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FITTING MULTIDIMENSIONAL SPLINES USING STATISTICAL VARIABLE
SELECTION TECHNIQUES

By
Patricia L. Swmithl

SIMMARY

This report demonstrates the successful application of statistical
variable selection techniques to fit splines. Major emphasis is given to
knot selection, but order determination is also discussed. Two FORTRAN
backward elimination programs using the B-spline basis were developed, and
the one for knot el nination is compared in detail with two other spline-
fitting methods and several statistical software packages. An example is
also given for the two-variable case using a tensor product basis, with a

theoretical discussion of the difficulties of their use.
1. INTRODUCTION

Polynomial splines have often been employed in modeling or data fitting
when the functional form of the relationship between the dependent and inde-
pendent variables is unknown. The major problem has been how to avoid
under- or overfitting the data. A strictly mathematical approach is to add
knots one at a time and move them around until the Lz (or some other) norm
of the errors is less than a preselected tolerance level (ref. 1). A major
problem with this approach is that a good fit depends entirely on the suo-
jective selectior of the tolerance level. A fitting method which attempts
to avoid this problem is the smoothing technique introduced by Reinsch
(ref. 2), but it requires the experimenter to have good a priori information
about the data o~ the process which generated it. Both of these methods are

currently feasible only for functions of a single variable.

A statistical approach to the curve-fitting problem using the method of

cross-validation was introduced by Wahba and Wold (ref. 3). The major

 Assistant Professor, Department of Mathematics, Old Dominion University,
Norfolk, Virginia 23508,



advantage of this procedure is its automation: no a priori information is
needed. There are several disadvantages, however. Every data point is a
knot so that the resulting functional form is difficult to use and inter-
pret. In addition, if there are clearly identifiable trends in certain
portions of the data such as linearity or sharp bends, this information is
lost analytically even though it shows up when the spline is plotted. The
practical use of this technique is also currently restricted to functions of
one or two variables. The two variable case is considered in Wahba (ref.

4), with higher dimensions discussed in Wahba and Wendelberger (ref. 5).

Other statistical approaches to the variable knot spline problem have
considered the knots as parameters in the model. However, this presents
problems in finding the least squares sclution and in subsequent statistical
estimation and testing procedures because the model is nonlinear. Tradi-
tional (ref. 6) as well as Bayesian (ref. 7) approaches have been investi-
gated, but both are limited in scope and applicatien. Further, in most
cases, though the knot locations have been variable, their number has been
fixed a priori by the analyst. Some exceptions are the works of Ertel and
Fowlkes (ref. 8), Smith and Smith (ref. 9), and Agarwal and Studden (ref.
10), but, as with most other approaches mentioned above, they have not been

developed to fit splines in several variables,

The technique investigated in this research is the use of variable
selection procedures to fit splines. 1If a pool of knots is fixed in advance,
then statistical linear models theory can be applied in a variable selec-
tion framework. There are four major advantages of the variable selection
approach to fitting splines. First, variable selection procedures are
essentially user independent (automatic) in their use of the F test as a
stopping criterion. Second, they are widely available in statistical soft-
ware. Third, final firs may have straightforward intepretations because of
their simplicity or theoretical foundation. Fourth, regression diagnostics,
such as outlier detection, may be performed. These advantages and other
desirable properties are discussed in Section 4, along with a comparison of

several methods and software.

The theory applies not only to splines in a single variable, but also

to splines in several variable using a tensor product basis. However, as



the careful and detailed development of this technique in the one-variable
case is considered a crucial step to its use in several variables, discus-
sion of the multivariate case is restricted to Section 7, and includes an

example of its successful application to aerodynamic modeling.

The major emphasis of this report is the application of variable selec-
tion procedures for choosing the number and locatiou of the knrts for
splines in a single variable of fixed ordev (= dogree +1). A detailed dis-
cussion of this "knot selection" approach is given in Section 2 with exam-
ples, comparison of methods and software, and applications in Sections 3-5.
Choosing the spline order with the number and location of the knots fixed is
of less interest and considered in Section 6 only. FORTRAN programs which
appiy backward elimination in these two contexts were written as part of
this research and discussed ir Sections 2 and 6., Their documentation, flow-

charts, and listings are given in the Appendix.

LIST OF SYMBOLS

a angle of attack

a; breakpoint for angle of attack
Ay A regression coefficients

b sideslip angle

bj breakpoint for sideslip angle
Boj,Bl regression coefficients

B; (x,y) two-variable spline basis element
€psCy regression coefficients

C-1 class of discontinuous functions
Co,Cl,Ck-z,Ck-3 functions with continuity class 0, 1, k=2, k-3
C, yawing moment ccefficient
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Abbreviations:

KS

MSE

SS

SSE

dependent variable

breekpoints for y

significance level

regression coefficierts

aileron, elevator, and rudder deflection
random error

mean
standard deviation

gridpoint (xi,yj)

knot selection

mean squared error
Smith-Smith

error sum of squares

Wahba-Wold

THE KNOT SELECTION (KS) PROCEDURE

Statistical variable selection procedures can be used as a KS procedure

to checose the numter and location of knots in fitting splines. The "+"

function basis is suitable for this, at least theoretically, because it is

easily interpreted.

Knots and knot multiplicities correspond to individual

terms so that selection or deletion of terms is equivalent to sel-ctiom or

deletion of knots.

cont inuous linear spline with knots ¢t

[o}

The knots are thus selected indirectly. For example, a

1" .,tk may be written as

£
B+ 81 x +I, Bi(x - ti)+’ where u_=u for u >0 -rud zero other-



wise. Selection of the "spline term" (x - tj)+ is actually selection of the

knot tj. Because we don't know where the breakpoints should be, we provide
as candidate variables a liberal number of spline terms, i.e., a pool of
knots, more .- .a expect or want to eventually use, and blanket the
domain. -8, tlhe -~tual number and location of the knots used in the final
model is uvnenown at the beginning in the sense that we are selecting from a

larger set.

While "+" functions are easily defined in current statistical software
packages and fit into the statistical hypothesis testing framework without
modification (ref. 11), computational problems such as carry-uver in round-
off error and multicollinearity greatly restrict their use. As will be seen
in Section 4, the backward elimination (stepdown) procedures are especially
troublesome because all terms must be fit initially. An alternative is the
use of the computationally advantageous B-spline basis (ref. 1). Unfortu-
nately, it does not fit ea.ily into the hypothesis testing framework and
cannot be used in existing statistical software packages. There was thus a
need for the development of a KS procedure using B-splines. Construction
of hypotheses which are useful in B-spline regression, including testing the
importance of knots, has been detailed in Smith (ref. 12). As part of this
research, these resulcs have been implemented in two FORTRAN computer
programs, one of which accommodates the backward elimination of knots using
the B-spline basis. Examples in Section 3 give the results of using this
FORTRAN program, and comparisons with several statistical software packages,
as well as with other statistical spline-fitting methods, are detailed in

Section 4,

The use of variable selection is a sort of compromise between the tech-
niques which use either fixed or variable knots. Its most important advan-—
tage, and one which makes possible all others, is that because the maximum
number and locaticn of the knots is fixed in advance, the statistical theory

of general linear models applies. Consequently, the least squares solution



is easily obtained at aay given step, and hypothesis testing and interval
estimation are straightforward. As mentioned earlier, details for using the
B~spline basis are given in reference 12. The selection of knots can thus
be accomplished through t tests. This fits exactly into the variable
selection framework for (1) spline models in a single variable, (2) models
in several variables with spline terms in one or more variables, and (3)
models in several variables with tensor products defining higher dimensional
splines. Also, trends in the data in one or more variables may be easily
detected through the selection of a few knots. Several examples of this
will be given in the next section. Further, in some experimental situa-
tions, models may be easily interpreted because the coefficients are physi-

cally meaningful, as in some examples in Sections 5 and 7,
3. EXAMPLES OF THE KS PROCEDURE

Four data sets were examined using the FORTRAN knot elimination pro-
gram. The maximum number of continuity constraints allowed for any given
order were imposed. The first data set, the Indy data, is rather simplistic
but has appeared in the statistical literature several times in connection
with curve-fitt.lr 1 splines. It is a record of the average winning
speeds at the I 4 polis 500 from 1911-1971, except for 1917-1918 and
1942-1945, during rhe two World Wars when the race was not run. Poirier
(ref. 13) fit the data with a cubic spline with 2 knots, one each at the
midpoint of the non-racing years. The data were coded so that x = year -
1910 with knots 7.5 and 33.5. The output and graphs from the knot elimi-
nation routine are shown in Figures 3.1 to 3.4, with circles around the
function values of the Imots. Using an F-table value of 8.0 (a = 0.01), the
KS procedure eliminates both knots so that a cubic polynomial is adequate
to fit the data. If a linear rather than a cubic spline is fit, only the

knot at x = 7.5 can be eliminated (Figures 3.5 to 3.7).

The second example is noisy data generatad ‘:om the function used in

reference 3

£(x) = 4.26(e © - ée—zx + 3e—3x)
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Figure 3.2.

Figure 3.3.
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for )c[0,3]. For x starting at zero, we generated 100 data points at
intervals of 1/32 up to 99/32 and added normal r&ndom noise, N(u = O,

o = .2), the value of ¢ the same as that used by Wahba and Wold (WW). A
graph of the function and generated data is shov . in Figure 3.8. Figures
3.9 to 3.27 show graphical results of the s"erx -m procedure for cubic
splines starting with 19 equally spaced interi:: knots, and using an F-table
value of 8.0. By examining this sequence of g-aphs, it becomes clear how
the elimination of knots makes the spline smocther by making it less noise

dependent.

An F—-table value of 4.0 (a = 0.05) rather .han 8.0 results in stepdowmn
terminating with 5 knots remaining (Fig. 3.23, ». 20). The latter fit is
more data dependent and clearly inferiot in teras of recovering the desired
function. Use of the larger F value thus seems appropriate and keeps the
procedure from terminating “prematurely." Graphs of starting and ending
fits to the data, beginning with 39 interior knots, are shown in Figures
3.28 to 3.29, and the results are roughly the same as when 19 knots are used
initially (Figure 3.27, p. 22). A phenomencn which occurs throughout most
of these fits is the downward hook in the uppe: 1ange of the x's due to a
cluster of 3 data points. Figure 3.30 shows the conclusion of stepdown with
those 3 points omitted and helps to illustra.e the fact that different noise

results in different fits.

The method used by Wahba and Wold to recover the function is a modifi-
cation of the smoothing technique introduced by Reinsch (ref. 2). They use
cross—validation to determine the smoothing paraneter, and their resulting
fit is shown in Figure 3.31. Referring again to Figure 3.27, t. 22, we see
that the results of the two methods compare very fivorably A more detailed
comparison of these methods and others is made ir Lhe v -t section.

Smith and Smith (SS) (ref. 9) examine a scale? version of the WW
-3.25x ~-6.5x . 3e-9.”5x)

function, f(x) = 4.26 (e - be for x€[0,1]. A sample
of size 600 equally spaced points was geners’ed, and a variance of 0.039 (as

in SS) was used for the normally distrib ted zero mean noise. Results from
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Figure 3.8, The Wahha-Wold (WW) function and data generated from it.
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Figure 3.10. Second step of knot elimination. WW data.
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Figure 3.18, Tenth step of knot elimination. WW data.
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Figure 3.19. Eleventh step of knot elimination. WW data.
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Figure 3.20. Twelfth step of knot elimination. WW data.
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Figure 3 21. Thirteenth step of knot elimination. WW data.
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Figure 3.22. Fourteenth step of knot elimination. WW data,
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Figure 3.23. Fifteenth siep of knot elimination. WW data.
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Figure 3,24. Sixteenth step of knot elimination, WW data.
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Figure 3.25. Seventeenth step of knot elimination. WW data.



'

oRiGINAL I T
OF POOR Quii

6

-.01 .81 1.23 1.96 2.48 3.10
WW DATA

Figure 3.26. Eighteenth step of knot elimination. WW data.
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Figure 3.27. Nianeteenth and final step of knot elimination. WW data.
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Figure 3.28. First step of knot elimination with 39 interior knots.

