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UTILIZING NUMERICAL TECHNIQUES

IN TURBUFAN INLET ACOUSTIC SUPPRESSOR DESIGN

by Kenneth J. Baumeister

National Aeronautic and Space Administration

Lewis Research Center

Cleveland, Ohio 44135
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SUMMARY

w
Numerical theories in conjunction with previously published analytical

results are used to augment current analytical theories in the acoustic de—

sign of a turbofan inlet nacelle. In particular, a needy developed finite

element—integral theory is used to study the effect of the inlet lip radius

on the far field radiation pattern and to determine the optimum impedance in

an actual ongine environment. For some single mode JT15D data, the numeri-

cal theory and experiment are found to be in a good agreement.

NOMENCLAiURE

A1,2, ..	
flow coefficients

C	 velocity of sound normalized to the stagnation speed of sound

*

Co
*

Co	stagnation speed of sound, m/sec

d
0
	internal duct diameter, in

F	 function equation, see Eq. (2)

N	 dimensionless thickness of nacelle wall, N*/do

M*	 thickness of nacelle wall, m, see Fig. 4

k	 wave number, w/c

M	 average engine Mach number
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*

far field Mach number, see inserts of Figs. 4 and r

spinning mode number, see Eq. (1)

higher order radial mode number

pressure normalized by n *C*2
00

far field position (distance from exit plane centerline)

normalized by da

radial coordinate nomalized by duct diameter da

da/2.

time normalized by da/Ca

specific acoustic impedance, normalized by p*Ca

2=er+ix

axial coordinate normalized by do

angle from inlet, see Fig. 2

angular coordinate

specific acoustic resistance

density normalized by pa
stagnation density, kg /m3

general flow potential normalized by Coda

acoustic flow potential

mean flow potential

specific acoustic reactance

angular, frequency normalized by Ca/da

Superscripts

w'

mean value

dimensional quantity
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Subscripts

n	 normal derivative

$	 surface derivative

no, z	 derivatives

INTRODUCTION

Acoustically treated surfaces inside turbojet engine nacelles are co*-

monly usod to meet current aircraft noise regulations. A complete design of

a turbojet acoustic suppressor (Ref. 1) requires both an estimate of the fan

noise spectrum and the desired far field noise level from which a target

attenuation spectrum can be determined. To obtain the desired attenuation,

closed form solutions of the acoustic wave equation are commonly employed to

determine the required sort wall impedance of the liner. From parametric

solutions of the wave equation, Dice (Refs. 2 and 3), for example, has de-

veloped a design procedure based on mode cutoff ratio which can be conven-

iently and quickly used in a liner design.

By their very nature, however, closed form analytical theories require

considerable simplification in the nacellegeometry and mean flow fields.

For example, the optimum impedances (max attenuation) in Refs. I to 3 were

determined for a semi—infinite uniform walled duct. However, finite element

theories (Refs. 4 and 5) have been developed for the design uf acoustically

treated ducts which can account for the geometric complexities involved with

a turbofan engine.

At the present time, numerical theories are too costly and frequency

limited to perform a complete suppressor analysis. Herein, emphasis will be

placed on how the numerical techniques can modify the closed form analytical

results to account for complexities in the inlet which cannot be accounted

4
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for by the closed form theories. In particular, a newly developed program

(Ref. 6) is used herein to:

(1) Estimate the effect of the inlet lip radius on the far field radi-

ation pattern and compare the results with the sharp walled Wiener-Hopf

theory.

(2) Determine the effectiveness of a soft walled liner in an engine

environment.

(3) Determine the optimum impedance of a liner in an engine environ-

ment.

Data comparisons will be included with the above.

FINITE ELEMENT THEORY

To predict the sound field radiated from a turbofan inlet, a variety of

numerical duct acoustic programs could be employed as cited in the bibliog-

raphies of Refs. 4 and 5. At the present time, however, a finite element-

integral program described in Ref. 6 is the only published program capable

of simultaneously solving for both the internal and external acoustic fields

of a turbojet engine. In addition, the validity of this program was estab-

lished in reference 7 for the field measurements of JT15D turbofan inlet

noise. Consequently, this program will be used herein.

