
NASA-TM-84546 19830002536
NASA Technical Memorandum84546

THE COST OF SOFTWARE

FAULT TOLERANCE

Gerard E. Migneault

SEPTEMBER 1982

NASA
NationalAeronauticsand
SpaceAdministration

LangleyResearchCenter
Hampton,Virginia23665





THECOSTOFSOFTWAREFAULTTOLERANCE

Gerard E. Mlgneault
NASALangley ResearchCenter

Hampton,Vtrginta
€

i SUMMARY

This paper proposesthe use of software fault tolerance techniques as a meansof controlling the
cost of software in avionics as well as a meansof addressing the issue of system unreliability due to
fau]ts in software..

Observations are first madeabout the problem of escalating budgets for software and about the
nature of someof the causesof the increased costs, the nature of possible actions and methods
proposed--andnot proposed--for addressing the problem. An experiment In the measurementof software
"reliability" is briefly mentioned in order to support the construction of a simple modelrelating the
cost of a software module to the effect uponthe reliability of systemscontaining the module.

Attention is then paid to schemesfor using dissimilar redundancyin software to obtain a degree of
tolerance to software faults in systemswhich mustachieve high levels of reliability. Another simple
model is developed--expressing the relationship of a "fault tolerance" schemeto system reliability. The
model serves to discuss andquestion the customarily expected benefit, an increase in systemreliability,
to be obtained from fault tolerance schemes.

Finally, the simple modelsare combinedto developa system level view of the relationships among
cost, redundancyand.reliability. The view suggests the strategy, unconventional in the software world,
of deliberately choosing to develop less reliable, dissimilarly redundant software modulesin order to
lower total software costs and increase the credtbtltty of the estimates of thetr "rel tabt 1tty."

INTRODUCTION

The assertion that the costs related to software have becomesignificant, evendominant, factors in
budgets for the acquisition and use of digital systemsis widely accepted. Consequently, more attention
is being devoted to understanding anddeveloping methodsfor forecasting and controlling or reducing the
costs. No adequatecomplexof methodsappears to have yet comeinto use, however, and the growth in
total cost continues--seemingly unconstrainedwhencomparedto the decreasing costs of associated
hardware.

In general, the techniques available or proposedfor abating the costs of software have had two
commoncharacteristics of particular interest. They have been conventional in the sense of being
variants of quite general notions which are commonly,perhaps uncritically, believed to have beneflctal
effects uponcosts. Addltlonally, they have been nonspeciflc. That is, with the exception of the
customary prerogative of managementto control the level and duration of utilization of resources, the
techniques have provided no meansby which arbitrary, but specific, amountsof costs could be exchanged
for equally specific amountsof alternative consequences. For example, the concept of a "chief
programmerteam" is a particular appllcatlon of the notion that the structure of an organization affects
the quality of its product, an extrapolation of the aphorismthat the structure of a system is a
determinant of its behavior. Consequently,the uttlity of the technique ts notquestioned in principle
and a priori, although the relation betweenmarginal benefits and costs is nebulous and fractional
application of the technique is clearly not an option.

Software related costs have grownfor a numberof reasons. The most readily obvious factor is
undoubtedly inflation in the general economy. While an increase in costs due to inflation does not
represent a real increase in the use of resources, it does indicate that the mtx of resources utilized
has becomeless optimal. Thts suggests that In order to counter the effect of inflation a successful
cost reduction or control schemeshould implicitly, if not explicitly, address the redistribution and
replacement of costlier resources with less costly. Thus schemeswhich are intended to provide greater
visibility and control of the existing developmentprocedures are not likely to be very successful. The
conceptof a "chiefprogrammerteam"appearsto be in thiscategory,as areschemesto increasingly
formalizedocumentationrequirementsandchangeconfigurationcontrolprocedures.

