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PRELIMINARY SUBMILLIMETER SPECTROSCOPIC MEASUREMENTS

USING A SUBMILLIMETER HETERODYNE RADIOMETER

E
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ABSTRACT

A submillimeter heterodyne radiometer has been under development at the Goddard Space Flight

Center for several years. The radiometer uses a s ibmillimeter laser, pumped by a CO 2 laser, as a

local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer

can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational

molecular transitions) to within 0.3 MHz, using a newly developed acousto-optic spectrum analyzer

which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a

100 MHz bandwidth spanning the line. This'report describes preliminary observations of eight

spectral lines of H2O2 , CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range;

all eight lines were observed using two local oscillator frequencies obtained by operating the sub-

millimeter laser with either methyl fluoride (CH 3 F) or formic acid (HCOOH) as the lasing gas.

Sample calculations of line parameters from the observed . ,a show good agreement with estab-

lished values. One of our development goals is the size and weight reduction of the package to

make it suitable For balloon or shuttle experiments to detect trace gases in the upper atmosphere.
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INTRODUCTION

For the past several years an effort has been underway in the Instrument Electro-optics Branch

h	 of the Goddard Space Flight Center to develop a submillimeter heterodyne radiometer using a sub-

F
millimeter laser as the local oscillator and a room temperature Schottky barrier diode as the first

IF mixer.

The origins and development of this project are described in Reference 1; in this report we will

give just a brief description of the experimental apparatus and an overview of the spectroscopic

results obtained, with some analysis of the more significant spectroscopic measurements.

During the past year the radiometer has been used to make measurements in the laboratory

of selected pure rotational lines of several molecules. These spectroscopic investigations have a

three-fold purpose:

1. The main purpose is to demonstrate that the radiometer functions as intended — that it is

capable of producing high resolution spectral information with reasonable integration times.

The accuracy of the spectral data is assessed by comparing it with independently known

Mp	 results.

2. The second purpose involves astronomical investigations of planetary atmospheres and

the composition of interstellar nebulas. Such work is currently underway at Goddard; this

instrument has been used with the NASA three meter infrared telescope at Mauna Kea,

Hawaii for studies of the Orion nebula, under the direction of scientists from the Infrared

and Radio Astronomy Branch, The spectral data obtained in the laboratory are useful in

interpreting the results of these field experiments.

3. A third objective of the investigations is the support of upper atmosphere research,

especially studies of the formation and breakdown of ozone. The radiometer should be able

to detect trace amounts of various gases involved in these processes. Laboratory spectro-

scopic data are needed for both the design and analysis of such experiments, because

is



Table 1
Spectroscopic Lines Investigated

Line-Center	 Quantum	 Pressure Receiver
Frequency	 Transition	 Range Noise

(MHz)	 (mtorr) Temperature
fv.

Molecule

9(0,9) +- 9(1,9)

11(0,11) +- 10(1,9)

	

8(1,8)	 8(0,8)

	

7(1,7)	 7(0,7)

21(3 , 19) x-22(2,21)

Jas+-6

300

5- 1,800

50-2,400

5- 1,800

300-1,800

2- 1,600

5-650

1,000

5,000

6,000

$,000

8,000

10,000

20,000

25,000

the atmospheric transmission problem must be soloed for both the simulation of observations

(to determine detectability) and the inversion of actual observations (to retrieve actual con-

stituent concentrations). Spectroscopic data at submillimeter wavelengths do not generally

exist; instruments of the type described in this report are the only existing means of acquiring

the needed high resolution data.

Preliminary measurements have been made on selected spectral lines of H 2 O,, CO, NH3 and

Hz 0; these are listed in Table 1,

Hz Oz 599,723.63 t 0.1

H2 O, 601,885.28 10.1

Hz Oz 603,394.93 t 0.1

Hz 0 1 606,717.54 10. 1 

Hz Oa 608,865.

CO 691,472.97 * 0.1

NH3 572,498.15 t 0.1 S

H, 0 620,700.81 ± 0.39

These lines aU arise from pure rotational or rotational-torsional transitions in the vibrational

ground state. The line-center frequencies are taken from Reference 2, with the exception of the

608865 MHz line of H, 0 1 , for which the line-center frequency given above was measured in our

laboratory. The frequencies measured in our laboratory for the other lines agree with the values in

Table I to within a few MHz in most cases; this is quite good agreement, considering that frequency

measurement was not a primary aim in our experiments. For the 608865 MHz Une, the value given,

^	 3Fj

^E
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in Reference 2 was calculated from theory; it differed from our measured value by several hundred

MHz.
c

For each of the lines studied, the nearest neighboring lines (according to Reference 2) are

separated from the line investigated by wore than 1,000 MHz. Since the largest bandwidth of any

of the spectrum analyzers used is about 300 MHz, it is clear that each of the lines studied is effec-

tively isolated; i.e., not overlapped by any neighboring lines.

The range of sample cell pressures used allowed observations of the lineshape in both the

doppler and pressure-broadened regimes, for some of the lines.

From the preliminary data obtained with the heterodyne radiometer and from comparisons of

some of the data with theoretical results it was found that:

1. The radiometer is capable of actually achieving resolution to better than the doppler

width; the best resolution to date is 300 KHz.

2. The radiometer is capable of giving the kind of laboratory spectroscopic data required

for the design and analysis of upper atmosphere experiments.

3. Comparison of the radiometer data with some theoretical results and with previously

known data showed good agreement.

3



EXPERIMENTAL APPARATUS

The absorption line to be observed is produced by directing the radiation from a hot black-

body source through a long cylindrical sample cell filled with the absorbing gas at low pressure. It

is also possible to produce an emission line by replacing the hot source by a cold background; for

example, an absorbent material cooled in liquid nitrogen.

The first heterodyne stage is a quasi-optical arrangement which translates the spectral line(s)

being observed from the submillimeter region of the spectrum down to the microwave region.

The local oscillator is a submillimeter laser, optically pumped by a COz laser. The nearly mono-

chromatic output of the submillimeter laser is optically combined in a diplexer with the beam

emerging from the sample cell. The combined beam is then focused onto the whisker antenna of

The Schottky diode mixer, which produces a down-shifted spectrum in the microwave region (18

GHz max- mum).-

The second heterodyne stage is a conventional microwave mixer which shifts the absorption

line spectrum further down into the frequency range from 0.1 to 1 GHz (depending on the i"i,, of

spectrum analyzer used), where it can be precisely measured,.

The measurement of the spectral line, now in the sub-GHz region of the spectrum, is accom-

plished by observing it simultaneously in many channels, which span the width of the line. Two

types of spectrum analyzers were used for this purpose: a conventional filter bank type and two

different acoustooptic devices.

Details on the development and characteristics of the submillimeter laser local oscillator, the

COz pump laser, the diplexer, the Schottky diode mixer and related devices that make up the

heterodyne receiver and data processing electronics are given in References 3-22. The laboratory

apparatus is shown schematically in Figure 1.

M
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Figure 1. Submillimeter Wave Heterodyne Radiometer

The optical pump source for the submillirrieter laser is an Apollo Model 550A 9-11 micrometer

COz flow-through laser using a CO 2 -6%:N-18%:He-76% gas mixture (see Reference 1). For these

experiments the COa laser was operated at a pressure of 22 torr. The laser is presently capable of

CW output up to 60w, but was operated at about 30w for these experiments. A cavity stabilizer

PZT supplied by Apollo is used to maintain the pump line and under most experimental conditions

a Burleigh etalon is used to lock on the pump wavelength to lend additional stability over long

time periods. This is accomplished by monitoring a reflected beam from a ZnSe Brewster window

located in the output beam of the laser. The Apollo has a diffraction grating with both horizontal

and vertical adjustments to aid in locating and maximizing the required pump line. The CO Z laser

was calibrated with a spectrum analyzer to correlate the grating dial micrometer positions with

pump lines in the 9 and 10 micrometer CO Z branches.

