NASA TECHNICAL
MEMORANDUM

NASA TM X-2954

NASA TM X-2954
0
O
',

DOWNGRADED T0-UNG/R55: Froeel
BY AUTHORITY 07 7.5 CLAiSTT ICATION

CHAUGE NOTICES No.2¥D. DaTzs e 7
ITEM NO..52_ __ B B

EFFECT OF WING MOUNTED NACELLES
ON A 42° SWEPT SUPERCRITICAL WING
CONFIGURATION AT NEAR-SONIC SPEEDS

by Linwood W. McKinney, Joseph F. Herman,
and Lawrence A. Bodin

Langley Research Center
Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION + WASHINGTON, D. (. « MARCH 1974



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM X-2954

4, Title and Subtitle 5. Report Date
EFFECT OF WING-MOUNTED NACELLES ON A 42° March 1974
SWEPT SUPERCRITICAL WING CONFIGURATION AT 6. Performing Organization Code
NEAR-SONIC SPEEDS (U)

7. Author{s}) 8. Performing Organization Report No.
Linwood W. McKinney, Joseph F. Herman, and L-9267
Lawrence A. Bodin 10. Work Unit No.

8. Performing Organization Name and Address 760-64-60-01
NASA Langley Research Center 11, Contract or. Grant No.

Hampton, Va. 23665

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration
Washington, D.C. 20546

14. Sponsoring Agency Code

15. Supplementary Notes

Joseph F. Herman and Lawrence A. Bodin are associated with Hampton Technical Center of
Ling-Temco-Vought Aerospace Corporation.

16. Abstract

An investigation has been made to asses the effect of wing-mounted nacelles on a
supercritical wing configuration at near-sonic Mach numbers. The investigation was
made by utilizing the Cornell Aeronautical Laboratory 8-foot transonic tunnel and cov-
ered a Mach number range from 0.90 to 0.99. Force data and pressure measurements
at selected locations were obtained.

The investigation with the nacelles on included the effect of spanwise location of
the nacelle (semispan locations of 35 and 70 percent) and the effect of area ruling for
the nacelles located at the 35-percent semispan station. Tests were also made with
the outboard nacelle extended forward so that it was directly adjacent to the inboard
nacelle location. These tests provided a direct assessment of the extent of the nacelle

CLASSIFICATION CHANGE
7o, UNCLASSIFIED

interference flow field in a lateral direction.

By authority of_ A//95/9 #Dé? 7.D. 77- /63

Chan{ Y~ VA

Clas

801%

17. Key Words (Suggested by Author{s})
Wing -mounted nacelles
Transonic speed
Supercritical wing
Transport configuration
Pressure and force data

R

}

21. No. of Pageé

1 22 Price ’
148 '

’(“_<.~k_ —— L

i

|



EFFECT OF WING-MOUNTED NACELLES
ON A 42° SWEPT SUPERCRITICAL WING CONFIGURATION
AT NEAR-SONIC SPEEDS*

By Linwood W. McKinney, Joseph F. Herman,**
and Lawrence A. Bodin**
Langley Research Center

SUMMARY

An investigation has been made to assess the effect of wing-mounted nacelles on a
supercritical wing configuration at near-sonic Mach numbers. The investigation was
made by utilizing the Cornell Aeronautical Laboratory 8-foot transonic tunnel and covered
a Mach number range from 0.90 to 0,99. Force data and pressure measurements at |
selected locations were obtained.

In order to make a realistic assessment of the effects of nacelle installation, it was
necessary to optimize the configuration with the nacelles both off and on, Tests with the
nacelles off indicated that a strong interaction existed between the wing and fuselage pres-
sure fields. Small changes in the local fuselage contour affected the fuselage shock loca-
tion and strength which resulted in significant changes in wing performance at near-sonic
Mach numbers. -

The investigation with the nacelles on included the effect of spanwise location of the
nacelle (semispan locations of 35 and 70 percent) and the effect of area ruling for the
nacelles located at the 35-percent semispan station. Tests were also made with the out-
board nacelle extended forward so that it was directly adjacent to the inboard nacelle
location. These tests provided a direct assessment of the extent of the nacelle interfer-
ence flow field in a lateral direction.