WW data.
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Figure 3.29. Final step of knot elimination from 39 knots. WW data.
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Figure 3.30. Final step of knot elimination with 3 data points in
upper x-range omitted. WW data.
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Figure 3.31. Spline fit obtained by cross-validation by Wahba and
Wold. WW data.
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tw stepdowm runs fitting cubic splines are shown in Figurea 3.32 to 3.133,
begimming with 19 and 49 knots. Three knots remain in Figure 3.32 with a
slightly wigglier fit than that in Figure 3.33 with one remaining knot.
These results show that a larger knot sclection pool allows reduction to
possibly s fewer number of final knots and a smoother fit, which, for

simplicity, is more Jesirable,

Smith and Smith use asvmptotic results to determine a stopping rule for
adding knots one at a time to the model. Figure 3.34 shows their results
using vubic splines overlaid on the true function. The data were not plot-
ted 30 that the distinctions betwen the tw functions would not be lost.
Applving stepdownm using these 9 initial knots resulted in Figure 3.35, a fit
which smooths the wiggles visible in Figure 3. 34, As seen in the two
previous figures, however, using a larger pool of knots results in a
sanother and more satisfactory recovery of the function. The SS wethod is
compared in more Jdetail to both the WW and KS methods in the next

SeCuian,

The final function examined is f(x) = sin (x*) for x€[0,4.5], which
allows for more than tw periods of the sine wave and gradually increases
the frequency. Three hundred data points were used with o = .2 for the
normal! noise.  Beginning and ending cubic spline fits from a stepdown rtun
are shown in Figures 3.36 to 3,37, starting with 19 inte. i knota and
ending with 9. We note that more knots are needed tor the final fit than
for the functions previously discussed due to the increased curvature of the
function. Most of the wiggliness in the initial spline fit occurs on the
more gradual slope at the lower end of the x-range and is removed as knots
are removed.  This phenomenor also occurs on the "flat" portion of the SS

and WW data.

In order to asseas the effects of a lower noise level on the KS tech-
nigue, random variables used for the noise on the WW function were generated
using @ = .1 and .05, Final fits are shownm in Figures 3.38 t> 3,39, and
referring back to Figure 3,27, p. 22, which shows results using 0 = .2, we
see that titring Jdata with & lower noise level resulta in more knots
rematning at the end of the procedure. This tendency is especially striking
when Jdata from the function itselt is fit, that ix, when no noise 1s added

s that to
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Figure 3.32. Final step of knot elimination from 19 knots. SS data.
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Figure 3.33. Final step of linot eliminatior from 49 knots. SS data.
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Figure 3.34. Cubic spline solution of Smith and Smith. SS data,
(Actual data not shown.)
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Figure 3.35. Final step of knot elimination from 9 knots. Cubic
splines. SS data. (Actual data not shown.)
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Figure 3.36.

Figure 3.37.
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Figure 3.38. Final step of knot elimination from 19 knots with o = 0,1
in the noise. WW data.
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Figure 3.39. Final step of knot elimination from 19 knots with ¢ = 0.05
in the noise. WW data.
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recover the function we actually need to interpolate. A stepdown from 19
knots results in a spline with 12 knots as shown in Figures 3.40 to 3.41.
Both the true and fitted functions are graphed, but there is no perceptible

difference between the two.

Wiggliness in data should be smoothed (i.e., ignored) if it is per-~
ceived as noise, but should be fit if it is perceived as trends in the
underlying process. Thus, a danger in applying the KS technique is using
too small or too large a pool o knots. The former problem is illustrated
quite well in Figures 3.42 to 3. 33, where noisy data generated from sin (x2)
is fit with the KS technique beginning with too few knots to allow the
bending necessary to recover the function, especially near the third peak.
It is interesting to see that the three knots eliminated were in the lower
end of the x range where the underlying function is not wiggly. A
comparison of Figures 3.37, p. 28, and 3.42 reveals that both have 9 knots,
but a better fit is obtained from the one which began with 19 knots (Fig.

3.37): its 9 knots are more selectively and better placed.
4. COMPARISON OF METHODS AND SOFIWARE

In the previous section, two functions introduced in the literature (WW
and SS) were examined using the FORTRAN knot elimination program. The pur-
pose was to compare results, which we do in this section, in light of what
we consider to be the most desirable properties of curve-fitting with
splines. These are:

(1) good results;

(2) computational efficiency;

(3) diagnostics capabilities;

(4) user independence;

(5) ease of interpretation; and

(6) ease of use.

We also give in this section the results of using several statistical soft-

ware packages on the Indy and WW data, fitting both linear and cubic

splines.
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Figure 3.40., First step of knot elimination with 19 knots. No Noise.
WW data.

s
» -5
-8

g+ r ) 1.0 2. nie
WM ORTR

Figure 3.41. Final step of knot elimination from 19 knots.
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Figure 3.42. First steg of knot elimination with 9 knots. True Function
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Figure 2.43. Final steg of knot elimination from 9 knots. True function
is sin (x°).
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Most statisticians have ready access to variable selection procedures,
eitber in programs they have written themselves, or in widely available
statistical software packages. Fitting splines through knot selection with
these programs is a potential advantage of their use, which is realized only
if good results are obtained. A summary of the results of using four such
packages is given in Table 4.1: SAS (ref. 14), SPSS (ref. 15), MINITAB
(ref. 16), and BMDP (ref. 17).

Table 4.1. Results of using variable selection techniques to fit
splines with four statistical software packages,

Stepwise Stepdown
Indy ww! Indy ww!
SAS linear 4 v v v
cubic 4 ' v v
SPSS linear Y v v v
cubic v Y v V-2
MINITAB linear v v ' 4
cubic v X X X
BMDP® linear X X X X
cubic X X X X

lselection pool of 19 interior knots.
2Numerical output has some inaccuracies, but overall results are correct.
3Tolerance cannot be made low enough to force entry of necesgsary terms.

In the case of stepwise procedures, accuracy was determined by zomparing
outputs for the various packages among themselves, while outputs for the
stepdown procedures were compared with the FORTRAN B-spline knot elimination
program. Results are surprisingly good considering the fact that the "+
function basis must be used. Entries marked with an "X" indicate failure to
produce accurate results or, sometimes, any results at all due to high

multicollinearity in the models or low tolerance, especially in stepdown.
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The minimum tolerance allowed for SPSS, 10-12  had to be used to force entry
of some of the polynomial terms or to get results in stepdown. For BMDP,
the tolerance of 0.0l for variable selection was not low enough to force
ent~y of necess y terms to get results for any of the cases considered., As
expected, less trouble was had with fewer knots (Indy data), lower .:gree
(linear), and simpler models (stepwise), Stepdown gave accurate results in
several cases even for a large number of knots, but there are limitations.
For instaiace, computational problems were encountered by SAS for the cubic
WW data with 39 knots. The final .dels determined by s“epwise and step-
down, however, were either identical or very similar. The occasional user
of splines could thus safely rely on stepwise procedures from one of several

packages to give good results.

Table 4.2 compares several spline-fitting methods: Wahba-Wold (WW),
Smith~Smith (SS), and knot selection (KS). As the latter method may be
implemented through several different computer prograus, two statistical
packages and the FORTRAN knot elimination routine are included. All methods
give good results for the data examined, though as seen in earlier discus-
sion, care must be taken when using the statistical packages, especially
for stepdown. Their use of the "+" function makes them computationally
inefficient and can cause severe prob'ams. They are handy, however, for the
occasional user as is the WW method which is available as an TMSL subroutine
(ref. 18). The KS techniques depend on setting an a level for the hypo-
thesis tests and specifying an initial pool of knots but are otherwise user
independent. The WW method is "completely automatic," while the SS method
depends on user application of the stopping criterion. The KS approach in

general produces results which are .iier to interpret.

Results from this section and from Section 3 show that &plines
fit by knot selection recover the underlying functions quite well and
compare very favorably with the results of Wahba and Wold and improve upon
those of Smith and Smith. Though somewhat simplistic, the knot selection
approach provides an alternative to the method of cross-validation and
offers a great computational savings. In addition, there is the possibility
of analytic or physical interpretation in many modeling situations, an

example of which is given in the next section.
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Table 4.2. Comparison of spline-fitting techniques
and software.

Knot Selection

B-Splines

Desirable Properties W S§ SAS SPSS FORTRAN
Good results Y v Y V- Y
Computational efficiency 4 / X X /
Diagnostics capabilities X X 4 v v/
User independence v V- V- V- V-
Ease of interpretation X X v v v
Ease of use occasionally / X V-1 / X

1sAs is available only on IBM-compatible machines.

5. SOME SPECIAL APPLICATIONS

Prohably the most useful coplication of the KS technique is data-
smoothing, and in Section 3 we saw several examples of recovering underlying
functions from noisy data. A variacion that is useful in simulation
experiments is smoothing the - umple quantile function (ref. 19). This
function is a left-continuous step function defined as Q(u) = X (i) for
(i~1)/n < u € i/n, where n 1is the sample size and X (1) is the i-th
order statistic. Experimental conditions can be simulated by generating
data which behaves like the original, and a smoothed sample quantile
function provides a continucus distribution from which to draw the simulated
data. An advantage of smoothing the sample quantile function, rather than
its pseudo-inverse, the sample cumulative distribucrion function, is that the

former alwavs has domain [0,!] regardless of the type of distribution.
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Programming can thus br standardized, as, for example, in the determination

of *he original knot selection pool.

The KS technique is alse useful in modeling. For example, stepwise
regression has been applied successfully by Klein, Batterson, and Smith
(ref. 20) to model flight data using splines. They use '+" function terms
defined in the angle-of-attack variable in a Taylor series expansion of
force and momenc coefficients in order to model longitudinal motion of an
airplane. One of their simple "spline-modified" Taylor series expansion3 of

the vertical aerodynamic force coefficient C, 15 given by

C =Cc(a) , +C (a)n" +C (a)éd
2 z q'=0 z zg e
§ =0 1 e
e
where
Uy
Cz(a) = Lz(a =0) + c, a+ I Al(a - al)+
a 1 =2
UZ 0
Cz (a) = c, * T Bl(a - al)+
q q L=2
U3 ( 0
C. (a) =cC + I dla-a)
zg Zg g n2 £ L7+
e e
and a is the angle of attack, q' 1is the nondimensional pitch rate, Ge
18 the elevator deflection, C *3C /3a, C = 3C /3q', C = 9C f3¢8 |
z, z zq z zg z e
e

They then use stepwise regression to select terms, and thus knots, in the
model. This spline representation preserves the concepr of stability and
control derivatives inherent in the usual Taylor series expansion of aero-
dynamic coefficients but has the advantage of providing a representation of
Cz over an extended range of the angle of attack a. A global model over

the observed range of a 1is thus obtained through the use of splines.
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6. OTHER USES OF VARIABLE SELECTION PROCEDURES IN SPLINE REGRESSION

Thus far we have emphasized the use of variable selection to choose the
number and location of knots. There are other possible, but perhaps less
veeful, "extensions" to spline regression of variable selection procedures
based on polynomial or multiple regression models. In the latter cases, the
purpose is to d termine the polynomial degree and the important independent
variables anc .nteractions. This is accomplished by examining the
contribution of individual terms in the model. With univariate spline
models, however, there are several polynomial pieces, not just one, whose
degrees may be examined, and, as seen previously, we may examine the
importance of each krot. Alsc, one may wish to examine the continuity
conditions at one or more breakpoints as in the example discussed by Smith
(ref. 11). Thus, the compliexity of the spline model over the polynomial
model manifests itself in the greater number of ways the dimension of the
spline parameter space may be altered. Splines in several variables present
even more possible diversity since, for example, two-variable spline
continuity occurs not across points but along lines connecting grid

points,

While it might be nice to have a single software package which could
perform any combination of these spline hypothesis tests, it is neither
feasible nor desirable. The major :-ason is that variable order splines,
i.e., splines with polynomial pieces of different degrees, have not been
sufficiently researched by mathematicians to allow for the satisfactory

"+* functions or

construction in a general framework of a basis using either
B-splines. Lowering or raising the degree of a single polynomial piece must
be accomplished by applying restrictions to the model, and hypothesis tests
must then use restricted least squares. In simple cases this may be
straight forward (references 1l and 21), but in general the task is unmanage-
able. For example, the v r is subject to hidden analytical errors as when
the regression or hypothesis degrees of treedom d4re not equa. to the number
of restrictions because some restrictions are obtained automatically through

linear combinations of others. While theoretically such dependencies can be

checked, the usual methods would need some revision in the case
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of B-spline regres ion since hypotheses involve values of the fitted spline
or its derivatives (ref. 12). In the case of the "+" function basis, most,
but not all, of the individual terms are meaningful. However, the innocent
yet indiscriminant selection or removal of terms through hypothesis tests
can result in fits which are statistically valid yet nonsensical because
they are uninterpretable in terms of polynomial degree or knot locations
(ref. 11). Because of these various difficulties, it is reasonable to con~

struct task-specific procedures.

The application of variable selection to knot selection, as in the
examples in Section 3, is useful for smoothing data with a fixed order
spline with maximum continuity conditions. In these cases the interest is
not in the spline order but rather in determining the minimal number of
knots deemed adequate to faithfully represent the data. Cubic splines are
popular because of their low degree and second derivative continuity. The
selective use of forward or backward algorithms in some statistical software
packages using "+" functions (see Sectiomn 4), or the backward elimination
FORTRAN program developad here using B-splines, may be used for this

purpose.

