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ABSTRACT

Time shared systems permit the fixed costs of computing resources to be
a

spread over ,large numbers of users. However, "bottleneck" results in the

theory of closed queuing networks can be used to show that this economy of

scale will be offset by the increased congestion that results as more users

are added to the system. If one considers the total costs, including the

congestion cost, there is an optimal number of users for a system which

equals the "saturation" value usually used to define system capacity.
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Designers of time shared systems face a tirade-off between the economies

of scale associated with sharing computing resources and the congestion

resulting from users' contention for them. Congestion increases the users'

total costs because their time could be used for other , purposes than console

interaction. This paper explores this trade-off using results from the

theory of closed queuing networks.' This theory has been developed and

validated many times in the last decade and more. When combined with a

simple model of costs, the theory shows that in the short run--i.e., when

the system's configuration is fixed--a curve of average total, cost per user

plotted against the number of users supported is U-shaped. The minimum

point of this curve determines the number of users N* that can be served

at lowest cost by this configuration. Moreover, N* is equal to the

"capacity , given by "bottleneck" models, e.g., t4j, (101,t141,[15]. That

is, it is always economic fully to utilize the bottleneck server.

System Cos t Model

V

This paper employs a general definition of

That is, the cost of a good or service measured

it is used for one purpose rather than another.

tion, cost is a way of comparing alternatives a

of a good or service. While money is sometimes

"cost" used in economics.

by the value given up when

As implied by this defini-

nd not an intrinsic property

a convenient metric for

costs, goods or services which have no observable money price may still be

costly. Here we consider two cost elements which are measured in money

terms directly and a third element, user time costs, that can be expressed

indirectly in money terms.
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The first type of money costs are so-called "fixed" costs, which cannot

be varied from one day to the next. Fixed costs depend on the system con

figuration, including, for instance, equipment rental, power, heat., space

and labor. however, in the long run these costs can be varied by changing

configuration or location or by hiring and -firing employees.

"Variable" costs, which depend on the output of the system, are the

second type of money cost. This paper uses a model with a single class of

users. Therefore, output can be measured in units of a homogeneous commod-

ity called "computing services." 2 One unit of computing services is com-

prised of a bundle of goods and services which are consumed by one user.

The next section shows how to calculate an index of computing services from

the parameters of a queuing network model. In general terms, a unit of

computing service includes computing power (measured by CPU cycles, memory

allocation, and so forth), communication facilities, and user support in

•	 appropriate proportions.

Because of congestion, however, the number of units of service

delivered to the system's users during some time period (t.e t ., the through-

put) varies. More service is delivered per hour per user when the systen is

lightly loaded than when it is heavily loaded. Rather than measure output

(i.e., computing services) so that it varies with congestion, we will take

the variable costs to be proportional to the number of users, N , and work

with N parametrically. Thus, if variable costs per user per hour, such as

terminal and line costs, are c , the variable costs per hour will be cN

while throughput is (say) X(N) units of computing service per hour.
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The third major source of costs is not always expressed in money

terms. This is the cost to users' of the time spent interacting with a time

sharing system. Time is costly because the time spent using a time sharing

system almost always could be put to some other productive use. Each user's

time cost can be thought of as the product of (a) the time required to per-

form some task on the system and (b) the money cost of a unit of the user's

5	 time. In our model, we let w represent the money price of a user's time.