In the finite element-integral program, the velocity pote^rtial formula-

tion for the mean flow equations as well as the acoustic equations is em-

ployed. The velocity potential form of the governing equations was chosen

since it reduced the number of dependent variables to one-third and there-

fore cut the computer storage and running time by an order of magnitude com-

pared to the more general linearized gas dynamic fo rmulation. On the other

hand, when rotational flow exists in the inlet (wall and certerbody boundary

layers), the potential flow cannot be used to estimate the effects of shear

d
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(Ref. 3). However, since the flow into an inlet is reasonably modelled by

potential flow and since boundary layers are small, the acoustic velocity

potential is ideally suited for acoustic inlet calculations. Once the a-

coustic potential is determined, the acoustic pressures and velocities can

be directly calculated (Ref. G).

To obtain the acoustic equations for the inlet, first the flow poten-

tial s is rewritten as the sume of a steady axisyn ►metric mean flow poten-

tial ^(r,z) and an acoustic potential ^(r,z) defined as

0 = ^ + 0 (r,z) ei(wt - 1110 )	 (1)

To account for spinning modes, the acoustic potential in equation (1) has

been modified to include e^ 1ro . Also, the solutions have been assumed to

be harmonic (	 itot ) in time.

The program first calculates the mean flow distribution for the inlet.

The mean flow quantities, gip, are independent of time and thereby satisfy

the usual steady mean flow equation. Next, the mean flow solution is put

into the potential acoustic wave equation, which is of the form.

F (^)	 A1^ rr + Age zz + A3^ rz + 
A0 r + A5^ z + Abp - 0	 (2)

where the A's contain all the mean flow quantities and are derived in Ref. 6.

To solve the acoustic wave equation (2), the sound field is divided into

two regions: the sound field within and near the inlet which is computed

using tti , 'finite element method and the radiation field beyond the inlet

which is calculated using an integral solution technique (Ref. 9). Numeri-

cal iteration between the interior and Exterior regions is required to ob-

tain a continuous acoustic field across the interface. The iteration proce-

dure between the two regions requires the acoustic potential and impedance

to be identical on either side of the boundary.

As seen in Fig. 1, the interior portion of a test JT150 inlet has been

i

t

a

e
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divided into a number of triangular Hermitian elements. For clarity, the

number of elements shown have been greatly reduced from the actual number

used. The Hermitian formulation enforces continuity of both the velocity

potential and 'its derivatives at the nodes, thrreby reducing the number of

elements required to accurately predict the sound field.

Along the nacelle wall, the boundary condition at the surface of a lo-

cally reacting sound absorbent soft-wall duct can be expressed in terms of a

specific acoustic impedance Z:

Z ° e r +ix 	 (3)

. where e r is the specific acoustic resistance and X the specific a-

coustic reactance. Majjigi (Ref. 10) has shown that a proper formulation of

the requirement of continuity of particle displacement yields

n ° Z - iW `^s as C' + Wz nn	 (4)

where the pressure p is defined by

P = -P (iW^ + ^ z^ Z + ^ r^)•	 (5)

In this analysis, it is assumed that the last term in equation (4) is negli-

gible since onn is quite small (Ref. 6).

In the integral technique applied in the external field, the Green's

theorem is used to transform the wave equation into an equivalent problem of

solving an integral equation over the boundary of the region designated by

asterisks (*) as shown in figure 1. The integral technique can only be ap-

plied in cases where the properties of the medium are constant or the dif-

ferential equation describing the medium can be transformed into a constant

property problem. Consequently, the interface separating the interior

(finite element) and exterior regions must be extended sufficiently far from

the exit so that the flow is approximately uniform.

6
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For the uniform flow, equation (2) reduces to

2

►' (^) - rr + Or + 1 
Mo]m z z * k1

m2

r

+ 2ikM00 z 0

In Ref, 9, Meyer et al have transformed euqation (6) along with the Sommer-

field radiation boundary conditions into the integral form. The Meyer et al

approach was used. The accuracy of their results has been previously demon-

strated.'