Another possible "extension" of variable selection to splines is the
determination of the polynomial degree while keeping the number and location
of knots fixed, that 1s, not consider the knots as "variables'" to be either
entered or removed. Because of the difficulties with variable order splines
discussed above, we must restrict ourselves to polynomial pieces of the same
degree. Unfortunately, even further constraints are necessary for this
version. The ideal situation would be to compare a maximally costinuous

(Ck-z)k-th order spline, i.e., a k-th order spline with continuous f,
t_(l) f(k-2) k-3)

A formal test, hcwever, is not possible. This can be easily seen by consid-

, with a maximally continuous k-1-st order spline (C

ering a specific example using the partial ordering of some spline models
given in reference 11. Basis elements for c® and ¢! quadratic splines
and for @ linear splines with one knot are shown in Fig. 6.1. A compari-
son of orders 3 and 2 (degrees 2 and 1) which retained maximum continuity

conditions would require comparing the C! quadratic with the C% linear.
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Q? quadcatic
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1,x,x°,(x=t), ,(x't)+

Clguadratic c? linear
l,x,xz,(x’t)i l,x,(x't)*

Figure 6.1. A partial ordering of some spline spaces.

Neither is a subspace of the other, however, so they cannot be formally
compared (via testing). A solution of & sort is available if the c?
quadratic and the @ linear are compared, since, as can be seen from the
figure, the @ linear basis generates a subspace of the C? quadratic

space.
In general, a test to compare spline orders can be made between splines

of order k and k-1, both having continuity Ck-3. in the case of cubic
splines, for example, we could allow continuity of the function and its
first (but not second) derivative in order to determine whether the order
could be reduced from & to 3 or increased from 3 to 4. Since a ¢! cubic
has sufficient smoothness (at least to the eye), the procedure is not so
otjectionable. Considerably less satisfactory, however, are the cases for
linear and quadratic splines. In comparing splines of order 3 and 2 as seen
in Figure 6.1, the quadratic spline would be continuous but not its first
derivative while in comparing splines of order 1 and 2, the linear spline
would not even be continuous. Of course, the results of formal tests can be
used in combination with informal comparison between SSE's of the models of

interest to decide upon an acceptable model, and we recommend this approach.

A backward elimination FORTRAN program using B-splines has been devel-
oped for the purpose of reducing spline order using the nesting of some
"sub-opt imal" spaces as described above. Details for the appropriate B-
spline hypothesis tests are given in reference 12. The listing, documen-
tation and flowchart for the program are given in the Appendix, and we
illustrate its use with the Indy data. While some statistical software

packages could undoubtedly be used by defining "+" functions as in knot
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selection, no attempt was made to use them in this context. However, using
the results of Section 4 as a guide, we surmise that several backward elimi-
nation procedures would be suspect while most forward selection algorithms
should give fairly accurate results. Again, tolerance levels may have to be

made small in order to force entry of certain terms.

Figure 6.2 gives the FORTRAN program output for stepdown order selec-
tion on the Indy data starting with a cubic spline (order 4) with the two
knots in mid-WWI and WWII as in Section 3. The program compares splines of
different order with the same continuity conditions, though other fits are
given for information purposes. For this example, order reduction is made
from cubic to quadratic to linear. Estimates of the B~spline coefficients
and their standard errors are given for the spline of lowest order which can
adequately fit the data, and the highest continuity conditions are imposed.

‘
For this case it is the @ 1linear.

A graphical display of these results is quite helpful, and Figure 6.3
shows a partial ordering of the relevant spline spaces along with hypothesis
test results and SSE's from the program. The dotted lines indicate the
stepdown comparisons we wish to make, while the solid lines indicate those
we can actually wake through formal comparisons (tests). The importance of
user input into the variable selection process is becoming more widely
recognized, and here especially, because the formal tests available are not
exactly what we would like. Consequently, we recommend the use not only of
the formal tests, but also of informal comparisons between SSE's (or MSE's)

of competing models using a display such as Figure 6.3,

We illustrate this technique by going through Figure 6.3 step by step,
and we will discover some interesting characteristics of splines along the
way. We tirst observe that while a formal test is not possible between the
@ cubic and the €' quadratic, it would not even be nec<ssary since the
d quadratic has a smaller SSE than the ¢2 cubic. A better fit is thus
obtained with a lower degree! This phenomenon could never happen with poly-

nomials, but such are the vagaries of splines. An informal comparison in
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OF POOR QU.i.

THE SMOOTHEST SPLINE OF ORDER K= 4 WITH mxnu-! CONTINUITY C 2
MRS SSE= 385.290068218 AND MSEe 7.86306298

CAN ORDER Ke 4 WITH SUB-MARXIMM CONTINUITY C
BE REDUCED TO ORDER Ke 3 WITH MAXIMUM CONTINUTIY C 1 ?

YES.

FORKs 4 ADC1
FTAELE VALUE = 4., 99220000 OBSERVED F» 1.27322583
SSEe 348.34966200 MSE- 7.41169494

THE SMOOTHEST SPLINE OF ORDER K= 3 WITH MAXIMUM CONTINUITY C i
HAS SSE- 376.65994638 AND MSE- ?7.53319893

AN ORDER Ke 3 WITH SUB—MAXIMM CONTINUITY C @
BE REDUCED TO ORDER K= 2 WITH MAXIMM CONTINUTIY C @ ?

YES.

FOR K= 3 ANDC @
FTABLE VALLE = 4. 00300020 OBSERVED F= 3.69172563
SSEe 368.4537126@ ™MSE- 7.67611991

THE SMOOTHEST SPLINE OF ORDER K= 2 WITH MAXIMUM CNTINUITY C @
HRS SSEe 453.46308846 AND MSE- 8.89153115

CAN ORDER K= 2 WITH SUB-MAXIMM CONTINUITY C-1
BE REDUCED TO ORDER Ke= 1 WITH MAXIMUM CONTINUTIY C-1 ?

NO.

FOR K» 2 AND C-1
FTARELE VALLE = 4., 22000033 OBSERVED F= 285. 3692T5%
SSEe 328.52409313 MSE- 6.79457333

PROCEDURE TERMINATES.

PROCEDURE TERMINATES WITH Le 3; K= 2; C @

N COEF ST. ERR.
1 73.61675883 2.19888373
2 88. 49577629 1.11724085
3 114,.97961720 . 94655257
) 157.47846182 1.1@901397

FURTHER INFORMATION somomomsomsoes
FOR Ke { AND C-1
SSEe  6@79.372772%2 MSE- 116.73793793

Figure 6.2. Output for order reductiion. Indyv data.
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Figure 6.3. Partial ordering of spline spaces including SSE's
and results of order reduction tests. Indy data.

in going from the cl quadratic to the cY linear reveals an increase of
77 in the SSE. While this increase cannot be formally judged insignificant,
we may wish tc draw such a conclusion based on the results of the formal
test which compares the co quadratic with the €% 1linear: the larger
increase of 85 is insignificant in that case. Having thus ''safely”" arrived
at the ¢9 linear, we must decide whether to further lower the order. The
very large F value (285) from the program output which compares the ¢!
linear and the C~! constant splines reveals the importance of the linear
trend. The big increase of 5742 in SSE from the C~! linear to the ¢C~!
constant is thus highly significant, and since the increase of 5617 from the
c9 linear to the C~! constant (the desired comparison) is only slightly

smaller, we conclude that the use of a constant spline fit is inadvisable.
7. SPLINES IN SEVERAL VARIABLES

A mathematical theory for splines in several variables is still devel-
oping, and a "satisfactory" basis even in two variables has not been found.
However, tensor products of either "+" functions or B-splines can be used to
form a spline basis in several variables. While a tensor product basis is
somewhat clumsy and its interpretation difficult, we explain here some theo-

retical aspects of its use for the two variable case and give an example.



As in the example in Section 5, a spline-modified Taylor series expan~-
sion can be used to model aerodynamic force and moment coefficients. This
time, however, Klein and Batterson (ref. 22) use splines in two variables,
the angle of attack a and the sideslip angle b, to approximate the lat~-
eral force coefficient and the rolling and yawing moment coefficients. They
use the yawing moment coefficient C

n 4as a typical example, and Cy
can be expressed as

= \
Cn Cn(a,b,6 =5 =0

p' ="' =0 (7.1)

where p and r are the rolling and yawing velocity and §; and &

are the aileron and rudder deflection. They approximate the function C;
(a,b) by

21
C(a,b)=C +Cb+ L (A.+A ba=-a)l
n o 1 . o1 11 i+
i=1
22 L1 22
+ LB (be=b) + I I D _(b-b) (a- ai)g (7.2)
j=1 ©J ] j=1 j=1 *J ]

while the remaining functions in (7.1) are approximated by splines in a
alone. Results from a stepwise regression using these terms are not as good

as in the one-variable case, and some fine-tuning remains.

From a theoretical point of view, the tensor product basis does not
have the nice interpretation of knots and continuity constraints as in the
one-variable case, even using "+" functions. There is, however, a one-to-
one correspondence between two-variable "+" function terms and grid points,
or nodes, and for this reason, we use the term node basis to refer to tensor
products of the "+" function basis. As before, we use right-continuous "+"

functions so that 00 is 1. Tensor products of B-splines may also be used to
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construct a basis for splines in two variables, and we shall see that the

same advantages and disadvantages of the one-variable case carrv over.

We discuss the simplest two-varigble case in some detail: first order
splines, i.e. step functions, Their application is somewhat limited, but
there are several reasons for their Jetailed consideration. First and fore-
most, splines in two variables are difficult to envision and manipulate, and
consideration of the simplest case, namely constants, is thus highly desira-
ble. Second, as seen in the example above and in Section 5, the estimation
of aerodynamic force and moment coefficients using a spline-modified Taylor
series expansion reveals the importance of using constants from both inter-
pretative and numerical points of view. Finally, the two-dimensional cumu-
lative distribution function is a first order spline in two variables.

Thus, the constant case, while limited, has already shown its usefulness.

We first discuss the node basis by way of example. Suppose breakpoints
P

in the x variable occur at x;, x,, x3 and in the y variab'e at 1y,

and y, for data in x, € x < x, and y, €y <yz. A"+ function basis

of order 1 in the x wvariable is (x - xo)f,..., (x - x3)2 and in the y
variable is (y - yo)s,..., (y - yz)f. The tensor product basis is formed

by taking all the 4 x 3 = 12 products (x - xi)g (v - yj)g, 1=0,..., 3;

j = 0,..., 2. Each basis element in the two variables is thus a plane of
height on2 bounded below by the line y = v; and on the left by the line x
= x;. Its support is thus a quadrant of a sort (Eﬁ_}. We call the
intersection of these boundary lines, the coruner of the quadrant, a node,

denoted *1j. Figure 7.1 shows the relevant grid and nodes. Through any

Y3

L
Yo '

Xo Xl X2 X3 X“

Figure 7.1. Nodes for a tensor product of "+" functions.



variable selection procedure, a model may be found whose terms are a subset
of the 12 basis elements. Such a selection might result, for example, in

the nodes shown in Figure 7.2 with the statistical model
£(x,y) = Booxoyo, * Boaxo, Y2, * Blix1,¥1,
+ Baixa,y1+ *+ Bagx2 y2, + Bizx3 ya * €,

where x..vy

i+
the application of this technique to aerodynamic modeling.

iy is an abbreviation for (x =~ xi)g (v - yj)g. We saw earlier

¥3

Y2

L

xO xl XZ X3 xl‘

Y1

Yo

Figure 7.2. Nodes resulting after variable selection on
a tensor product of "+" functions.

For splines of higher order, the same principles apply in forming the
basis elements: they are the tensor product of one-variable "+" tunctions.
Knot multiplicities in ore variable result in node multiplicities in several
variables. The absence or presence of a node or node multiplicitv corres-
ponds to the absence or presence of a certain basis element. There is thus
some carry-over from the one-variable case in interpreting the role that
basis elements play, and also in the fact that standard variable selection
software may be used. The major drawback of this basis, as in the one-
variable case, is computational. The basis elements do not have small

support, so that roundoff errors get worse as computations increase.

The computational difficulties present in the node basis lead to con-~
sideration of tensor product B-splines. While the formulation of the latter
basis is straightforward, its interpretation and use in model selection
through hypothesis tests are not. The polynomial degree and importance of
knots in modeling are considerations that carry over from one to several

variables, and unfortunately, so do their difficulties when using B-splines.



Te compare differences in the two-variable case between the node basis
and B-spline basis, we consider a simple grid with nodes indicated (*) in

Figure 7.3.

Y2

L

Yo

xO xl X2
Figure 7.3. Nodes for model (7.3).

The statistical model for first order splines is thus
£(x,y) = Booxo,yo, * Boixo,y1, * Br1x1,y1, * €. (7.3)

The function is a "true" spline in both variables except when yely,y,),
for then f 1s constant over [xo,xz). If this model is represented with
B-splines, each cell i 1is the support of 2 right-continuous plane which
has height 1. Using the notation Bl(x,y) for the basis element for each

cell i, the model may be written

4
£(x,y) = ) BiBi(x,y) + € subject to B; = Bj.
i=1

This B-spline model is somewhat more complicated than the "+" function basis
in its representation because of the model restricticns. It is also not
obvious how to interpret the B-spline coefficients in terms of the presence

or absence of nodes.