Time costs often show up as productivity losses. For example, consider

an on-line order processing application. (Processing one application

requires a fixed number of units of computing service.) Hypothetically,

suppose it takes one second of machine time to process an application. The

total time required to process the application includes this time, plus the

"think time" of the human operator. If the think time is, say, 20 seconds

the total time per order processed will be 21 seconds, and the rate at which

s	 orders are processed is 3600/21 a 171 per hour. The cost per order

processed is clearly w/171 . w(21)/(3600), where the units of w are

dollars per hour. Now, suppose congestion increases the system's response

time, so that it takes, say, 30 seconds to deliver the same amount of

processing capability (i.e., l second). The order processing rate drops to

3600/30 - 120 per hour, which we see as a loss of productivity because the

cost per order is now w/120 .
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Delay in a Time Sharing System

The above example illustrates the general point that each user's time

costs are proportional to the time required to deliver one unit of computing

services. 3 We now consider how long this ta lkes, using the so-called

"bottleneck" results of Muntz and Wong (14] and Chang and Lavenberg [4] for

closed queuing network models. These results provide 	 simple, very general

relation between the speed of the system, the number of users, and the time

required to provide a given amount of service using the system. We summar -

ize the model and the results we need as follows.

A time sharing system with N users can be thought of as a network of

multi—server queues. Users are queued or in service at one node of the net -

work, and are dispatched to the ne-.ct node when they finish service according

to fixed probabilities. One of these node:, (with one server for every user)

represents the users' terminals, others might be the central processing

facility (which might have several CPUs in it), or I/O devices of some

kind

Formally, let vi be the number of visits at node i for every

visit to the terminal node, 1/µ l be the service requirement at node i

per visit, and mi be the number of servers at node i . To include

the infinite—server node representing terminals, let its index be 1, with

vl	1 and let 1/4l be the user "think time." At each node, pi = v i/ µi

1
is the total service requirement. The sum T(1)p 2 +	 + pn represents

i
the mean total time a user who never has to queue spends in the system, and

implicitly defines a unit of computer services. The mean time required to
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deliver a unit of computer services when there is only one user (i.e., when

*	 N - l ) is therefore S(1) - p l + ... + pn - 1 1 41 + T(1) .

Now, for any N we can calculate the thoughput X(N) and the mean
r

response time T (N) . The mean time to deliver one unit of computer ser-

vices when there are N users in the system is S(N) - T(N) + 1/4l

(i.e., the response time plus the think time). The cycle time O(N)

measures the average real time required to deliver one unit of computing

services. The cost per unit delivered is thus (w/3600) S(N) . However,

the number of units of service delivered in an hour is 3600 X(N). However,

Little's Result N . X(N)S ( N) for this system. Hence, user time costs are

wN per hour when there are N users and the throughput is X(N)

The bottleneck Model ( 4 1,[111,[I^j  [151

When N is small the cycle time is approximately S(1) for each user,

a	
and throughput is approximately X(N) - N/S(1). When N is large we may

concentrate on the "bottleneck" node in the system, with a relative utiliza-

tion pb/mb higher than that of any other node (ignoring possible ties).

When N is large the rate at which user service is completed at the bottle-

neck node equals the number of busy servers m  times the service rate

for a server 1/Pb - %/vb . This rate, mbµb/vb, must equal the rate at

which users enter the bottleneck, which also must equal the throughput

X(N).	 Solving for the cycle time gives:

X(N) - N/S(N) = Vlb/vb

or;	 S(N) - Nvb/(mbµb)
	

(2)

N
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That is, the cycle time increases with N for large N , and with the

average service requirement v b/µb . it decreases as more processing

capacity is devoted to user gobs, that is as m b increases. The
C

throughput X(N) is a constant determined by the capacitor of the bottleneck

node.

Now, when N is large S(N) = Nvb /(mb µb) , while when N is small

S(N) is approximately S(1) . Pl + ... + p n 	Equating these two

expressions gives a critical value for N, N*

N*	 S(1)mbµb/vb

n

M  11 Pi/Pb
	 (3)

When N > N* the system, in Kleinrock's terminology [11], is

"saturated," and the cycle time grows in proportion to N . On the other

hand when N < N* the cycle time is more or less constant, and its lower

bound is S(l) . N* can be thought of as the number of simultaneous users

that can be accomodated without queueing if they were each given exactly

S(1) seconds of service.