At the interface between the interior and exterior regions, the initial

impedance is chosen to be poCo. As mentioned earlier, to deter-

mine the exact value of the exit impedance as well as the acoustic velocity

and pressure, a simple iteration procedure based on the method of successive.

substitution has been used. The exact formulation is detailed in Ref. 6.

STATIC TEST DATA

The finite element-integral program will be employed in evaluating var-

ious aspects of a turbofan engine acoustic design. Some theoretical compar-

isons will be made with previously published data. In particular, both hard

and soft wall JT15D engine acoustic data are available in Ref. 12. The a-

coustic tests outlined in Ref. 12 were performed at the NASA Lewis Vertical

Lift Facility. The experiments documented in Ref. 12 are extremely useful

because only one acoustic mode was made to dominate the noise spectrum, A

tabular summary of some of the data used in Ref. 12 can be found in Ref. 7.

As documented in Ref. 12, a spool piece with 41 equally spaced radial rods

was attached to the engine front flange. These rods extended 6.4 cm (2.5

inches) from the outer nacelle wall into the inlet flow field. The wakes of

these rods interact with the 28 fan blades to produce a blade passage

frequency (BPF) tone witf! 1.3 circumferential lobes. Data were taken at a

(6)
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fan speed of 6750 rpm with an average inlet Mach number of 0.147. In this

case, only the lowest radial mode can propagate. Thus, the usual problems

of separation of acoustic modes and contamination by noise floors are to a

large extent eliminated in the data reduction.

NUMERICAL RESULTS

The finite element—integral program will now be used to evaluate the

effect of inlet wall thickness and soft walls on the performance of turbofan

inlets, and to compare the results with the simpler closed form theories.

In particular, the finite element—integral program is now applied to the

JT15U engine experiment of Ref. 12 to determine the far field radiation pat

tern and suppressor effectiveness. The approximate dimensions of the JT15D

inlet shown in Fig. 1 are presented in the insert of Fig. 2. For numerical

calculations, the exact dimensions of the nacelle can be found in Ref. 7.

For the calculations reported in the paper, the finite element computer

code subdivided the interior region of the inlet into 320 Hermitian ele-

ments. These elements used 1003 nodal points of which 683 are triangular

vertices with 2049 degrees of freedom (^, ^ r ,
 
o z unknowns) and 320

centroid unknowns for a total of 2369 unknowns. The computer code for the

integral technique subdivided the interface into 59 segments.

Wall Thickness Effects

The calculated far field radiation pattern for the (13,0) mode at 3150

Hz (BPF at 6750 rpm) is shown in Fig. 2 at 24.4 m and 5.42 m from the in-

let. The similarity between the two far field distributions indicates that

near field effects are absent.

For the noise source at the fan plane, both the radial pressure distri-

bution of the (13,0) mode and a uniform radial pressure distribution in the

8



annulus were used. Since all higher order radials (13,n) are cut off, and
r

only the (13,0) mode propagates the far field pressure distribution had the

identical shape when the far field SpL level was normalized to a common

value of 100 dB at 60 degrees. The jump at 30 0 in Fig. 2 is not real and

results from selecting insufficient number of elements. Fewer elements pro-

;,	 duced a larger jump. The average inlet Mach number ahead of t!e spinner is

0.147.

The numerical results are replotted in Fig. 3 along with the Savkar

(Ref, 13) Wiener solution for a sharp edge. Savkar's theory was modi-

fied for convection effects using a velocity correction factor from

Ref. (14) (Eq. (8) ). Also, the experimental data from Ref. 12 for the

JT150 engine with inlet rods are shown.

As seen in Fig. 3, the experimental data for the thick bellmouth inlet

are in good agreement with the finite element analysis. The peaks in the

data and analysis, however, are about 10 degrees apart. Also, as seen in

Fig. 3, the sharp-lip Wiener—Hopf analytical solution predicts much more

acoustic radiation propagating to higher angles than either the data or the

finite element solution. Apparently, the thick bellmouth flight inlet

shields the acoustic radiation from the higher angles. For a thick wall

inlet, therefore, the simpler analytical theories are not sufficient. Some

type of numerical theory or design empirical rule must be employed.