Perhapsa moresignificantcauseof increasedcostsisthe simpleincreasein the totalamountof
softwarerequiredas digitalsystemswith embeddedsoftwarereplaceoldertechnology.Not onlydo the
costsincreaseinproportionto the increasedamountof software,but,as the disciplineof economics
teaches,in the absenceof equallyrapidtechnologicalprogress,moreand thuslessefficientresources
mustbe used. In the caseof software,a people-lntenslveactlvlty,thismeansa lowerlngof the average
levelof capabilityof the personnel,technicaland managerial,inboththe developmentandmaintenance
phasesof the softwarelifecycle. This suggeststhat schemeswhichwouldbe successfulin countering
thiscauseof increasesIn costmust lessenthe needfor peopleinthe softwarellfecyc]e. Thiscan be
accomplishedeltherby eliminatingactivitiesInthe softwarellfecycleor by increasingthe
productivityofthe peopleinvolvedinthe activities.Ifsuchschemesrequirean excessiveinvestment
of capitalor the introductionof costllerresourcesinotherareasof the softwareactivity,theymay
not be successfulas cost savers.The introductionof "programmerworkbenches"and "higherorder
languages"are suchproductivityimprovementschemes. Theyrequireconsiderableinvestmentof capital
and continueduse of the moreknowledgeablepersonnel.Moreover,theyare selectiveschemesin thatthey
affectthe implementationstagesof programdevelopmentmorethantestingandmaintenancestages.
Consideredas a costcontrolscheme"correctnessproving"wouldappearto be inthe categoryof schemes
whicheliminatean activity.Thatis, if a programwere absolutelycorrect,thentherewouldbe no need
for itsmaintenance.Presently,however,the techniquerequiresmoreexpensiveresources,intermsof
personneland computertime,than Itreleases.Also,thereis currentlyno agreementthatthe technique
everwillgeneratethe desired"perfect"software.

Paper presented at the ACARD Avionics Panel Fall *82 Heetin 8 on "Software _or AVionics" held in
The Hague, Netherlands, September 6--9, 1982. :;_



Increasedcostsof softwarehavealsobeencausedby moredemandingrequirementsfor digitalsystem
performance,requirementswhichhavebeenachievedby meansof evermore sophisticatedsoftware.To some
extentthesecostsare the resultof the verysuccessof digitalsystemsin providingcomputational
capabilitieswhichwerenot previouslyavailable.The increasedcomplexityofthe softwarerequires
eithermereknowledgeable,and thusmoreexpensive,personnelin the developmentandmaintenancephases
or causesan increasein maintenanceactivity.Thissuggeststhat to countertheeffectof demandsfor
increasedperformanceand sophistication,schemesshouldbe soughtwhichreducethe complexityinherent
in software.Thisseemsto be the goalof "structuredprogramming."However,it seemsto require
additionalratherthanlesstrainingof personnel.

The notionadvancedin thispaperis thatin an avionicscontext,and possiblyin othercontextsin
whichthereis an appropriatelydemandingrequirementfor reliabilityand maintainability,techniquesof
softwarefaulttoleranceutilizingredundantmodulesof softwarecan be usedto controlcosts. Theydo
the "good"thingspreviouslycited. The levelof redundancy,a parameterusuallyconsideredonlyfor
designpurposes,becomesavailableto managementas a parameterforcontrollingcosts. But more
important,fromthe pointof viewof inhibitingacceptance,the notionisunconventlonal--intheworldof
software.It is unconventlonalbecausesoftwarefaulttolerancetechniqueshavebeendevelopedto
enhancereliabilityand are consideredto be more,not less,costlyand thereforeless,not more,
desirable.Indeed,the suggestionforthispaperaroseas a reactionto a statementwhichexpresseda
consensusina "workingmeeting"andwas unchallengedin lightof itsapparentlogic. The statementwas
that,for the purposeof definingrequirements,the use of a quantitativemeasureof the "reliability"of
softwareshouldbe shunnedsinceitwouldnecessitatethe use of softwarefaulttoleranceand redundancy
techniqueswhichwould,in turn,increasecosts. Hencebecauseof the lessconventionalnatureof the
techniqueproposedand the needfor itsjustification,thispaperappearssomewhatpolemic.