These simple examples illustrate that the "+'" function terms are iden-
tifiable and meaningful on a grid as nodes, just as they correspond to knots

in the one-variable case. They thus hold an advantage over the tensor



product of B-splines from an interpretative point of view. As B-splines
hold the computational edge, however, it would be desirable to identify the
linear combinations of B-splines which correspond to tne presence or absence
of nodes. The interpretation and use of tensor product splines of higher

order is more difficult and remains to be examined in detail.
8. SUGG*STIONS FOR FURTHER WORK

There are potential recearch areas for both the univariate and multi-
variate cases, In the univariate case, an efficient stepwise computer romu-
tine using B-splines could be developed. This would give the user the
choice of forward ani backward procedures with a computationally efficient
basis. The use of knot selection to fit data with loops could be investi-
gated, and approaching the problem using the parametric technique of Smith,
Price, and Howser (ref. 23), seems feasible. The successful use of splines
in two variables has already been demonstrated (Section 7), but further work
remains such as investigating fits to known underlying functions like we
have done in the one-variable case. Two-dimensional pictures in this case
would be most helpful. Also, while the multivariate mathematical theory is
still developing, interpretation of tensor-product bases from a statistical

perspective could continue from that begun in Section 7.
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APPENDIX

Program Documentation

Two FORTRAN programs have been written which adapt stepdown procedures
to B-spline regression. One program is for knot elimination while the other
is for reducing the spline order. Theoretical details and appropriate ref-
erences are given ° Sections 2 and 6. The programs are written in FORTRAN
5 and have been implemented on both the ODU DEC-10 and the NASA/Langley CDC
Cyber computers. Notation is patterned after that of de Boor (ref. 1), and
definitions of parameters are given in the subroutine VL2NT, the secornd
subroutine called. All necessary input is read in or specified in subrou-
tire Dat the data, sample size NDATA, (initial) spline order K = degree
+1, (1nitial) interior breakpoints and endpoints BREAK(*), number of conti-
nuity conditions V(+) at the breakpoints, number of intervals L = # interior
breakpoints +1, and tabled F value to be used in hypothesis tests. For
equal spacing, the breakpoints and continuity conditions are most easily
specified through a DO loc:. Variables are diwuensioned by one of three
parameters (defined in comment statements) which are specified in the PARA-

METER statement at the beginning of the main program.

Data must be interior to [BREAK(1), BREAK(L+1)]. For ta: Indy data,
X max = 61, so we arbitrarily set BREAK(1) = 0 and BREAK'L+l) = 62. V(I) is
the number of continuity constraints at BREAK(I). For example, V(1) = 0
m2ans that the spline is discontinous at BREAK(1) while V(2) = 3 means there
are 3 contiguous continuity conditions on che spline f at BREAK(2), i.n.,
t, ', and f" are all continuous at BREAK(2). Note that V(I) must be
less than or equal to K-1 in order to have a "true" spline, not a polyno-
mial, across BREAK(I). We always set V(1) = 0, though only for "symmetry"
in the endpoint conditions, and V(L+1) need not be spocified since it 1is

never used nor referred to.

The subroutine FLAG is designed to catch user input ecrrors which would
otherwise cauce the program to terminate abnormally or give inacc.rate
~esults which may or may not be obvious to the user. Sample output detect-
ing et ors in the input information of the Indy data is shown in Figure

4 1
L2 I O
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OF POCR Gurl .-

THEORDER K = 4
THE & INTERVALS _ = 3
THE DIMENSION N = §

BREAMPOINTS CONTINUITY CONDITIONS
e

33. 59808800 4
7.35000e088 3
62. 08002023

$. 29900000
S. 0080030
S. 8882003
PN~
KEND( D= 4

|au 2= a4

7.50800000

VOND W @riﬁg

BRERKPCINTS MUST BE STRICTLY INCREARSING.
BRERKPOINT 33.50000008 IS NOT LESS THAN BREAKPOINT

THE NUMBER OF CONTINUITY CONDITIONS MUST BE STRICTLY
LESS THAN THE SPLINE ORDER K. Vi 2)= 4
AT BREAKPOINT 33.50000008 IS TOO LARGE.

X VALLE OQUT OF RANGE.
X )= 1.08000000 IS NOT IN THE RANGE BREAK(1)s=
TO BRERK(LAST)e 62 . 3P900A00

STEPDOWN CANNOT PROCEED. PROGRARM RBORTS.

Figure A.l1. Sample output detecting input errors.

7. SO008000

S . 0280200

Indy data.
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Several lines in the programs are for plotting only. These are calls
to the CIC svstem subroutines PSEUDO, INFOPLT, and CALPLT and the DG loop 10

which calculates the spline values at the knots.

For the knot elimination routine, input data and subsequently
calculated information are printed by means of subroutines DAT1 snd OUTNTS.
This includes data values, spline order, number of intervals, dimension of
the spline space, and knots. At each step of the procedure as indicated by
the aumber of intervals L, the F-ratios for the importance of each
breakpoint are given along with the SSE and MSE. [If « breakpoint can be
eliminated, it is specified and the procedure continues to stepdown. If no
breakpoint can be eliminated, the resulting number of intervals and spline
order are given along with a list of the values of the B-spline coefficients
and their standard errors. Sample gutput appears in Figure 3.1, p. 8, in

Section 3.

As in the knot elimination program, the subroutines DATL and OUTNTS of
the order reduction routine print input data and subsequently calculated
information. In addition, at each step, the printout gives the SSE's and
MSE's for two splines of order K, one with continuity CK‘2 and the other
with continuity CK- . The hvpothesis test is described in words with the
results of the F test indicated. When further order reduction is not
possible, estimates of the B-spline coefficients and their standard errvors
are piven tor the spline of lowest acceptable order with highest continuity
imposed. Additional information is given by including the SSE and MSE of
the aext lowest order spline. Sample output for the Indy data appears in

Figure 6.2, p. 41.

Flowcharts are given in Figures A.2 to A.3 followed by the program
listings. A full listing of the knot climination program from a CDC is
given, includingz the subroutines of de Boor (ref 1) that are used. For the
order reduction program we list only the main program and the subroutine

SSHYP2, a variation of SSHYP sppearing in the first program.
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Read data,

breakpoints
/ DAT1

Y

Get knot
sequence
VL2NT

4

Preliminary
output
QUTNTS

'

Check parameter

values
FLAG
Qutput errors.
IES Program Aborﬁi] ( END
NO
Fit data

LSTSQ1
BSPLPP

ERRL21

Figure A.2.

Number of
intervals

Flowchart for knot elimination program.
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Test breakpoints
Do 5
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Get SSH
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SSHYP

Y
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F-ratios
SYreakpoints

\

’ ) Output
min. F-ratio breakpoint L=L-1
<FTABLE eliminated

eliminated

/Output no more
breakpoints

Output
coefficient and

standard error

=)

Figure A.2. (concluded).
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Read data,
breakpoints
DAT1
V(e) = K -1

)

Get knot
sequence
VL2NT

Y

Preliminary
output
OUTNTS

Check parameter
values
FLAG

YES Output errors. END
Program Aborts
NO

Set
TEND = 0

)

Tit data
LSTSQlL
BSPLPP
FRRL21

YES ﬁ;utput results
/ for extra fit &ND j)
NO

Figure A.3. Flowchart for order reduction program.
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SSHYP2
NQ

Set V(s) =K -2
Cali VLINT

FRATIO >
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Output results
for final fit
STDERR

4

Output:

Degree can ba

reduced

1

Set V(=) =K~ 1 (
Call VL2NT

K=K -1
Call VL2NT

O

Figure A.3, (concluded).
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KNOT ELIMINATION PROGRAM LISTING

PROGRAM }PLOT ( INPUT, OUTPUT, TRPES=OUTPUT, TRPE2S, TRPE21 , TRPE22)
CWF&MM&WTIMF&FD@MK
C THE FUNCTION AND ITS FIRST K-2 DERIVATIVES MUST BE CONTINUOLS.

cm IS 7 LERST THE SAMPLE SIZE, NDATR,

PRRAMETER (NMAX =108, NDMAX » 200, KTN'RX = 2008)

REAL BOOEF (NRX), Q(KTNMAX), DIAGIKTMNMRX), T(NDMRX)

= ,DOOEF (NRX), BRT(N'RX), BLF(NRX),F(NDMRX)

=, CTRRST(NMRX) , RR(NMRX, NMRX) , ERROR(NDMAX)

= , MSE, MSH, SE(NMRX),FRATIO(N'RX)

- ,nmm N, LINVINRX, N‘“O,FB(M)

INTEGER ERRIF, HOF, V, KEND (NMRX)

COMON /DATR/ rmm. X(NDIWRX), Y(NDMRX), FTRBLE

COMMON /APPROY, BRERK(NMRX), CCEF(M), L, K, VINNRX)

ICOUNT=@
C ENTER DATR
CALL DAT1(ICOUNT)

C GET THE KNOT SEQUENCE

CALL VL2NT(BREAK,L,K,V, T,N, KEND)
C PRELIMINARY QUTPUT

CALL QUTNTS(BRERK,V,L,T,N,K, KEMND)

CHECKX INPUT DRTR
IN%G-9
CARLL FLAG(IFLAG,N)
IF(IALAG .EQ. 1) GG TO S

CAL PSELDO
C TEST FOR CONTIMUOUS K-1-ST DERIVRTIVE AT ERCH WT
JDERIVeK-1
1 FMINSFTRBLE
Met-y

C GET THE LERST SQUARRES FIT, I.E., THE B-SPLINE COEFFICIENTS
CALL LSTSQ! (T,N,K,Q, DIRG, BCCEF )

c LSTSQ1 CALLS BSPLVB, BOFAC, AND BOHSLY
C GET SSE AND MSE
ERRUF =NDRTRA-N

CALL BSPLPP(T, BCOEF, N, K, DIAG, BREAK, COEF, L)
CALL ERRL21 (F, ERROR, ERRDF , SSE, MSE)
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c ERRL21 CALLS PPVRLL WHICH CALLS INTERV

LPLeL+l

DO 10 Is-1,LP1
FB(I)=PPVALU(BREAK, COEF , L, K, BRERK(I), )
CONTINE

CALL INFOPLT(O,NDATR,X,1,F,1,9.,62.,74,,158.,1.,9,

L] SHINDY DRTR, 1, 1HY, ,5..4.,.75,.75)

CAL INOALT(Q,NDATR, X,1,Y,1,08.,62.,74.,158.,1.,9,

* SHINDY MTQ 1,14Y,22,5., .73,.73)

CALL INFOPLT(1,LM1,BREAK(2),1,FB(2), .B.,SZ.,74.,1$.,1.,9
* SHINDY DATR, 1,1HY,1,S.,4.,.75,.79)

IF(L .ME. 1) GO TO 12
WRITE(2D, 11) SSE,MSE
11 FORMRT(//* SSE=’,F16.8,5X, ’MSE="’,F16.8)

GO TO 9

C TEST IMPORTANCE OF EACH BREARKPOINT
12 WRITE(20,2) L,FTRBLE, SSE, MSE
2 FORMAT(/ 7/’ L=’,13,5, 'F-TRBLE VALLE 1S’,F16.8,7/
= * SSEe’,F16.8,5X, '"MSE=’,F16.8//
& ' F-RATIOS ARE: BREAPOINTS ARE’)

3D ¥D1§'2.L
=11
CALL ONTRST(ID, JDERIV,N,K,L, T, BREAK, KEND, BRT, BLF , DCOEF
- »CTRAST)
= ONTRST CALLS BCONT
CALL, SSHYP(BCOEF, CTRARST, Q,K,M,BRT,VvAR SSH,MSH, HDF)
c SSHYP CALLS FORSUB
FRATTO(II) »MSHMSE
WRITE(29,4) FRATIO(II), BREAK(II)
4 FORMAT(2X16.8)
IF (FRATIOC(II) .GE. FMIN) GO TO S
FMINeFRATIONID)
KNOT=1T
S CONTIMA

IF (FMIN .LT. FTARLE) GO .TO 7
WRITE(2D, 6)
6 FORMAT(/’ N0 BREAKPOINT CAN BE ELIMTNATED)

GO TO 9
? FMINSFRATIO(KNOT)
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WRITE(29,8) BREAK(IQNOT)
8 FORMAT(//* BREAKPOINT’,F7.3,’ IS ELIMINRTED’)

C RELABEL WNOT SEQUENCE T RS WELL RS BREAK, KEND, AND Vv
CALL REKNOT(KEND,KNOT,N,K,L, T,V, BRERK)

GO TO 1

C PRINT RESULTING COEFICIENTS, STANDARD DEVIATIONS, AND F-VALLES
9 CALL STDERR(Q, BCOEF ,K,N,L,MSE, DIRG, AR, SE, LINV)
c STDERR CALLS BCHINV AND MATVEC.

