect of variations in U are strongly observed in apparent changes in

size of the nrt.d_ctor s_.mbol, qq_us, a_ increase in b yields an increase _n I),

which is _._nifeszed £n an apparent shrinking in size of the vehicle s?-mbol,

On r.he e:'.-.er hand, a decrease in " vie!ds an apparent increase in size of the

vehic'e s_-_bal. Eq, (A..I_) also sh_ws than an increase in engine thrust due
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• to a forward throttle displacement, resultsin a simultaneous forhard _otion
i

of the vehicle symbol, so that throttle displacement and vehicle s_bol notion[ • •

; " are in the same direction,

Note that, apart from a change in apparent s)_bo! size, the location of

the vehicle s)_bol on the image is not affected by variations in predictor i

distance. This location depends on the visual angle k£ only which does not

} depend on D, see Eq. (A.30).
_e diagram of Fig. 34a is further simplified in Fig. 34b, which shous

the existence of a second order lead-term in the feedback path, given by:

ocs) = T 82 + Y _ + ":(_) CA.46)

Tile :eros of Eq. (h..16] have a natural f:equenay _,'hich is inverse proportional

to Y according to a'n 7- 2,45/T rad/sec and a fixed da,._ping ratio of _ = 0.61.

Since the pilot response is much faster than the system response, the pilot

transfer function can be considered as a simple gain _. For sufficiently

large \'alues of "4 , the closed loop system poles will be located at the :eros :_

of Eq. (.\.46), and _,'ill be the dominant system poles. A small value of T i
I

yields a _'ell damped, fast response, whereas a large value of T yields a !
I

sluggish response, ttowever, a fast response will be at the account of

considerably increased throttle activity. A value of T should be chosen _hich

yields a satisfactory response with st[l! acceptable throttle activity.

- Since the dynamics of the velocity control system are of a much loxer

natural frequency than the lateral and vertical d_mamics, the value of ?,

opti=.;zed for velocity control will pr-q, ably be too large for the laterai and

vertical control. Fig. 34c shows the realization of a system in _hicb the
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* predictio n time for velocity control differs from the prediction time for

lateral/vertical control. The prediction time for velocity control is

denoted by _ and the prediction time for lateral/vertical control is

denoted by T. Like in the previous cases the solid reference square is again

positioned at Do = T Uc. ttowever, the deviation d = D0 - D between the

solid square and the tick-marks, is computed by means of prediction time Tv,

Adequate results are obtained for Tu = 2T.

l

i" B.3 Full-State Predictor Laws

? The full state predictor law is derived for the lateral predictor _otions

; only. The derivation-_,s valid for the vertical predictor notions as well.

The lateral dynamics with stability augmentation .'¢'-.-s\.._,, engaged, are derived

in Appendix A. For simplicity, the yaw-rate wash-out filter and ser\'o

_,ctix'ator dynamics are replaced by unity gains. The aug=eared lateral system

is given by:

:_,_.= A^zo,_ + Bou_ + WoV3 (A.47)

where A t is the system matrix, B: the control input matrix and "_ the

di__turbance input matrix of dimensions (re×m) (m ×n) and (m ×k), respectively,

and

A A A f_ ..
_'c : col[S,r,_o,r]; _ -- _ • and u = coll_ .,.-.] (A..1Sa-c'.,

For small an qular deviations from a straight reference trajectory, the

heading, angle "_'and lateral deviation 'J_! are obtain-'d by integra', ion of:

_, = 1' (A.49)
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,- and _/d = l,'(_ + B) (A.SO)

Addi-_ Eqs.(A.49) and (A.50) to Eq. (A.I) yields the following augmented system:

j .

B 8

p P
, Ao 0-- IBo I Wo

Ko (p
• = + --u+ V (A.SI)

• , :Z' Z" -g :

: I
o,

_ o o o 11o o _,
: I I0 0

-Yd v o o o I v o b'd

: Defining

A
_I = col [@,yd] (A.52)

Eq. (A.51) can be written as:

Ao I0 xo

= I. + u + V_g (A.S3)

I

where P_ and P2 are partition matrices o_ dimension {2 × m) and (2×2),

respectively. Eq. (A.S3) can be written shortly as:

._= .4-- + Bu + Wu (A.54)

: A
_d_ere .- =
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A linear prediction T seconds in the future, from the present time t

onwards, is given by:

+ xCt+T) = ¢CT)xCt) + @CTIBuCt _)do + @C_)W_gCt+T?do CA.56?
?

I 0=0 0=0

t

! whereoCT)is thetransitionmatrixat T of the systemo£ Eq. CA.54).The

prediction of Eq. CA.S6) consists of three parts: the first term at the ,
+

right-hand side constitutes the homogeneous system response, the second 1

term constitutes the forced motion due to control conur.,ands and the third term :

constitutes the forced motion due to external disturbances.

Assuming _[t)-and vg(t) remain constant over. the prediction span,

Eq. {A.S6) can be simplified as:

{Ct+_)= ¢C_)_xCt)+ FCt)B_uCt)+ rC_)w__gCt) C:,.s7)

%,hereF(_) is the first integral of _[_) according to:

I"rC_)= €Co)do CA.SS)
0=0

'_(T) and FCT) are given by the series expansions:

T2

¢{x)= I -,-,_T+ .42 ...... An _ . -- CA.59}2! n! "

T2 A2 T 3 n-I T_
[(_) = I_ * A "O-T+ _.,. "'" + .4" --r,:..... (A.60)

Expanding the system matrix A by means of Eqs. (A.59) and CA.60) yields:
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w

_o('O I 0

I - (A.61)_(O = I
Piro(_)+ P2P,AaCT)I I * P2

and

ro(T) I o
. l -- (A.62)rCT) = i

• ,AO(T)+ P2PI-=o(T)l IT + P2 i
• !

where¢0 is thetransitionmatrixofAo andro,Ao and --aare the first,second _
I

and thirdintegralsof ¢0,respectivelyandare givenb)"the followingseries ',

• expansions:

._2 Tn

_o(t) = z + not + A_iF. + ... + n_ _ + ... (^.6._)

T 2 T3 .. . Aon-I TnYo(_) = IT + Ao _-. + A_ 3T + " n'-["+ "'" (A.64)

T 2 T3 _ n

Ao(T) I-5-T + Ao _ + A_ _ + .. + A_-2 T= . --+ .,. (A.65)

T 3 T _ T 5 H-3 TH

Eoi_) = I _ + Ao _ + A_ _.r+ ''- + Ao _ + ... (A.66)

FromEqs. (A.63)-(A.66)the followingrelations can be derived:

T2

Ao(_) = A_o(T) + I -_ (A.67)

" F0(_)= Aoh0(_)+ Ir (A.6S)

. ._(T) = Aoro(T) * I (A.69)

Substitution of Eq, (A.68) in the lower left partition of Eq. (A.6!)

yields:
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. I 0_
*C'O = _ ' CA.70)

+ PIT i I + P2

and substitutionof Eq. (A.67)in thelowerleftpartitionof Eq. (A.62)yields:

U_.71)
- Ta i

= +P, IIT + P2 i
4wherePa is a matrixof dimension(2 m) givenby: I

P3 = P,Ao+ P2P, (A.72) :1

EvaluatingEq. (A.57)withEqs.(A.55)andEqs. (A.70)and (A.71)yieldsthe

predictionof£I:

xj(t.T)= P3AoC_)x_0Ct)+ PITx_o(_)+ (I + P2T)£*(t)+

T2
+ P3E0(T)B0u_Ct)+ Pl -_-BouCt)+

T2 CA 73)
+ z'3E_C'OWovgCt)+ P, 7 vo_vgCt)

_rovidedxc[_)and:1(t)are knownexactly,the firsttermsonthe right-

handsideof Eq. (A.S6)canbe computedexactly.However,the remaining

te_-msdependon the futurevaluesof_ and_ugwhicharenot kno_. With

threeassumptionscanbe madewhich
respecttothe futurevalues_f u andug,

are sho_m in Fig.35:

- (1) '_aand _u.vrer.,ain constant over the prediction span; (2) u_ and u_a

are set to zero; (3) u and v decay exponentiai!y over the prediction span,
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i
i according to:

w,

) uCt+T) = uCt) e=T/Ta_/ CA.74)

i

i vgCt+_) = v get) e-T/Ta2 CA.753

; where xd._ and Xd2_are the time=constants o£ the decay. It is clear that Td_

. . 0 is
or Xd2 co is identical with assumption (1) and also that Td, or _d2

: identical with assumption C2). Assuming u(t) and vaCt) can be approximated

by first-order Markov processes with spectral d_usities:
J

• 1 • ¢ (s) = 1
SunCs) = (a,-s) Cal+a) ' v v (az-a.) (a2+s) (A.76,77)gg

then the optimal prediction according to |_iener-Itopf is given exactly by

= !/az. Thus the time-constant
Eqs.(A.74) and (A.7S), _:here _dl 1/ax and Xdz=

of decay is determined by the break frequency of the Harkov process.

SubstitutingEqs.(A.74)and (A.7S)into Eq. (A.S6)yields:

==Ct+r}= ¢C_)==.{t)+ r*CT?B=aCt)+ r**C_)__gCt) CA.TS-}-

where F* and F** are expandedaccordingto Eq. (A.60)but with the matrix A

replaced by

A* = [A -alI] (A.79)

and A** = [A - _2I] CA.80)

respectively.

The prediction of _1, subject to decaying control and disturbance inputs,

is then given by:
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I
I

x l Ct+_) = P_AQ(_)x=o(t) + PITZo(t) * (I*P2_)x_(t) +

, , .[2

+ P_oCT)Bou_(t)+ Pl 7 B°u-(O +

+ P_=o (_)r¢o_°gCt). P_ "T"_o-vgCt3 (A.Sl)

•) **)
where the and superscripts indicate that the corresponding :'ltrix is

gehorated with:

Ao = [Ao - all] (A.82)

ard Ao = [Ao - a2I] (A.S3) _.

respectively.

In Appendix B.1 it is shown, that linearization of the circ:,lar path yields

a Taylor series ex,_znsion, until the second derivative. A prediction of _i based

on a Taylor series expansion is given by:

D_fferentiating the lower half of _q. (A.S3) with respect to = and substituting

in Eq. (A.84) and using Eq. (A.72) yields:

T2 _2

+ _ P_Bou(t) + W'" P_W_Va(V) (A.SS)

The difference between the two prediction methods is defined as:

Subtracting Eq. (A.85) from Eq. (A.81) and substituting Eq. (:\,67) yteids:



_4--I(
+ P3 -=- ('OWov (0 {A.87}• --:3

Eq. (A.87} yields predictions for the heading angle * and the lateral

: deviation, Vd , Ilowever, it _as found more useful to provide the lateral

path-angle X rather than the heading angle, so that the vehicle sy_ol Xs at

!
L all tiraes tangential to tile \'chicle path. A combined linear/non-linear

T

predictor la_ can be for=ulated by replacing the term _l(t) in Eq. (A.84] _+"
t

by a circular path. At t = 7' the predictions for path-angle and lateral

deviation are _.iven by:

x{:-2") ,, x{_) + ,",2(t} + ,tx{t+.;,) {a.ss)

",de:+/"3"-"'d(+} + PxC_'}+_ _(")
. l ,qT_-{.,_ "A"d(t*7} (A.89) ----

F.qs. (,X.t;8) and {A.S_J) are identical _ith Eqs. (A.27} and (A.28] of the circular

path prediction with the addition of the terns ,,X(" ,} and ',u.(_.T) The
e

.),idition t'or the lateral deviation follows from Eq. (A,87) and is piven by:

Apdtt.+:) = ).+.,,+-.[P3AoE+CV!]_:U+} +

..... +[. +_:.(7}.'++.]:,(:I,_ .

""*-+' {t) (A.9o)+ 1-.,-+l;_ 2: {2");,':1:'._

_,here ."..;,:[..,] de:-,_tes the second ro_" of matrix [ ..]. "ll_e addition for the

parh-:tn_:le i++ ol,taiIR'd by u._in_ the relatien:



I _ [_d(e..() ] (A.91)

Differentiating Eq. (A.87) with respect to z and substituting T = T yields: i

f1

t [V_AoAoCr)]zoCt)+a×Ct.T) = V ro_2

+ row2[P3AoCT)Bo]u_(_).

+ ro,,,z [V_ _A__CT)I"°]_g(t)} CA.'-,2)
i

The linear/non-linear prcdictor Im¢ given by Eqs. (A.SS), (A.89) and

Eqs. (A.903 and (A.92) combines the advantage of a circular path predictor law,

i.e., the zero ,_tcad)'-state error in constantly curved sections, with the

advantage of the sophisticated full-state predictor law of providing a more

accuracte predict ion.

the prediction for the bank-angle follo_,'s directly from Eqs. (A.78), (A.55)

and (A.48a) and is given by:

_Ct+Z)- row_['_0(T)]_(_)• ro_,"3[_0(_)"c]z-_1'_). r°_"3[r__(=)"e]:_(_)
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B.4 Numerical Solutions of Predictor Laws

The lateral vehicle dynamics with SAS engaged and serve actuator and

wash-out dynamics considered as unity gains, are given bv the following

matrices:

-0.302 0.0 0.132 -0.810

-2.832 -1.677 0.0 2.059
A0 =

0.0 1.0 0.0 0.0

3.869 -0.177 0.0 -3.377

and

0.0

-0.726
Be =

0.0

-0.053

For _' -- 6 sec and I' -- 2.13.5 ft/sec the transition matrix and integral

matrices are given by:

m

-0.0191 O.OSIO 0.0906 0.0360

0.0049 -0.0134 -0.0234 -0.0093

-0.1766 0.4711 0.$359 0.332.1

-0.0224 0.0597 0.1059 0.0.121
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-0.1766 0.,1711 -0.1641 0.5.324