The nacelle installation tests indicated that the nacelle at the outboard location had
a more pronounced effect on the wing than at the inboard location. Moving the nacelle
laterally from 35-percent semispan to 70-percent semispan had essentially no effect on
the pressures induced by the nacelle on the fuselage and indicated that both the outboard
and inboard nacelles should be included in the area distribution. The increase in local
curvature obtained when the nacelle area was removed from the fuselage circumferentially
produced shocks off the fuselage at Mach numbers of 0.95 and greater that offset the drag
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" reduction which should have been obtained because of the improved area distribution.
Area ruling for the inboard nacelle by removing area from the underside of the fuselage
reduced the drag due to nacelle installation to a level approximately corresponding to that
of the isolated nacelle.

INTRODUCTION

The development of the NASA supercritical airfoil section at the Langley Research
Center has offered the possibility of efficient cruise at near-sonic speeds. This devel-
opment provides the potential for a significant payoff in commercial aviation. As a result
of this potential, the National Aeronautics and Space Administration is engaged in a con-
tinuing research program aimed at the development of a technology base for the design of
transport aircraft utilizing supercritical technology.

Past investigations have demonstrated the performance characteristics of the super-
critical wing section (refs. 1 to 11) and initial integrated configuration studies have been
made utilizing aft fuselage mounted engines to avoid possible adverse nacelle-pylon-wing
interference (ref. 12). However, there are several attractive advantages to wing-mounted
engines in transport design, such as improved balance capabilities for large aircraft,
possible wing-bending relief and greater freedom in horizontal-tail placement for stability
and control considerations. Therefore, one of the research areas currently under con-
sideration is the integration of wing-mounted nacelles on a transport configuration
designed to operate at near-sonic speeds.

It is generally assumed that successful nacelle integration at speeds near Mach 1.0
will depend primarily on providing an area ruling of the complete configuration corre-
sponding to that for a minimum pressure drag body of revolution while avoiding com-
ponents with severe local surface contours. Therefore, an investigation was undertaken
to determine the effectiveness of local contouring on the fuselage to account for wing-
mounted nacelles in the overall area distribution.

The investigation was made by the Langley Research Center utilizing the Cornell
Aeronautical Laboratory 8-foot transonic wind tunnel. Technical assistance was provided
by the Hampton Technical Center of Ling-Temco-Vought Aerospace Corporation.

COEFFICIENTS AND SYMBOLS
All coefficients are based on the geometry of the reference wing panel which does

not include the leading-edge glove or the trailing-edge extension. -(See fig. 1.) Moments
are referenced to the quarter-chord point of the mean geometric chord which is located
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at fuselage station 73.40 cm (28.898 in.). Values are given in both SI and U.S. Customary

Units.

The measurements and calculations were made in U.S. Customary Units.

wing span, 114.3 cm (45 in.)
local streamwise wing chord

wing-panel mean geometric chord, 18.087 cm (7.121 in.)

Axial force

axial-force coefficient,
asS

drag coefficient, Drsag
nacelle internal drag coefficient

lift coefficient, Lift

pitching-moment coefficient, Litching moment

qSc X
normal-force coefficient, N___Orm:é force
Piocal ~ Pstatic

pressure coefficient,

q

free-stream Mach number_ '

pressure, N/m?2 (Ib/£t2)

free-stream dynamic pressure, N/m2 (1b/£t2)
radius, cm (in.)

wing panel reference area, 0.1928 m?2 (2.075 £t2)
thickness, cm (in.)

distance measured from leading edge of local wing chord, positive toward
wing trailing edge, cm (in.)



y distance measured laterally from plane of symmetry, cm (in.)
z distance measured along a line perpendicular to x and vy,
cm (in.)
o’ angle of attack, referred to fuselage reference line, deg
ercent semispan station, ——
n p p ' B2
Subscripts:
l lower
u upper

APPARATUS AND PROCEDURES

Tests

The investigations were conducted by Langley Research Center personnel utilizing
the Cornell Aeronautical Laboratory 8-foot variable-density wind tunnel. The facility has
an 8-foot-square perforated test section with a porosity of 22 percent. The configurations
were generally tested over a Mach number range from 0.90 to 0.99 at a constant Reynolds
number of 9.84 x 106 per meter (3.0 X 108 per foot).