CARUL CALALT(@.,0.,999)

25 SToP

END
C INDY DATR

SUBROUTINE DAT1(ICOUNT)
COMMON STRTEMENTS /DRTR, AND /RPPROX/ ARE USED.
c

C THIS SUBROUTINE RERDS IN THE DATA AND GIVES THE MMBER AND
C PLACEMENT OF THE KMNOTS FOR THE FITTED SPLIMNE.

PRRAMETER (NMAX+190, NDMAX=208, KTNMAX=2029)
INTEGER Vv

RERL Y, X

COMMON # DATR / NDATAR, X(NDMRX), Y(NDMAX), FTARBLE
COMMON / APPROX ~ BREAK(MMRX), COEF (KTNMRX), L, K
= » VINMRX)

NDRTR = S5
WRITE(20,S)
S FORMAT(’ INDY DATR’//’ YERR Y X’)
DO 1 I=1,NDRTA
READ(21,4) YEAR,Y(I),X(I)
4 FORMAT (14, 1X,F7.3,1X,F2.0)
WRITE(20,2) YEAR,Y(I), X(I)
4 FORMAT(14,1X,F7.3,1X,F3.@)
1 CONTINLE

C GIVE THE ORDER K AND NUMBER OF INTERVALS L
K= 4
L3
FTRBLE - 8.99

€ GIVE TE BREAKPOINTS AND CONTINUITY CONSTRRINTS

BREAK(1) = Q.
BREAK(2) = 7.8

61



T A
ORL\:N.\, e b i

OF POOUR ikt

BREAK(3) » 33.5

BREAK(4) » &2,

V(1) =@

V) = 3

v(3) = 3

RETURN

END

SUBROUTINE VLANT(BREAK,L.,K,V, T,N, KEND)
COMPUTES THE KNOT SEQUENCE T AND DIMENSION N FROM THE BREAKPOINT
C SEQUENCE BREAK, GIVEN THE SPLINE ORDER K, THE NUMBER OF INTER-
C VFILS L, AND THE NUMBER OF CONTIMNUITY CONDITIONS V(I) AT BREAK
c (.
C
Coxmnoxe T NP U T somecioon
C BREAK (1),...,BREAK(L+1)....THE BREAKPOINT SEQUENCE.
L....THE NMBER OF INTERVALS.
K....THE ORDER OF THE SPLIMNE.
V2),...,VL)....THE NUMBER OF CONTINUITY CONSTRAINTS AT

BREAK(2), ..., BREAK(L).

Coocios Q U TP U T oo

C T(L),...,T(INSK) ., .. . THE KNOT SEQUENCE.

C N....THE DIMENSION OF THE SPLINE SPRCE OF ORDER K.
EKEND(I)....TW-E INDEX OF THE LARGEST KINOT EQUAL TO BREAK(I)

Crooroxwok M E T H O D woommomon

THE FIRST K KNOTS ARE SET EQUAL TO BREAK(1). THE KNOTS ARE
THEN SEQUENCED SO THAT K -~ V(I2 KNOTS ARE AT BREAK(I) WITH
KEND(I) EQUAL TO THE INDEX OF THE LARGEST KNOT AT BREAK(I).
N IS SET EQUAL TO KEND(L) AND THE LRST K KNOTS T(N+1),...
T(N®K) ARE SET EQUAL TO BREAK(L+1).

[(aXeXeXaXalal

INTEGER K,L,N,I,V(1),7, ISTART, ISTOP, KEND(1)
REAL BREAK(1), T(1)
SET THE FIRST K KNOTS EQUAL TO BREAK(1).
DO1I+1, K
1 T(I) = BREAK(1)

()

C
C FIND THE INDEX KEND(I) OF THE LARGEST KNOT EQUAL TO BREAK(I).
KEND(1) = K
Do2I-=2 L
2 KEND(I) = KEND(I-1) + K - V(D)

(X g}

SET T(KEND(I-1) + 1) =,..= T(KEND(I)) = BREAK(I).
D018 I=2 L
ISTART = KEND(I-1) +1
ISTOP = KEND(I)
DO 11 J = ISTART, ISTOP
11 T(J) = BREAK(D)
10 CONTINUE
N = KEND(L)

00

SET THE LAST K KNOTS EQUAL TO BREAKI(L+1).
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D021 1, K
A T(NGI) = BRERK(L+1)
RETURN
e
SUBROUTINE QUTNTS(BREAK, V,L, T,N, K, KEND)
IS SUBROUTINE IS FOR QUTPUTING ONLY. IT OUTRUTS ALL
ING ARGIMENTS A F T E R WVLZNT HRS BEEN CALLED.

LR IR IR IR R IN UT AD OUTPUT =% xx xx

ai’

2 Ya¥aXsXsXaTaXaXaXaX5XaXaXs)
.’.‘.
-
+
-

.. THE. BREAKPOINT SEQUENCE

v,. V(L)....TPE NPMBER OF CONTINUITY CONSTRRINTS AT
BREAK(1), ... BREAK(L)

T(L),...TIN)... . THE KNOT SEQUENCE

MEND(1), ..., KEND(L). ... INDEX QF THE LARSEST KNOT EQUAL TO

BREAK(1), ..., BREAK(L)

DIMENSION T(1), KEND(1), BREAR(1)
INTEGER V(1)
WRITE(20,40) K, L, N
4@ FORMAT(//* THE ORDER K = *, 13/’ THE & INTERVALS L =’, I3,

= /7' THE DIMENSION N = *, I3)
WRITE(28,41)

41 FORMAT(//’ BREAKPOINTS’, 128, * CONTINUITY CONDITIONS’)
DO4S J =1, L

45 WRITE(209,42) BREAK(T), V(I
42 FORMAT(F16.8,T30, I3)
LPL = L + 1
WRITE(20,43) BREAK(LPL)
43 FORMAT(F16.8)
Wk(TE(20,8)
8 FORMAT(//* T INDEX" )
NK = N + K
TTOUNT =
INPEX = |
WRITE(28,S) T(1), INDEX
S FORMAT(F16.8, SX, I
DO 7J 2, NX
IF (T() EQ. T(I-1)) GO TO S8
WRITE(29,12) ICOUNT, XEND(ICOUNT), T(I), J
12 FORMAT(TID, 'KEND(’,I3,’)= ’,I3/TL,F16.8,5%, 1

GO TO 13
B WRITE(28,9) T(I), J
9 FORMAT(F16.8, 5%, I3)
GO 10?7
13 ICOUNT = ICOUNT + {
7 CONTINE
RETURN
END

SUBROUTINE FLAG(IFLAG,N)
C THIS SUBROUTINE CHECKS FOR

63
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(1) BREAPOLNTS WHICH ARE NOT STRICTLY INCRERSING;

(2) TOO MANY CONTINUITY CONDITIONS;

(3) K LARGER THAN 28

(4) X VALLES WJT OF RANGE OF THE FIRST AND LAST BREAKPOINTS.

PARAMETER(NMRX = 100, NDMRX =208, KTNMARX = 2000 )

INTEGER V

COMMON ~ DATA / NDATA, X(NDMRX), Y(NDMRX), FTRBLE
COMMON # APPROX ~ BREAK(NMAX) , COEF (KTNMRX), L, K, VINMRX)

DO 1 I=1,L
IP1=I+1
IF(BREAK(I) .GE. BREAK(I+1)) GO TO 2
1 CONTINE

GO TO 4

2 WRITE(29,3) BREAK(]), BREAK(IPY)
3 FORMAT(/’ BREAKPOINTS MUST BE STRICTLY INCRERSIMNG. '~
x ' BREAKPOINT’,F16.8,2%,’1S NOT LESS THAN BREAKPOINT’,
* F16.8)
IFLAG=1

4005 Isy,L
IF(v(]) .GE., K) GO TO 6
S CONTINUE
GO TO 20

6 WRITE(28,7) I,v(1),BREAK(I)
7 FORMAT(/’ THE NUMBER OF CONTINUITY CONDITIONS MUST BE STRICTLY’~/

» 5X,’ LESS THAN THE SPLINE ORDER K. ver,12, s, 127
* SX,’ AT BREAKPOINT’,F16.8," IS TOO LARGE. ")
IFLAG=1
20 IF (K .GT. 280 GO T0 8
GO TO 10

8 WRITE(29,3) K
9 FORMAT(/* Ke’,I2," IS TOO LARGE. '/’ THE ORDER K MUST BE 28 OR’,
b ' LESS.”)

IFLAG=1

1@ DO 11 I=1,NDATA
IF(X(I) LE., BREAK(1) .OR. X(I) .GE. BREAK(L+1)) GO TO 12
11 CONTINE

GO 70 14

12 WRITE(28,13) I,X(D), BREAK (1), BREAK(L+1)

13 FORMAT(/" X VALLE QUT OF RANGE. /' X(’,l4,")e’ F16.8,
- * IS NOT IN THE RANGE BREFK(1)=’,F16.8~
b SX, 'TO BREAK(LAST =’ ,F16.8)
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IFLAG=1
14 TF(N .GT. NDARTR) GO TO 16
G0 TO 18

16 WRITE(29,17) N, NDATA
17 FORRT(/’ THE DIMBNSION N=’, 12,

= * IS GREATER THAN THE SAMPLE SIZE’,14,°.°%)
IFLAG=1
18 KTNekatN
IF(NDMRX .LT. NDRTR) GO TO 19
G0 TO 2

19 WRITE(20,21) NDMRX,NDATA

.V FORMAT(’ CHECK PERAMETER STRTEMENT.’/SX, ' NDMAX=’, IS,
= * MUST NOT BE LESS THAN THE NUMBER OF DATAR POINTS',
= 14,°.")
IFLAG=1

2 IF (NMRX .LT. M) GO TO ¢3

-) 7025

23 WR1ITE129,24) M
24 FORMAT(/’ CECK PARAMETER STRTEMENT.’/SX,’ NMRX MUST NOT BE’,

= * LESS THAN Ne’,13)
IFLAG=1

25 IF(KTNMRX .LT. KTN) GO TO 28
G0 TO 28

26 WRITE(28,27) KTN
27 FORMAT(/* CHECKX PARAMETER STATEMENT, ’/SX, " KTNMRX MUST NOT’,

» ’ BE LESS THAN KTNe’,14,’.")
INAG=1

28 IF(IFLAG. EQ. @ GO TO 3@
WRITE(29,29)

29 FORMAT(// /" o * SRAIOIOKK * /
- ' STEPDOWN CANNOT PROCEED. PROGRRAM TS.’)

x RETURN
END
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SUBROUTIME LSTSQI(T,N K,Q, DIRG, BCOEF )
ER.LS BSPLVB, BO¥RC, BaSLV

Em STARTEMENT DATR IS USED.

C THIS IS A MODIFICATION OF DE BOOR’S SUBROUTINE L2RPPR,
C PAGE 255. IT INPUTS T,N,K, FIIDS THE LEARST SQUARES

C APPROXIMATION TO THE DATA USING WORK ARRAYS Q AND DIRG,
C AND QUTRUTS THE B-SPLINE COEFF ICIENTS BCOEF.

C

PRRFRMETER (}MAX = 20, NDMRX=208)

REAL BCOEF (N), DIRGIN3, Q(K,N), T(1), BIATX(KMRX)

COMON / DATR ~ NDATR, X(NDMRX), Y(NDMRX), FTARBLE
C

DO 7 Jey,N

BCOEF(J) « Q.
DO 7 Ie3,K
7 QUI.I) = Q.

LEFT = K

LEFT™ « @

DO 20 LL=1,NDATA
C LOCATE LEFT ST XL IN (TS T, T(LEFT+1))

10 IF (LEFT .£EQ. N GO TO 1S
IF (X(LL) .L7. TWEFT+1)) GO TO 1S
LEFT o LEFT+1
LEFT™K » LEFTMK+1
GO TO 18
13 CALL BSALVB(T,K, 1, X(LL) ,LEFT,BiATX)
DO 20 MM=},K
Dk = BIATX(MM)
J o LEFTMK+MM
BCOEF(J) = DabeY(LL) + BCOEF(I)
I~1
DO 20 JJ=M, K
. Q(I,3) = BIRTX(JJ «DW + Q(I, D
29 I = Iet

CALL BOFAC(Q,K,N,DTRG)

CALL BOSLV(Q,K,N, BCOEF)

ETURN

(2 V)

SUBROUTINE BSPLVB(T, JHMIGH, INDEX, X, LEF T, BIRTX)
gc&al.ﬂTESn{VRLEG’R_LPOiIB.YN)QEPOB-SPLIPCSQTxG'm
C JOUToMAX( THIGH, (J+1 )= ( INDEX~-1))

C
C WITH KNOT SEQUENCE T,
C DE BOOR PAGE 134~135

PRRAMETER ( MAX =28

INTEGER INDEX, THIGH,LEFT, 1.J,1P

REAL BIATX(JHIGH),T(1),X, DELTAL ( JMAX) , DEL TARR( JTMRX) , SAVED, TERM
< DIMENSION BIATX(JOUTY, TULEFT+JOUT)
C QUrENT FORTRAN STANDARRD MRKES IT IMPOSSIILE TO SPECIFY THE LENGTH
COF T AW OF BIATX PRECISELY WITHOUT THE INTRODUCTION OF OTHERMWISE
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C SUPERFLOUS ADDITIONAL ARGLIMENTS.

