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SUMMARY

This paper proposes the use of software fault tolerance techniques as a means of controlling the
cost of software in avionics as well as a means of addressing the issue of system unreliability due to
faults in software. .

Observations are first made about the problem of escalating budgets for software and about the
nature of some of the causes of the increased costs, the nature of possible actions and methods
proposed--and not proposed--for addressing the problem. An experiment in the measurement of software
“reliability" is briefly mentioned in order to support the construction of a simple model relating the
cost of a software module to the effect upon the reliability of systems containing the module.

Attention is then paid to schemes for using dissimilar redundancy in software to obtain a degree of
tolerance to software faults in systems which must achieve high levels of reliability. Ancther simple
model is developed--expressing the relationship of a "fault tolerance" scheme to system reliability. The
model serves to discuss and question the customarily expected benefit, an increase in system reliability,
to be obtained from fault tolerance schemes. .

Finally, the simple models are combined to develop a system level view of the relationships among
cost, redundancy and.reliability. The view suggests the strategy, unconventional in the software world,
of deliberately choosing to develop less reliable, dissimilarly redundant software modules in order to
lower total software costs and increase the credibility of the estimates of their "reliability."

INTRODUCTION

The assertion that the costs related to software have become significant, even dominant, factors in
budgets for the acquisition and use of digital systems is widely accepted. Consequently, more attention
is being devoted to understanding and developing methods for forecasting and controlling or reducing the
costs. No adequate complex of methods appears to have yet come into use, however, and the growth in
;otgl cost continues--seemingly unconstrained when compared to the decreasing costs of associated

ardware. :

In general, the techniques available or proposed for abating the costs of software have had two
common characteristics of particular interest. They have been conventional in the sense of being
variants of quite general notions which are commonly, perhaps uncritically, believed to have beneficial
effects upon costs. Additionally, they have been nonspecific. That is, with the exception of the
customary prerogative of management to control the level and duration of utilization of resources, the
techniques have provided no means by which arbitrary, but specific, amounts of costs could be exchanged
for equally specific amounts of alternative consequences. For example, the concept of a "chief
programmer team" is a particular application of the notion that the structure of an organization affects
the quality of its product, an extrapolation of the aphorism that the structure of a system is a
determinant of its behavior. Consequently, the utility of the technique is not questioned in principle
and a priori, although the relation between marginal benefits and costs is nebulous and fractional
application of the technique is clearly not an option. .

Software related costs have grown for a number of reasons. The most readily obvious factor is
undoubtedly inflation in the general economy. While an increase in costs due to inflation does not
represent a real increase in the use of resources, it does indicate that the mix of resources utilized
has become less optimal. This suggests that in order to counter the effect of inflation a successful
cost reduction or control scheme should implicitly, if not explicitly, address the redistribution and
replacement of costlier resources with less costly. Thus schemes which are intended to provide greater
visibility and control of the existing development procedures are not likely to be very successful. The
concept of a “chief programmer team" appears to be in this category, as are schemes to increasingly
formalize documentation requirements and change configuration control procedures.

Perhaps a more significant cause of increased costs is the simple increase in the total amount of
software required as digital systems with embedded software replace older technology. Not only do the
costs increase in proportion to the increased amount of software, but, as the discipline of economics
teaches, in the absence of equally rapid technological progress, more and thus less efficient resources
must be used. In the case of software, a people-intensive activity, this means a lowering of the average
level of capability of the personnel, technical and managerial, in both the development and maintenance
phases of the software life cycle. This suggests that schemes which would be successful in countering
this cause of increases in cost must lessen the need for people in the software life cycle. This can be
accomplished either by eliminating activities in the software life cycle or by increasing the
productivity of the people involved in the activities. If such schemes require an excessive investment
of capital or the introduction of costlier resources in other areas of the software activity, they may
not be successful as cost savers. The introduction of “programmer workbenches" and "higher order
languages" are such productivity improvement schemes. They require considerable investment of capital
and continued use of the more knowledgeable personnel. Moreover, they are selective schemes in that they
affect the implementation stages of program development more than testing and maintenance stages.
Considered as a cost control scheme “correctness proving® would appear to be in the category of schemes
which eliminate an activity. That is, if a program were absolutely correct, then there would be no need
for its maintenance. Presently, however, the technique requires more expensive resources, in terms of
personnel and computer time, than it releases. Also, there is currently no agreement that the technique
ever will generate the desired "perfect” software.
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Increased costs of software have also been caused by more demanding requirements for digital system
performance, requirements which have been achieved by means of ever more sophisticated software. To some
extent these costs are the result of the very success of digital systems in providing computational
capabilities which were not previously available. The increased complexity of the software requires
either more knowledgeable, and thus more expensive, personnel in the development and maintenance phases
or causes an increase in maintenance activity. This suggests that to counter the effect of demands for
increased performance and sophistication, schemes should be sought which reduce the complexity inherent
in software. This seems to be the goal of “"structured programming.” However, it seems to require
additional rather than less training of personnel.