Wind-Tunnel Models

A two-view drawing of the general configuration is presented in figure 1. A typical
longitudinal development of fuselage cross sections is presented in figure 2. For this
investigation the horizontal tail was not included on the model.

The model wing has an aspect ratio of 6.77, a panel taper ratio of 0.36, and 42.24°
of sweepback at the quarter-chord line. The wing area of the basic panel, including the
fuselage intercept, is 0.1928 m?2 (2.075 ft2), and the reference mean geometric chord is
18.087 cm (7.121 in.) in length. Table I presents the wing coordinates. Figure 3 presents
the measured twist distribution of the wing including the original incidence. (See table I.)
The wing was tested with the incidence increased 0.5° by rotating the wing about fuselage
station (FS) 39.90 cm (15.71 in.) and water line (WL) -1.55 cm (-0.61 in.). The wing was
constructed of aluminum and was instrumented with flush surface static-pressure orifices
in streamwise rows on the upper and lower surfaces at semispan stations of 22, 32.3,
and 37.7 percent. The same wing was used for all tests.
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The fuselage was constructed in a manner such that material could be added or
removed to investigate the effects of longitudinal development of cross-sectional area on
aerodynamic characteristics. Initial investigations were conducted with a wing—body —
vertical-tail configuration, designated configuration B. This body was modified by
- extending the nose 5.08 cm (2 in.) and redefining the cross-sectional area progression
based upon an area distribution presented in reference 12. The body was instrumented
with flush surface static-pressure orifices located between fuselage stations 35.56 cm
(14 in.) and 91.44 cm (36 in.) on the top center line, on the right side above the wing
(WL = 0) and on the bottom center line for selected configurations.

Wing -mounted flowthrough nacelles were used to investigate the effect of spanwise
location on aerodynamic characteristics. Nacelles were located at 35-percent and then
at 70-percent wing semispan. Figure 4(a) presents the pertinent geometry of the basic
pylon-nacelle installations at 35- and 70~-percent semispan. Ordinates for the pylon,
measured normal to the leading edge, are presented in table II. Figure 4(b) presents a
scherﬂatic sketch of the extended pylon which was also mounted at the 70-percent semi-
span station and located the nacelles so that they were at the same longitudinal station as
the inboard nacelle location. (See fig. 5(j).) This extended pylon is not considered to be
a practical arrangement, but was used to isolate spanwise and chordwise effects,

The model vertical tail had an aspect ratio of 1.34, a taper ratio of 0.306, 45°
sweepback at the quarter-chord line, and a symmetrical airfoil section.

Several model photographs are shown in figure 5.

Boundary-Layer Transition

Boundary-layer trips were applied to the wing and tail surfaces by using the tech-
nique described in references 13 to 15 to simulate full-scale Reynolds number boundary -
layer shock-induced separation characteristics. This technique requires that laminar
flow be maintained ahead of the trip, and, therefore, caution was exercised to maintain a
very smooth surface ahead of the trip. The wing transition strips were located as shown
in figure 6.

The transition strips on the vertical tail were located at 31 percent of the local
streamwise chord. Number 120 carborundum grains were used. The fuselage transition
strip was applied 3.81 cm (1.5 in.) aft of the fuselage nose with number 100 carborundum
grains, Transition strips for the flowthrough nacelles were located 0.9525 cm (0.375 in.)
behind the inlet leading edge. Strips of number 120 carborundum grains were applied
inside and outside. Transition strips on the nacelle pylons were located 0.254 cm
(0.10 in.) measured normal to the leading edge. Number 120 carborundum grains were
used. All model transition strips were 0.127 cm (0.05 in.) wide.
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Measurements

Aerodynamic forces and moments were measured with an internally mounted six-
component strain-gage balance. Measurements of the local static pressure along stream-
wise chord lines were obtained for selected wing semispan stations. In addition, local
static pressures were measured along the top center line, along the right side (WL = 0),
and along the bottom center line of selected fuselage configurations. Pressures were
measured with internally mounted scanivalves. '

Force measurements were taken over a Mach range varying from 0.90 to 0.99 for
angles of attack that generally varied from -0.5° to 5.5°9. Pressure data were obtained in
the angle-of-attack range of 1° to 4°. Pressure data presented in this report are for a
lift coefficient of approximately 0.40.