MODELINGCOST

Inorderto expressa relationbetweenthe costof generatingsoftwareand its reliability
requirement,we borrowfroma recentexperimentalstudyof softwarereliability(Nagel,1982). Datafrom
the studysupportthe assertionthat

afterk faultshavebeencorrectedin a program,the probabilityof errordprinqeach
succeedingexecutionof the programcan be approximatedby the constante-_a+bk_ , wherethe
parametersa andb dependuponthe programandthe statisticaldistributionoftheinputdata
and can be estimatedfromdataobtainedduringa controlledprocessof uncoveringthe faults.

The terms"fault"and "error"usedinthe precedingstatementare not synonomous.A programis
understoodto be simplyan embodimentof an abstractrelationbetweenvariableswhichisusuallydefined
by a specification,impliedbya requirement,etc. Thusa program,the embodiment,has structurewhich
is not partof the abstractrelation.The programcan hecreatedwitha structurewhich,for some
inputs,generatesoutputswhicharenot thoseimpliedby the abstractrelation. "Fault"refersto sucha
flawedstructure;it can be remedied,presumablywhen itspresenceissignaledby the occurrenceof an
error. No statementismade hereaboutthe processby whichfaultsare generated."Error"refersto
outputdatawhich,whileconsistentwiththe structureof the softwarewhichgeneratedthem,differfrom
the valuesimpliedby the originalabstractrelation.Duringoperation,it is the errorwhichpropogates
througha system;it isthe errorwhichcan be detectedand can signalthe presenceof a fault. Whereas
faultshave "always"existed,errors"occur"and thuscorrespondto eventswhichhaveratesof
occurrence. An execution of a program refers to the generation of an output data set in response to an

inputdataset. The timeperiodof an executionis assumedto be smallcomparedwith the use period,the
manyexecutions,of a program. Whileit mightbe possiblein the futureto estimatethe parametersa and
b fromdescriptiveinformationaboutthe programat the completionof a standardizedacceptancetest-_for
The presentdiscussionit issufficientthattheycan be estimatedby a controlledprocessof repetitive
trialsbeginningaftera standardizedacceptancetest.

One conclusionto be drawnfromthe referencedstudyis thata softwaremoduleina systemcan be
consideredto be a componenthavinga constanterrorrateduringthe timeit is in operation(whichis
assumedto be a fractionof the elapsedtimeof systemoperation).Thus,conventionalnotionsof
reliabilitycan be discussedif errorsfromsoftwaremodulesare consideredto be causesof digital
systemfailures.Of course,not all softwareerrorswouldlikelyresultindigitalsystemfailure;what
will constitutea failurewilldependuponthe application.Therefore,equatingone withthe otheris a
conservativeassumption--whlchwill beconsideredagainbelow. Withthis assumption,computationsof
mean timeto systemfailuredue to softwaremoduleerrorhavesomemeaning. Conversely,a reliability
budgetfor the variouscomponentsof a digitalsystemcan assigna maximumallowableerror(failure)rate
to a softwaremodule.

Thus,assumingthata meanlngfulinputdatastreamcan be obtainedor generatedand assumingthe
successfulaccomplishmentof the processof uncoveringand removingk faultsfroma softwaremodule,and
theestimationof the parametersa andb in the process,theerror(-t'ailure)rateof a moduleduringits
subsequentoperationcan be expreTsedaT

_k m 3600 me-(a.bk)

where_ isthe numberof executionspersecondrequlredby the application.The expectedamountof time
takenduringthe controlledprocessto discoverand removethe_ faults,that is,to "debug"a moduleto
a criterionX___,can be expressedas

2



k-1 1
MTTDI = r

±=0 tl

m r 1 e a

=c(1---_e) k 3600m

where I/c is the time per execution,r denotes a number of repetitionsrequired during the "debugging"
process in order to gather the data f-_omwhich a and b are estimated• Note that the term "debugging"is
here used for the controlled process of testing-an "_cepted" software module to a requiredk__level.