C
C

10

C
29

30

[aXaXaXa]

DATR J/1/
SAVE J,DELTAL,DELTAR (VWALID IN FORTRAN 77)

GOTO (10,28), INDEX
Je1
BIATX(1)=1.
IF (J.GE.JHIGH) GOTO 99

JP1eJ+t

DELTARC( T =TUEFT+J)=X

DELTAL(T) eX-T(LEFT+3~T)

SAVED-Q.

DO 26 I-1,J
TERM=BIRTX( 1)/ (DELTAR(I)+DELTAL (JP1-~1))
BIATX( 1) =SAVED+DELTAR (1) =TERM
SAVED=DEL TAL (JP1-1)=TERM

BIRTX(JP1) =SAVED

JeJP1

IF (J.AALT.JHIGH) GOTO 28

END
SUBROUTINE BO#FRC (W, NBANDS, NROW, D1RC)

CONSTRUCTS THE QHOLESKY FACTORIZATION C = L = D » L-TRANSPOSE.
SEE DE BOOR P. 256

INTEGER NBRNDS, NROW, 1. IMAX, J, JMRX, N
REAL W(NBANDS, NROW), DIRG(MROM), RATIO

IF ( NROW .GT. 1) GO TO 9
IF (W(1,1) .GT.@.) W(1,1) = 1./4(1,1)
RETURN

C STORE DIRGOMAL OF C IN DI: 3.

9
10

DO 18 Nei,NROW
DIRG(N) = W(1,N)

C FRCTORIZATION

14

15

1?

18
g

DO 20 Ne1,NROW
IF (WL, M)+DIAGIN) .GT. DIRG(N))IGO TO 15
DO 14 J=-1,NBRNDS

W(I,N) = 9.
GO TO 2@
W(L,N) = 1. WL, N)
IMRX = MINQ(NBRNDS-1,NROW - N)
IF (I .LT. 1) GO TO 20

JRx s IMRX
DO 18 Iei, IMRX
RATIO = W(I+1,N)%d(1,N)
DO 17 Je1, JMRAX
W(T,ND) s WOT, NeDD) = WOT+I, NIRATIO
MRX = IMRX - L
W(I+1,N) = RATIO
CONTINUE
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RETURN

(3 1)

SUBROUTINE BOHSLV(W, NBRNDS, NROW, B)
SOLVES THE LINEAR SYSTEM Cxx=B OF ORDER NROW FOR X
PROVIDED W CONTRINS THE CHOLESKY FRCTORIZATION FOR THE BRNDED (SYM-
METRIC) POSITIVE DEFINITE MRTRIX C RS CONSTRUCTED IN THE SUBROUTINE
BOFRC (QUO VIDE).
DEROOR PAGE 258

INTEGER NBANDS,NROMW,  J, JMAX, N, NBNDM1

REAL W(NBRNDS, NROW) , BINROW)

IF (NROW.GT.1) GOTO 21

B(1)=B(1)%i(1,1)

RETURN

[aXaXaNaXal

C
o FORMARD SUBSTITUTION. SOLVE LaYeB FOR Y, STORE IN B.
a1 NENDM1 «NBRNDS-1
DO 3B Ne1,NROW
JHMRX=MING(NBNDM1 , NROW-N)
IF (RX.LT.1) GOTO 3

DO 25 Je1, MRX
BOI#NY=B(JHO-W(J+L, N)=B(N)
CONTINLE

BAOKSUBSTITUTION. SOLVE L-TRANSP.XeDax(-1)xY FOR X, STORE IN B.
DO 4@ NeNROW, 1,-1

B(M)=B(N)wi(1,N)

JHRX =M INS(NENDML , NROW-N)

IF (MRX.LT. D) GOTO 4@

DO 35 Jei, JMRX

B(N) «B(N)-( J+1, M)ISB(Z+N)
CONTINUE

eNd
SUBROUTI.. BSALPP (T, BCOEF,N,K, SCRTCH, BRERK, COEF, L)
CALLS BSALVB

&4

RETURN

CONVERTS "HE B-REPRESENTATION T, BCOEF,N, K OF SOME SPLINE INTO ITS
PP—REPRESENTRTION BREAX, COEF, L, K.
DE BOOR PAGES 140-141

PRRAFETER (MRX 2 20)

INTEGER K,L,N, 1,7, JP1 xMJ,LEFT,LSOFRR

REAL BCOEF (N), BREAX (1) ,COEF (K, 1), T(), SCRTOH(K,K)

ONOOO

=, BIARTX(KMRX) , DIFF ,FAMJ, UM
C DIMENSION BREAK(L+13,COEF (K, L), T(NK)
LSOFR=Q
BREAK (1)aT(K)
DO S8 LEFTeK,N
C FIND THE NEXT NONTRIVIAL KNOT INTERVAL.
iF (TWEFT+1) EQ.TWLEFTY) GOTO S0
LSOF AR = _SOF AR+ 1
BREAK (LSOFRAR+ 1) o T(LET T+1)
IF «k.GT. 1) GOTO @

COEF (1, LSUFAR) «BCOEF (LEFT)



GOTO S&
STORE THE K B-SPLINE COEFF 'S RELEVANT TO CURRENT '\(NOT INTERVAL
IN SCRTQHC(., 1).
DO 1@ I-1,X
SCRYCH(T, 1) =BCOEF (LEFT-K+I)

FOR J=i,...,K-1, COMPUTE THE K-J B-SPLINE COEFF’S RELEVANT TO
CURRENT KNOT INTERVAL FOR THE J-TH DERIVATIVE BY DIFFERENCING
THOSE FOR THE (J-1)ST DERIVATIVE, AND STORE IN SCRTCHC.,J+1).
DO 28 JP1-2,K
JeJF.-1
T =K~J
M =FLORT (KMJ)
D0 20 I-1,KJ
DIFF-TULEFT+1)-T(EFT+IM])
IF (DIFF.GT.Q) SCRTCH(I,JP1)e
- C(SCRTCH(I+1, J)=SCRTCH(I, 1) ) /DIFF ) s ¥xMJ
CONTINE

[aXaXaXaX-X" Xaki

0B

OR J«@,...,K-1, FIND & VALLES AT T(LEFT) OF THE J+1

B- SPLINES OF ORDER J+1 WHOSE SUPPORT CONTRINS THE QURRENT
KNOT INTERVAL FROM THOSE OF ORDER J (IN BIATX), THEN COMBINE
WITH THE B-SPLINE COEFF’S (IN SCRTCH(.,.K-=J)) FOUND ERRLIER
TO0 COMPUTE THE (K-J-1.3T7 DERIVARTIVE AT T(LEFT) OF THE GIVEN
SPLINE.

NOTE. IF THE REFPEATED CALLS TO BSALVB ARE THOUGHT TO GENERATE
TOO MUCH OVEREAD, THEN REPLACE THE FIRST CALL BY
BIRTX(1)e=},

AND THE SUBSEQUENT CALL BY THE STATEMENT

JeJP1-1

FOLLOWED BY A DIRECT COPY OF THE LINES
DELR(I)T(LEFT+J)=X

BIATX(J+1)«SAVED

FROM BSPLVB. DELTAL (xMAX® AND DELTAR(KMAX) WOULD HAVE TQ
APPERR IN A DIMENSION STRTEMENT, OF COURSE.

ONOOOONODOOOOOO0OOOD

CALL BSPLVB(T, 1,1, T(LEFT),LEFT,BIARTX)
COEF (X, LSOFAR) »SCRTCH(1,K)
DO 3 JP1-2,K
CALL BSPLVB(T,JP1,2, T(LEFT),LEFT,BIATX)
KMJ=K+1-JP1
SM=@.
DC 28 I=1,JPi
SUMeBIATX DI «SCRTOH( I, KMJ ) +SUM
COEF (KMJ, LSOF AR =M
CONTINUE
LeLSOFAR

L L

RETURN
END
SUBROUTINE ERRLZ1(FTAU, ERROR, ERRDF, SSE, MSE)

69
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CALLS SUBPROGRAM PPVARLUCINTERV)
C

C THIS SUBROUTINE COMPUTES THE ERROR SS AND MS. IT IS R
C MODIFIED VERSION OF DE BOOR’S SUBROUTINE LERR, PRGE 261.
C MSE IS THE OUTPUTED MEAN SQURRED ERROR.
C
PRRAMETER (NMRX = 108, NDMAX = 288, KTNMAX » 2038 )
INTEGER ERRDF, V
REAL FTAU(L), BRROR(1), MSE, Y, X, BREAK, COEF
C DIMENSION FTRU(NDATA), ERROR(NDARTA)
COMMON ~ DATA + NDRTA, X(NDMRX), Y(NDMRX), FTABLE
COMMON ~ RPPROX ~ BREAKINMAXY, COEF (KTNMRX), L, K
* , VINRX)
SSE 9.
DO 10 LL=1,NDRTA
FTAUGLL) = PPVARLU(BRERK, COEF, L, K, X(LL), @)
ERROR(LL)Y = YL - FTRUWWL)
19 SSE = SSE + ERROR(LL)»%2
MSE « SSE/ERRDF
RETURN

eNd
REAL FUNCTION PPVRLU(BRERK, COEF, L, K, X, JOERIV)
C CALLS ' INTERV®
C CALOLATES VALLE AT X OF JDERIV-TH DERIVATIVE OF PP FCT FROM PP-REPR
INTEGER JDERIV,X,L, I, M, NOUeTY
REAL BREAK(LY, COEF (X,L), X, FMUDR, B
PPVALU-Q.
FUIDReK - JDERIV
DERIVATIVES OF ORDER k OR HIGHER ARESRE IDENTICALLY JXRO.
IF (MMIDR.LE.O GOTO 99

FIND INDEX [ OF LARGEST BREARPOINT TO THE LEFT OF X.
CALL INTERV(BREAK,L, X, [, NDUMMY)

(a¥alNale NN g}

EVRLURTE JDERIV-TH DERIVARTIVE OF [-TWH POLYNOMIAL PIECE AT X,
HeX=BREMR L
DO 10 Mok, JDERIV+y, -1
PPVL U= (PPVARLU FMMUIDR ) s COEF (M, 1
10 FMUIDRFAMIDR-L
" RETURN
END
SUBROUTINE INTERV(XT,LXT,\,LEFT,MLAG)
C COMPUTES LEFTeMAX(I, 1. LE. I.LE.LXT . AND. XT(I) . LE. XD
C DE BOOR PRGE '@
INTEGER LEFT,LXT,MLRAG, IMI, ILO, ISTERP, MIDDLE
REAL X, XTULX™

tATR LY 1/
C SAVE ILO (R VALID FORTRAN STRTEMENT IN THE NEMW 1977 STRNDRRD)
IHI=ILO+1
IF (INLLT.LXT GOTO 29
IF (X GEXTXTH GOTO 110

IF AXT.LE. D GOTO 9@
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ILO=LXT-1
IHI=XT
C
20 IF (X.GE.XT(IHI)) GOTO 4@
IF (X.GE.XT(ILO)) GOTO 102
c
o womsNOW X.LT.XT(ILO). DECRERSE ILO TO CAPTURE X.
ISTEP=1
AN IHI=ILO
ILO=IKI-ISTEP
IF (ILO.LE. 1) GOTO 35
IF (X.GE.XT(ILOY) GOTO S
ISTEP=ISTEPwS
GOTO 31
3 ILO=1
IF (X.LT.XT(1)) GOTO 98
GOTO S@
c ooeeNOW X.GE. XT(IHI). INCRERSE IHI TO CARPTURE X.
4 ISTEPs1
41 ILO=INI
IHI=ILO+ISTEP
IF (IHI.GE.LXT) GOTO 45
IF (X.AT.XT(INI)) GOTO S8
ISTEP=ISTEP®2
GOTO 41
a3 IF (X.GE.XT(LXT)) GOTO 119
IHI=LXT
o
C oo XT(ILO) . LE. X.LT. XT(IHI). NARROW THE INTERVAL.
9 MIDDLE = ( [LO+IND) 2
IF (MIDDLE.EQ. ILO) GOTC 108
C NOTE. IT IS RSSUMED THAT MIDDLE=ILO IN CRSE IHI-ILO+1.
IF (X.LT.XT(MIDDLE)) GOTO S3
ILO=MIDDLE
GOTC SO
S3 IMI=-MIDOLE
GOTC SO
CoxsoeSET QUTPUT AND RETURN,
£ MFLAG=-1
LEFT=1
RETURN
188 MFLAG=Q
LEFT=ILO
RETURN
118 MLAG-1
LEFTaLXT
RETURN
END
SUBROUTINE ONTRST(I, JDERIV, N, K, L, T, BREAK, KEMND,
= BRT, BLF, DCOEF, CTRAST)
CALLS BCONT

c
C FINDS THE CONTRAST COEFF ICIENTS FOR TESTING CONTINUITY OF THE
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C JDERIV-TH DERIVATIVE OF THE SPLINE FUNCTION AT BREAK(I).
C
Cooomoe T NP U T sommoeiox
L....NJMBER OF INTERVALS
C T, ..., T(NK) ., . THE KNOT SEQUENCE
I....THE INDEX OF (HE BREAGPOINT OF INTEREST
C BREAK(1),...BREAK(L+1)....THE BREAKPOINT SEQUENCE
C JDERIV....NONNEGARTIVE INTEGER GIVING THE ORDER OF THE DERI-
VATIVE TO BE EVALURTED
yeo JENDIL). ... INDEX OF THE LARGEST KNOT EQUAL TO
BREAK (1), ..., BREAK(L)
.DIMENSION OF SPLIME SPRCE

N.
K....
BRT, BLF, DCOEF...WORK ARRAYS OF LENGTH N

(aYs}
-
A

CTRRST(1),...,CTRAST(N)... .THE CONTRAST COEFF ICIENTS USED TO
TEST CONTINUITY OF THE JDERIV-TH
DERIVARTIVE AT BREAK(I)

T
ION SUBPROGRAM BCONT IS USED TO COMPUTE THE VALLE OF
AND RIGHT LiMITS OF THE JDERIV-TH DERIVATIVE OF
RELEVANT B~SPLINES AT BREAK(I).