The submillimeter laser cavity is the culmination of several years of design and construction

5
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by N. McAvoy, G. Koepf, C. Rossey and C. Peruso (see References 1, 6, 10, 11, 13, 14, 21). The

device is optically pumped by the Apollo CO 2 laser and is designed to function as a local oscillator

in the 400.800 GHz (-750-37S 1,em) range. A 1.76 meter ,submillimeter cavity is used to produce

an effective 14.08 m path length by reflecting the CO 2 beam on four round trips inside the cavity

through the absorbing laser gas. The final reflection exits off-axis through the input pout and is

monitored by a pyroelectric power meter. The submillimeter laser beam is coupled through a

12mm quartz window at the exit port. There are adjustments for cavity wavelength and for internal

mirror alignment external to the cavity, located at the exit end of the cavity. Maximizing the power

of the unabsorbed CO 2 beam on the power meter is the technique used in making final alignment of

the reflecting mirrors inside the submillimeter cavity. Bleed-in valves permit entry of a vaporized

liquid from an external storage tube or d irect entry of a gas simultaneously into the ends of the

submillimeter cavity. Pressure in the cell is monitored near the middle of the cavity by a MKS

baratron pressure gauge connected to a digital voltmeter (DVIvI). The cavity pressure ranges from

about 30 to 150 mtorr, depending on the gas used. The design and operation of the submillimeter

laser local oscillator and the CO 2 pump laser is given in greater detail in Reference 1.

A two meter glass cell made in -house serves as the sample cell. It is designed to accept gas

samples directly or vaporize li quid samples from an external storage tube. A blackbody radiator

serves as the source of energy for absorption. Although the blackbody produces a 1,300 K source,

present indications are that optical coupling causes losses that result in an effective temperature

difference of 250 K with respect to room temperature. Pressure in the cell is monitored near the

exit port by a MKS baratron pressure gauge zonnected to a DVM. The blackbody radiation is

chopped prior to entry into the sample cell at a variable rate dependent on the filter bank require-

ments.

The beam emerging from the sample cell and the submillimeter local oscillator beam are chan-

neled into a diplexer (References 1, 9) which serves to combine the beams for input to the Schottky

diode miner. The diplexer is a Mach Zehnder interferometer, as shown in Fig. 2. A translator

6
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Figure 2. Mach-Zehnder Type Beam Diplexer

assembly on the diplexer permits adjustment of the reflective surface to tune the fringe pattern for

constructive interference on the appropriate IF wavelength. This stage may also be used to accu-

rately determine the wavelength of the submillimeter laser iieam, since the interferometer spacing

must also be an integral multiple of the submillimeter wavelength.

The mixer is a Schottky barrier diode designed and fabricated at Lincoln Labs for use as a

receiver in our frequency range (see References 1, 3, 5, 7, 8, 12, 15, 16, 17, 19, 20). It is mounted

in a corner cube and placed at the focus of an ellipsoidal mirror. The corner cube helps to match

the diode antenna pattern to the submillimeter beams; it is mounted on a base with three degrees of

translational freedom. A battery-powered bias box is used to provide a 0.07 ma curent to the

diode. A connection to an oscilloscope provides a monitor point for the submillimeter signal.

This first IF signal is then fed into the second IF.

A low noise preamplifier and filter combination is used to boost the signal from the tint IF.

System noise temperatures are determined by matching of detectors to the low-noise prcimplifiers.
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Typical noise temperatures ranged froth about 4,000 K to about 9,000 K. For the preliminary

observations of NH 3 and H20, with extremely high first IF frequencies of about 12-16 GHz, the j

noise temperatures were in the 20,000-25,000 K range. If the first IF signal could be handled by

the filter bank, as is the case for the conventional RF bank described later, then the signal was
P

split: one channel going to the filter bank and the second channel to a crystal detector which was
µ	 ,^

A
a

used to monitor the signal response from the sample. When one of the two acoustooptic spectrum ;	 !j

analyzers was used, the first IF signal was downconverted by a second mixing stage (which uses a
j

frequency synthesizer as the local oscillator) to the center frequency of the spectrum analyzer 1

(either 150 MHz or 400 MHz). Double downconversion was necessary for H Z O and NH3 because

of the extremely high first IF's used. A DIN and a lock-in amplifier (referenced to the sample cell

chopper) were used to monitor the second IF output signal. This set-up provides a means of deter-

mining the system noise temperature while running. The method of measuring the noise tempera- _s

ture is an adaptation of the so-called Y-method of system temperature measurement; it is described
S

in detail in Reference 1.
y

y	 1

Three different spectrum analyzers were used during these experiments: one conventional type
a	 '^

,

using an RF filter bank and two acoustooptic'an., ' ; zers. The conventional spectrum analyzer is a

described in Reference 23. It incorporates a second IF containing two tunable local oscillators,

which together can accept RF signals up to several GHz and mix them up or down to the 1.170

GHz center frequency of the filter bank. This analyzer is designed to give 5 MHz resolution, using

E	 64 channels. A block diagram is given in Figure 3.

The two acoustooptic spectrum analyzers (AOS's) both work on the same principle; functional a

diaprams (including the 2nd IF stage) are given in Figure 4. In both AOS's the spectral analysis

is accomplished by using a Bragg cell. In this device high frequency sound waves, created by

coupling the 2nd IF signal into a crystal by means of a piezoelectric transducer, create within

the crystal a periodically varying index of refraction along the direc;on of propagation of the

sound waves, caused by the density variations. This grating-like pattern causes an incident
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monochromatic light beam (from a HeNe Iaser) to be deflected through a small angle, the amount

of deflection depending on the frequency of the 2nd IF signal. Since the signal contains a (band-

,	 limited) continuum of frequencies, the laser beam is spread out Into a fan-shaped beam whose

intensity varies with the deflection angle; in fact, the intensity is proportional to the amplitude of

the e;orresponding signal frequency, so that the beam actually forms the spectrum of the 2nd IF

signal. A lens then focuses the beam onto a linear array of integrating photodiode detectors; the

output from these yields the signal power spectrum, with a fin-te resolution depending on the

number of photodiodes. (The attainable resolution, and thus the number of diodes used, depends

on the size of the diffraction-limited spots focused onto the diodes and on the angular spread of

the deflected beam.) The theory and design of acoustooptic devices are given in References 24-28.

The two AOS's differ in the material used for the crystal (flint glass and lithium niobate for

AOS I and U. respectively) and in design del ails. Functional diagrams rar the two analyzers are

shown in Figure 4; Figures 5 and 6 show a functional sketch and a photograph, respectively, of

AOS I. AOS I was developed by the Instrument Electro-Optics Branch and AOS II by the

Infrared and Radio Astronomy Branch; a more detailed description of AOS II is given in
f 

Reference 24. Each of the three spectrum analyzers has its own associated data collection and

reduction system, as indicated in the figures.
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LABORATORY TECHNIQUE

Hydrogen peroxide (Hz 0 1 ) and water (HIO) samples were in liquid form, The liquid was

placed in the external storage tube on the sample cell. The sample cell was evacuated to a reading

on the pressure gauge which did not change and was calibrated to be 0 mtorr pressure, The entry

port on the sample cell was opened and a sample pressure greater than required was noted. The

entry port was closed off and the evacuation of the sample down to the desired pressure was ob-

served on the pressure gauge. At this point the exit port of the sample cell was closed off. For

carbon monoxide (CO) and ammonia (NH 3) cylinders of gas were hooked up to the exit port of the

sample cell. An excess pressure was added to the sample cell, then the excess was removed while

monitoring the pressure gauge. It should be noted that, as the desired pressure was approached,

the bleed-off speed was slowed considerably to reduce any major gradient effects inside the sample

cell after reachin g the desired pressure. The run was made, then the sam ple cell was evacuated to 0

mtorr and an evacuated cell run was made. Thii_ technique was used to help make the measure-

ments Independent of the receiver noise temperature, as described in the Appendix.

Two submillimeter laser gases were used in these experiments: methyl fluoridt from a gas

cylinder and formic acid from a liquid storage tube. It was noted earlier that the gas line into the

submillimetez laser is split, providing gas entry simultaneously at both ends of the cavity. When

using methyl fluoride the evacuated cavity was brought to a pressure of about 40 mtorr of methyl

fluoride, then the pressure was increased by about 50 mtorr by the addition of a buffer gas, sulfur

hexafluoride. There are twin entry valves; each valve was connected to a gas cylinder. Liquid

formic acid was placed In a glass storage tube which was connected to one of the entry valves. A

pressure of about 80 mtorr was used for this laser gas.