Corrections

Measured axial force and drag data presented herein have been corrected to a con-
dition of free-stream static pressure acting on an area of 19.32 cm? (3.0 in2). To be
consistent with reference 12, this area represented the cross-sectional area of the sting.
Where applicable, the axial force and drag have been reduced by the estimated skin fric-
tion on the interior surfaces of the flowthrough nacelles as presented in figure 7. Cor-
rections have been made to the measured angle of attack for model support system deflec-
tions. Further corrections to the measured angle of attack have been made for tunnel
airflow angularity.

Accuracy

- The accuracy of the force and moment measurements, as determined by calibration
of the balance, is given in coefficient form as follows:

Normal force . . . .. e +0.0009
Pitching moment . . . .. .. .. ... .. ..... +0.00025
Axial force . . . . . . .. .. ... +0.00017

Pressure measurements were measured with an accuracy of +11.97 N/m2 (+0.25 Ib/ft2).
Mach number measurements were accurate to +0.002. Angles of attack are estimated to
be within +0.050°.

RESULTS AND DISCUSSION

In order to make a realistic assessment of the effects of wing-mounted nacelle
installations at near-sonic speeds, it is necessary to optimize both the nacelles-on and
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nacelles-off conﬁguratiohs. Therefore, an investigation was made to optimize the wing-
body configuration prior to nacelle installation. The importance of applying the area-rule
concept in this speed range and at the same time providing a fuselage shape that conforms
to the wing streamlines for control of the isobars on the wing, has been recognized for
some time. However, practical experience in applying these principles and assessing’
their sensitivity has been limited because of wing performance prior to the development
of the NASA supercritical section. Because of this general lack of experience, a rather
detailed discussion of the wing-body optimization is presented.

Optimization of Wing-Body

The initial model (model B) was designed to a preliminary sonic area distribution.
(See fig. 8.) Initial tests of this model configuration indicated excessive drag rise at
Mach numbers above M = 0.95. Subsequent to model construction, an improved sonic
area distribution presented in reference 12 was developed. Therefore, the initial model B
was modified to conform to this area distribution. (See fig. 9, model Bl.) In the devel-
opment of these total area distributions, consideration has been given to the second-order
- effect caused by the expansion of the supersonic stream tube above the wing at lifting
conditions. The area associated with this effect is designated in the figure as equivalent
area due to lift. The effect of lift compensation in the area distribution has been verified
by previous experimental work and is discussed in some detail in references 12, 16,
and 17. A comparison of the drag rise characteristics at CL = 0.4 for these two models
is presented in figure 10. This CL is considered to be near the cruise lift condition for
a typical near-sonic transport. The basic data are contained in figure 11. The drag rise
for the B, configuréttion was delayed at low lift coefficients .(CL = 0.2) but at Cp, =0.4
essentially no effect was obtained. A further examination of the forces on the body axes
(fig. 11) indicates that the axial component of force was reduced by the modification
represented by configuration By over the complete Mach number range, the largest reduc-
tion occurring at the high normal-force coefficients. However, a reduction in normal
force with angle of attack is also indicated. The reductions in axial force were expected
with the improved area distribution. The anticipated reductions in drag were not realized,
however, because of the reduced normal-force curve slope, since at an angle of attack
normal force is the predominant contributor to drag.

Since the same wing was used on both configurations <models B and Bl), the reduc-
tion in lift-curve slope was attributed to an interference associated with an oblique shock
of the fuselage. The wing used in this investigation was not identical to the wing used in
reference 12 in that significant differences existed in section shape in the region of the
wing glove near the fuselage, as well as differences in span and twist. Since the pres-
sures on the side of the fuselage are influenced greatly by the wing pressure field, it was
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assumed that the fuselage contours were not optimum, and at the critical speed (M > 0.95)
for this model, shocks were emanating from the side of the fuselage.

A comparison of the area distribution for the B and B; configurations (fig. 12) indi-
cates rather significant differences. In modifying the model to the area distribution
shown for the B configuration and maintaining the maximum fineness ratio (9.05), the
nose of the model was extended 5.08 cm (2 in.) which, in effect, moved the wing rearward.
These changes caused the fuselage area distribution to close to a minimum more rapidly
with higher rates of change in the slope of the surface; this condition might result in-an
adverse interference on the wing.