The notion advanced in this paper is that in an avionics context, and possibly in other contexts in
which there is an appropriately demanding requirement for reliability and maintainability, techniques of
software fault tolerance utilizing redundant modules of software can be used to control costs. They do
the "good" things previously cited. The level of redundancy, a parameter usually considered only for
design purposes, becomes available to management as a parameter for controlling costs. But more
important, from the point of view of inhibiting acceptance, the notion is unconventional--in the world of
software. It is unconventional because software fault tolerance techniques have been developed to
enhance reliability and are considered to be more, not less, costly and therefore less, not more,
desirable. Indeed, the suggestion for this paper arose as a reaction to a statement which expressed a
consensus in a "working meeting" and was unchallenged-in 1ight of its apparent logic. The statement was
that, for the purpose of defining requirements, the use of a quantitative measure of the "reliability" of
software should be shunned since it would necessitate the use of software fault tolerance and redundancy
techniques which would, in turn, increase costs. Hence because of the less conventional nature of the
technique proposed and the need for its justification, this paper appears somewhat polemic.

MODELING COST .

In order to express a relation between the cost of generating software and its reliability
requirement, we borrow from a recent experimental study of software reliability (Nagel, 1982). Data from
the study support the assertion that

after k faults have been corrected in a program, the probability of error d rin% each
succeeding execution of the program can be approximated by the constant e~ (a8tbK , where the
parameters a and b depend upon the program and the statistical distribution of the -input data
and can be estimated from data obtained during a controlled process of uncovering the faults.

The terms "fault" and "error" used in the preceding statement are not synonomous. A program is
understood to be simply an embodiment of an abstract relation between variables which is usually defined
by a specification, implied by a requirement, etc. Thus a program, the embodiment, has structure which
is not part of the abstract relation. The program can be created with a structure which, for some
inputs, generates outputs which are not those implied by the abstract relation. "Fault" refers to such a
flawed structure; it can be remedied, presumably when its presence is signaled by the occurrence of an
error. No statement is made here about the process by which faults are generated. "Error" refers to
output data which, while consistent with the structure of the software which generated them, differ from
the values implied by the original abstract relation. During operation, it is the error which propogates
through a system; it is the error which can be detected and can signal the presence of a fault. Whereas
faults have "always" existed, errors "occur" and thus correspond to events which have rates of
occurrence. An execution of a program refers to the generation of an output data set in response to an
input data set. The time period of an execution is assumed to be small compared with the use period, the
many executions, of a program. While it might be possible in the future to estimate the parameters a and
b from descriptive information about the program at the completion of a standardized acceptance test, for
the present discussion it is sufficient that they can be estimated by a controlled process of repetitive
trials beginning after a standardized acceptance test.

One conclusion to be drawn from the referenced study is that a software module in a system can be
considered to be a component having a constant error rate during the time it is in operation (which is
assumed to be a fraction of the elapsed time of system operation). Thus, conventional notions of
reliability can be discussed if errors from software modules are considered to be causes of digital
system failures. Of course, not all software errors would likely result in digital system failure; what
will constitute a failure will depend upon the application. Therefore, equating one with the other is a
conservative assumption--which will be considered again below. With this assumption, computations of
mean time to system failure due to software module error have some meaning. Conversely, a reliability
budget for the various components of a digital system can assign a maximum allowable error (failure) rate
to a software module.

Thus, assuming that a meaningful input data stream can be obtained or generated and assuming the
successful §ccomplishment of the process of uncovering and removing k faults from a software module, and
the estimation of the parameters aand b in the process, the error (Tailure) rate of a module during its
subsequent operation can be expressed as

Ak = 3600 me” (310K

where m is the number of executions per second required by the application. The expected amount of time
taken during the controlled process to discover and remove the k faults, that is, to "debug" a module to
a criterion A , can be expressed as -
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where 1/c is the time per execution, r denotes a number of repetitions required during the "debugging"
process in order to gather the data from which 2 and b are estimated. Note that the term "debugging" is
here used for the controlled process of testing an “accepted" software module to a required A level.

Additionally, in the assertion above there is an implied ordering of faults in term of their
contribution to error rates of software modules. This means that each fault will require an increasingly
Tong time to be uncovered. If a module is not reliable at the end of "acceptance" testing, data for
estimating the parameters a and b will be relatively easily accumulated and a long "debug" phase will be
forecast. If a module is relatively reliable at the end of "acceptance" testing, then it will take a
correspondingly longer time to accumulate the data for estimating the parameters. In either case,
ensuring that the probability of subsequent errors appearing during operation of the software module will
be arbitrarily small will be lengthy activity. ’

On the assumption that a conventional development procedure consisting of a requirements development
phase, a program design phase, a program coding phase, and a standard functional and "acceptance” testing
phase can be selected, and that "debugging" to criterion A proceeds from the point of ”acceptanqe“, i

figure 1 depicts the cost profile for "developing" a software module to a A critierion.