Depending upon the strength of the line observed, integration times of l.5 to 3 minutes were

used during the data collection runs. It has been noted that a signal run was made followed by an

evacuated cell run. The software associated with the data reduction, on either data system, pet,

witted results to be plotted with normalization by the evacuated cell run. Any adjustments to the

13
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system optics or electronics were made prior to a new run, not between the signal and evacuated

cell runs. During these runs the CO 2 laser and the submillimeter laser remained quite stable, due in

large measure to the stable room temperature of about 22 C. It was generally not necessary to use
I

the Fabry-Perot etalon lock-in servo loop to maintain CO., pump amplitude and frequency stability,

i

i

M.
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SOME THEORETICAL BACKGROUND MATERIAL NEEDED TO REDUCE THE OBSERVED
DATA TO LINE STRENGTHS AND WIDTHS

Relation Between the Observed Data and the Absorption Coefficient

The first step in reducing the data is to calculate the absorption coefficient a from the meas-

ured quantity, which we will call Q. (Q is a function of the signal and reference voltages at the out-

put of the spectrum analyzer, as defined below.) A careful analysis of the processing of the input

signals through the radiometer leads to the following relation (see the Appendix for a derivation):

cY(e) =2 In 
2Q(e) - I
	 (1)

where the measured quantity Q is defined as.

(S—R)/R	
(2)

(Se-R)/R/R

and a is the absorption coefficient in cm'' , 2 is the length of the gas sample cell in cm, a is the

frequency deviation from the line-center frequency, R is the voltage v measured at the output of the

spectrum analyzer (for a given frequency interval, the width of which depends on the resolution

of the spectrum analyzer) when the detector sees a reference source at some temperature (in our

case, usually a chopper blade at room temperature), S is the same voltage when a signal is present

(i.e., an absorption or emission line seen by the detector through the gas-filled cell) and So is the

same quantity, with the cell evacuated. To retrieve the signal (the spectral line) from the accom-

panying noise, the quantities S, So and R are digitally integrated in the minicomputer associated

with the spectrum analyzer.

It is important to note (see Appendix) that Eq. 2 leads to Eq. 1 only if the elapsed time

between the measurements of S and So is small enough so that there are no significant drifts in

the gain or loss factors associated with the detector, or in the noise temperature of the detector.

Note also that Q is unchanged by any linear transformation of v (i.e., v' = av + b); thus Q is un-

changed by changes in the scale factor or zero point of the output voltages from the spectrum

analyzer.

M,.v.
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After the absorption coefficient a(e) has been obtained from the measured data Q(e) with the

help of Eq. (1), we try to obtain from a(e) what information we can on the line strength and width.

To do this we need explicit formulas for a(e). These are collected below,

General Formula for the Absorption Coefficient Jor a Single Gas)

The formula for the absorption coefficient for a given line has the following general form:

a(cp ,T) = S(T)'p'g(ep,T)	 (3)

where S(T) is the line strength per unit pressure (i.e., the integrated absorption coefficient over the

line width, per unit pressure), T is the absolute temperature, p is the pressure (assuming only a

single gas) and g is the normalized line shape (described below). (Detailed derivations of these

formula's may be found in References 30-32.)

Formulas for the Lineshape

The linesh ipe g(e p,T) is normalized so that the integral of g over the frequency width of the

line is unity. The expressions for g for the different regimes may be put in the following forms:

For pure doppler broadening (Gaussian shape):

(n 1)
gd (E ,*P,T) = 

1 Ir	 0 
(T) e I n — 

(T
,12 	 (^)

Ed 	 J

where Ad is the half-width of the doppler-broadened line. It is given by the formula:

Ad (T) = c (2 kNo In 2Pvo 
T	

(5)

where k is Boltzmann's constant (numerical values and units are given below), No is

Avogadro's number, vo is the line-center frequency and M is the molecular weight of the

absorbing gas.

For pure pressure broadening (Lorentz form):

g l (e ,p ,T) = 
–,__

111 	
(6)
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where A, is the half-width of the pressure-broadened line. It may 4 .,xnressed in the

form:

Al = p - Ao (T)	 (7)

where Do is the linewidth for unit pressure. Usually the calculation of A, (or Do) from

theory is very difficult and can only be done approximately; consequently it is necessary

to resort to experimentally measured values of A i . However, it is known that A 0 (T)

varies with T as 1/T, for a long-range intermolecular force law (see Ref. 30, page 369).

For combined doppler and pressure broadening:

!In 2\' p Do	 ^, 2le-t )2

	

gcomb (cp,T) = l ^ 3 )	 Q	 e- 2 VAd dt	 (8)
\	 /	 d	 (t $ p2 cap)

where t is a variable of integration with the dimensions of frequency (sec-1).

General Formula for the Line-Center Absorption Coefficient

The formula for the lineshape with combined doppler and pressure broadening is not

analytically tractable, it may however be cast in various forms suitable for numerical computa-

tions (see, for example, Reference 31). For the special case of absorption at the line center (e = 0),

the formula may be put in a particularly simple form in which the definite integral reduces to the

probability integral. To derive this form we use the following definite integral evaluation:

xz 3 2 dx = C 1 — 4) (011)1 28 ea' µ1

a
0

where Re 0 > 0 and I arg µ I < 7r/4 (see Reference 33, page 338, formula # 3.466) and 4) is the

probability integral:
X

4)(x) 
_ %2
 e"  dt
lr 

0

If we apply this representation to Eq. 8, with µ = (ln2) 11 / Ad and a = pOo, we obtain the follow-

ing expression for the line-,center absorption coefficient:

i
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«(O,P,T) _ ^ ^ S(T) x el ' (1 — (PP-!-))	 (9)
0

where x, which is essentially the ratio of the collision width to the doppler width, is proportional
t

to the pressure:

X = (In 2)K PQ o = (In 2)K 
0'	

(10)
Ad	 d	

u

This formula holds for all x (i.e., all pressures).
F

The probability integral may be calculated from the series representation

^(x) ? x — x3 + xs 	 X7 + ...	 (I 1)
zrK 	3.1!	 5.2!	 7.3 1 	)

which is convergent for all x but conveniently calculable only for x << 1, or from the series

C '	 1	 1.3	 1.3.5	 ^
4)(x) = 1 — --- 1 — — +	 —	 + ..l	 (12)

irK x	 2x2 (2x02 (2x3 )3	//

which is semiconvergent for x >> 1, For values of x near unity, tables of (D may be used.

Equation 9 may be used to calculate the line strength S from experimentally measured values

of the line-center absorption coefficient a (0; po, To) at pressure po and temperature To. Note

however that the pressure broadening parameter Qo must also be known — probably from expert-

mental observations, since it is difficult to calculate accurately from theory.

Formulas for the Line Strength 	 j

The calculation of the line strength From theory can be very difficult, depending on the mole-

cule, and only order-of-magnitude estimates may be obtainable. The theoretical expression for the

t
line strength may be put in the following general form:

3
SCE) — 3c h k T (1 — e hv,,kT ) ft (T) vo I Alj 1 2	 (13)

where h is Planck's constant, vo is the line-center frequency, f l is the fraction of molecules in the	 R

lower state of the transition and uu are matrix elements related to the dipole moment of the
4i
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transition. The difficulty lies in calculating f l and 11A0.12. Some general results are available, how-

ever (see, e .g., Ref. 30). For example, we may state the following results:

1. For diatomic (or linear) molecules, for pure rotational transitions in the uth vibra-

tional state and for low J-values (J is the rotational quantum number):

2J+1 h vo
ft — 2(J+1) kT f°	

(14)

and

I µU 12 - 
2J+1 

µ2	
( 1 §)

where f„ is the fraction of molecules in the uth vibrational state (u = 0 for the ground

state) and k is the dipole moment of the transition (see Ref. 30, Chapter 1). It

follows that:

h vo
fi I k^ 1 2 — 

14.
kT fu µz	 (16)

for these types of transitions in diatomic or linear molecules. In particular, f„ za!5 1

for the ground vibrational state at ordinary temperatures, so that for transitions

w,:cnin the ground state

ft I AU 1 2 me Y, 

kT 
u2	 (17)

2. For symmetric-top molecules, for pure rotational transitions within the ground

vibrational state and for low rotational quantum numbers (J and K),

f1 varies with T as 1 JT 2 /2 , approximately.

