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I. INTRODUCTION

Io is kncwn to have an exterZed atmosphere of neutral sodium, po-
tassium and atomic oxygen detected by ground-based observations and also
appears to be the source of oxygen and sulfur ions forming a dense hot
plasma torus threaded by the satellite orbit. This hot torus was
recently discovered by the Voyager 1 spacecraft. Sodium atoms are
supplied to the Io extended atmosphere or cloud with velocities at or
above the escape velocity (~2.5 km sec-l) and there is evidence for a
broad dispersion in the emission velocity distribution up to 15 or
20 km sec'"l \Trafton and Macy, 1977). These velocities are highly non-
thermal. The operative satellite emissicn mechanism for sodium atoms
is not known but sputtering from Io's surface (Matson et al., 1974)
and electromagnetic driven escape processes (Smyth and McElroy, 1977)
have been suggested. Observational data available for the potassium
cloud indicate that a satellite emission mechanism similar to sodium
is likely (Trafton, 198la). Little observational data are available
for the oxygen cloud (Brown, 1981).

For the oxygen and sulfur ions in the hot Io plasma torus, the
chemical identities of the initially ejected materials (e.g., O, S, SO,
SO2, Nas, S+ etc.) and the nature of the satellite emission mechanism
responsible for their ejection are at present poorly understood. Vol-
canic ejection velocities (<1 km/sec) are too low for direct escape.
For the sodium cloud, in contrast, a sufficient collection of ground-
based data exists and has undergone sufficient modeling so that careful
quantitative studies should now be able to somewhat completely and
hopefully uniquely characterize the emission surface, flux and velocity
distribution. This would then make it possible to identify the sodium
emission process operative at Io. Although oxygen and sulfur escape
from the satellite may not have the same escape mechanism as sodium,
understanding the sodium mechanism would at least be highly suggestive
and could be of fundamental importance. Understanding of the Voyager
data for escape of oxygen and sulfur is presently at a much less ad-
vanced stage of development compared with sodium, but progress is

rapidly being made with more data analysis. Detailed quantitative



analysis of Earth-based sodium data is therefore also of importance in
this larger context. Simultaneous exploratory studies of the oxygen
cloud and of a possible sulfur cloud are also desirable, especially in
the light of recent advances in understanding their complex interactions
with the magnetosphere.

The plasma conditions of the Jovian magnetosphere, determined both
by Voyager and Earth-based measurements, are very important in under-
standing the sodium cloud or any other neutral potassium, oxygen or
sulfur cloud emitted by In. The spatial distribution of these emitted
gases will of course depend on the nature and variability of the satel-
lite source. It will, however, be influenced in addition by the plasma
ionization lifetime of the orbiting atoms (or molecules) in the circum-
planetary magnetosphere. If the lifetime is short, the gas should be
relatively confined to the near satellite environment. On the other
hand, if the lifetime is long, the orbiting gases will fill a doughnut
shaped volume, extending all the way around the central planet (Fang
et al., 1976). Spatial non-uniformities in the lifetime, as introduced
by the presence of the lo plasma torus, will in addition non-uniformly
contour the local density of the cloud.

The spatial distribution of gases in the extended Io atmosphere is
also important in determining the characteristics of Jupiter's magneto-
sphere. As cloud atoms (or molecules) are lost through collisional ion-
ization and charge exchange processes with the magnetospheric plasma,
the newly created ions and electrons not only prcvide a net plasma
source but also through neutral-ion charge exchange reactions actually
alter to a significant extent the relative abundance of the ion species
(Johnson and Strobel, 1982). This net source of plasma and these local
alterations of the resident ion populations will then be spatially
distributed in the magnetosphere by the corotational motion of Jupiter's
magnetosphere and by magnetic diffusion processes, and will also be
lost locally by ion recombination and by certain charge exchange pro-
cesses with the neutral cloud atoms. The properties of the magnetosphere
that are determined directly from analysis of plasma data obtained from
the Pioneer and Voyager spacecraft and from Earth~based sites must
ultimately be consistent with the magnetic diffusion and charge exchange

processes of the satellite-ion source and also with the observations of



the neutral cloud densities in the near Io vicinity. 7This strong
coupling of the Io plasma torus and the neutral cloud density, and
the consistency of the measured and predicted properties of the mag-

netosphere are the subjects of primary concern to this research effort.