A third model configuration (model Bz) was therefore investigated, which had the
maximum area further aft while maintaining a smooth area progression and the curvature
of the fuselage in the region of the wing root was reduced. (See figs. 13 and 14.) The
drag rise characteristics for the By and B2 configurations are compared in figure 15.
The B9 configuration shows a more severe drag divergence. An examination of the data
indicates that this condition resulted from a further reduction in wing performance and to
some extent, a less desirable overall area distribution.

A comparison of wing pressure distributions measured at 7 = 0.220, 0.323,
and 0.377 for the B, By, and By configurations is presented in figure 16 for Mach num-
bers of 0.90, 0.95, and 0.98 and a lift coefficient of approximately 0.40. The pressure data
at Mach numbers of 0.95 and 0.98 indicate a reduction in the suction pressures over the
first 30 percent of the chord and a significant loss of pressure recovery over the trailing-
edge section of the wing This condition resulted in both increased drag and reduced
lift for a given angle of attack. Fluorescent oil-flow visualization studies made during
the tests correlated well with these data and the effects can be attributed to a strong shock
emanating from the side of the fuselage and extending across the wing as indicated by the
sketch in figure 17. The fuselage shock occurred aft of the transition strips on the wing
glove and the shock—boundary-layer interaction on the wing glove near the fuselage was
minimized by the high-energy turbulent boundary layer. As the shock extended spanwise
across the transition strip, the shock—boundary-layer interaction in the laminar boundary
layer ahead of the transition induced separation that significantly altered the flow over the
remainder of the wing span. For the By configuration, it appeared that the shock inter-
action with the wing was probably very similar to the By configuration, but somewhat less
severe.

- Although the area progression for the fuselage of the By configuration looked more
favorable from total area considerations, these pressure results indicate a highly unfa-
vorable local interaction of the curvature at the wing root with the wing upper surface
contour. Therefore, the model was restored to the By lines and an attempt was made to
solve the local problems associated with that area distribution. To aid in this task, a
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series of pressure orifices were installed in the fuselage on the top center line, bottom
center line, and along the side 2.54 cm (1 in.) above the wing surface as indicated in
figure 1.

" The changes in area distribution resulting from the local fuselage modifications on
the B1 configuration, designated B1 a and Blb’ are shown in figure 18. The modifications
reduced the curvature on the side of the fuselage in the area of the wing root. The effect
of the reduced curvature on the wing and fuselage pressures are shown in figures 19
and 20 for Mach numbers of 0.90, 0.95, and 0.98. A sketch showing the relationship of
the pressures to the wing location is also shown on the fuselage pressures. In general,
for the By configuration, a high negative peak pressure existed on the side of the fuse-
lage. Reducing the curvature on the Bla configuration reduced the pressure peak and
smoothed the distribution. A further small reduction of the fuselage curvature (model
B1b) had only a small effect on the fuselage pressures. The effect of these changes on the
drag is summarized in figure 21 where a significant reduction is shown for the By con-
figuration at Mach numbers above 0.95. The basic data are presented in figure 22. Since
the overall smoothness of the area distribution has deteriorated with the modifications,
the improvement in drag is the result of reducing the interference on the wing associated
* with the shock off the fuselage.

A further attempt to smooth the overall area distribution was investigated by
reducing the maximum cross-sectional area of configuration By to configuration By. as
shown in figure 23. This reduction was accomplished by removing material from the
fuselage above the wing. The effect of this modification on the drag rise characteristics
is presented in figure 24 and the basic data are presented in figures 25 to 27. The large
increase in drag shown for Mach numbers above 0.95 (fig. 24) was caused by a strong
shock again occurring on the fuselage. The presence of this shock is highly visible in the
pressure distribution of both the wing and fuselage. (See figs. 25 and 26.)