Additionally, in the assertionabove there is an implied ordering of faults in term of their
contributionto error rates of software modules. This means that each fault will require an increasingly
long time to be uncovered. If a module is not reliable at the end of "acceptance"testing, data for
estimating the parameters a and b will be relatively easily accumulatedand a long "debug" phase will be
forecast. If a module is _elati_ely reliable at the end of "acceptance"testing, then it will take a
correspondinglylonger time to accumulatethe data for estimatingthe parameters. In either case,
ensuring that the probability of subsequent errors appearingduring operation of the software module will
be arbitrarily small will be lengthy activity.

On the assumption that a conventionaldevelopment procedure consisting of a requirementsdevelopment
phase, a program design phase, a program coding phase, and a standard functional and "acceptance"testing
phase can be selected,and that "debugging"to criterion k proceeds from the point of "acceptance",
figure 1 depicts the cost profile for "developing"a softw-_remodule to a k_kcritierion.

Let Sn, represented by the area under the large hump in figure 1, be the cumulative cost of
developing the module through the standard "acceptance"testing point as discussed in various software
cost models appearing in the literature, for example (Putnam, 1978). It might be well to note that
available software cost models do not appear to be very accurate forecasters and must be calibrated for
each software development environment (Thibodeau,1981). Here, as will be seen later, it is sufficient
to note that two modules developed (to the point of acceptance testing) from the same functional
requirement would be expected to have similar total costs--as forecast by the available models.

Assuming the "debugging" activity to be a constant rate activity, let i. be the cost per unit time
of "debugging"the software module further to its specified criterion k . -$ is assumed to include the
continuing cost of generatingthe input data sets (stream). The cost-6f-"de_ugging"is simply
representedas

x MTTDk

Recalling the expression for MTTDI above, we express the expected cost of a software module as a function
of its k_kcriterion as

• m r I e a

$I ffi $o + $c(I---1-_e)1 3600m

The values of_ and $ will, of course, depend upon the complexity of the software module and the size of
the staffs requlred _develop and "debug" it, and upon the particular software development
environments. In figure 2 the ratio

Sk

is plotted versus _ for various values of the parameter

mr

$oC(_-eb)

A glance at the figure suffices to indicate that any significant reliability requirement implies a
considerable increase in developmentcosts over software with unstated reliability• Consequently, in
light of the demanding reliability requirements associatedwith avionics, it is unrealistic not to expect
an increase in software costs if system reliability is to be achieved by extendingthe reliabilityof
conventional software modules. The task is to minimize the increase.

Of course, if the k criterion truly reflected the reliability required of the software module and
if the criterion were ac-hieved,then an occasional occurrence of a system failure due to a malfunction of
the software module after operationaldeployment of the system would not occasion any maintenance
activities• By definition the occasional failure would be acceptable. Indeed maintenance action would
be suspect unless it included a repetitionof the "debugging"process described• In this case,
maintenance costs would be negligible,consisting principally of an accounting system to verify that the
occasionalerrors (failures)were no more occasional than forecast. In this sense, the extent to which
maintenance activities are in response to component failures is a gauge of the extent to which
reliability requirements are not truly being imposed on today's systems--eitherby oversightor by
deliberatedecisions made to exchange the costs of obtaining the desired reliability for costs at a later
time, the maintenance costs. Such decisions should not, of course, be within the purview of the digital
system developers alone, and certainly not of the software developers, since they must (should) consider
the costs resulting from the unavailabilityof systems--a considerationto be left to the users of the
system.



FAULTTOLERANCE

The conceptsof faulttoleranceandredundancyarehardlynew inengineering.An automobile'sspare
tire isa mundanewitnessto thisfact. Nor isthe ideaof buildingmorereliablesystemsfromless
reliablecomponentsbymeansof redundancyandpassivefaulttolerancenew inelectronicsand computers
(Moore,1956). The costbenefitsintermsof reducedmaintenanceand outagesof hardwaresystemswith
internalredundancyhave alsobeenaddressed(Moreirade Souza,1981). Whatis novelis the notionthat
faulttoleranceschemescan be devisedto preventsystemfailure(orunavailability)due to designflaws
(Anderson,1981). Softwarefaultsare justsuchdesignflaws,and softwarefaulttoleranceschemeshave
been proposedinthe pastdecade. The RecoveryBlockschemeand N-versionprogrammingare perhapsthe
two mostwidelyknownschemes.