II. PROGRESS DURING 1HE FIRST YEAR

Goals and First Year Strategy

The two primary goals of this research program are (l} to charac-
terize the satellite emission conditions of sodium, oxygen and possibly
sul fur operative at Io, and (2) to help characterize the satellite-ion
source and the magnetic diffusion of ions in the near Io environment.
To achieve these two objectives, two different approaches have been
initiated during the first year: (1) identification of the satellite
emission characteristics for sodium atoms from the substantial neutral
cloud data bage obtained by Earth-telescope observations, and (2) ex-
ploratory modeling of the recently discovered Io oxygen cloud and a
possibly.existing Io sulfur cloud.

The strategy adopted during the first year has been to focus more
effort upon the exploratory modeling of the Io atomic oxygen cloud and
less effort upon the analysis of the Io sodium cloud data. This stra-
tegy was adopted to optimize our scientific program in response to
reduced budgetary support available during the first year. The sodium
data analysis effort has thus been restricted to acquisition and pre-
liminary evaluation of Io sodium cloud and Io plasma torus data. This
strategy has allowed the necessary ground work to be prepared in the
first year so tnat the more time consuming and quantitatiwve analysis

of the sodium data may be initiated early in the second year.

Modeling of the Io Oxygen Cloud

Model Improvements

Significant progress has been made in the first year in exploratory

modeling of the Io atomic oxygen cloud. The oxygen cloud model has
been improved so that it is now capable of calculating not only the
two-dimensional sky-plane intensity of the 63005 emission of atomic
oxygen (illustrated by earlier model results in Figure 1), but also
the 13048 emission and the 880R emission of atomic oxygen. These three

wavelength emissions are those for which observational measurements
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have been performed by ground-based, rocket, Earth-orbiting satellite
and Voyager spacecraft instruments as summarized in Table 1.
Imprevements in the cloud model have also been made in the two-
dimensional data for the lo plasma torus electrons. Thesé data are
usect to determine the lifetime ¢f oxygen atoms in the Jovian environment
as well as the volume excitation rates for the three emission lines of
atomic oxygen resulting from election impact. The two~dimensional
ionization lifetime for oxygen, produced by the Io plasma torus «lec-
trons and corresponding to the results of Figure 1, is shown in Figure
2. This lifetime is radially highly-asymmetric about the orbital posi-
tion of 1Io (5.9RJ) such that the portion of the atomic oxygen cloud
that forms inside the satellite orbital radius is significantly more
dense and extended than the portion of the cloud outside of the orbit,
as illustrated in Figure 3. The instantaneous oxygen-ion creation rate
produced from this ionziation of the cloud atoms by the Io plasma torus
is shown in Figure 4 and is (as expected) somewhat complementary to the

spatial distribution of the neutral gas cloud shown in Figure 3.

Mode:1 Results for the Neutral Oxygen Cloud

The flux of oxygen atoms from Io can be determined by comparison
of model results for the 63003 emission intensity with the ground-based
observation of Brown (1981). 1In our most recent calculations assuming
plasma conditions appropriate to the encounter of Voyager 1 with Jupiter,
Brown's measured value of 8+ 4 Rayleighs corresponds to an oxygen flux
of about (3+1.5) x 109 atoms cm—2 sec-l from Io's surface or an over-
all source rate of (1.2+0.6) x 1027 atoms sec-l. This is 30% of the
value assumed for the oxygen flux in the model results of Figure 1.

For plasma conditions existing at the encounter of Voyager 2 with
Jupiter (which are more appropriate to Brown's observations), the

above values of the oxygen flux and overall source rate must be reduced
by a factor of two.