3. For transitions involving excited vibrational states, or for transitions between high-

energy rotational levels of asymmetric- top molecules, the temperature dependence

of fl is more complex.

}
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If a good theoretical estimate of the line strength is not available, we must resort to an expert-

mental measurement. If the line strength is strongly temperature dependent this would require

measurement over the temperature range of interest. However we may find the line strength S(T)

as a function of temperature from only a single measurement, provided we know the form of the

function f l (T), expressed approximately as a power of T. For example, it is easy to derive formulas

of the following type from Equations 3 and 13:

1 —S(T) = a(O ;po,To) To f, (T)	
8 hvo/kT	

(18)
po g(o ;po,To) T fI(TO) 1 _e hvo/k To

This equation gives the temperature dependence of the line strength, provided we have an approxi-

mate expression for f I as a power of T, say T3 , because for this form the unknown coefficient of T° will

cancel. We need only measure the line center absorption coefficient a (O;po,To) at any convenient

pressure po and temperature To. In addition, we must use the lineshape function g which is appr:>

priate; for example, if po lies in the pressure-broadened regime, we must use g I as given by Eq. (6),

evaluated at e = 0, p=po and T=To . Note that Eq. 18, once evaluated, applies to all pressure

regimes, not just the one to which g applies. For example, if po lies in the pressure-broadened

regime, and we use gI frcm Eq. (6), the resulting form of Eq. 18 applies to the doppler regime also.

Note also that we may need, in addition to a measurement of a, a measurement of d i , since the

pressure broadening may not be accurately calculable from theory.

Condition for the Detectability of a Line

The minimum resolvable temperature difference of a radiometer of our type is given by the

formula (see Reference 34, page 102):

(OT)	
(r/V7) TSYs

MIN — (B T)^i

where (AT),^IIN is the minimum detectable temperature difference (in K), Tsys is the system

noise temperature ( the sum of the antenna noise temperature and the receiver noise temperature)

referred to the antenna terminals ( in K), B is the predetection bandwidth ( in Hz) and T is the post-

detection inte gration time (in sec). If we interpret AT as the apparent line strength seen by the

20



detector, i.e., as the off-line temperature minus the line-center temperature, then the above form-

ula relates the minimum detectable apparent line strength to the integration time, if B and TsYs

are regarded as constant.
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Units and Constants

For all of the above equations the units and constants areas listed below.

Units

length	 — cm

mass	 —9

time	 — s

charge	 — statcoulomb

frequency — Hz

temperature — K

g	 — s (or H271)

Cf.	 — cm -'

p	 — dyne/cm=

S	 — s/g (or cm -1 • Hz (dyne/cm-) -1)

µ	 — statcoulomb-cm

M	 — g/mol

Constants

c = 2.997925 X 10 10 	cm/s	 velocity of light in vacuo

h = 6.626196 X 10 -27	 erg-s	 Planck's constant

k = 1.380622 X 10 -16	 erg/K	 Boltzmann's constant

NO = 6.022169 X 10 23 	mole-'	 Avogadro's Number

Conversion Factors

1 joule	 = 107 ergs, exactly

1 debye = 10 -18 statcoulomb-cm (dipole moment)

1 torr	 = 1.33322 X 10 3 dyne/cm2

1 atm	 = 760 torr
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A

LABORATORY MEASUREMENTS

H2 O2 — 603.395 GHz

A local oscillator (LO) frequency close to 603 GHz was obtained by using methyl fluorid-e

(CH 3 F) as the lasing gas in the submillimeter laser. It produces the 604.2973 GHz line of CH3F

when optically pumped by the 9.55P20 line of the CO 2 laser. This scheme of submillimeter laser

local oscillator operation was used for all H2O 2 spectroscopy reported below. Mixing of the H2O2

line and the local oscillator frequency in the

Schottky d1ode then produced a first IF signal at

902 MHz, which was analyzed on the conven-

tional RF filter bank. Integration times of

about 90 seconds were used on both the sample

run and the evacuated cell run. Data was

collected at the following sample pressures: 50,

100, 200, 300, 600, 900, 1200, 1500, 1800 and

2400 millitorr. System noise temperatures were

about 6,000 K during the nuns. An example of

the spectra obtained is shown in Figure 7, for

a pressure of 200 millitorr. Poor calibration of

the vertical axis precludes any quanttitative

analysis, but it is clear from comparison of this

spectrum with those taken at other pressures

that the line is mostly pressure-broadened at
Figure 7. HOOH Line at 603 GHz, for 200

200 millitorr.	 mtorr (RF filter bank)

H2 O 2 — 608.865 GHz

Mixing of the LO and sample beam produced a

first IF frequency of 4.568 GHz, which was

23
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amplified by a liquid nitrogen cooled amplifier.

The output was sent to the conventional RF

filter bank. Integration times of about 90

seconds were used for both the sample and

evacuated runs. The following sample pres-

sures were analyzed: 300, 600, 900, 1200,

1500 and 1800 millitorr. System noise tem-

perature was about 8,000 K during testing.

An example of the spectra obtained is shown

in Figure 8, for a pressure of 300 millitorr.

Again quantitative analysis is ruled out by

poor vertical calibration and uncertainties in

the pressure measurement, but it is clear from

comparison of this spectrum with those taken

at other pressures that the line is pressure-

broadened at 30C mtorr.

Hz Oa — 601.885 GHz, 606.717 GHz

The first time we studied these transitions we

based the set-up on the 601.885 Gliz line.

The first IF signal of 2.412 GHz was sent

directly to the conventional RF filter bank.

Because of the double sideband conversion

and the fact that the L.O. frequency of

604.297 GHz is nearly midway between the

two H 1 0 2 lines, the separation of the two

lines after th<, first down-conversion

Figure 8. HOOII Line at 608 GHz, for 300
mtorr (RF filter bank)

Figure 9. HOOH Lines at 601 and 606 GHz,
for 900 mtorr (RF filter bank; lines
not resolved)

4



(by the Schottky diode) was only about 8 MHz; these two lines were not resolved by the R.F. filter

bank, which itself has a resolution of about 5 MHz. During this study the integration times were

about 90 seconds. The pressures studied were: 300, 600, 900, 1200, 1500 and 1800 millitorr. The

system noise temperature was about S,000 K. An example of these spectra is shown in Figure 9;

again quantitative analysis is ruled out by poor vertical calibration and uncertain pressure measure-

ments, but again it is clear from comparison of this spectrum with those taken at other pressures

that the lines are pressure-broadened at 900 mtorr.

During the second study of this pair of transitions the first IF signal of 2.412 GHz was down-

converted by a second mixer to the 400 MHz IF used by the acoustooptic spectrum analyzer

(AOS II). Integration times were about 70 seconds. The following pressures were studied: S, 10,

20, 40, 80, 160, 320, 640 and 1,2680 millitorr. System noise temperatures were about 5,000 K. It

was with the AOS II resolution of 0.7 MHz that we were first able to verify the existence of both

lines as suggested by the absorption results seen in the first study. Some of the spectra obtained are

shown in Figures 10a-10f. The calibration for these spectra was good; some quantitative analysis

is given in the section on analysis of data. It is clear from visual inspection of Figures 10a-1 Of

that the two lines are mostly doppler broadened at 5 and 10 mtorr, although some pressure

broadening is evident even at 10 millitorr. As the pressure increases the lines grow both deeper and

broader (due to simultaneous doppler and pressure broadening) until they merge at around 100

mtorr. From this it is clear that the lines would not have been resolved in the first study even with

greater resolution, unless measurements were made below 100 mtorr.

i{
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CO — 691.473 GHz

A transition of 1 - 5-6 produces the 691.473 GHz line of carbon monoxide. A local

oscillator frequency close to 691 GHz was obtained by using fornuc acid (HCOOH) as the lasing

gas in the submillimeter laser, which produces the 69.95 14 GHz line of formic acid when optically

pumped by the 9.27R20 line of the CO i laser. This local oscillator frequency, when mixed with

the sample beam, produces a first IF of 1.478 GHz. Three studies were made of this CO line using

the same basic configuration.