Fo = -1.2420 2.7950 5.4960 1.9040

0.8008 0.2864 0.5871 0.2663

1-1.242 2.795 -0.504 1.904
!. Ao = -3.815 7.930 17.01 S.187/

L 4.441 0.693 1.564 1.031

II.30 1.377 2.775 -1.723

I-3.815 7.930 -0.987 5.187_%

-7.466 14.91 34.58 9.344,_II.8.3 0.968 2.768 2.779

Tim matrix Px i._ computed _,'ith Eq. (A.72) and is given by-:

r 3.869 -0.177 0.0 -5.377-[
P) = [Z-73.,16 0.0 32.19 46.36

6a ."" '-_andI_hen asst_ning remains constant over the prediction span, then 'c_

_1 = 0 so that A_ = a0, and substituting the previous values in Eq. (A.90_

and l".q. (h.91) yields:

Lb,d _" 6:1.0 t) 583.4 ,, 337 O 5 CA.9a)(t +(,) = I110 8 .__8.8 ,'_ ....."f ° .2

and

AX(r, +61 =1.59 B *O 337 ",-t!.ll5 _9-q S.tO --0.737 _ (A.93)..... .2

The fi_'st order roil-predict£on of l'q, [A.34) is given by:

k0 (:) = 1.0 @ • t_.O :" (:,.9,,,)



andthe full-staterollpredictionof Eq. (A.93)isgivenby

q)(%+T) = -O.1766 B . 0.4711 p + 0.8359 _9+ 0.332 r - 2.136 6 (A.97)

i Fig.36showsthecoefficientof 6 in thecomputationof _Yd'as a

i functionofT and forvariousvaluesof Td . Fig.36 shows,thatthecurves:. ?

can be closely approximated by quadratic functions, which might considerably

simplify on-line on-board computations. Fig. 37 shows these cun'es for the

coefficient of 6a in the computation of X- Also the curves in Fig. 37 can be

approximated by linear or quadratic functions.

C. ALGORITI_[S FOR COMPUTING TIlE TI_dqSITION AND INqmEGRAL _L%TRICES

The computation of the transition matrix and integra! matrices starts with

the computation of the third integral matrix E:([], by means of the series

expansion of Eq. (A.66). _le expansion is continue£ until the norm of the n-th

term is sufficiently small. The second integral matrix A_(T) is obtained by

substituting E0(_] into Eq. (A.67), the first integral matrix F0(r] is obtained

by substltuting Ac(_) into Eq. (A.68) and finally the transition matrix Co(z)

is obtained by substituting Fc(T) into Eq. (A.69).

Computational difficulties may arise for large values of T, resulting in

• overflow before the series converges. For the computation of ¢_C_) this

difficulty _an be overcome by subdividing _ in _ intervals Z7 according to:

" • = NA_, and using the relation:

¼ (:roT)-- (,\..qs]
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However, this relation is not valid for the integral matrices, and the correct

expressions are derived hereafter.

Given the homogeneous system equation o£ order _:

zo = Aczo (A.99)

The first, second and third integrals of z_ are defined as:
}

. A _ A • _ )z, = z0 ; 2 = z. ; z3 = z2 (A.100a-c ,

: and an augmented system of order 4._ is defined as:
:

ri: ,,o,,:1-7,.. 0 II O_ z_

A_ -_ o o o __,

I,_I o o [-----*..... *----_---! 2_'L
I'll _ I _ Is _ _ _-1
L-J L-__-_' I-°l _ i

el" short!y written as: i

= Az (A.102)

The transition matrix _ is obtained by expanding A according to Eq. (A.S9),

and is given by:

i

! - _______.__-__!

. • ,. { __--_z__-__i (A.103)
,,C.)- i :.:.(.-:)I iT I - I o !

i I -: I r- I i-_-:(T) Y+r: _I 2. I "" I I

J
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where the first partition column contains the required matrices. The relation,

given in Eq. (A.98) is applied to the au_nented system matrix of Eq. (A.103)
b

and thus #(AT) is raised to the power N by (N-l) repeated multiplications. The

n-th multiplication yields a matrix, from which the first column partition

contains the following expressions:

_+1 _= _o0o (A.104)

_ = ro_ ° + F° (A.105)

An+l _ , (A.!06). = A ¢'_ + nrr o . %

= :o)o _--_--F.+ nzAo + : ' {h.107)

_here :

Fc.(nAt) etc. (A.lOSa,b)*_ g _o(-nA") ; Fo

and

A _,l A ¢o A _1 A Fo. = = (A'r} ; F = ' o = (A'r) etc. (A.lO9a,b)

The algorithm starts with subdividing • into C sufficiently sr.all intervals ,.

:_=. Next, E_, A0, Fe and Oa are computed by means of the ex-pansion of Eq. (A.66)

and by means of Eqs. (A.67_, (A.6S) and (A.69). These matrices are substituted

in Eq_. (A.lO4)-(A.107) to obtain the value of the matrices at n = _ or (_a.j.

" _e results are used in the next iteration to obtain the values at n = 3

or {3A7). Thus, starting with ,: = 1 the process is repeated until _ = .,-,,

which finally yields the values of the matrices at r = .,_
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D. CO_41_R-GRAPHICS _[ETHODFOR DRAWING THE 3-D PERSPECTIVE VI!HICLESYMBOL

A vehicle symbol, which is generated as a "wire-frame" structure is

ambiguous because it is not clear whether the vehicle symbol is pointing

towards or away from the observer. In order to obtain an unambiguous vehicle

i symbol, the hidden lines should be removed from the image. However, comJnonly

used algorithms for removing hidden lines, require considerable computational

?

efforts which might unfavorably affect the update rate.

An alternative fast method has been developed to remove hidden lines from

the image without requiring additional CPU time. Although the vehicle s)nnbol

chosen in this program has a square and constant fuselage cross-section this

method applies to any, not necessarily constant cross-section. The hidden-

line removal is restricted to the fuselage structure. Thus the fuselage

appears "solid" but the wings and tail still appear transparent. In spite of

these restrictions a clear and unambiguous image is obtained with minimal

computational efforts.

The basic vehicle symbol structure is defined by a set of coordinates in

the object coordinate system _p,yp,Zp, in between which straight lines are

drawn, see Fig. 38. The coordinates are given in Table VII. The image is

observed in the eye coordinate system (aligned with the body coordinate system)

with the observer's eye at its origin, see FiB. 39. Thus each coordinate

• in the object coordinate system is transformed into a coordinate in the eye

coordi_)ate system according to:

t . + /,_

_,J = "27._,e _Jp I "_?e[ (A.IIO)

zc_ _ _ I.zP i Laz_ _
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where d._-e, dy e dz is the location of the center of gravit\' of the vehicle

symbol in the eye coordinate system and

AE E_E T

is the Euler matri._ for rotation from object to eye coordinate system given

by Eqs. (A.16) and (A.17a-e). The s_nnbol image is obtained by projecting the

xc.z_ z€ coordinates on an image plane in front of the obserx'er and perpendicular

to tile _r axis. The limits of this image plane are from +45 to -45 degrees

hori-ontally and vertically. In order to draw the image, the coordinates on

the image plane have to be interconnected by lines. The pattern in _hich the

coordinates are connected is defined by a list of no\,e/drm," instructions.