The total costs of time sharing

The three cost components--fixed costs, variable costs and time

costs--must be combined for decision making purposes. We call the first two

t
cost elements together the private cost. The private cost is F + cN when
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there are N users on the system. F is the fixed cost (in dollars per

hour, say) and c the unit variable cost (in dollars per user per hour).

There are N users on the system, each incurring a cost wN per

hour. Hence, total time cost for e(I T users is wN2 , and the total cost

is:

0(N) M F+cN+wN
	

(4)

The units of C(N) are dollars per unit time. For this value of N,

the throughput X(N) gives the number of units of service provided per unit

time. However, conceptually a cost function is a function of output,

written e.g., C(X)	 Since X(N) is an increasing function, we could in

principle invert it and find this function. But there is no analytic

expression known for JX(N) , so this would not be a particularly insightfbl

way to proceed. Instead we use the "bottleneck" approximation for X(N)

and S(N) , and then look at the reoulting approximate cost function.

Costs in the Bottleneck Model

The general expression for the average cost per unit of computing

service delivered is found by dividing Equation (4) by X(N) :

AM - F/X(N) + (c + w)S(N)
	

(S)

In terms of the bottleneck model, this is:

(F/N + c + w)S(l)	 N < N*
A(N)
	

(6)
(F + (c + w)N)/(mbµb/vb)	 N > N*
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Evidently, Equation (6) has a minimum at N* sixce it is decreasing with N

when N C N* and increasing when N > N* . Thus N* measures the system's

economically efficient operating point.

The explanation for this result is that when N 4 N* there is idle

capacity at the bottleneck node. In the bottleneck Lodel congestion does

not begin increasing until N = N* , so adding more users spreads the fixed

costs over a larger number of users without increasing congestion costs.

However, when N > N* adding another user adds to everyone else's collec-

tive delay, thereby increasing costs.5

If we could express X(N) analytically, we could find an approximate

value for the minimum by treeing N as a continuous variable and differ-

entiating. Thus, A I (N) R 0 would imply X(N)/X'(N) - N - P/(c + w).

Admittedly, computing X(N) is not computationally difficult, so finding an

exact minimum is fairly easy if the parameters of the queuing networkk model

already have been determined. However, the bottleneck model is often used

for rule-of-thumb calculations and the cost model used here is presented in

a similar spirit.

An Example

To illustrate how well the bottleneck approximation works in a cost	 r

function, we extend an example used by Denning and Buzen [7]. This example

has three devices (CPU, drum, and disk) with the queuing n e twork parameters

shown in Table 1. In this example the CPU is the bottleneck node, with

vb/(mbg b) - 1 second. The total time required to deliver a unit of service
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is T(1) w 2.2 seconds t and the think time is 20 seconds. Hence S(l) K 22.2

seconds and N* = 22.2 users. Figure 1 shows the value of S(N) calculated

by the bottleneck approximation (solid line), as well as the exact solution

(dashed lines).

Inspection of Equation (3) shows that the true minimum of cost per unit

of service depends only on the cost ratio F/(c + w) . Table 2 shows the

location of the minimum cost point for values of this Ratio between 5 and

50. 6 As can be seen, although the cost ratio varies by a factor of ten, the

true minimum stays close to the approximation N* - 22.2 . This implies

that the bottleneck approximation can be used to specify the system's capac-

ity without causing large errors.

Also, the exactly computed cost curve is flat in the region of the

minimum. This is also shown in Table 2, where the range of N for which

unit costs are within 5% of the minimum is shown. This range includes N*

•	 22.2 in all four cases. Figures 2 and 3 show the full cost curve for the

first and last cases shown in the table. These figures also illustrate the

fact that cost curve is flat near its minimum value.

C

a

4
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Table 1

Queuing Network Parameters Used in Example

Number of	 Visit	 Mean Service	 Mean time
i	 Node	 Servers, m,i Ratio, vi Time,1/pi (sec) required per cycle

1. Terminals	 N	 1	 20	 -
2o CPU	 1	 20	 0.05	 1.0
3. Disk	 1	 11	 0.08	 0.88
4. Drum	 1	 8	 0.04	 0.32

.