The first study was done using AOS L

For this spectrum analyzer the first IF had to

be downconverted to 150 MHz. Integration

times up to several minutes were used. Pres-

sures of 110, 220 and 300 millitorr were in-

vestigated. The system temperature in these

early trials was about 9 .000 K. Figure 1 1

shows one of the spectra, taken at 1 10 milli-

torr. These spectra were well calibrated,

permuting some quantitative analysis. but this

will not be given here, because the results of

the third study are better (see the section on

analysis of data). It is clear from comparison

of the three spectra that the line is at least

partially pressure-broadened at 110 mtorr.

The second study was done using AOS II.

For this analy zer the first IF was downcon-

verted to 400 NIHz. Inte gration times of 70

seconds were used for both the sample

Figure 1 1. CO Line at 691 GHz, for 110 mtorr
(AOS 1)
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and evacuated cell runs. Pressures studied

were: 60, 100. 300, 1,000 and 2,000 milli-

tort. The system temperature was about

4,000 K. Lack of calibration of the vertical

axis precluded quantitative analysis of these

spectra. An example is shown in Figure 1 2.

^ ^ 1

Figure 12. CO Line at 691 GHz, for 300 mtorr
(AOS II)

The third study was done using AOS 1, with an improved data collection and analysis system.

Integration times of 80 seconds were used for all pressures except 2 mtorr, which required 160

seconds. Pressures of 2, 5, 10, 20, 50, 100, 200, 400, 800 and 1600 mtorr were investigated.

Figures 13a-13j show these spectra. The data collection and analysis system was considerably im-

proved for these investigations (see Reference 35), and the data are quite well calibrated. In the

section on analysis of data these results are shown to yield a value for the dipole moment of CO (for

the transition involved) which is quite close to the value given in the literature. It is worth noting

also that the range of pressures goes from the doppler regime (or close to it) at the low end to the

collision-broadened regime at the high end. Note that the frequency scales in all the plots in Figure

13 have been arbitrarily shifted to read 0 MHz near the line center. The actual frequency of the

zero marker is noted on each plot; these frequencies were determined by prior calibration of the

acoustooptic spectrum analyzer resolution elements with a sine wave generator.
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NH 3 — 5 7 2.498 GHz

We ran init.al studies on the transition

of ammonia which produces a line at 572.4Q8

GHz. Using HCOOH pumped by the 9.23R28

CO, line, a local oscillator frequency of

584.3729 GHz was produced. :Nixing at the

diode produced a first IF of 1 1.875 GHz. Using

a liquid nitrogen cooled preamplifier this

signal was downconverted to the 400 MHz IF

of AOS 11. Integration tunes were about 180

seconds for both the sample run and the

evacuated cell run. Pressures of 5. 10. 20. 40,

160 and 640 millitorr were studied. System

noise temperature was about 20.000 R. For

these spectra quantitative analysis was not

an objective; the primary purpose was to

verify that heterodyne techniques with a

large IF (1 2 GHz) could produce usable

spectra. Figure 14 shows an example of the

spectra obtained.

H2O — 620."OI GHz

Finally, a short study was done to see if

the system could locate the transition of water

which produces a 60.701 GHz line. Using

methyl fluoride as the submillimeter laser

gas, optically pumped by the 9.55P:0 CO;

Figure 14. NH 3 Line at 572 GHz, for 5 mtorr
(AOS [I)
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line, a local oscillator frequency of 604.2973

GHz was produced. Mixing of this frequency

with the H2 O line produced a first IF

frequency of 16.403 GHz. Using a liquid

nitrogen cooled preamp, this signal was down-

coverted to 150 MHz by the mixers available

at the time and then sent to the conventional

RF filter bank, where the on-board mixer

generated the 1.170 GHz signal it required.

Integration times of 60-180 seconds were

used for a pressure of 1,000 mtorr of H2O.

Movement of the second IF allowed tenta-

tive verification of the line, although no further

tests were done. The system noise temperature

was about 25,000 K. For these spectra quanti-

tative analysis was not an objective; the

primary purpose was once again to verify

that heterodyne techniques with a large IF

(16 GHz) could produce usable spectra. A

sample spectrum is shown in Figure 15.
Figure 15. H 2 O Line at 620 GHz, for 1000

mtorr (RF filter bank)



ORIGINAL PAC'[*
OF POOR QUALITY

Emission Srldies

There were additional tests to study the emission spectra of H 2 02 and CO. For these tests

the hot blackbody source was replaced with a piece of ecosorb dipped in liquid nitrogen. These

preliminary results support the utility of the radiometer for emission studies. An example of these

spectra is shown in Figure 16; it is an emission spectrum of the RQO 9(0,9) 4--9(1,9) line of Hz 02

at 599 GHz, taken at a pressure of 300 millitorr.

Figure 16. Emission Line of H 2 O 2 at 599 GHz, for 300 mtorr (RF filter bank)
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ANALYSIS OF DATA

The analysis of the data given below is intended to help assess the capability of t.1ie heterodyne

radiometer, as presently set up, to yield the quality of spectroscopic data we wi:i later need for the

design and analysis of upper atmosphere and astronomy experiments.

To decide this question we will try to extract information on line strengths and widths from
n

some of the spectroscopic data so far obtained, then compare this information with known values

of these quantities for the observed lines. If th. agreement is good enough, we could conclude that k

the heterodyne radiometer is able to measure the kind of spectroscopic data we will need. As will

become evident from the following discussion, it turns out that the instrument is able to measure

such data, but improvements are recommended.

CO — 691.473 GHQ

For this line the first study, using AOS I, yielded a set of data which was reasonably well

calibrated but spanned only the pressure range from about 100 to 300 mtorr. Because the data

from the third study, using AOS I with an improved data collection and analysis system, had better

frequency resolution (0.3 MHz as compared td- 1 MHz) and spanned the pressure range from 2 to

1600 mtorr, only that data will be used in the analysis given below. The data from the second

study, using AO° II, was not calibrated and so could not be analyzed.

The data from the third study yielded a value for the dipole moment of CO which agrees

quite well with the value given in the literature. The analysis leading to this result follows.

From the plots of the absorption line at various pressures it is possible to read the line-center

absorption coefficient and the linewidth at each pressure, the values thus found are given in

Table 2.
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Table 2.
Experimental Results from the Third Study of the CO Absorption Line at 691.473 GHz

Pressure Line-Center Absorption Linewidth Total
Coefficient Absorption

(mtorr) (cm-1) (MHz; HWHM) (cm-1 MHz)

2* 0.00041 1.9 0.00078

5 0.0010 2.1 0.0021

10 0.00097 3.0 0.0029

20 0.0016 3.2 0.0051

50 0.0022 3.2 0.0070

100 0.0030 3.0 0.0090

200 0.0053 3.6 0.019

400 0.0074 4.6 0.034

800 0.012 6.9 0.083

1600 0.015 12.4 0.187

The linewidth is read directly from the plot; the line-center absorption coefficient is cal-

culated from the ordinate y shown on the plot (labeled "Olo absorption") by the relation

1	 1	 1	 1
a = k In 

2Q-1 = Q 
In 

1-y/ 100	
(19)

where the first equation is just Eq. 1 (see the Appendix for a derivation) and the second equation

expresses the absorption coefficient a in terms of the plot ordinate y, which is related to the meas-

ured quantity Q by y = (1 —Q) X 200. The length 2 of the sample cell is 190.5 cm. The quantity

called "total absorption" in Table 2 is the product of the line-center absorption coefficient and the

linewidth; it is proportional to the area under the absorption line, which is the total absorption.