Each instruction is a coordinate number, _,hich can have a positive or a negative

sign. A positive sign indicates that the CRT bean moves from its previous

location to the specified coordinate _d_ile dra_'ing a \°isible line (draw) and a

negati\e sign indicates a shift to the specified coordinate with the fiRT beam

blanked 0:_ove). qhe first location in the list contains a count of the total

nulr],er of ,_o\'e/drm_'s. Special treatment is required for lines from _'hich one

or both coordinates fall outside the limits of the iv, age plane. In that case,

the line is only partially visible anJ the intersections of these lines with the

image plane borders ha\'e to be computed (clipping). An efficient algorithra

ks in_plemented for handlinz this problem.

In order to determine uhich lines of the predictor fuselage are visible,

the positior of the observer's eye in the object coordinate system is to be
6

computed according to:
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i d_,p = - Ee.,p d'-Je (A.112)

, Ldz,_ Ld:e

where Ee__pis the Euler matrix for rotationfrom eye to objectcoordinate

: systemand

_- )2
: (A.I 31

This transformation is shown in Fig. 39. The minus sign indicates that if the
i

displacement o£ the vehicle position in the eye coordinate system is positive,

the dispIacement of the eye position in the object system should be negative.

Since E4e was already computed previously, its transpose is readily availabe

and the transformation of Eq. (A.112) can be carried out with minimal computa-

tiemd effort. Seen from behind, the observer's eye can be located either

above or below each one o£ the four planes applied through the fuseiage sides,

see Fig. 40. These planes are given by-

for right upper side A : z = b (A.II4)

for left lowerside C : z . _p -b (A.II5)p
z = b (A.II6)

for left upper side D : P - _p

for right loverside B : z - u = -b :\.I17)
p "p

o

w'hereb is half the diagonalof the fuselage cross-section. Altogether, there

, are nine areas in which the eye positioncan be located. In each of these

areas differentlines of the fuselagewill be visible. A fou,-l,,tcode

determines the area in which the eye position is located, in order to con.pure



this code, four tests are made and accordingly,the appropriatebit in the code
r

. is set in the followingway: . i

+ d_p > b bit 0001 is set }
above righ-upper: d_.p [

below left-loweri:i_P + dyp < -b bit 0010 is set J

- d_p > b bit 0100 is set {above left-upper: _L_p . j

- dzjp< -b bit I000 is set ibelow right-lower: dap I
I
I

For each one of the nine areas, an individualmove/drawlist is defined 1
i-

wi_ichonly draws the linesvisible in that particulararea. All the individual '"

move/drawlistsare stored sequentiallyin one area of the memory.

Accordingto i'hevalue of the code, the appropriatemove/drawlist is

referencedthroughan address table which, for each code,containsthe address

of the first locationof the requiredlist. If the cede remains zero,none of

the fuselagesides are visibleand the image is comple[edafter drawingthe

always visibleparts of the image,e.i., wings, tail and rear surfaceof

fuselage. A flow-chartof the computationalmethod is sho'_ in Fig. 41.

]_nemove/drawlistsare given in Table VIII, and the addresstable in Table IX.

The method can be applled equallywell to a fuselagewith a non-square

cross-section.For example,for a triangularcross-sectionthe totalnumber

of areas, in _hich the eye positioncan be located is 7 and each area is labelled

by a 3-bit code. For a hexagonalcross-sectionthereare 19 possibleareas,

which are labelledby a 6 bit code and for an octagonalcross-section,there are

33 pessibleareas, labelledby an 8 bit code.

• The vehicle s}.-m.bol_ith hexagonal cross-section, is defined in Fig. 42 and

the coordinates given in Table X. _t_e possible areas in which the eye position

/
•4 .



- can be located, are shown in Fig. 43. In order to compute the 6-bit code, six

tests are made and the appropriate bit is set as follo'ws:

1

for dZp , _5 dyp > b (above A) bit 000 001 is set

1 < =b (.below D] bit 000 010 is set
for dzp . "_3 dyp

- _d_p > b (above F) bit 000 100 is setfor dZp _r_ "

for dz - 1---du < -b (below C) bit 001 000 is set
v _ _p

d_p 1 V_ b (right of B) bit 010 000 is setfor . > _-

dyp 1 _b (left of E) bit 100 000 is set
for < -_-

where b is half the diagonal of the hexagon.

_e codes for the 17 areas are sho_,_ in Fig. 43, and the corresponding

move/draw lists and address table are given in Tables XI and XII respectively.

It is clear that a more complex fuselage cross-secT!on will primarily increase
_'.oy.

the sterage requirements for the move/draw lists, and, to a much lesser extend

affect CPU requirements.
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TABI.EI. RESUL1SOF 1RAJLCTOkYFOLLONJNG:,'-;LHLIEC.TA,

"St_aii, ht" 'l'unnei; Width: 300 ft; Roll Version "Banked" Tunnel
I 2-0 Predictor 3.0 Pre_ictor

• t(am,al Throttle .Z.D Predictor
: I "Full" 3-0 Predictor

i State DO- 1500 ft Do" 1S00 ft

f'o " D¢. Do. P'o" Do" D°" Predictor Width: Width i )€ldth:
900 ft lSO0 ft 2000 ft 900 ft ISOO ft 200,) ft Law "tick" Digital 300 ft 450 ft 300 ft

_/_-lSO0 ft _arks Read-Out Roll

I . Roll-Version iStabilized, )

)IUIqlIEItOI: 6 6 8 6 6 8 6 6 t) 8 6 6 ;
I¢{I,NS

i 2ov (_.',t_) 0.1,11 1.008 1.943 0.25(I 1.213 2.053 0.972 0.857 0.789 0.623 0.484 I i
i [lo_tt:t -.0.0.15 !0.|22 -*0.241 ±0.036 _-0.003 ..0.246 ±0.118 -+0.216 -+0.0?7 ±0.060 _0.064 I
i ........ ,

_' Coy (_!) 0.312 2.001 4.066 0.759 ,.7.1,. 5.108 2.715 4.269 3.064 2.010 2,137 i
[ 10_ft "'! ',0.0()(_ '-0. 278 -_O,649 -+0.067 _0.187 :0.638 -*0.391 ±1.737 -+0.591 4-0.190 _0.261

• : =.=,

Coy (.Vd) 0.1(,0 0.36! 0.438 0.310 0.288 0.488 0.3gl 0.318 0.4_8 0.374 0.342 0.563 I

IlOWft2J "-0.069 .*O.04b _0.073 '-0.065 -+0.058 _-0.081 -+0.031 -+0.048 )-0.159 ±0.057 _.0.063 t0.111 _
h

! L'