INTEGER KEND(1)
REAL BRT(1), BLF(1). CTRRST(1), T1),
- BREAK(1), DCOEF (1)

[aX¥eXalaXeXsialeXaYelnXaXaXaXe]

D02V JT =1, N
20 DCOEF(JJ) = Q.

DO1BJs=1, N
DCOEF (J) = 1.

COMPUTE VALLE FOR RIGHT CONTINUITY
IF (KEND(IV=+1 LE. J .AND. J LE.XEND(IY) GO TO 3@
BRT(J) = @.
GO TO 49
K " BRT(J) = BCONT(T,DCOEF N, K, BREAK () ,KEND(I),
= JDERIV)

COMPUTE VALLE FOR LEFT CONTINUITY
42 IFOEND(I-1)~K+1 LE. J .AND. J .LE. KEND(I-1)) GO TO S@

BF) = Q.
GO0 TO &3
S0 BLF(J) = BCONT(T,DCOEF ,N,K,BREAK(I),
* KEND(I-1), JDERIW)
C

COMPUTE DIFFERENCE OF THE LEFT AND RIGHT VRLLES
(=) CTRARST(J) = BRT(]) - BLF (D
DCOEF (J) = @.
18 CONTINUE
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REAL FUNCTION BCONT(T, BCOEF,N,K,X, I, JDERIV)
CARLQUATES VALLE AT X OF JDERIV-TH DERIVRTIVE OF SPLINE FROM B-REP.
C THIS IS R MODIFIED VERSION OF DE BOOR’S SUBROUTINE BVALLE,
C PAGE 144. THE ONLY DIFFERENCE IS THAT THE LEFT-HAND INOT
C INDEX I IS INPUTED RATHER THRN FOUND IN INTERV. COMNSE-
C QUENTLY, LINE 10 IS MDIFIED TO INPUT I AND LINES 71Q@ AND
C 720 ARE OMITTED. T™E HURPOSE IS TO ALLOW EVALURTION AT
C BREAKPOINTS WITH LEFT (@R RIGHT) CONTINUITY.
PARAMETER (KMRX>208)
INTEGER JDERIV, K, N, 1,I1L0, IMK, J, JC, JCMIN, JORX, JT, KMJ, 1011, MFLAG
* ,NMI
REAL BCOEF(1),T(1),X, RJ OWRX) , DL (KMRX) , DRUKMRX) , FKMT
C DIMENSION T(NHO)
BCONT =9,
IF (JDERIV.GE.K) GOTO 99

wor [P Kol (AND JDERIV=Q), BCONT=BCOEF(I).
KML oK~1
IF (Km.GT.®) GOTO 1
BCONT «BCOEF (1)

(g Xg}

GOTO 99

woox STORE THE K B-SPLINE COEFF ICIENTS RELEVENT FOR THE KNOT INTERVAL
(T(D),TCI+1)) IN AJ(1), ..., ART(K) AND COMPUTE DL(J)sX-T(I+i-]),
DRID=T(I+I)-X, Jei,...,K-1. SET ANY OF THE ARJ NOT OBTAINABLE
FROM INPUT TO ZERO. SET ANY T.S NOT OBTARINABLE EQUAL TO T(1) OR
TO T(N+K) APPROPRIATELY.

1 JCMINey

IMKsIK

IF (IK.GE.®) GOTO 8

JOMIN=1-IMK

DO S Je1,1
DL(I)sX~T(I+1-T)

DO 6 JeI,xM
RJ(K-J) =8,
DL(IYy=DL(I)

0DOONOO

n

[ ]

GOTO 10
DO 9 Jei, M
DL(T)eX~T(I+1-])

[V X0 ]

10 JOMRX K
NMI ot=1
IF (NMMI.GE. Q) GOTO 18
JOMRX e +NML
DO 15 o1, JOMRX
1< DRI aT(I+])=X
DO 16 J=JOWX, KM
RI(J+1)Q.
16 DR(1) DR JOWX)
GOTO 20
18 DO 19 Jei, KMl

73
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WARS

C.
=7
-t

19 DR(I)eT(I+J)=X

20 DO 21 JCeJOMIN, JORX
a1 AJ (JC) =BCOEF (IMK+JO)

wxx DIFFERENCE THE COEFFICIENTS JDERIV TIMES.

IF (JDERIV.EQ.®) GOTO 3@
DO 23 Jei, JDERIV

KMJ=K-J

P =FLOAT (IKAMT)

ILO=KMJ

DO 23 JJ=t, K

RIIN = ((ART(IT+1I-ATII )/ (DLIILO)+DR(II) ) )FKMS
23 ILO=ILO-1

ook COMPUTE VALLE AT X IN (T(I),T(I+1)) OF JDERIV-TH DERIVATIVE,
GIVEN ITS RELEVENT B-SPLINE COEFS IN AJ(1),...,RT(K-JDERIV),
R IF (JDERIV.EQ. M) GOTO 33
DO 33 J=JDERIV+1, kM
KM =K-J ‘
ILO=MJ
DO 33 JJ=1,KMJ
AJ(I = (AT(JI+1)=DL(ILO)+AT(JI)I*DR(II) )/ (DL(ILOI+DR(IT))
3 ILO=ILC-1
39 BCONT=RJ(1)
99 RETURN

END

THIS IS FOR 1 DF HYPOTHESES.
SUBROUTINE SSHYP(BCOEF , CTRAST, W, NBRNDS, N, PVRR, VAR,
* SSH, MSH, HDF)

:
:

OO0 OOOONON

FINDS THE VARIANCE OF A CONTRRST AND THE MS FOR TESTING THAT
THE CONTRRST IS ZERO.

x* x k8 x x [NPUT *» x x x x x

LINV....THE INVERSE OF L OBTRINED FROM B C H I N V

CTRAST.... THE CONTRARST VECTOR OBTRINBED FROM C N TR S T

BCOEF ....T™HE B-SPLINE COEFF ICIENTS

W....THE MATRIX FROM B C H F A C CONTRINING D-INVERSE

NBANDS. . . .EQUALS K

N....THE NMBER OF ELEMENTS IN THE CONTRRST VECTOR—
ALS0 THE DIMENSION OF THE SPLINE SPACE

PVAR. .. . WORK VECTOR OF LENGTH N EQUAL TO THE PRODUCT

W(l,.)xA, T.E. D-INVLINVECTRRST

xxx«x xx QUTPUT =% x x » x

VAR, ... THE COEFFICIENT OF SIGM-SQUARED IN THE VARRIANCE OF THE
CONTRARST, [.E. THE PRODUCT CTRAST-TRANSPOSE s INV~
TRANSPOSE «D- TNV INVWCTRAST

SSH, MSH, WDF....THE SS, MS, AND DF FOR THE MYPOTHESIS
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x %k «x x x x METHOD * x x x x x

THE PRODUCT LINVACTRAST IS OBTAINED THEN PREMULTIPLIED BY
D-INV THEN THART RESLLT IS PREMULTIPLIED BY (LINVWCTRAST)-~
TRANSPOSE

INTEGER HDF
REAL NUM, MSH
REAL CTRAST(1), W(NBRNDS,N), PVAR(M)
REAL BCOEF (1)
NUM= Q.
DO 3 IIey,N
3 NUM = NUM + (CTRAST(II)=BCOEF (I1))
CALL FORSUB(UW, CTRAST , NBAINDS, N)
DO 1 1le1,N
1 PVRR(II) = W(1, III=CTRAST(ID)
VAR = Q.
DO 2 [I=i,N
2 VAR = VAR + CTRRST(ID)»PVAR(II)
SSH = (NUMKR2) VAR
MSH = SSH
HDF o {

END
SUBROUTINE FORSUB (W, AR, NBRINDS, NROW)

SOLVES LY=AR FOR Y AND STORES IN AR

x % x x xR INPUT* &£ x x x x

W...A MATRIX FED IN FROM B C M F A C AND CONTAINING IN ITS ROMS
THE DIAGONALS OF A P. D. SYMMETRIC MRTRIX C

NBANDS. . . THE BRNDWIDTH OF C

NROW...THE ORD OF C

RA. .. THE VECTOR OF LENGTH NROW CONTARINING THE RIGHT HAND SIDE

xx x xxxQUTPUT xx x x x x
AR, .. THE VECTOR OF LENGTH NROW CONTRINING THE SOLUTION

= x x x x S METHOD » x x x » x
THE FORWARD SUBSTITUTION ROUTINE FROM DEBOOR’S BCHSLV 1S USED

REAL WINBANDS, NROW), ARINROW)

IF (NROM.GT. 1) GO To 21
AA(L)*RA(1)X(L, 1)
RETURN

21 NBNDM1=NBANDS-1

DO 38 Nel,NROW
TMAX sMING(NBNDM1 , NROW-N)
IF (MRX.LT.1) GO TO 3@
DO 25 Jel, MRX
s RACTHN) sRA(THN) - ( J+1, N)=RA(N)
30 CONTINUE
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3) o)
SUBROUTINE REXNOT (KEND, KNOT, N, K, L, T, V, BRERK)
C RELABELS THE KNOT SEQUENCE T( ) BY OMITTING THE LERST
C SIGNIFICANT KNOT, BREAK(KNOT)
C
C  aociooiorooiaior [ NPL T Ha10ieoiosoiotciofoiorioniok
C KEND(I)...THE INDEX OF THE LARGEST KNOT EQUAL TO BREAK(I)
C KNOT...INDEX OF THE BREARKPOINT TO BE OMITTED
C N...DIMENSION OF THE (OLD) SPLINE SPRCE
C K...ORDER OF THE SPLINE
C T... KNOT SEQUENCE
V(D). . NIMBER OF CONTINUITY CONDITIONS AT BREAK(I)
BREAK. . . BREAKPOIMT SEQUENCE

QUTPUT!
N.. .DIMENSION OF (NEW) SPLINE SPACE WITH BREAK(KNOT) OMITTED
TCOL.TIND L L (NEW) KNOT SEQUENCE WITH BREAM (KNOT) OMITTED

NHCHOIAIIIOIIORIIOME. T IO DM0I0ICIIIoNR IO
SINCE BREAK (KNOT) ~T(KEND(KNOT=1)+1)=, ., s T(KENDOINOT)), WE
RELABEL ALL T’S BEYOND.

OO0OOO0OODOONOO

DIMENSION KEMD(1), T(1), BREQAK‘1)
INTEGER v(1)
I1=KEND(KNOT~-1)+1
I12=KEND(KNOT) +1
J1eNk-12+1
DO 1 KT=4,J1
K1=KT-1
1 TOI1+K1) =T(I24K1)
NeN=-(K-V(KNOT))
DO 2 II=KNOT,L
BREAK(I1) =BREAK(II+1)
IFII .EQ. L) G0 TO 2
VIID eV(II+1)
KEND(II) =kKENDCII-1)+-V(I])
4 CONTINE
Lel-1

RETURN
END
SUBROUTINE STDERR (W, BCOEF ,K,N, L, MSE, BB, AR, SE, LINV)
CALLS BCHINV AND MATVEC
C
C T™HIS SUBROUTINE COMPUTES THE STANDARD ERRORS OF THE B-SPLIMNE
C COEFFICIENTS AND OUTPUTS THEM,
c

REAL W(K,N), BCOEF (N),MSE, BB(N,N) ,SE(N),LINVIN,N) ,RAR(N,N)
CALL BCHINV(W,K,N,LINV)
WRITE(29,10) (,K

1@ FORMAT(///’ PROCEDURE TERMINATES WITH L=’,13,’ AND Ke’, 13/~



= ' N COeF S.E.")