These calculated values for the atomic oxygen flux and the overall
source rate are only preliminary estimates which will be refined mostly

upward in future calculations by incorporation of the four model improve-

ments summarized in Table 2. Of particular importance is the third of



tt.ese four improvements, the inclusion of charge exchange lifetime
processes for atomic oxygen. Relevant cross sections for neutral-ion
and ion-ion charge exchange reactions for oxygen and sulfur have
recently been estimated and their influence evaluated in the Io plasma
torus by Johnson and Strobel (1982), who concluded that inside Io's
orbit these processes are very important and are the primary means of
ionizing the oxygen and sulfur gas clouds. The impact of including
these charge-exchange processes in the above model calculation is
roughly estimated to be an increase in the values of the reqaired
oxyyen flux by about a factor of four to five. Efforts during the

last quarter have already been initiated to update the model to include
charge exchange. This update requires that the number density of the
different ion species must be specified (included in the fourth improve-
ment of Table 2) and eventually that the oscillating motion of the Io
plasma about the satellite plane (the second improvement of Table 2) be
incorporrted in the model.

Specification of the oxygen atoms flux from the 63003 intensity
data automatically determines the intensity of the 13043 emission and
the 8805 emission in the model calculation. In our most recent model
calculations, the intensity of the 13043 emission is comparable to
the 63003 emission intensity, while the intensity of the 880 emission
is about five times smaller. These model results for the UV emissions
are a little below the observational upper limi’:s imposed by measure-
ments summarized in Table 1 when the different slit sizes of the measur-
ing apertures on the sky plane are properly taken into account. More
sensitive rocket and IUE satellite measurements or a longer analysis-
sampling-time of select Voyager UVS data might therefore be able to
provide a positive aetection of one or both of these UV emission lines.

This has been brought to the attention of the UV investigators.

Model Results for the Satellite Ion Source

Specification of the overall source rate of oxygen atoms emitted
by Io from the analysis of the observed 63005 intensity data also
establishes the overall net O+ ion-creation rate of the neutral cloud

through electron impact ionization. Charge exchange reactions do not



change the net number of charges in the plasma altiough the number of
charge carriers may be changed. The neutral cloud may not, however,

be the only source of net Ot ions for the Io plasma torus since direct
escape of oxygen ions from the satellite or production of 0% ions from
dissociation of the oxygen bearing molecules or ions located in the
Jovian environment might also occur. It would appear at present from the
discussion to be presented below, that the satellite ion source provided
by the neutral gas cloud is very significant if not, in fact, the domi-
nant channel through which ions are supplied by the satellite to the
magnetosphere. This understanding of the interaction of the satellite,
its local atmospher: and its neutral gas clouds, and the magnetospheric
plasma is of central importance since the fundamental conclusions that
have emerged from recent observational and theoretical studies of
Jupiter's magnetosphere are (1) that Io is the primary.source of the
Jovian magnetospheric plasma, and (2) that this plasma source is the

key element that differentiates the character of the magnetosphere of
Jupiter from that of the magnetosphere of the Earth and Saturn.

Model calculations of the spatial distribution of the atomic oxy-
gen and satellite ion creation rate, as illustrated in Figure 3 and
Figure 4, are useful in supporting many related studies of Jupiter's
magnetosphere. Six such studies are summarized in Table 3 for which
cooperative efforts with each investigator has been established.
Results of the fifth cooperative effort is central in the recent work
of Johnson and Strobel (1982) and the efforts reported here have
benefited directly from the sixth cooperative effort (Smyth and She-
mansky, 1982). Discussion here will be limited to the first subject
in Table 3 for which some additional interesting results have been
obtained.

The discovery of an Io-correlated energy source for the Io plasma
torus was recently announced by Sandel (198l). His analysis of the
Voyager UVS observations showed that the plasma downstream from Io is
brighter in SIII 685; emission because of an elevated electron tempera-
ture. The mechanism that raised the electron temperature was estimated
to operate within about 45° of the position of Io in its orbit and
represented a time average power input of about 4 x 10ll watts oxr

about 20% of the power radiated in the UV by the torus. This time



average power input may well be associated with the spatial pattern of
the instantaneous ion creation rate shown in Figure 4 if there exists
an energy transfer mechanism that -would rapidly thermalize the newly-
created corotational ions and heat the j:lasma electrons. Using the

27 secml deduced

overall net oxyden ion creation rate i 0.%5-1.2 x 10
from the oxygen cloud model and assuming that half that number of
sulfur icns would also be produced near Io (similar to the results of
Figure 4), a hot electron source located just ahead of Io’s oxbital
position with an energy input of between 0.54-1.08 x 1011 watts or
about 2.7%-5.4% of the total energy radiated in the UV torus would be
produced if a rapid enexrgy transfer mechanism were operative.