14

Table 2

Minimum Cost Values of N for Example

Minimum Upper and Lower Values
F/(c + w) Cost	 N of	 N	 for Costs Within 5% of Minimum

5 17 12 24
10 20 16 27
20 24 18 30
50 28 22 36

—10-
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Conclusion

This paper has discussed some of the technical-economic issues caused

by congestion in time shared systems. The closed queueing network model has

been used to show how to measure output and costs, and the 1>ottleneck

approximation derived from that model allows us to express the cost function

simply. Using the approximation, we find that the minimum cost per unit of

services delivered to users occurs at the "saturation" value N* , which is

the user load just sufficient fully to utilize the bottleneck server. Put

differently, we. have shown that it is economically efficient to saturate the

bottleneck, compared either to under- or over-saturation. Intuitively, this

is because in an under-saturated system (N 4 N*) additional users cause

little congestion but reduce the fixed costs per user. in an over-saturated

system (N > N*) additional users delay the other users, causing their

costs to rise.

g	 Based on the example, this result based on the bottleneck theory

appears to be a good approximation to the exact queueing network solution.

This is because the cost function is flat near its minimum. Thus, using the

bottleneck value of capacity (N*) should provide a quick check on for

system designers on the economic efficiency of their system.

i
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FOOTNOTES

Partially supported by the National Science 'Foundation's grants

GJ 36392X and IST-8108350, and the National Aeronautics and Space

Administration's contract NASW 3204. This is a heavily revised version

of "The Economics of Time Shared Computing: Congestion Costs and

Economies of Scale," Report No. 12, Program in Information Technology

and Telecommunications, Stanford Univerity, October 1974.

1. The special issue of Computing Surveys [9] contains several articles.

See also [8] and [12].

2. Multiple Job classes could be introduced, but their presence wnuld not

change the "bottleneck" results dealt with below except insofar as

different classes have different bottlenecks. A multi-class bottleneck

{	 model (without congestion) is presented in Kriebel and Raviv [13] (see
i

also [6]) .

3. In some computing environments (e.g., academic) productivity may be

harder to measure then in this example because it is more difficult to

see what alternative use of time could have been made. Of course,

this measurement problem does not invalidate the concept of user costs,

and the idea that they need to be taken into account.

4. Time sharing systems have been studied analytically and emprically with

this model for over a decade. In particular, the machine repair model,

adapted by Scherr [15] and extended by Greenberger [10], Kleinrock

[11], and Adiri and Avi-Itzhak [1] among others, has been used to

describe the interaction between a central processor and a finite user

R	
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population. The general queuing network [8] has been used by Buzen 	 j

[s], Baskett and Muntz [2], and Chang et al. [5] to model systems with

several sources of congestion. See also the references cited in

footnote 1.

5. Because one user by his actions imposes costs on others the costs are

said to be external. The general term for phenomena such as congestion

where these costs are imposed is "externality."

6. The values of F/(c + w) were chosen to reflect the probable range of

costs for the system used in the example. For example, if terminal and

line charges are considered the primary variable costs, we might take

c - 3 $/hr. Users with a high value of time might have w = 17 $/hr

(i.e., c + w - 20 $/hr). If the fixed costs are 100 $/hr this would

give F/(c + w) = 5 - On the ether hand, if valuable casts and user

4	 time costs were very low, e.g., c + w = 5 $/hr , and fixed costs were

250 $/hr, we would have F/(c + w) = 50	 Intermediate values (e.g.,

c + w = 10 $/hr and F a 200 $/hr) also seem reasonable.
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Figure Captions

Figure I -- Cycle time vs. number of users for example.

Figure 2 -- Cost per unit of throughput versus number of users for example,

F/(c + w) - 5

Figure 3 -- Cost per unit of throughput versus number of users for example,

F/(c + W) - 50 .

.
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