Considerone "stage"of an N-versionprogrammingschemevariantas representedin figure3. For
convenience,the stageconsistsof an odd number,N, of dissimilarversions,P_P_,ofa programmodule
whicheachreceiveinputdatafromone ofN dissimTlarvotermedules,Vi. Eachvotermoduleperformsa
majorityvoteon the set of inputs,Y_, whTchit receivesfromeachof the dissimilarmodulesof a prior
stage. The outputs,Xi, of the N programmodules,_i, inturnprovideinputstothe votersofone or
more subsequentstages. Thust_majority valueof the set ofoutputs,_X_,definesthe output,X, of the
stage. Itwillbe correctifa majorityof the Xi are correct,and erroneousotherwise.Ina similar
fashion,the majorityvalueof the_Y_jdefinesthe input,Y. tothe stage. In all likelihood,even ifall
are correctthe Yi willdifferinsomesmallamountdue to the dissimilarityofthe modulesgenerating
them. Whatthis_eansis thatthe voterswill containsomecomplexlogicto accountfor such legitimate
variations.In effectthe probabilityof errorsinthe executionof thesemodulescannotbe dismissedas
insignificant.

Consistentwith the previousdiscussion,witheach programmoduleand votermodulethereis
associateda probabilitythatan executionof the modulewill producean erroneousoutput,and the
probabilitiescan be determined,and indeedmade equal,by meansof the "debugging"process. Thenthe
probabilityof error,q, in an executionof a program-voterpairis simply

q " qp + qv - qpqv

whereqn and qv representthe programand voterexecutionerrorprobabilities.Inthe contextof its
application,a program-voterpairwillappearto havean error(failure)rate (perhour)

1) X - 3600mq

The questionof the independenceof executionerrorsin "independently"developedand tested
softwaremodulesis a troublesomematter. On the one hand,the studyof the "reliability"of software
has not progressedbeyondprimitivemodelsof individualsoftwaremodules. On the otherhand,studiesof
faulttoleranceand redundancyhaveusuallybeen focuseduponthe mechanismsof the schemes,reflecting
inparta lessthanunanimousand enthusiasticbeliefin the credibilityof currentsoftware
"reliability"assessmentmethodologyinthe computersciencecommunity.Thereare exceptions,of course
- for example,a studyof the feasibilityof the applicationof the recoveryblockschemein an avionics
application(Hecht,1978). We shallreturnto the questionlater,but hereassumethaterrorsin
module-voterpairsoccurindependentlyof errorsin othermodule-voterpairs. With thatassumption,the
probabilityof an erroneousstageexecutionoutputcan be expressedas

N i

2) Pbx " (1-q)N N _._
i=N+1 i 1-q
2

and a relationshipbetweenthe stageerror(failure)rate

3) Xs = 3600m Pbx

and the componentprogram-votererrorrate,X ,established.The relationis plottedin figure4 for
variousvaluesof the parametersm andN. _ause of thequestionableassumptionof independenceof
errors,the plottedcurvesrepresentboundsonwhat is achievable.

Two "fault-tolerant"computersystems,SIFTand FTMP,havebeendevelopedunderNASAcontractand
reportedin the literature(Goldberg,1981)(Hopkins,1978). The designgoalof the systemswas to
achieve,at somereasonablecost,systemsofveryhigh reliabilityfor avionicsapplications.Neitherof
the systemsutilizedsoftwarefaulttoleranceschemes. However,as can be seenfromfigure5, the
architectureof theSIFT computerlendsitselfadmirablyto the N-versionschemedescribedabove,and can
be usedtodescribehow the schemewouldactuallybe implantedintohardware.Simply,eachprogram-voter
modulepairwouldresideina separateprocessor.Withmoreprocessorsavailablethanrequiredby an
N-versionstage,in the presenceof a hardware{allure,the hardwarereconfigurationalgorithmof the
SIFTcomputercan assignanotherprocessorto be inthe stage,thusmaintainingthe stageredundancyat a
constantN.