To assess the effect of the nacelle shape, finite element calculations

were run with three distinct values of lip radius. For zero Mach number (no

mean flow), the effect of the nacelle lip thic,kness on the narrow band tone

M	 directivity pattern is shown in Fig. 4. At the higher angles, the inlet lip

has produced 10 dB level changes. The inlet with H = 0.1 is very nearly

identical to the Wiener—Hopf solution shown in Fig. 3.
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In the next calculation, the mean flow was "turned on" to the average

Mach number of 0.147 associated with the experimental data plotted in

Fig. 3. Again, the effect of the nacelle lip thickness on the narrow band

tone directivity pattern is shown in Fig. 5. As seen by a coii.parison be-

tween Figs. 4 and 5, very little change occurs in the SRL directionality

pattern for H of 0.1 and 0.25. A slight upward shift in the H = 0.5

Ctrove is seen. Overall, flow gradients had minor effects on the directivity

pattern. Apparently, the low Mach number associated with this data is in-

sufficient to cause significant refraction effects.

Finally, the narrow band tone directivity with a flight type inlet na-

celle mounted on a JT15D engine is shown in Fig. 6. Again, he average in-

let Mach number is 0.147. Also shown in Fig. 6 are the Wiener-Hopf solution

for a sharp thin inlet and the thick wall inlet solution both of Fig. 3. A

comparison of the various curves in Fig. 6 indicates that the Wiener-Hopf

analytical solution will probably perform adequately for flight inlets at

least for low duct Mach number. Some minor differences occur between the

flight inlet and Wiener-Hopf solutions for angles greater than 90 degrees.

Soft Wall Attenuation

In a turbofan suppressor design, an analytical program will often

specify a wall impedance and present a predicted sound power attenuation.

As an additional design aid, the numerical program can now evaluate the per-

formance of the suppressor in a simulated engine environment which includes

complications arising from both the mean flow field and the inlet geometry.

In the experiments of Ref. 12, three suppressor designs were built

having estimated nominal values of resistance of 2.272, 1.136, and 0.638

(Table 1, Ref. 12). The suppressors were all specially built to each have

an identical reactance of 0.5 which is stiffness controlled at 3150 Hz. The

10
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finite element—integral method is now used to evaluate the performance of

these suppressors in the simulated turbofan engine environment. A compari-

son with the experimental data will also be made.

For a soft walled suppressor, the sound attenuation of the liner can be

determined numerically by the insertion loss method. First, the far field

SNL level is determined for the hard wall nacelle, such as shown in Fig. 2.

Next, the appropriate impedance boundary conditions are inserted between the

nodes which correspond exactly to the entrance and exit of the active

liner. For the JT15U inlet under consideration, nodes 18 and 44 in Fig. 1

bounded the soft wall section of the nacelle. Finally, the far field radia-

tion pattern is again calculated with the soft walled boundary condition in-

cluded.

Fig. 7 displays the calculated far field radiation pattern for the same

fan source as in Fig. 2 but with a soft wall suppressor of L/do	.15

having a resistance of 0.638 and a reactance of 0.5. A comparison of Fig. 2

with Fig. .7 shows the sound radiation pattern has the same far field shape

but is decreased in magnitude by about 22 dB for all angles. This attenua-

tion along with calculated attenuations for other resistance values are

plotted in Fig. 8. Again, for a single mode, the attenuations is the far

field are independent of the angle from the inlet so only one curve is shown

in Fig. 8.	 ,

In Fig. 8, a comparison with the experimental data is also made for

data between 50 and 80 degrees. These angles were chosen since in the ex-

periment the sound pressure level for these angles stood well above the

broadband noise floor. As seen in Fig. 8, the experiment and theory are in

good agreement. The two to three dB scatter in the data results from the

natural consequences of running a full—scale engine over a long period of

time under varying environmental conditions.

s

F.
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Clearly, Fig. 8 establishes the validity of using a numerical theory to

predict the actual performance of a liner to an engine environment.

Optimum Wall Impedance

In addition to the effects of the nacelle lip and the performance of

individual suppressors, optimizing the noise suppressor for maximum atten-

tuation is also extremely important in the design of an acoustic nacelle.