This quantity should be proportional to the pressure for all pressures considered here. To better

see the variation of the line-center absorption coefficient, linewidth and total absorption with

*This data point was measured in a separate experiment.
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pressure, these three quantities are plotted vs. pressure in Figure 17. (The common ordinate in

Figure 17 is just a relative scale, chosen so that all three quantities fit on the same plot; the three

curves were just drawn freehand — no mathematical curve-fitting was done.)

f

0	 200	 400	 600	 800	 1000	 1200	 1400	 1600
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PRESSURE (IN MTORR) PRh ESSURE 8R.

Figure 17. Variation of Line-Center Absorption Coefficient,
Linewidth and Total Absorption with Pressure
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From Figure 17 it is seen that the linewidth flattens out at the lower end of the pressure

range and becomes linear at the high end, while the line-center absorption coefficient rises linearly

at the low end and flattens out at the high end and the total absorption varies quite linearly with

pressure through the entire range. (The two data points at 2 and 5 nttorr are apparently not as

good as the others, and may be disregarded.) From the variation of these quantities with pressure

it is apparent that the lower end of the pressure range approaches the doppler regime and the high

end is in the pressure-broadened regime.

From the fact that the data point at 1600 mtorr is in the pressure-broadened regime it follows

that we may compute the pressure-broadening coefficient A O from this data point with reasonable

accuracy; we find:

	

AO (300 K) L, 7.8 NfHz/torn (I°iWHIND	 (20)

where the 300 K figure refers to the fact that the gas In the sample cell is assumed to be at approxi-

mately room temperature (recall that A O depends on temperature). With this value of 4\ 0 and the

values of the line-center absorption coefficient given in Table 2 we may use Eq. 9 to compute the

line strength S at T = 300 K. The only other quantity we need is A d , the doppler lialfwidth, which

is needed to compute the values of x from Eq. 10; A d is easily computed from Eq. 5, with T = 300

K and M = 28. We rind:

	

Ad (300 K) = 0.81 MHz (HWHM)	 (21)

If we regard the doppler region as defined by A1, = pvo < 1/ 10 A d , then, using the value of AO

found above, we rind that the doppler regime holds for p < 10 mtorr. For p = 100 mtorr, d Q - Ad,

so that for pressures less than about 100 mtorr the linewidth levels off and decreases slowly until

AQ << Ad , below which it remains constant. From Table 2 it is evident that the linewidth does

behave this way (although the numerical valuers, as might be expected, are not exactly consistent,

probably due to errors in the measurement of pressure).

O

38



x

.,

Via..r .z— 53
 ^',-ae,"

OF MOM QUALITY

With the values of Qa and A O computed above we may us^3 F'q. 10 to compute the *values.

Eq. 9 may then be used to compute the values of S(300K) from the values of the line-canter absorp-

tion coefficient for the various pressures; the probability integral (D may be obtained from tables

or computed from one of the series expansions given above. The result of these calculations is a

collection of values for S which range from 77 to 368 Hz cm- 1 (dyne/cnt')-'. Since S is in-

dependent of pressure, the approximately 3.5 to 1 variation in these values of S appears to indicate

experimental errors or shortcomings in the theoretical expressions, or both. In any case the varia-

tIon is small enough to give us an order-of-magnitude estimate of S. We will therefore simply take

the mean of the S-values and use it to compute the dipole moment. The mean is found to be:

S 4 (300K) a 168 Hz cm'' (dyne/cm')-'	 (33)

To compute the dipole moment we use Eq. 13, where, for a diatomic molecule such as CO at

ordinary temperatures, the quantity f 1 (T) I µO 1 1 is given by Eq. 17. The resulting relation is:

S(T) = 3c(kT)' (1 `- e
-nU O /kT) u 1	 (33)

where µ is the dipole moment of the transition in statcoulomb-cm. If we set T = 300K, put In the

values of the mathematical and physical constants (see the Theoretical Background section of this

report) and express u in debyes (1 debye = 10 -13 statcoulomb-cm), we find:

µ em 0.07 debye	 (34)

This value compares quite well with the value 0. l debye given in the literature (see, for example,

Reference 30). We may thus conclude that the experimental CO data yield a rather accurate value

for the line strength of the transition.

H 2 0 2 — 601.885 GHz, 606.717 GHz

For this pair of lines the second set of observations, using AOS 11, yielded line strengths in

order-of-magnitude agreement with theoretical values (Ref. 36).

The observations at 5 and 10 millitorr appeared to be in the doppier regime. From the

observations at 5 millitorr (see Figure l0a), and using the formula
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a(0) = 1 In	 1	 (25)
Q 2Q(0)-1

v

	

(from Eq. 1, setting e = 0) to get the line-center absorption coefficient for each line, we found that:	
a

a(0) = 0.0012 cm -1 for the 601 GHz line	 n

and	 (26)
x

a(0) = 0.0023 cm -1 for the 606 GHz line,

where both absorption coefficients are for po = 5 millitorr and To = 300 K. If we now use Eq. 3

with e = 0, V=po=S mtorr and T=ro=300 K, we can write: ^l

a(0; po, To)
SExp (300K) =

	

	 (27)
po go (0,*po,To) 

for each line. We easily calculate that

0.622 MHz (601 GHz lint-'

	

dd (300K) _	 (2S)
l 0.627 MHz (606 GHz line),

0.756 X 10 -6 Hz -1 (601 GHz line)

	

—	
19

	

gd(0 ;Po, To) -	 (`)	 I
0.750 X 10'6 Hz -1 (606 GHz line)

c

and

233 cm -1 Hz (dyne/cm l ) '1 (601 GHz line)

	

Saxp(300K) -	 (30)	 7

1560 cm -1 Hz (dyne/cm 2 ) -1 (606 GHz line).

i
We now want to compare these experimental values of the line strength with the theoretical

values from Ref. 36:

0.1 1 19 em -2 atm -1 (601 GHz line)

	

S*H(300K) _	 (31)	 .
0.2045 cm -2 atm -1 (606 GHz line)

To make the comparison we must note that S* and our S do not differ merely in the units used,

but are different quantities. S* is defined in terms of the wavenumber of the radiation, whereas S

is defined in terms of the frequency. It is not difficult to derive the relation between the two

quantities; it turns out to be:
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S*(T) = 0.338 X 10 -4 S	 (32)

where the units of S* are cm' 2 atm -1 and the units of S are cm -1 Hz(dyne/cm 2 )`l . From Eq. 32

we may write the theoretical values in terms of S:

3310 cm -1 Hz (dyne/cm') -1 (601 GHz line)
S TH (300IC) _

	

	 (33)
6050 cm -1 Hz (dyne/cm 2 ) -i (606 GHz line)

Comparison of these values with those given by Eq. 30 shows that the theoretical line strengths and

the line strengths observed with the heterodyne radiometer are about an order of magnitude apart.

Considering the necessarily approximate nature of the theoretical calculations for the Hz 0 2 mole-

cule, which is an asymmetric rotor, and the preliminary nature of the experimental observations,

these results must be considered reasonably good.

Sensitivity of Radiometer

We can determine whether the radiometer is able to detect a small signal approaching the

theoretical limit by comparing the signal strength of one of the weaker observed spectral lines with

the minimum observable signal as calculated from the above equation. For this purpose we choose

the CO line shown in Figure 13a, because at a'pressure of 2 mtorr this line is approaching the noise

level and the good calibration of the plot allows the signal level to be calculated.

To find AT from Figure 13a we must first relate AT to the ordinate y shown in the figure.