The strong interaction of the wing and fuselage pressure field at near-sonic speeds
is generally known; however, these results illustrate the extreme sensitivity to relatively
small changes in local fuselage contour. It should not be concluded from the results pre-
sented in this report, however, that the total area-rule requirement and conditions for
elimination of adverse local effects cannot be satisfied simultaneously. The present
investigation considered modifications only to the fuselage contour and it is believed that
more severe fuselage contours which would result in a more favorable area distribution
could be tolerated if accompanied by small changes in the shape of the wing glove section
near the fuselage. This change in the wing glove section would be expected to produce a
further improvement in drag at the near-sonic Mach numbers. However, the reason for
attempting to optimize the wing-body configuration in this investigation, as stated earlier,
was to provide a base for assessing nacelle installation effects.- It was not practical at
this point to modify the wing glove in order to effect further optimization of the wing-body
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and since the By, configuration exhibited reasonable drag rise characteristics at the
design point (CL = 0.40) with a relatively smooth area distribution, it was used as a
base for the nacelle-installation tests.

Nacelle Installation Effects

The investigation conducted on the wing—body—vertical-tail configuration without
nacelles verified, as expected, the strong interaction between the pressure fields on the
fuselage and wing glove and indicated the extreme sensitivity of these pressure fields to
small changes in local fuselage contour at near-sonic speeds. In view of these effects
and the anticipated negative pressure increment on the fuselage resulting from the pres-
ence of the nacelle-pylon in the flow field, tests were made with the nacelles installed
without changing the configuration area ruling. These tests provided a qualitative assess-
ment of the direct effect of the nacelle on the wing and fuselage and also served as a base
from which to evaluate the effectiveness of applying the area rule to the configuration to
account for the nacelles.

Effect of not applying the area rule for nacelles.- The effect of nacelles located at
the 35-percent and then at the 70-percent semispan station was investigated. The data
obtained from these tests are presented in figures 28 to 33. The drag data are summa-
rized in figure 28 for Cr, = 0.40 in terms of both total drag and the incremental drag
resulting from nacelle installation. The measured drag for the isolated nacelle-pylon
combination obtained in a previous investigation is also included for reference. At
Cy, = 0.40, both configurations (nacelles inboard and nacelles outboard) exhibited a sig-
nificant drag rise above a Mach number of M = 0.95 with no appreciable difference
between the two locations. At a Mach number of 0.98, the ACp due to the nacelles was
2.3 times the drag of the isolated nacelle. The negligible difference in drag shown for

the two locations at Cp, = 0.40 may have been somewhat fortuitous, however, since the
shape of the drag polars are markedly different for the two locations as Mach number is

increased. (See fig. 29.) At Mach numbers of 0.95 and greater, the nacelles when at the
inboard location have a more severe drag penalty than when at the outboard location for
the low lift coefficients, but at the higher lift coefficients (CL greater than approximately
0.40) the reverse is generally true. The nacelles at the inboard location produced an
improvement in drag due to lift compared with the nacelles off baseline at the high lift
coefficients that resulted in drag levels equal to or less than the nacelles off baseline at
the highest lift coefficients for some Mach numbers. However, in comparing the drag
polars, it should be kept in mind that the nacelles-off configuration was optimized for

Cy, = 0.40 and at the higher lift coefficients flow separation was present on the wing.
With the nacelles installed at the 35-percent semispan station, a vortex off the pylon (visi_-
ble with fluorescent oil techniques) energized the boundary layer in the region of the

10



juncture between the wing panel and highly 's',wept glove and delayed separation on the
wing. Therefore, the apparent improvement in drag due to lift at the high lift coefficient
with the nacelles installed at the 35-percent semispan station would not be expected if the
wing was designed for a higher lift coefficient. It is believed that the results obtained

around the design condition (CL = 0.40) are most realistic.

The effect of the nacelle-pylon on the wing pressure distribution is presented in fig-
ure 30 for Cp, =0.40 at Mach numbers of 0.90, 0.95, and 0.98. These limited pressure
distributions show a slight improvement in pressure recovery at the trailing edge with the
nacelle inboard even for the case for a lift coefficient of 0.40. The effect of moving the
nacelle to the outboard location produces a rise in pressure over the wing leading edge
and a loss in pressure recovery at the trailing edge for Mach numbers of both 0.95
and 0.98.

The effect of nacelle installation on the surface pressures on the top center line,
side, and bottom center line of the fuselage are presented in figure 31 for Mach numbers
of 0.90, 0.95, and 0.98. A comparison of the pressures obtained with the nacelles at the
inboard location with the nacelles-off case indicates a direct effect of the nacelle on the
fuselage. More negative pressures were obtained in the vicinity of the nacelle with a
stronger shock occurring on both the top and bottom of the fuselage. A comparison of the
pressure distribution with the nacelles moved outboard with the nacelles-off case also
indicates some increase in the negative pressure on the fuselage adjacent to the nacelle,
but less pronounced than that with the nacelle inboard, and the fuselage pressures gener-
ally reflect the trend seen on the wing.