The maximum possible attenuation occurs at the so—called optimum impedance.

For a particular mode or more generally for modes with common cut—off

;s, the optimum impedance can be determined analytically from semi—

infinite duct theory using a singe soft wall mode (Ref. 3) Again, it is

desirable to account for the actual engine environment is the determination

of the optimum impedance.

For the m = 13 zeroth radial order mode associated with the suppressor

data of Ref. 12, the single mode optimum impedance was calculated to be

1.136 + 0.5i where 1.136 represents the specific resistance e  of the

wall impedance while the 0.5 represents the specific reactance X which is

stiffness controlled at 3150 Hz. The maximum attenuation for this liner was

determined from single mode duct theory to be approximately 200 dB per

L/do or 30 dB for an L/d o of 0.15.

The theoretical optimum impedance can now be determined for the actual

JT15D inlet geometry, flow field, and finite length liner. Most likely,

large amounts of computer time would be required to fully numerically deter-

mine the optimum impedance in an actual turbofan installation. However, the

basic idea of the present paper is to utilize the numerical theory to fine—

tune the more convenient analytical theories. Consequently, the analytical

theories are first used as a starting point in a numerical search for the

actual installation optimum.

12



Rice (nets. 2 and 3) has comprehensively correlated the optimum irilpe-

dance for individual modes for a wide range of acoustic and mean flow para-

meters. Consequently, this optimuit impedance represents a convenient start-

ing point in the numerical search for the actual optimum impedance in the

turbofan nacelle.

Generally, as shown by Unruh (Refs. 15 and 16), the optimum resistance

for a finite length liner will be lower than the single mode value due to

the generation of higher order modes. Individually, the higher order modes

E	 have lower optimum impedance (Ref. 2). Modal scattering is extremely impor-

tanxe fvr a single mode entering a very short acoustic liner such as used in

the experiments of Ref. 12 (L/d o = 0.15). The impedance discontinuity

causes the single hard wall mode to scatter into several radial modes in the

soft wall section. Since the liner is quite short the higher radial modes

contribute significantly to the overall suppression. This effect is very

pronounced at low Frequencies (Ref. 15) and, as shown herein, for higher

order triodes which have relatively long axial wave lengths (similar to low

frequency sound propagation).

Starting with the single mode optimum impedance (solid circle in

Fig. 9), using co;ig son optimization techniques (Ref. 11), and initially

directing the search towards lower values of resistance, the optimum impe-

danwe can be quickly determined. In this case, the optimum impedance is

lowered to 0.62 + i 0.9. Also, as seen in Fig. 9, the finite element

calculation for the actual installation yields a maximum possible attentua-

tion of 50 dB compared to the 30 dB predicted by the single mode theory.

This is to be expected since the higher order modes have higher attenuation

coefficients.

Finite liner length, flow gradients, and nacelle geometry can all con-

tribute to the W d8 enhanced calculated attenuation for the actual nacelle

13



geometry over the calculated value from duct theory which considered only a

single soft wall mode. Unfortunately, the individual contributions to the

attenuation cannot be explicity determined.

At the single mode optimum impedance of 1.136 + iO.5, the attenuation

for the L/d o of 0.15 duct is shown in Fig. 9 to be 30 dB while the finite

element value is 17 dB. To illustrate the sensitivity of L /do effects, an
	

1

assessment of suppressor length on attenuation at this fixed impedance can

be made. As the acoustic liner is lengthened (smaller d o /L, the numerical

calculated attentuation approaches the single mode attenuation shown at

do /L = 0. Therefore, a significant portion of the attenuation enhancement

can be attributed to modal scattering effects. For an extremely long duct,

the lowest order propagating mode would completely dominate the sound atten-

tuation.

CONCLUSIONS

Numerical theories are shown to be versatile aids in the design of

acoustic nacelles for turbofan engines. The numerical analysis, can account

for complications arising from variations in the mean flow field and inlet

geometry. Example problems show that inlet lip effects and finite liner

lengths can significantly effect the acoustic characteristics of an inlet.
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