If the additional ionizations of the neutral oxygen and sulfur

clouds produced by magnetospheric plasma charge exdhange processes

such as
ot +o0+0+0"
st + 0+ st + oF
ot +s +o0 + st
st +s->s +st
s™ + 5+ gt 4 st

were also included in the model, the overall oxygen supply rate and the
overall ion creation rate are expected to be at least four to five
times larger. In this case the model estimated value for the Io cor-
related energy source would then be between (2.2-5.4) x 10ll watts or
between 11%-27% of the total energy radiated in the UV plasma torus,
which is in reasonably good agreement with the 20% value reported by
Sandel (198l1). The remaining 80% of the input energy to the plasma
torus has been associated by Shemansky and Sandel (198la, b) with an
electron-electon heating mechanism in the magnetosphere that is

stationary in local time on the dusk side of Jupiter.

Modeling of the Io Sulfur Cloud

A model for the expected but not yet detected Io sulfur cloud was
developed during the last quarter of this contract year. The lifetime

of sulfur resulting from electron impact ionization and the volume
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excitation rates for the sulfur emission lines at 4“89;, 77253, 108208
and 113063 resulting from electron impact excitation processes were
incorporated in the model. Preliminary calculations indicate that the
45898 line is about five times dimmer than the 77258 line and that the
77258 line is significantly dimmer than the 63008 oxygen line emission
from the Io plasma torus. The 10820R line intensity is comparable to

the 63004 oxygen line emission intensity while the 113¢(+A line is some-
what dimmer. Complete sky-plane intensity maps of the sulfur emission
intensities will be available early in the second year. Similar improve-
ments to those listed in Table 2 for the oxygen cloud are also pl.-aed

for the sulfur cloud mod=zl in the second year effort.

Analysis of the Io Sodium Cloud Data

The quantitative analysis of the Io sodium cloud data has been
divided into five stages of activ.!ties which are summarized in Table 4.
For model inversion of a given measurement, the sodium cloud model will
be used to calculate a set of appropriate basis functions, which together
with the measurement data, will then be the input for a constrained
least square optimization problem. Best determined values of the phyasi-
cal model parameters will result from the data inversion method. The
complete inversion scheme is diagrammed in Figure 5.

Efforts during the first year have been purposefully maintained
at a low level because of budgetary reductions and have been restricted
to the first stage of activity listed in Table 4, that of acquiring and
preliminary evaluation of the old and new sodium cloud and Io plasma
torus data summarized in Table 5. New line profile data for the sodium
cloud have been recently obtained from Trafton (1981lb). Additional
line profile data are being sought from Trauger (1982) and spatial
intensity data have been obtained from Mekler (1982). Impreovements in
the accuracy of plasma properties in the Io plasma torus are actively
being sough% from Bridge, Belcher, and Sullivan (1982) and from Pilcher

and Morgan (1982).
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Ol Electron Impact lonization Lifetime in the Io Plasma Torus
(Voyager 1 Plasma Conditions)
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Figure 2

The two-dimensicnal lifetime of atomic oxygen in the Io plasma torus, cal-
culated for electron impact ionization and assumed in the model results
of Figure 1, is shown.
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Io: Atomic Oxygen Torus
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Figure 3

The two-dimensional column density (atoms cm~2) of the Io oxygen cloud
is shown as viewed above the satellite plane. Contour -values near the

satellite are larger.
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Io: Oxygen lon Creation Rate
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Figure 4

The two-dimensivonal oxygen ion creation rate (ions om %sec™d) produced by
the interaction of the Io oxygen cloud and the model-assumed non-oscillating
plasma torus is shown as viewed from above the satellite plane. Contour
values near the satellite are larger.
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Figure 5
Data Analysis Scheme. The roles of the spacecraft and Earth-based

data, the sodium cloud model, and the data inversion technique in
determining the values of the physical model parameters are illustrated.
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