This can be done by using Equations 19, A7 and A9; simple manipulation of these three equations'

yields the relationship we want: M

AT 100 ((l--P)T s© +9TcAs —TREr• 1 Y'

where T aB is the temperature of the blackbody source, Totes is the temperature of the gas and

TREF is the temperature of the reference body (the chopper blade), all in degrees Kelvin. The

factor 0 may be regarded as including losses in the sample cell and optical coupling losses resulting
E

from mismatch between the beam incident on the whisker antenna of the Schottky diode detector

and the antenna pattern; preliminary measurements indicate that R 0.8.	 4

i^
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From Figure 13a we see that y ;:^, 5 at the center of the absorption line; assuming that

TBB = 1,300 K, TCAS = TREF = 300 K and a = 0.8, we find that AT 10 K. Thus the radio-
.

meter in this case was able to clearly see an apparent temperature difference of ten degrees Kel-

vin. To compare this with the minimum detectable AT we note that an integration time of 150

seconds was used for the spectrum shown in Figure 13a; if we assume a noise temperature of

10,000 K and note that the predetection bandwidth is 0.3 MHz we find from the radiometer 	 j

equation given on page 20 that (AT)MIN = 3.2 K. Thus the radiometer was able in this case to

clearly see a signal which is only three times the theoretically minimum detectable signal.
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SUMMARY AND CONCLUSIONS

The heterodyne radiometer was used to study selected lines of four gases: hydrogen peroxide

a	
(Hz Oz ), carbon monoxide (CO), ammonia (NH 3 ) and water (H Z O). All lines studied were in the

frequency range 572-691 GHz, which corresponds to a wavelength range of 434.524 micrometers.

Two gases were used in the submillimeter laser to obtain appropriate local oscillator frequencies:

methyl fluoride (CH3 F) and formic acid (HCOOH). In all, eight lines were investigated. For three

of these (a CO line and two Hz Oz lines) the data were good enough to do some analysis, giving

good agreement with theory. From the results obtained in these preliminary investigations it was

concluded that the heterodyne radiometer is capable of Tieing used for precise spectroscopic investi-

gations in the laboratory in the submillimeter region of the spectrum, for both absorption and

emission spectra.

The prospects are equally good for use of the heterodyne radiometer in astronomical investi-

gations, particularly the detection of molecular species in interstellar nebulas. The radiometer was

successfully used to detect the presence of CO in the Orion nebula by observing the J=5<-6 transi-

tion at 691 GHz; these observations were made at the NASA Infrared Telescope Facility on Mauna

Kea, Hawaii, at an altitude of 4,200 meters. Detailed accounts of these experiments are given in

References 1, 37, 38 and 39.

These initial investigations using our submillimeter laser heterodyne radiometer system to-

gether with an acoustooptic spectrum analyzer have generated further development toward a

second generation unit which is more compact and potentially more efficient for a flight oriented

package. Design information has been produced to enhance the current AOS I and AOS II devices

into a rack-mounted version with a m;n_ ; compact data analysis package.
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APPENDIX

DERIVATION OF THE RELATION BETWEEN THE OBSERVED
DATA AND THE ABSORPTION COEFFICIENT

The spectra shown in this report are actually plots of a quantity Q which is a simple function

of the (integrated) voltages at the outputs of the spectrum analyzer channels. What we really want,

of course, is a plot showing the value of the absorption coefficient for each channel. We therefore

need to find the relationship between the measured quantity Q and the absorption coefficient. To

do this it is necessary to follow in detail what happens to the signal as it passes through the radiom-

eter. It is convenient to start by finding the relation between Q and the apparent temperatures seen

at the input to the Schottky diode; these will then be related back to the absorption coefficient.

The measured quantity Q is defined by:

(S—R)/R	
(A 1)

Q = (So—R)/R

where S, So and R all represent voltages at the output of any given one of the spectrum analyzer

channels; S denotes the output voltage when the gas sample cell is filled with an absorbing gas (S

stands for "signal"), So denotes the output voltage when the gas cell is evacuated and R denotes the

output voltage when only a reference signal is Incident on the whisker antenna of the Schottky

diode. We now need to express S, So and R in terms of the apparent temperatures at the input to

the Schottky diode; this requires tracing the signal through the radiometer, from the input of the

diode to the output of the spectrum analyzer. To do this we first need to understand clearly the

double-sideband mixing action of the diode.

The output current of the diode is a highly nonlinear function of the input voltage. For any

nonlinear device, the output corresponding to an input which is the sum of two signals consists of

products of powers of the two signals, as can be seen by expanding the output as a Taylor series in

the input variable. If the simple product of the two signals is dominant in the output (except

possibly for a constant term and the signals themselves), the device can be used as a multiplier. If

dne of the two signals is a sinusoid, the effect of the device is then to merely shift the spectrum of

Al
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the other signal both up and down along the frequency axis, by the frequency of the sinusoid.

Used in this manner, the device functions as a mixer; i.e., as a downward frequency shifter. The

other signal is then available in a lower frequency range, but with its spectrum otherwise unchanged. 	 a

The situation for our device is indicated in Figure Al.

p

}

fc 	 fLO	 fLO +fIF
v

_.	 r
fI F

Figure Al. Input Spectrum to the Mixer

In Figure A 1 the horizontal axis shows frequency increasing toward the right. The subscripts c,

LO and IF denote the absorption line center frequency, the local oscillator frequency and the first

IF frequency, respectively. The wavy line indicates the blackbody spectral distribution, from what-

ever blackbody source is being used, and the dip in the spectrum at the left represents the absorp-

tion line being investigated. The local oscillator frequency is shown as being above the absorption

line, although it may in some cases be below it:* By the Raleigh-Jeans approximation to the black-

body spectral distribution (which is valid for submillimeter wavelengths),

B = 2kT/X 2	(A2)

where B is the brightness, k is Boltzmann's constant, T is the absolute temperature of the blackbody

v source and X is the wavelength. Because the percentage variation in the wavelength is very small

over the frequency band indicated in Figure A 1, it is clear that B is nearly constant over the fre-

quency band.

The action of the Schottky diode mixer can be imagined as shifting the entire spectrum shown

w1	 in Figure A 1 down along the frequency axis so that the local oscillator frequency f r o is at zero

frequency. If the local oscillator frequency lies above the absorption line, the spectrum of the line

can be imagined to reflect off the zero-frequency vertical axis (if we consider the spectrum to be

'I
A2
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mathematically represented by only positive frequencies) and to move upward again until the line

center comes to rest at the frequency fIF = fLO — f, (the first intermediate frequency). The absorp-

tion line spectrum then overlays a pure noise spectrum (i.e., the blackbody source spectrum)

in the band fIF t A. This situation is depicted in Figure A2. If the local oscillator frequency

happens to He below the absorption line the situation is essentially the same, except that in this

case the line spectrum is not transformed into a mirror image of itself. If we assume that the

absorption lines we will be dealing with are symmetrical, then we can ignore any mirror inversion

of the spectrum.

--,.ABSORPTION LINE SPECTRUM

	

j,	 PURE NOISE SPECTRUM

o	 f	 v
IF

Figure A2. Down-Shifted Spectrum

This intermediate frequency spectrum is then amplified by a low-noise amplifier and passed

through a filter which passes only the band fIF ± A (shown darkly shaded in Figure A2). It is

important to note that this band contains two overlapping spectra: the absorption line spectrum

plus pure noise. In this sense the action may be described (loosely) as double-sideband detection.

The band fIF t A is then down-shifted a second time, but this time it is not altered (except

for a scale factor), because the noise outside of the band has been filtered out. The resulting band

fIF ± A is then passed through a spfrtrum analyzer which performs a discrete multi-channel spectral

analysis of the band (and thus of the ab.,arption line within it).

We are now in a position to relate the voltage of the output of the spectrum analyzer to the

apparent temperature at the input to the Schottky diode. The voltage at the output of any given

channel of the spectrum analyzer comes from two sources: thermal (blackbody) radiation at the

A3

•	 a
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input to the Schottky diode and noise generated within the receiver itself, from the diode on.