Theory indicates that near Mach 1.0 disturbances propagate infinitely far from the
source in a direction normal to the flow. Therefore, it would be expected that varying
the nacelle location spanwise would have a minimal effect on the influence of the nacelle
at the fuselage. In this test, however, the nacelle at the outboard station had a pronounced
effect on the wing (fig. 30); it is not clear whether the increments seen in fuselage pres-
sure are a direct result of the nacelle or are a result of changes in the wing pressure
distribution reflected on the fuselage. Since part of the objective of the investigation was
to assess the applicability of the area-rule concept to nacelles mounted outboard on the
wing, additional tests were made with the outboard nacelle extended forward so that it was
directly adjacent to the inboard nacelle location as indicated in figure 5. These tests,
although not a practical configuration, provided a direct assessment of the extent of the
nacelle interference flow field in a lateral direction at near-sonic Mach numbers. The
tests were made at a later time in the investigation and slight differences in the fuselage
lines resulted in a slightly different fuselage pressure distribution on the nacelles off -
base configuration. Therefore, the data are presented in terms of increments in pressure
coefficient on the fuselage due to the nacelle and are compared with data from the earlier
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installations in figure 32 for Mach numbers of 0.95 and 0.98. At a Mach number of 0.95
(fig. 32(a)) the negative pressure peak on the fuselage is diminished as the nacelle is
moved laterally (position 1 to position 3). Also, the nacelle in the outboard location has
essentially no effect on the pressure at the bottom center line of the fuselage. At a Mach
number of 0.98 (fig. 32(b)), where the flow field around the airplane would be expected to
be supercritic'al, moving the nacelle laterally had essentially no effect on the peak nega-
tive pressures induced on the fuselage. The effect of the nacelle is essentially independent
of lateral location. Based on these data, it is-concluded that for efficient nacelle integra-
tion at near-sonic speeds, both the inboard and outboard nacelle should be included in the
total area distribution.

The limited wing pressure distributions presented earlier in this paper (fig. 30)
with the nacelles installed without changing the configuration area ruling indicated that the
interference field from the outboard nacelle resulted in a loss in pressure recovery on the
wing. The elimination of this interference would appear to require careful redesign of
the nacelle-pylon-wing combination which was beyond the scope of this investigation. In
general, the effect obtained from applying the area rule to the aircraft components is
dependent on the local flow field that the components are immersed in. Therefore, it was
felt that application of the area rule to the fuselage for the outboard nacelle on this con-
figuration prior to elimination of the nacelle-wing interference effects could lead to erro-
neous conclusions with regard to the benefits of applying the area rule. Tests were made,
however, to assess the effectiveness of the area rule for the nacelles at the inboard
location.

Effect of application of area rule for inboard nacelles.- The effect of area ruling for
the inboard nacelles was investigated by removing an amount of cross-sectional area from
the fuselage equivalent to that associated with the nacelles and pylons. In one case, the
area was removed from the fuselage circumferentially, and, in a second case, all area

was removed below the wing. Area distributions for these two configurations are pre-
sented in figures 33 and 34. A summary of the drag characteristics taken at Cyp = 0.40
is presented in figure 35 and the basic data are presented in figures 36 to 38. It will be
observed that removing the area circumferentially resulted in an improvement in drag '
compared with that for the case in which the area rule was not applied; however, taking
the area for the nacelles from the fuselage below the wing reduced the drag due to the
nacelles to a level approximately corresponding to the isolated nacelles up to a Mach num-
ber of 0.94 with a slight difference at the higher Mach numbers.