Let $,, represented by the area under the large hump in figure 1, be the cumulative cost of
developing the module through the standard “acceptance” testing point as discussed in various software
cost models appearing in the literature, for example (Putnam, 1978). It might be well to note that
available software cost models do not appear to be very accurate forecasters and must be calibrated for
each software development environment (Thibodeau, 1981). Here, as will be seen later, it is sufficient
to note that two modules developed (to the point of acceptance testing) from the same functional
requirement would be expected to have similar total costs--as forecast by the available models.

Assuming the "debugging” activity to be a constant rate activity, let $. be the cost per unit time
of "debugging" the software module further to its specified criterion A . "$ is assumed to include the
continuing cost of generating the input data sets (stream). The cost of "debugging" is simply
represented as

$ x MTTDy

Recalling the expression for MTTD, above, we express the expected cost of a software module as a function
of its A criterion as

_ p mr 1 _ e?
%) = 8% * S.ety i 3600m

The values of §Q and § will, of course, depend upon the complexity of the software module and the size of
the staffs required to develop and "debug" it, and upon the particular software development
environments. In figure 2 the ratio
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is plotted versus A for various values of the parameter
Smr
‘soc'(f-eb)

A glance at the figure suffices to indicate that any significant reliability requirement implies a
considerable increase in development costs over software with unstated reliability. Consequently, in
light of the demanding reliability requirements associated with avionics, it is unrealistic not to expect
an increase in software costs if system reliability is to be achieved by extending the reliability of
conventional software modules. The task is to minimize the increase.

0f course, if the A criterion truly reflected the reliability required of the software module and
if the criterion were achieved, then an occasional occurrence of a system failure due to a malfunction of
the software module after operational deployment of the system would not occasion any maintenance
activities. By definition the occasional failure would be acceptable. Indeed maintenance action would
be suspect unless it included a repetition of the "debugging" process deseribed. In this case,
maintenance costs would be negligible, consisting principally of an accounting system to verify that the
occasional errors (failures) were no more occasional than forecast. In this sense, the extent to which
maintenance activities are in response to component failures is a gauge of the extent to which
reliability requirements are not truly being imposed on today's systems--either by oversight or by
deliberate decisions made to exchange the costs of obtaining the desired reliability for costs at a later
time, the maintenance costs. Such decisions should not, of course, be within the purview of the digital
system developers alone, and certainly not of the software developers, since they must (should) consider
the costs resulting from the unavailability of systems--a consideration to be left to the users of the
system.




FAULT TOLERANCE

The concepts of fault tolerance and redundancy are hardly new in engineering. An automobile's spare
tire is a mundane witness to this fact. Nor is the idea of building more reliable systems from less
reliable components by means of redundancy and passive fault tolerance new in electronics and computers
(Moore, 1956). The cost benefits in terms of reduced maintenance and outages of hardware systems with
internal redundancy have also been addressed (Moreira de Souza, 1981). What is novel is the notion that
fault tolerance schemes can be devised to prevent system failure (or unavailability) due to design flaws
(Anderson, 1981). Software faults are just such design flaws, and software fault tolerance schemes have
been proposed in the past decade. The Recovery Block scheme and N-version programming are perhaps the
two most widely known schemes.

Consider one "stage" of an N-version programming scheme variant as represented in figure 3. For
convenience, the stage consists of an odd number, N, of dissimilar versions, Pj, of a program module
which each receive input data from one of N dissimilar voter modules, Vj. Each voter module performs a
majority vote on the set of inputs, Yj, which it receives from each of the dissimilar modules of a prior
stage. The outputs, Xj, of the N program modules, Pj, in turn provide inputs to the voters of one or
more subsequent stages. Thus the majority value of the set of outputs, Xj, defines the output, X, of the
stage. It will be correct if a majority of the Xj are correct, and erroneous otherwise. In a similar
fashion, the majority value of the Y3 defines the input, Y, to the stage. In all tikelihood, even if all
are correct the Y; will differ in some small amount due to the dissimilarity of the modules generating
them. What this means is that the voters will contain some complex logic to account for such legitimate
:ar}at:g?s. In effect the probability of errors in the execution of these modules cannot be dismissed as

nsignificant. .