(Note that the thermal radiation is itself just noise; the spectral line "signal" is just a variation

of the amplitude of this thermal noise along the frequency axis.) If we denote the voltage at the

output of a spectrum analyzer channel by v(e), where a is the frequency deviation from the center

of the spectral line, we may write:

v(e) = h T(e)	 (A3)

where T(e) is the apparent temperature at the input to the diode and h is a factor which takes

account of all gains and losses through the receiver, from the diode on, including conversion losses

in the diode. Because the two "sidebands" (i.e., the band containing the absorption line and its

image on the other side of the local oscillator frequency) differ by only a small frequency, we may

assume that they are affected to the same degree by conversion losses in the Schottky diode; at

all points downstream in the receiver the two sidebands are in the same frequency band, so that

they undergo the same losses and gains. We may thus assume that h does not depend on frequency

over the band we are working with; note also that h includes dimensioned conversion factors, since

v and T have different dimensions. The temperature T is the suns of two fictitiou tA,mperatures:

• The temperature of a fictitious , blackbody which, if viewed through empty space,

would give the brightness actually incident on the Schottky diode; this brightness

is related to T by the Raleigh-Jeans Law (Eq. A2).

• The temperature of a fictitious blackbody which, if its radiation were incident

(through empty space) on the diode, would give rise to the output voltage observed

in the absence of any true input signal (i.e., the voltage caused by internally generated

noise). In other words, this component of T is just the receiver noise referred to the in-

put and expressed as an effective blackbody temperature.

We now must write explicit forms for T, for three distinct cases:



1) The gas sample cell is filled, so that an absorption line is present;

ii) The cell is evacuated;

iii) The input to the diode comes from a reference source.

For the i1rst case we may represent the part of T due to the brightness incident oil the diode by

TOFF-LINE +(TOFF-LINE — AT(e)), where TO FF-LINE denotes the apparent temperature seen by

the diode away from the absorption line and AT(e) denotes the difference in apparent temperature

between the off-line level and a point on the line; note that To FF,LINE appears twice because of

the two overlapping sidebands. As will be described in more detail below, TO 	 is the actual

temperature of the blackbody source, reduced by internal losses In the gas cell walls and associated

windows and mirrors; AT(e) is the temperature difference due to absorption, also reduced by the

same internal loss factor. The part of T due to internally generated noise (i.e., the noise tempera-

ture of the receiver) may be represented by 2TN , since the noise temperature may be assumed to

be constant over the frequency band considered; again the factor of two Is due to the two side-

bands. Thus we may write T for the first case in the form:

T = 2TO F F-LINE + 2TN , AT (e)	 (M)

The second case is the same, except that AT is zero:

T ^ 2TOFF-LINE + 2TN 	 (AS)

For the third case we have:

T = 2TREF +'-TN	 (A6)

where TREF is the actual physical temperature of a reference body placed right before the receiver

(actually, before the diplexer). If we put the three expressions for T given by Eq's. A4, AS and A6

into Eq. A3, denote the resultingv's by S, So and R, respectively and put those into Eq. A1, we get

the measured quantity Q in terms of the apparent temperatures seen by the receiver. Before writing

out this relation, however, it is necessary to briefly describe the measurement process as it is carried

out in the laboratory. A chopper (a fanlike device with two or more blades) is inserted into the

beam just before the diplexer. The rotating blades interrupt the beam emerging from the sample

cell several times a second, so that the receiver alternately sees the beam from the cell and one of

AS

0°
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the chopper blades, which are at room temperature; these blades supply the reference, TREF•
i

Observations are first made with the sample cell filled with the absorbing gas, for a long enough

time to average out the random fluctuations and obtain a good spectrum. The sample cell is then

evacuated and the process is repeated. If the elapsed time between the two sets of observations is

too great, the value of h (in Eq. A3) may have changed due to drifts in the gains and losses through

the receiver.. Te assumed that h is independent of frequency over the small range we are working

with, but it may vary with time.) Because of this possibility we will attach subscripts to n and to

TN ; the subscript 1 refers to the first set c f observations with gas in the cell and the subscript 2

refers to the second set of observations with the cell evacuated. Thus we may write:

S = h l (2TOFF•LINE + 2TN I — AT- W)
j	

So _ h2 (2TOFF-LINE + 2TN2 )
{i

R ° h1,2(L1REF +2TN 1,2)

where the subscripts in the expression for R depend on whether R is measured in the first or second

set of observations. If we put these expressions into Eq_ A 1 we obtain the relation between the

measured quantity Q and the apparent temperatures seen by the radiometer; before simplification

this relation takes the form:

_ [ hl (2TO FF•LINE + 2TN I — AT(e)) —' hl (2TREF + 2TN 1 )] /hl (2TR.EF + 2TN 1 )
Q 

C h2 (2TOFF•LINE + 2TN2 )	 — h2 (2TREF + 2TN2 )1 Jh2 (2TREF + 2TN2 )

From this formula for Q it is apparent why Q was defined the way it was: it is so that all the h's and

TN 's cancel, provided (and this is essential) that the elapsed time between the observations with gas

in the cell and with the cell evacuated is small enough so that no appreciable drift has occurred in

the receiver between the two sets of observations. If this is the case then the quantity Q is inde-

pendent of the noise temperature of the receiver (and of the gain or loss in any component). The

expression for Q then takes the simplified form:

_ I—
	

AT(e)
Q —
	 V2(TOFF-LINE TREF)	

(A7)

A6

I
,n
^a
h
a

u
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4 is important to note one other property of the definition of Q: the value of Q remains the stone

under any linear transformation of the output voltage v. Thus if Eq. A3 were to be replaced by a

relation of the form v(e) = aT(e) + b, the some final formula for Q would have resulted. This

means that the value of Q does not depend on the zero reF.-rence used to define the ouput voltage

v, or on any change of scale factor, provided only that v is defined the same way in measuring all

three of the quantities S, So and R.

We now must relate the quantities appearing In Eq. A7 to the absorption coefficfel.t of the gas

being investigated. To do this we need to apply the theory of radiation transfer to the gas call with

the blackbody source at one end, to calculate the apparent temperature at the other end (just

before the diplexer). The theory (too lengthy to give here) yields the following relation:

TRB%(e) = T- S @'(a(Q) + °LOSS),k + Tvr^5 ( I — 
e--0(e) + C'L0 SS) R	 (AS)

where cx e) is thM absorption coefficient, aL oss is the loss coefficient due to internal losses in the

gas cell (wall absorption plus losses in windows, etc.), .Q is the length of the cell, T(e) is the apparent

temperature at the far end of the cell (just before the receiver), T, ', is the physical blackbody

temperature and To AS Is the physical tempe rature of the gas in the cell. The first term on the

right-hand side of Eq. AS is due to absorption by the gas; the second term takes account of emission

from the gas, assuming local thermodynamic equilibrium. The temperature of the blackbody source

was purposely made quite high, so that the absorption term would be dominant and the emission

term could be neglected. However, we will carry the emission term through the calculations, for

the sake of clarity. Using Eq. AS we may immediately write expressions for the off-lin g: apparent

temperature and the apparent line depth:

TOFF-LING " T aa e"°°LOSS$ +TGAS(l —e—*LOSS.)

and

A7
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OT(e) = T	 - T (e)TO FF-LINE - REC
(A 10)

= e-QLOSSQ (Tsa - TGASX 1 - e-° (°)Q )

If we put the two expressions given by Eq's. A9 and A 10 into Eq. A7, and if we write (1 - a)

	

e— LOSS Q (so that 0 is just the fractional loss of apparent temperature in the gas cell due to internal 	 u

losses), we obtain:	 i

--a e

Q(e) = 1 - ^4 1 - e O Q	
(A 11)

1 + TGAS —TREF

( 1-9)(T BB TGAS)

It is clear that the fraction in the denominator must be small, since TREF is about 300 K (room

temperature), T BB is about 1274 K and TGAS is somewhat above room temperature due to heating

of the gas (a = 0,4); we may thus write, to a good approximation:

	

Q(e) 5^! "i(1 + e-*(0 Q)	 (A 12)

Note that we could have arrived at this same approximation by neglecting the second term (the

emission term) in Eq. A8. Also it is worth nothing that 4i < Q < 1, because 0 < a. If we solve

Eq. Al2 for the absorption coefficient we obtain the relation we wanted:

	

cx(e),= 
Q In 2Q(e)-' 1	

(A 13)

This gives the absorption coefficient in terms of the measured quantity Q. If the values of the

absorption coefficient thus obtained are plotted for each of the spectrum analyzer channels, the

result is the absorption line shape, to within the resolution of the analyzer.

z

As
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