Coy (_"_). 0,331 0.561 1,093 0.677 1.042 • 1.803 1.270 1.525 1.198 1.739 3.461 0.926
[ 103ft : ] *0. 072 :0.123 _0.36,1 _0.184 -+0.192 -10.307 ±0,367 ±0. 348 _0.259 ±0.557 -_0.802 :tO.230 ,,

i
4

Coy (€) 0.142 0.134 0.123 0.143 0.136 0.123 0.134 0.137 0.141 0.129 0.126 0,139

[rad2l -+0.003 "-0.001 ±0.003 ±0.006 40.003 ±0.003 +-0.003 _-0.003 ±0.005 ±0.004 _-0.005 _0.003 €_ €-s ' "!
h=w#

........ :_ _', 3,

Cov (p) 0.814 0.439 0.468 0.$65 0.410 0.368 0.463 0.442 0.4$6 0.386 0.333 0.534 _ _). )
[lO'2{rad/ _ 7-2 . '.

sec)_} . .'0.037 *.O.O.';,h _0.175 _O.ltOS -+tO.OS2 _.0.053 -+0.062 -+0.028 _0.0$0. _ _0.063 ±0,035 ..... +0.077 _ _;'_ i_

Covr.,.(u) 3.860 2.892 _,,O'_ft_ . . .
± .o33 :1
0.686 i

1_o {f!/ ....
')' I ±0.096 "-+.0.918_c

Coy (_%<z) 1. 102 0,901 0.642 0.002 0.887 0.4S0 1.088 0.582 0.439 0.444 0.520 1.120

[10"_rad _] __0.116 -+0.178 -+0.334 f0.216 .-0.222 ±0.112 ±0.148 ±0.077 ±0.107 ±0.099 _0.141 _0.152)

Coy 1,'_) 0.332 0.216 0.280 0.246 0.209 ] 0.192 0.441 0.310 0.218 0.199 0.253 0.237¢ [lO'(rad)l _'0.088 .o.o.,I ,'0.I3G -_0.0b(1 -_0.035 _-0.045 ((1.071 -+0.118 _0,083 -_0.'035 __0.068 :tO'.060 ,
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TXBL; II, I_[_;'LT <, C_ TP.U,_.CTGR_ If._.l.t.I;_l,_r;,: _._BJLCT P..

"Strai_:I" T_.nel;+,id*.h:300 ft, P,)IIVerslon "l_nked"Tun_tl

.%1'[_rc_tzct_r 3-{_;'rc,Jictor }_nu.z;Throttle
"............ 3-D f'r.-dtctor 3-0 Predictor+

+ _'_ • ISC._ f" Do • 1500 ft
t "lu| I" , ....

,':+ • _'_ • _',_• r;_ • L_ • I "_" ._Zate ridth- !vidth- Width:

'" i PreJIctor "tic)," Di,_ltal ._00 ft 4SO ft 300 ft:,oq f'_ l._,_n ft ZOO0 ft 900 ft JSO0 ft 2000 ft [=w 1--
I I ! ..1500 ft l'.zr),s l_ea4-Out I_011

I I_oII-Version stabi11:ed

r t '+,i t , " ,,,+ _';,xs i +' h (, ._ t 6 7 6 6 6

n .... _, •_ f,.,ss .... _ 't o.,,, 0.;72- 0.7_1 0,596
,[,,,_tt. I
............__...................... _ ! _ "-0.074 _O.I I0 -'O.O61 "-0.095 ..

i(,_v(;._;._ [ _.s_ I ,'._,'__ 5.4_,9 _I.7_I 2.055 I _,._n 2.0_& 2.83S _.348 2.07_ 1.746

'++ ' 1 I .°'!11',ft:I ! t,._'_{_, ',._+ll t11.824 *.o.n14 t0.543 .r_.923 :0.326 .O.S..) 20.477 :0.251 ±0.228

, , • .

('<:,v t_: , i'. _ _ 1.',"_. I ;.2S7 O._l I.Or+S I ;.7?4 1.;99 1,_.3._ 1.519 0.974 I.OIO 0.|96 It
,Jl_ '_t'J ',_.il:, J 'n..*,'_) | _0.._7_ *0.0_): ;0.19f, .+0.534 tO.a00 tO.S6S -'O.,q]_ :O.14S -'0.192 _0.157

_, _ i ,

!( _ (;I j _,.!7,1 (_.13_ 0.iAq N.IJ3 0.131 ; O.l',l O.IJI 0.140 0.149 0.134 0.129 0,1_,4 ] C) O

,+ +<+o+.. o. ,ooo ooo oo , ooo,ooo,ooo,oo., +:

I).,l _.7 _ _t,? O.S')S 0.e_37 11.375 0.31; 0.49r) O.YJ7 0._,01 0.374 0.2_11 0.457 ;_

l?.,'_;.J........I '_"'_:' .,).v_,_ .'0.0_,_) .'O.in.+ .'0._)(,3 ,.n.o_.i -:o.o_ :0.073 to.o_s _0.027 _0.02_ _0.064 _ _._ -

Is_'.-'s_] , ".C.212 _1.455 _" f:') ._

Itt_ _,_/ ] 0.9'_6 Z.7.13 -- "--
• .< r_,T,

_€c_ : _ .*0.-_40 _0.601
+-_._4+._ .... t i , , . ...... , I • I •
I(_._.' _"J) ]..S. 0.930 ;, _,_._ 0,9_8 0.58! ('),72_ _.9_9 0.,_4] 0.99,$ 0.6_7 0.780 0.991 ! :

t { I/_" t .'tad: ] _0. ;h5 t|L 147 *-0.327 -'0.2 ;_, *.O.3_5 +*0.219 "O.2-"3 *.0.20! '+0.170 :'0.142 _0,160 t0.144 . !

l . ] ,'

t(,,v ( _,'} { 0.4 t_, O. :,€, O.4e_ O.Z:8 0.234 0.407 O.._7 0.3S9 0.4')5 0.3_7 0.498 0.$._:1
llln'_r_l:] ] ,i)._'_ :o.OSZ .+O.ISR _0.030 _0.033 +'o.]sr) '.0.133 -'0.093 !0.144 _0.13_ -*O,O8& 20.129
L............'_ " ...... + [

i

+,
!

_ . J

/
I

!

I
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TAF,t[ lit. Pr.SULIS Of: T_A2)ITTOPyFOLLOI_tNG: St!_Jr_ ¢.