m

COSTVERSUSREDUNDANCY

The relationsdevelopedabovemay be combinedto expressthe costof softwarefaulttolerancein
termsof its levelof redundancy,the reliabilitywhichit isintendedto provide(actuallythe error
(failure)ratewhichit isnot to exceed)and the costparameters.Recallingtheexpressionfor the
expectedcost,$X, of a softwaremoduleas a functionof itslambdacriterion,we representthe costof
an N-versionstageas

2 N SX



reasoningthatthe N programmoduleswillhavethe sameexpectedcostas a resultof havingbeen
"developed"to the samerequirement.Thisis not inconsistentwith the accuracyof the currentsoftware
costestimationmodels,as was notedpreviously.The factor2 is includedto account,hopefully
conservatively,for the N versionsof the votermoduleswhich_aswas noted,willcontainsomeamountof
complexity.This costiT comparedto the costof a singlemodulehavingthe error(failure)rate,X___s,
the error(failure)ratedesiredof the stage,by formingthe ratio

s

inwhichX___sand X are relatedby the equationsI), 2), 3). In the specialcaseN=I,thereare no voter
modulesand the r_io isunity. Infigure6 thisratiois plottedagainst_ for variousvaluesofN,

. andthe conglomerateparameter

_oC-'_-eb)

Notethateachpointalongone curve,determinedby a fixedsetof the parametersabove,correspondsto a
differentvalueof X --satisfyingthe relations1), 2), 3). Hence,givenvaluesforX___s,m and the
conglomerateparamet-er,correspondingto an applicationrequirementand developmentenviro_ent,one can
determinethe valuesof___XandN whichminimizethe ratio.

Notealsothat in somecasesthe optimalpolicyisto use surprisinglyunreliableprogram-voter
pairs. Whensuch isthe case,severalchangesin policysuggestthemselves.First,it becomesfeasible
to accumulatemoreerror(failure)historydata on modulesthanis customary,therebyprovidinggreater
confidenceinthe estimatesof their(un)reliability.Secondly,itbecomeseconomically•feasibleto
subjectthe softwaremodulesto real-usetestingsinceobservableresultswilloccurquickly,thus
providinga betterunderstandingof the relationof moduleerrorsto systemfailuresand a rationalefor
relaxingthe conservativeassumptionequatingerrorsto failures,ifappropriate,and addressing
criticismsaboutthe incompletenessoftestingbasedon solelysimulatedinputdatastreams.

Whilethe problemof independenceoferrorsremains,it istemperedby the almostcertainknowledge
thatonlya fractionof a module'serrorswill be correlatedwiththoseof othermodules. How
significantor insignificantthe fractionis isan appropriatesubjectfor studyand experimentin light
of the costbenefitsavailablefromsoftwarefaulttolerance.It isfurthertemperedby the additional,
almostcertainknowledgethatonlya fractionof softwareexecutionerrorswillcausesystemfailure.
Again,studyand experimentationiswarranted--especiallyin lightof the propensityof humansto believe
thattheyknowmorethantheydo whendealingwith subjectiveprobabilities(Lichtenstein,1981).

CONCLUSION

The thesis of this paper, simply put, is that decisionsabout the use of redundancy in software
fault tolerance should be made with the understanding that they provide a cost minimization as well as
reliability enhancement potential, and the rudiments of a technique have been presented.

REFERENCES

Anderson,Thomas, and Lee,PeterA., 1981,FaultTolerance_Principlesand Practices,Prentice-Hall
International,London.

Goldberg,Jack,17-19Noven_)er1981,"TheSIFTComputer•andits Development"in 4thAIAA/IEEEDigital
AvionicsSystemsConference:CollectionofTechnicalPapers,AIAA,New York,pp.285-289.

Hecht,Herbert,February1978,Fault-TolerantSoftwareStudy,NASAContractorReport#145298,The
AerospaceCorporation,Los Angeles,California.

Hopkins,A. L.; Smith,T. B., andLala,J. H., October1978,"FTMP- A HighlyReliableFaultTolerant
Multiprocessorfor Aircraft"inProceedinqsof the IEEE,Vol.66, No. 10, pp. 1221-1239.