Consistent with the previous discussion, with each program module and voter module there is
associated a probability that an execution of the module will produce an erroneous output, and the
probabilities can be determined, and indeed made equal, by means of the "debugging" process. Then the
probability of error, q, in an execution of a program-voter pair is simply

q=aq,+aq, ~qq,

where q, and qy represent the program and voter execution error probabilities. In the context of its
applicagion, a program-voter pair will appear to have an error (failure) rate (per hour)

1) A = 3600 mq

The question of the independence of execution errors in “independently" developed and tested
software modules is a troublesome matter. On the one hand, the study of the "reliability" of software
has not progressed beyond primitive models of individual software modules. On the other hand, studies of
fault tolerance and redundancy have usually been focused upon the mechanisms of the schemes, reflecting
in part a less than unanimous and enthusiastic belief in the credibility of current software
"reliability" assessment methodology in the computer science community. There are exceptions, of course
- for example, a study of the feasibility of the application of the recovery block scheme in an avionics
application (Hecht, 1978). We shall return to the question later, but here assume that errors in
module-voter pairs occur independently of errors in other module-voter pairs. With that assumption, the
probability of an erroneous stage execution output can be expressed as

N 1
N N
2) P =™ (-0 =
bx g=ne1 1170
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and a relationship between the stage error (failure) rate

3) As = 3600 m Pbx
and the component program-voter error rate, X , established. The relation is plotted in figure 4 for
various values of the parameters m and N. Because of the questionable assumption of independence of
errors, the plotted curves represent bounds on what is achievable.

Two “fault-tolerant” computer systems, SIFT and FTMP, have been developed under NASA contract and
reported in the literature (Goldberg, 1981)(Hopkins, 1978). The design goal of the systems was to
achieve, at some reasonable cost, systems of very high reliability for avionics applications. Neither of
the systems utilized software fault tolerance schemes. However, as can be seen from figure 5, the
architecture of the SIFT computer lends itself admirably to the N-version scheme described above, and can
be used to describe how the scheme would actually be implanted into hardware. Simply, each program-voter
module pair would reside in a separate processor. With more processors available than required by an
N-version stage, in the presence of a hardware failure, the hardware reconfiguration algorithm of the
SIFT compater can assign another processor to be in the stage, thus maintaining the stage redundancy at a
constant_N.

COST VERSUS REDUNDANCY

The relations developed above may be combined to express the cost of software fault tolerance in
terms of its level of redundancy, the reliability which it is intended to provide (actually the error
(failure) rate which it is not to exceed) and the cost parameters. Recalling the expression for the
expected cost, $), of a software module as a function of its lambda criterion, we represent the cost of
an N-version stage as

2 N §,




reasoning that the N program modules will have the same expected cost as a result of having been
"developed" to the same requirement. This is not inconsistent with the accuracy of the current software
cost estimation models, as was noted previously. The factor 2 is included to account, hopefully
conservatively, for the N versions of the voter modules which, as was noted, will contain some amount of
complexity., This cost 1S compared to the cost of a single module having the error (failure) rate,?}s,
the error (failure) rate desired of the stage, by forming the ratio

2 N $
D
8
in which A ¢ and A are related by the equations 1), 2), 3). In the special case N=1, there are no voter
modules and the ratio is unity. In figure 6 this ratio is plotted against A ¢ for various values of N,
and the conglomerate parameter
$mr
5 c(1-e®)

Note that each point along one curve, determined by a fixed set of the parameters above, corresponds to a
different value of _\ --satisfying the relations 1), 2), 3). Hence, given values for A ¢, m and the
conglomerate parameter, corresponding to an application requirement and development environment, one can
determine the values of ) and N which minimize the ratio.

Note also that in some cases the optimal policy is to use surprisingly unreliable program-voter
pairs. When such is the case, several changes in policy suggest themselves. First, it becomes feasible
to accumulate more error (failure) history data on modules than is customary, thereby providing greater
confidence in the estimates of their (un)reliability. Secondly, it becomes economically feasible to
subject the software modules to real-use testing since observable results will occur quickly, thus
providing a better understanding of the relation of module errors to system failures and a rationale for
relaxing the conservative assumption equating errors to failures, if appropriate, and addressing
criticisms about the incompleteness of testing based on solely simulated input data streams.

While the problem of independence of errors remains, it is tempered by the almost certain knowledge
that only a fraction of a module's errors will be correlated with those of other modules. How
significant or insignificant the fraction is is an appropriate subject for study and experiment in 1ight
of the cost benefits available from software fault tolerance. It is further tempered by the additional,
almost certain knowledge that only a fraction of software execution errors will cause system failure.
Again, study and experimentation is warranted--especially in light of the propensity of humans to believe
that they know more than they do when dealing with subjective probabilities {Lichtenstein, 1981).

CONCLUSION
The thesis of this paper, simply put, is that decisions about the use of redundancy in software

fault tolerance should be made with the understanding that they provide a cost minimization as well as
reliability enhancement potential, and the rudiments of a technique have been presented.
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