I "Straight" Tunnel; Width: 300 it; I_oll Verslon "BarJ_ed" "funnel :

2-D rredfctor 3-D Predictor Vanual Throttle ,
[ 3-D Predictor 3-D Predictor : :

D_ - I_O0 ft Do • 1500 ft :
"Full"

lid • Do- D, • Do - D_ - _'o" State Width: Width: Width" ; , ",
900 ft 1500 ft 2000 ft q00 ft 1500 ft 2000 ft Predictor 300 ft 450 ft _)0 ft :" Law "rick" l)tgltal

D_-1500 ft Karks Read-Out i, :
Roll-Verslon Roll

Stabi I I zed

NINEER Of"
I_I;:_:; 5 6 6 _ 6 7 o 6 7 6 6 7 "

coy (y_.) 0.0_5 0.568 1,646 0.107 0.681 1.842 0.941 0.831 1.06.$ 0.652 0.716

[lOSft_' _0.012 -'0.0_7 -'0.229 ".0.048 .'0.048 :0.249 -'0.113 _.0.057 "-0.135 -+0.035 !0.070

Coy "'(_d_) 0.480 1.520 4.294 0.658 2.024 5.03_ 2.096 3.543 3.027 2.563 3.368

[10 _ ft_i -'0.042 :0.327 :0.812 .'0.175 cO. 285 *-0.537 :0.421 *-0.$52 *-0.388 I0.137 -*0.337
.... i

Coy (:.'c11 O.313 0.231 O.412 0.223 0.280 0.505 0.397 0.265 0.472 0.326 0.248 0.485 '

[10_ft _] "0.076 :0,027 -'0.154 :0.046 10.068 "-0.120 *-0.048 -'0.060 *-0.124 -'0.046 -40.024 _0.072
i

Cc)v(zd} 1.190 0.969 !.748 1.574 1.448 2.382 2.056 1.630 1.783 2.637 4.523 1.695 I
10 _ft J ] : 1). 182 ' 0.151 _.0.611 -'0.391 :0. 278 -'0. 726 .*O.389 ±0. 359 :0,539 ".0.192 :0. 783 *.0. 250

..... LI ,

Coy (€) (I.153 (}.136 0.133 ! 0.148 0.137 0.130 0.138 0.141 0,137 0.133 0.135 0.133 i?
[rad_) 1o.13o5 :0.005 .'0.004 -'0.007 *-0.002 *-0.005 -'0.003 "-0.004 *-0.004 *-0.003 -'0.002 _-0.004 :

'Coy (r) 1.018 0.746 0.743 0.769 0.574 0.4.38 0.596 0.538 0.639 0,402 0.3,44 0.449 "0 _ :

lO''(radl I tO" 8 "-sec )") 125 tO.Ill :0.099 *-0.060 *-0.0S7 *-0.059 *-0.092 ±0.053 e0.088 *-e.061 _.0.044 -*0,049 _o."_ , .,, -?_ _
Coy (u} 1 390 2.508 ' 2-JI_ ;
[lO'(ft/ . . '

!
,ec)a) -*0.429 *-1.431 " _ _ (

0.476 1.370
[lO{ft/ - - L
-c_):l *-o.128 .-o.n5 " ._ _._

[Coy (£a) 0.962 [ 0.704 0.694 0.846 0.529 0.316 1.172 ) 0.589 1.132 0.452 0.410 0.824
[lO'_rad•] -'0.145 .'0.102 :0.124 -*0.186 *-0.087 -'0.097 -'0.264 *-0.119 -'0.297 +0.087 e0.072 :0.141

,:

Coy ('_) 0.2'.5 0.214 0.179 . I 0.262 0.227 0.241 1 0.526 I 0.262 0.319 0.199 0.206 0.187[lO.|rad2] ".'-0.078 *-0.031 *-0.035 *-0.043 *-0.077 *-0.061 *-0.102 *-0.063 ±0.076 "0.038 :0.030 f0.037 " i

........................ i................... o ..............

.i

......... r .... i

s

I
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!%\P,]_i !V, !L',_,q.':v. _)r II_L_'I!."I;,;'/ Fr_L_rJW,N,;: SU_;.:I:C: ";.

'°Stral,t:ht" TtLrmcl; k'Idth: .X_10ff; i'_oZl Verb{on "Banked" Tunnel

F - 1 ....
2-I)Prq.dictor 3-[Il'redlctor Hanual 1_rottle

I----_ I 3-I) Predictor $-D Predictor

[ } "-_ Do - 1500 ft D, = 1500 ft"Ful I _ , ' ,

,';tote Width : Width : Width :

l;_ - De - Do • D_ - Do - Do - [_rcdictor 300 ft 450 ft 300 ft
'.100 ft 1_00 ft 2000 ft 900 ft 15oo ft 20(}0 ft 1,aw "Tick" Digital

L)0*lSO0 ft _Iarks Read-Oat Roll
Roll-Version Stabilized

• . s
_;',._tl_lR or 7 6 7 8 5 8 6 7 -R__S

Ca€ (!,,l.) I 0.O91 0.530 1.654 O.140 0.820 2.nil O.771 1.161 0.670

[I()_ft_ .o.I)1,I .to,069 _0.255 __O.Ol3 -+0.J08 :0.]32 " _0.148 -_0.064 -*0.134 "

Coy (z.d_ } O. 270 0. 503 4.078 0.3.q8 1.008 4. 548 1,241 4. 397 2.6S0 . "
[ !O_ft 2'1 0o. 160 -*0.197 -'0. S14 -+O.178 _-0.2,19 -*0.322 " !O. 251 -40.449 _0.453

c,w C,/} 0.23s (,. _0_| 0.234 0.223 0.319 0.459 . 0.391 0.470 0.345 . '_
_l()" ft "] tn.t6¢. _o.]25 -'0.033 .*0.027 t 0.06.q :0.025 *-0.058 _0.090 -'0.089 _ ,_ "%21

".,4

('or (:d) 1.213 2.$7_ 1.156 1.365 1.8_4 1.077 . 1.574 2.341 2.173 I ;
[la)ft:] '-(},2_:4 " _ _-0 . "-0.6S, .227 _0.41 _ ±0.44 7 ,'O. 274 +-0.47g *-0. 371 _0.336

!
{'or{€} 0,137 0,I_9 0.128 0.139 0.130 0.134 0.135 0.140 0.136 'i

[rad:l '0.0_)I :0.004 _'0.0o3 -*0.006 _-0.002 -*0.003 xO.O03 ".0.004 -'0.004 _ :_,2

Coy (;') (]._ml 0.6(|7 0,675 0.548 0.3,_7 0.485 0.4.16 • 0.468 0.440 _ "_
IlO-:_r,_d/ " !
st.¢])] .(I.lob _{_.I.%t :0.137 .*0.122 -'0.073 -_0.042 -*0.072 -*0.078 _0.097 _ ,,'_:

O,v (u) 0.922 2.501 :
- - C) C'_ :

LlO:)ft/t, 0.24S 1.479 "rl V)

Coy 1_,,;,).... O.S51 2.447 f'3__,....7_. ,u

_ ) _ ......... .... 0.177 0.595 ;g _...