DO 11 II=1,N
DO 11 JI={,N
1. BB(JJ, ID) =W(1, I INV(II, IT)

CALL. MATVEC(N,N,N, BB, LINV,AR)

DO 13 II=y,N
SE(II)SQRT(RAA(II, IT)=MSE)
WRITE(209,12) II,BCOEF (II),SE(II)
12 FORMAT(13,2F16.8)
13 CONTINE

END
SUBROUTINE BCHINV (W, NBANDS, NROW, INV)
FINDS L-INVERSE WHERE L IS THE LOWER TRIANGULAR MATRIX
IN THE CHOLESKY FACTORIZATION OF THE BANDED SYMMETRIC P.D.
TRIX C RS CONSTRUCTED IN THE SUBROUTINE BC H F AR C.
DE BOOR, P. 256

RETURN

EE:

ook I NP U T om0

..... IS THE ORDER OF THE MATRIX C.

..... IS T™HE BANDWIDTH OF C.

ves. CONTAINS THE CHOLESKY FRCTORIZATION OF C RS OUTRUT

FROM SUBROUTINE BC HF R C WITH ROWS 2 THROUGH NBANDS-1

GiCNRINIm THE NON-ZERO AND NON-UN1T DIARGONAL ENTRIES
L.

:

OOO0OOOO0O0OONO
3 3

wocooiok M E T H O D somomox

LINEAR SYSTEM LaL-INVERSE = IDENTITY IS SOLVED FOR
LxINVERSE BY SUCCESSIVELY FINDING THE COLUMNS OF L-INVERSE
USING THE FORWARD SUBSTITUTION ROUTINE INBCHS L V.

laXaXalsXeXalgl

INTEGER NBANDS, NROW, J, JMAX,N, NBNDM1

REAL W(NBANDS,NROW), INV(NROW, NROW)

IF ¢ MROW .GT. 1) GO 10 21
INv(L, 1) = 8,

C
C STORE THE IDENTITY MATRIX IN INV
21 DO 10 J=1,NROW
DO 18 I=1,NROW
IF (I .EQ. D GO TO 20
INVC(I,T) = @,
GO TO 1@
20 INvCI,T) = 1,
10 CONTINLE

C
C N4 USE FORWARD SUBSTITUTION FROM B C H S L V.

17
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NENDM1 = NBANDS - 1
DO 48 Je1,NROM
DO 3@ Ne1,NROW
JMRX o MINB(NBNDML, NROW-N)
IF (IMRX LT. 1) GO TO @
DOSS T« 1, MRX
o] INV(I*N,J’) * INVAIHN, ) = WOI+1, NIXINVIN, T)
33 CONTINLE
49 CONTINE
END
SUBROUTINE MATVEC(N,NM, M, X,Y,2)

INDST?-EN)MMTRIXG?VECT ZWIQ4 IS THE PRODUCT
Y WHERE X IS NN AND Y IS N

RETURN

REAL X(N, M), Y(NM, M), Z(N,M)
DO ¢ I -
Do E J . 1 M
2(1,7) = 0.
DO 3 K=1,NM
3 2(1,1) »
2 CONTINLE
1 CONTINE

2(I,7) + X(I,K)xY(K, )

gn



ORDER REDUCTION PROGRAM LISTING

PROGRAM XPLT2(INPUT, QUTPUT, TRPEE~QUTPUT, TRPEZQ, TRPE21 "
C STEPDOWN FOR REDUCING SPLINE ORDER (FOR ALL INTERVALS
C SIMATANEOUSLY) WHILE WEEPING THE KNOTS FIXED AND ASSUMING
C K-2 CONTINUITY CONDITIONS

NDMRX I35 AT LERST THE SAMPLE SIZE, NDATA.

NMRX IS AT LERST N. WITH MAXIMUM CONTINUITY CONSTRAINTS,
NeL#K=-1. WITH NO CONTINUITY CONSTRAINTS, NeLw,

KTNRX 1S AT LERST KaN.

OOOO0OO0O

PARAMETER  (NMAX=138, NDMAX =200, KTIN'FX=2008)
REAL BCOEF (NMRX) , QUKTNMAX) , DIAG (KTNMAX) , T(NDMRX)
, LINVIKTNMRX) , DCOEF (NFRX) , BRT (NMAX) , BLF (NMARX)
, FAINMAX), VAR (NMAX) , BINMARX) , C(NMARX) , ATRP (NMRX
,F (NDMRX) , ERROR (NDMAX) , MSH, MSE, SE (NMRX)
» KMAT (NMAX, NMRX) , FB(NMAX)
, WVRR(NMAX) , CC(NMARX) , C1 (NMARX) , CTRAST (NMAX)
INTEGER ERRDF, HDF , V, KEND(NMRX)
COMMON /DARTA- NDATR, X(NDMAX) , Y (NDMRX) , FTRBLE
COMMON /APPROX/ BREARK (NMRX) , COEF (KTNMRX) , L, K, VINMRX)

ICOUNT =@
C ENTER DATA
CALL DAT1(ICOUNT)

¢ GET THE KNOT SEQUENCE
CALL VL2NT(BREAK, L, K,V,T,N, KEND)

C PRELIMINARY OUTPUT
CALL OUTNTS(BREAK,V,L,T,N,K,KEND)

% % % % M

CHECK INPUT DATR
ILAG-3
CALL ALAGUIFLAG,N)
IF(IARAG .EQ. 1) GO TO 25

CALL PSELDO

IEND=R

LMisi-4
C WE WILL TEST MAT THE K-1-ST DERIVATIVE IS ZERO IN ALL INTERVALS
C
C GET T™E LLAST SQUARES FIT, 1.E., THE B-SPLIME COEFFICIENTS.

1 CALL LSTSQ1(T,N,Kk,Q, DIAG, BCOEF )
c LSTSG1 CALLS BSPLVB, BOHFAC,AND BCHSLY.
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SR R

OP‘RJ \fn- Vs
oF POOR QALY

C GET SSE AND MSE
ERRDF «NDATA-N
CALL BSPLPP(T, BCOCF, N, K, DIRG, BREAK, COEF . L)
CALL ERRL21(F,ERROR, ERRDF , SSE, MSE)

C ERR 21 CALLS PPVARLU WHICH CALLS INTERV.
IF(IEND .EQ. 2> GO TO 3@
LP1=L+1

DO 10 I=1,LP1
10 FB(1)=PPVALU(BRERK, COEF , L, Kk, BREAK(I), @)

(CAAOMHIAACIOICIOR PLOTS MOROKOINIAOIIOKIONCIII IR AOIOKIOKKOIOION

CALL INFOPLT(Q,NDATAR,X,1,,1,@.,6C.,74.,158.,1.,
x 9, HINDY DATA,1,1HY,0,5.,4.,.75,.75)
CALL INFOPLT(B,NIATA, %,1,Y,1,0.,62.,74.,158.,1.,
x 9,9HINDY DATA, 1 1HY,22,5.,4.,.75,.75)
CALL IrFOPLT(1,LM, BREAK(2),1,FB(2),1,0.,62.,74.,158.,1.,
= 3,9HINDY DATA,1,1HY,1,5.,4.,.75,.75)
KMl=K-1
IKME=K-2
KM3=K-3
I(IBD EC.*" GO TO 8
IF(V2Y.E£C w22) GO TO 12
WRITE29,: ™) K, kM2, SSE, MSE
1S FORMAT(//’ MeDIomsommsonioo :,
= 77’ THE SMOOTHEST SPLINE G' ORDER K=’,12,2X,
x "WITH MAXIMUM COLTINUITY C’, I2,2X5X%,

» 'HRS ST+’ ,F16.8,2X%, 'AND MSE=’,F16.9)
IF(K.FQ 1) v TO 8
RITE(0D,16) K,KM3,KM1, M3
1. FORMAT(/’ CAN ORDER K=", 12,2X, "WITH 3UB-MAXIMZ) CONTINUIGY C’,
- 12,2¢SX, "BE REDUCED 7O ORDER K=',12,2X,
= 'WITH MRY MM CONTINUTIY C*,12,° 27
00 18 II-2,L
1e V(II)eK~2
CALL MLANT(BREAK,L 'V, T,N,KEND)
GO T0 1t

C TEST FOR LOWER ORDER WITH THE HYPOTHESIS MATRIX KMAT.

12 DG 8@ JJe1,N
88  DCoEF(JI) = @.
DO 2 III=1,N
DCOEF (1ID) = 1,
DO 81 Ileg,L
KMAT(TI, ITI) «BCONT (T, DCOEF , 11, K, BREAK (II), KEND (. 1), KM1)
Ma(1I-1)eNrIIT
31 CT{M =KMAT(IT, I1ID)
DCOEF(TID) = 8.
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2  CONTINE
CARLL. SSHYP2(BCOEF,CT,Q,K,L,.N, AR, DIRG, VAR, SSH, MSH, HDF , B, &
x ,ATRP,WVAR,CC,CTRAST)
C SSHYPZ CALLS FORSUB AND MATVEC.
FRAT10eMSHMSE
IF(FRATIO.GE.FTRBLE) GO TO S
WRITE(28, 3)
3 FORMAT(/7’ YES.’)
WRITE(2R,31) K,KM3,FTABLE, FRATIO, SSE, MSE
31 FORMAT(’ FOR Ke’,12,2X, *AND C’, 12, 2X/SX,
" *FTRBLE VALLE =*,F16.8,5X, "OBSERVED F=*,F16.8
= 75X, *'SSE=’,F16.8,2¢, '"MSE+’,F16.8)
KeK~-1
CALL VLANT(BREARK,L,K,V, T,N, KEND)
GO TO 1 /

S IEND-t
WRITE(29,6) ,
6 FORMT(//* NO.*)
WRITE(20,31) K,KMB, FTRBLE, FRATTO, S5, MSE
WRITE (28, 32)
3 FORMAT(//’ PROCEDURE TERMINATES == ’)
DO 71 II1s2,L
71 V(IDK-1
CALL VLANT(BREAK,L,K,V, T,N, KEND)
G0 TO 1

C PRINT RESILTING COEFFICIENTS AND STANDRRD ERFURS.
8 WRITE(28,13) L, K, 2
1?7 "OMAT(///° PROCEDURE TERMINATES WITH Le’,12,°; ve’,12,°; C", 12
77" N coer ST. ERR. ")

CALL STDERR(Q, BCOEF ,K,N,L,MSE, DIFG, AR, SE, LINV)
C STDERR CALS BCHINV AND MATVEC.

IF(k .EQ. 1) GO TO 2S5
IEND=2
KeK=-1
DO 4@ IIe2,L
40 VIII) oK-,
CALL VLONT(BREAK,L,K,V, T, N, KEND)
GO TO 1
3V WRITE(20,29) KM1,KM3, SSE, MSE
29 FORMAT(/ /! swxscmoxmsssoxoorkx FURTHER INFORMATION ssoxsosxsms * /
= SX, 'FOR K=’,12,2X%,’AND C’,12,2%~
x SX,’SSE=’,F16.8,2%, 'MSE=",f16.8)

CALL CALPLT(@.,8.,99%)
35 STOP
END

81
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SUBROUTINE SSHYP2(BCOEF, CT, W, NBRNDS, NCON, N, R
.PRR, VAR, SSH, MSH, HDF, B, C, ATRP, WVAR, CC, CTRAST)
INTEGER HDF, NCON, N, NBRNDS
REAL SSH
REAL PVAR(NCON, N>, A(NCON, N) , W(NBANDS, N), CT(1)
REAL VAR(NCON,NCON), B(N), C(NCONj, ATRP(N,NCCN)
REAL MSH, WVARNCON,NCON?, CTRAST(NCON,MN)>, BCOEF (N),CC(N)
DO 1 I=1,NCOMN
DO 2 JJ=1,N
MeJJ+(I-1)%N
CCIT)=CT(M)
CTRAST(I,JJT)=CCLIT)
CALL FORSUB(W,CC, NBRNDS, N)
DO 3 J=1,N
A(I, J)=CC()
CONTINLE
DO 4 II<1,NCON
DO 4 JJ=1,N
PVARR(II, JT)=W(1, IT)=ACII, ID)
DO S I<i,N
DO S J=1,NCON
ATRP(I,=A(J, I
CALL MATVEC(NCON, N, NCON, PVAR, ATRP, VAR)
DO 6 I=1,NCON
M=NCON-T+1
DO 6 J=1,M"
WWRR(T, N =eVRR(I+J-1,T)
CALL BOFAC (WVAR,NCON,NCON, DIRG)
CALL MATVEC(NCON, N, 1, (TRAST, BCOEF , B)
CALL FORSUB(WVAR, B, NCON, NCON)
DO 8 Je=1,NCON
C(=vAR(1, J)*B(T)
CALL MATVEC(1,NCON, 1,B,C, SSH)
MSH=SSH/NCON
HDF =NCON

RETURN
END
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