Lichtenstien,Sarah;Fischoff,Baruch;and Phillips,LawrenceD., June1981,Calibrationof
Probabilities:The Stateof theArt to 1980,ContractorReportPTR-1092-81-6preparedfor the Office
of NavalResearchContract#NOOO14-80-C-OIbO,DecisionResearchDivisionof Perceptronics,Inc.,
Eugene,Oregon.

Moore,E. F., and Shannon,C. E., 1956,"ReliableCircuitsUsingLessReliableRelays"in Journalof the
. FranklinInstituteVol.262,PartI, pp.191-208,Part II,pp. 281-297.

Moreirade Souza,J. and Landrault,C.,April1981,"BenefitAnalysisof ConcurrentRedundancy
Techniques"in IEEETransactiononReliability,Vol.R-30,No.I, pp.67-70.

Nagel,PhyllisM., and Scrivan,JamesA., February1982,RepetitiveRun Experimentationand
Modeling,NASAContractorReport#165836,BoeingComputerServicesCompany,Seattle,
Washington.

Putnam,LawrenceH.,July 1978,"A GeneralEmpiricalSolutionto the MacroSoftwareSizingand Estimating
Problem"in IEEETransactionson SoftwareEngineerin9, Vol.SE-4,No. 4, pp. 345-361.

Thibodeau,Robert,April1981,An Evaluationof SoftwareCostEstimatingModels,ContractorReport#l-940
preparedfor RADCContractF306-79-C-0244,GeneralResearchCorporation,Huntsville,Alabama.





PROGRAM•DEVELOPMENT •".

COSTPROFILE

" $ "°

d

, --. _"ACCEPTANCE" "
$o ",i

l/

, ' "DEBUGGING"

o , _ K

• t.

FIGURE1



FIGURE 2

J



N-VERSIONPROGRAMHING

,• y

p .'

, STAGE
.p

X1 X2 XN

FIGURE3



N=7 N=5 N=3
HI1 50 20 10 1 M = 100 50 20 10 1"_"

!
t / / . ' ." .

• . • . ""

• 10-9. /

/
10-8.

10-7.

),s

10-6-

10-5-

i0-4.

/

,L

10-1 1()-2 10-3

FIGURE 4
-



6 PROCESSORSIFT CONFIGURATION

I (EXPANDABLETO 8)
FIGURE5

I-



I

.10-4 10-5 10-6 10-'2 10-8 10-9

Xs

FIGURE6





i. Report No. 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.

NASATH-84546
"4. Title and Subtitle 5. Report Date

September 1982
The Cost of SoftwareFault Tolerance 6. PerformingOrganizationCode

505-34-43-08

7. Author(s) 8. Performing Organization Report No.

Gerard E. Migneault
10. Work I_/nitNo.

9. Performing Organization Name and Address

NASA LangleyResearch Center 1f. ContractorGrantNo.
Hampton,VA 23665

13. Type of Report and PeriodCovered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronauticsand Space Administration 14SponsoringAgencyCode
Washington,DC 20546

15. SupplementaryNotes

Paper presentedat the AGARD AvionicsPanel Fall '82 Meeting on "Softwarefor
Avionics"held in The Hague, Netherlands,September6-9, 1982.

t6. Abstract

This report examinesthe proposed use of softwarefault tolerancetechniquesas a
means of reducing softwarecosts in avionicsas well as addressingthe issue of
system unreliabilitydue to faults in software. A model is developedto provide a
view of the relationshipsamong cost, redundancy,and reliabilitywhich suggests
strategiesfor softwaredevelopmentand malntenancewhich are not conventional.

17. Key Words (Suggested by Author(=)) 18. Distribution Statement

Fault tolerance Unclassified- Unlimited
Software cost

Software reliability Subject Category 61

!9. Security Classif.(of thisreport] 20. SecurityClassif.(of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 12 A02

.-3os ForsalebytheNationalTechnicalInformationService,Springfield.VirEinia22161