Coy (L,_) I. 203 0.727 0.765 0.6_7 0.5,12 0.549 0.602 0.899 0.546 _'_. "_:" " C"_4 '
[lf)'Irad_} ._0.158 . _r| -'0.167 -_0.121 Z0.o62 -*0.098 _-O.lOS 40.304 I0.119 _... f.'_..[),..,

.................. ] t l'.!Coy (&_) [ 0.379 0.336 0.221 0.445 I 0.339 0.193 . 0,327 0.271 0.237 . ._
[lO'_rad _] _ !0.070 !0,091 _0.029 _0.095 i ±0.052 _0.041 -*0.090 -*0.073 t0.022 "

./t



.... , ........... ... -,

t

TABI.E V. RFSUH'S OF TRA.JELTOI_,YI!N'i'RY.

"Straight" Tunnel, Iqidth: 300 ft; Auto-throttle; Roll-Version; B0 : 1500 ft

SI1B,II'CI A B C D :

H{HI I(HOR 2- I} 3-1) 2-1) 3-I) 2-1) 3-D 2-D 3-D

No. of Series 6 6 6 -7 6 6 6 6
O|" 0 I{HII_

T _ O. 199 O. 2(15 o. 2'_7 [I. 2(16 0.191 O. 189 0.195 0.182 .i

[ lO"sec} tO.Ol,l ±0.027 2(1.009 ±D.006 t0.O09 ±0.O!0 _-0.010 ±0.006

7' O.1 27 O.140 0,129 0.142 0.125 O.132 0.124 0.125

[l__.lO"sec l *_(1.1106 tO.Of4 4-0.004 -'0,013 2t).002 _-0.011 ±0.003 -*0.002 "

_,. (UH) 0.209 0.211 0.213 0.21b D.lb3 0.155 0.175 0.167

[l{l_l't'_] 4-()038 _o.054 30.019 -'0.011 -*o.018 ±0.005 _.0.016 ±0.011• • l

_'e (:'d) 0.2.19 O. 394 o. 296 0.36,_ 0. 278 0. 391 O. 299 O.358 i

[ lO_ft _ ] _*o.o I_, ,'0.040 .*.0.(}2_ 4-0.022 ,'0.023 _0.022 _0.037 ±0.042 i :,

Coy (,_,) o. 197 o. 109 0. 197 O. 195 0.222 0.225 0.221 0.214
oo

[radZl .*0.010 _0.010 -*0.o0.1 ±1111112 *--0.009 4-0.003 ±(}.006 _0.006 "11;_
"El_.J

Coy (I) 0.,I02 0.365 0.331 0.238 0...194 0.406 0.465 0.367 ;_

[ to-' (rad/ 4-0.080 't_. ll}7 ±O.1}18 -_0.O20 _-l).l)_.)9 _0 0_2 ±O.O80 ±0.039 7a _ _
C_ 7.'-, i

I:ov (d,,t) O.313 0. 268 o.._6 0.164 0.330 0.259 0.328 O.244 _'','_

1,1 i

I

11o-_ r;td _] -'.0,065 _.O. 08.1 *-0,013 _0,01 _, ±0,064 ±0,016 _0,062 ±0,027 _._ i

l *Coy (,_,_) 0.620 0.697 O.o,14 0.638 (I.659 0.765 0.664 0.654

[ IO'' ratl '_] _(|.0fi3 _0. 174 -*0.053 "-0.019 +-0.042 ±0.076 _-O.O53 ±0.043 :
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TABLE VI. STABILITYDERIVATIVESOF DC-8 AIRCRAFTIN APPROACH-TO-LANDING

Lateral Longitudinal

-! -I
Y = -0.113 sec X = -0.0291sec
V u

-I

Y_ = 0. Xw = 0.0629 sec6a

Y_ = 0.0238 sec-I/rad X6 = O.
6r e

-2 -I
- = -0.2506secL = 1.328 see Zu

L' = -0.951 sec -! Zu = -0.6277sec-I- i

i'r = 0.609 sec-* Z6 = -10.19 ft sec-2/rad
e

L' = -0.726 sec'2/rad M = 0. _sec £t]-I
6a u

£_ = 0.1813sec-2/rad t% = -0.00S7 (secft)-!or

! .V_ = 0.757 se¢-I _. = -0.0011ft-Iw

i N' = -0.124 sec-! M = -0.7924sec-I
P q

£_ = -0.265 sec-I " sec-2
• ,_6e = -1.35 /tad
N[ = -0.0532sec-2/rad UQ = 243.5 ft/sec

' 0a!

l;__ = -0.389 sec-2irad Wo = 04

U_ = 243.5 ft/sec g = 32.2 ft/sec2

g = 32.2 ft/sec2 6flap = 35 deg.

. /. = 3,090)000slug ftz

I = 5,5S0,000slug ft2z

J 28,000 slug ft2



TABI.EVII. IAST eJFLO_)ItDINATESOF PERSPEVTIVE VEIIICLI'_SYMBOl°l'Hll!SQUARE FUSELAGE CROSS-SECTION.

Value in units of halt" Value in units of half

Coordi- the fuselal;c width: d [lescr_p- Ccordi- the fuselage width: d Descrip-
n,ite _, ' i ' i tJon hate .... tion

Nu._,be r x r) 11 _Pu [ ._P Number xP yp z P
I I

F -

l 8.0 1.0 O. 12 -8.0 2.5 4.0 hori-
zontal

2 8.0 O. 1.0 13 -8.0 -2.5 4.0 stabi-

i 3 8,0 -1.0 O. 14 -5.5 O. 4.0 lizer

4 8.0 O. -l,O fuselage ! 1S ,1.0 1.0 O.

5 -8.0 1,0 O. l 16 -3.0 6.0 O. wingleft
6 -8,0 O. 1.0 17 -3.0 1.0 O. , !

] 7 -8.0 -1.0 O. '.... _
18 -3.0 1.0 O. o

8 -8,0 O, -1.0 right- , "

19 -3.0 -6.0 O. wing !J'_
9 -8.0 O. .I.1} vertical 20 4.0 -1,0 O. ,.i

lO -7.{1 O. 4.0 stabi ...... 1

11 -,I.0 0 1.0 lizer ,21 O. O. 6.0 _ 0• _,122 O. O. 8.0 vertical -- i
tick- "o o

23 0. o. -6.o ..g ;
24 O. O. -8.0 --r" !

,"D

{#1
I.

• , • ......................................... ............................... _* _
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' TABLE VIII. _IOVE/DRAWCODING LIST FOR PERSPECTIVEVEHICLES_%IBOLWITH

SQUARE FUSELAGECROSS-SECTION.

t

Code Code List _I/D
(Binary) (Dec- Address Count CodingList Description ;

imal) in Core

0600 0 A 22 -6,7,8,5,6, Rear fuselagesurface
:

9,10,II, vertical stabilizer

• -14,12,]3,14, horizontalstabilizer

-15,16,17, right wing

-18,19,20, left wing

-21,22,-23,24 zb-axis/vertical
reference

A+12

0000 1 A+22+I 4 -6,2,1,5 side A

0010 1 2 +6 4 -S,4,3,7 side C
!

0100 4 .ii 4 -7,3,2,6 side D

]000 [ 8 +16 4 -5,1,4,8 side B
!

lO01 I 9 +211 7 -6,2,1,4,$,-5,I side A,B
i

!010 I0 +291 7 -5,I,4,3,7,-S,4 side B,C

0110 i 6 +37 7 -8,4,3,2,6,-7,3 side C,DI

0101 I 5 +45 7 -7,3,2,1,5,-6,2 side D,A
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TABLE IX. ADDRESSTABLE FOR SQUAREFUSELAGECROSS-SECTION.

8 ...........

Code ! Address Location Move/Draw List in Core

0-7 A*" B "+1 B+6 0 B+ll ..B+4S ..B+37 0

8-15 B.16 B+21 B+29 0 0 0 0 ..... 0

!

*) A is the address in core of the first location of list O.
i

"*} B = A + C where C is the move/draw count of list O.

*_*) An address value 0 indicates that no move/draw list exists for this

; value of the code.

_) For code 11-!5 no move/draw lists exist and th;_ part of the table
r

might be ormited, provided 0 .< CODE _ 10.



• a. _ |

TABLE X. I.IST Ol: COORDINATESOF PERSPt'CT!VE \:EltICI.E SYMBOl,WITII ItEXAGONALFUSELAGE CROSS-SECTION

Value in Units of ilalf Value in Units of llalf

Coordi- the'Fu:,elage I;'idth: d De._erJp- Coordi- the Fuselage lqidth: d Deserip-
nate- - tJon hate ' tion

Nu,nlber .rp 7_ _. Number z" P P xp yp p
t ,

1 8.0 1.0 i "-0.58 16 -8.0 2,5 4.0 hori-
zontal

2 8.0 I .0 0.58 17 -8.0 -2.5 4.0 stabi-

3 8.0 O. I .15 18 -5.5 O, 4,0 lizer

.¢ 8.0 -i.0 0,58 19 4.0 1.0 -0.58 '
left

5 8.0 -I.0 -0.58 20 -3.0 6.0 -0.58 wing

6 8.0 O. -1,15 fuselage 21 -3.0 1.0 -0.58 !

7 -8,0 1,0 -(},58 .1 , " ' '
22 -3.0 1.0 -0.58 u_

8 -8.0 1.0 0.58 23 -3.0 -6.0 -0.58 right ,
9 -8.0 O. 1.15 wing

24 4.0 -1.0 -0.58 t_
I0 -8.0 -I.0 0.58

II -8.0 -1.0 -0.58 25 o. O. 6.0 vertical O(D

12 -8.o 0 -1 15 26 O. O, 8.0 tick- -n_• . -tl 6._

27 0 O. -6 i0 marks 0 =:i C) €.. t

13 -8.0 " 0. .1.0 vertical 28 O. O. -8.0 :x_['_.
1.| 7,0 O. 4 0 stabi- ¢D" ' t%:..";,

15 -.1.0 O. 1.15 lizer _2 6)

_q
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TABLE XI. MOVE/DRAWCODING LIST FOR PERSPECTIVE VEIlICLE St%IBOLWITti flEXACONAL

FUSELAGECROSS-SECTION.
e

..... j ,, , , , ,, , , ,

Code List
Code M/D

(Dec- Address Coding List Description
(Binary) imal) in Core Count

000 000 0 A 24 -9,10,11,12,7,S,9, rear fuselage surface
.i
: 13,14,15, vertical stabilizer

i -16,17,18,16, horizontal stabilizer.

-19,20,21, right wing

, [-22,25,24, left wing

; _+24 *-25 _ _" 2S z.-axis/vertical

i I reference

I, 000 001 1 A.24+1 4 -9,3,2,8 side A

i 000 010 2 I .6 4 -12.6,5.11 side D
l

000 I00 4 l +ii 4 -I0,4,3,9 sideFi

001 000 S I ..16 4 -7,1,6,12 side C

010 000 16 } +21 4 -S,2,1,7 side BI

.. . -_. 100 000 32 { -26 4 -11,5,4,10 side E
I

010 001 17 .31 7 -9,3,2,1,7,-8.2 Iside A,B
I

Oll o0o 24 +39 7 -8.2,l,6,12,-7,1 tside B,C

00I Old I0 .47 7 -7,1,6,5,II,-12,6 ![side C,D

I00 010 34 *55 7 -12,6,5,4,10,-II,5 side D,E

•" {" _ I00 I00 36 +63 7 -ii,5,4,3,9,-10,4. side E,F

• 000 101 S +71 7 -10,4,3,2,8,-9,3 _side F,A

0It 0Ol 25 .79 1O -9,3,2,1,6,12,-8,2, t

E

-1,7 !sideA,B,C

• O11 010 26 .90 I0 -8,2,1,6,5,II,-7,1,[

i

-5.121side B,C,D

I01 010 42 +I01 I0 -7,1,6,5,4,10 -12s 'I

. o,-5,II side C,D,E

100 110 58 -112 lO -12,6,5,4,3,9,-II,
5,-4,10 side D,E,F

100 101 57 •+125 10 -11,5,4,3.2,8,-10,

4,-3,9 [side E,F,A
! i

010 i01 21 +13.1 I0 -10,4,3,2,1,7,-9,
3,-2,S }side F,A,B
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. TABLE XII. ADDRESS TABLE FOR tlEL%CONALFUSELAGECROSS-SECTION.

Code Address Location Move/Draw List in Core
[ : , i , _ , , , , L ,, , J ,, ,

f .) ,,) o**, )
i O -7 A B+I B.6 B'11 B.71 0 0

i 8 -iS B+I6 0 B+47 0 0 0 0 0

i 16 -23 B+21 B+31 0 0 0 B*134 0 0

24 -31 B+39 B+79 B.90 0 0 0 0 0

32-39 B+26 0 B*SS , 0 B.63 B*125 B.II2 0 :

40-47 0 0 B.IOI 0 0 0 0 0

48 -SS 0 0 0 0 0 0 ! 0 0
!
I

: Sb -6S 0 0 0 0 0 0 _ 0 0

*) A is the oddress in core of the first location of list O.

*') S = A + C where C is the move/draw count of list O.

_*') an address value D indicates that no moveidra¢ list exists for this

value of the code.

***') for code 43-63 no move/draw lists exist and this part o£ the table

might, be o_itted, provided 0 ¢ CODE _ 42. i
)
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FIGU?E 2.  TUhhEL DlSFLIY WITH PERSPECTIVE VEHICLE SY'bCL AT VhRIGUS PRECIC7OR CISTANCES: 
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F|GU_'E" 3, TU;4NEL DISPLAY" _,'ITH T_,'_-DIME!ISIC;NAL PR[DICT3R CROSS AT VAI:IOUS FREDICTOR DISTal'ICES:

(A) g. • 2_C0 ft. ([_) :_ - 1S00 ft. (C) _:_ - 90_, ft.
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OBSERVER'S EYE POSITION

FI(_JRI:.39. Orientation of oh.iect coordinate s._'stem _,'ith respect to eye coordinate

s?-st era.
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FIGURE -13. Areas in bhich ohserver's cyc can bc located; hexagonal. fusclage 
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