The differences in drag shown for the two configurations area ruled for the nacelles
which had comparable area distributions are the result of local effects on the fuselage.
Earlier tests indicated that the drag of the configuration was very sensitive to the contours
of the upper fuselage in the region above the wing at Mach numbers of 0.95 and above.
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The addition of the nacelles produced higher velocities and associated negative pressure
peaks in this region. For the case where fuselage area was removed circumferentially,
the curvature of the fuselage was increased in the region adjacent to the nacelle. The
high local velocities associated with the increased curvature combined with the velocity
induced by the nacelle resulted in strong shocks off the fuselage at M = 0.95 and above.
The interaction of this shock with the wing tended to offset drag improvements that should
have been obtained because of the improved area distribution. The presence of the shock
is visible in the 'fuselage pressure distributions presented in figure 38. One approach to
eliminating this problem, which might provide a practical solution, would be to modify
the wing glove locally to compensate for the influence of the nacelle pressure field.

Removing equivalent nacelle cross-sectional area below the wing resulted in a
concaved region in the bottom of the fuselage with relatively high local curvature. The
pressure tubes on the lower surface of the fuselage were destroyed in order to remove
the required amount of material, and a direct assessment of the effects of the changes in
curvature on the fuselage pressure is not available. However, schlieren observations
during the tests indicated that the shocks were not changed significantly and this observa-
tion appears to be substantiated by the force data. It should be pointed out that a shock
is always present on the bottom of the fuselage at near-sonic Mach numbers because of
the cusp in the lower surface of the wing. The addition of the nacelles increases the
shock strength somewhat, but the pressure aft of the shock recovers to near the same level
with nacelles both on and off. (See fig. 38.) Therefore, small changes in shock strength
would not be expected to make significant changes in the drag.

CONCLUDING REMARKS

These exploratory tests indicated that with the nacelles off, a strong interaction
existed between the wing and fuselage pressure field. Small changes in the local fuselage
contour affected the fuselage shock location and strength which resulted in significant
changes in wing performance at near-sonic Mach numbers,

The investigation with the nacelles on included the effect of spanwise location of the
nacelle (semispan locations of 35 and 70 percent) and the effect of area ruling for the
nacelles located at the 35-percent semispan station. Tests were also made with the out-
board nacelle extended forward so that it was directly adjacent to the inboard nacelle loca-
tion. These tests provided a direct assessment of the extent of the nacelle interference
flow field in a lateral direction.

The nacelle installation tests indicated that the nacelle at the outboard location had
a more pronounced effect on the wing than at'the inboard location. Moving the nacelle
laterally from 35-percent semispan to 70-percent semispan had essentially no effect on

SUSTTRESEET 13



the pressures induced by the nacelle on the fuselage and indicated that both the outboard
and inboard nacelles should be included in the area distribution. The increase in local
curvature obtained when the nacelle area was removed from the fuselage circumferen-
tially produced shocks off the fuselage at Mach numbers of 0.95 and greater that offset
the drag reduction which should have been obtained because of the improved area distri-
bution. Area ruling for the inboard nacelle by removing area from the underside of the
fuselage reduced the drag due to nacelle installation to a level approximately correspond-
ing to that ofe the isolated nacelle.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., November 26, 1973.
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TABLE I.- WING AIRFOIL COORDINATES

zu/c for - zl/c for — Zy/fc for — z)/c for -
x/c 71 =0.1042; c =45.895cm (18.0691in.); x=0 71=0.1932; ¢=31.359 cm (12.3461in.); x=0
at fuselage station 32.512 cm (12.80 in.) at fuselage station 48.209 cm (18.98 in.)
0 -0.0225 -0.0225 -0.0497 -0.0497
.0025 -.0153 -.0296 -.0418 -.0562
.0050 -.0119 -.0331 -.0390 ’-.0592
.0100 -.0075 -.0376 -.0346 -.0641
.0150 -.0043 -.0410 -.0315 -.0676
.0250 .0003 -.0465 -.0265 -.0729
.0500 .0078 -.0555 -.0178 -.0824
.0750 .0140 -.0618 -.0124 -.0885
.1000 .0182 L0664 -.0086 -.0926
.1500 .0242 -4.0728 -.0043 -.0985
.2000 .0283 1.0776 -.0023 -.1019
.2500 .0305 1.0808 -.0017 -.1039
.3000 0307 -4.0828 -.0021 -.1046
.4000 .0263 1.0834 -.0042 -.1026
.5000 .0173 -.0797 -.0084 -.0975
.5500 .0124 -.0751 -.0113 -.0939
.6000 .0074 -.0700 -.0148 -.0894
.6500 .0024 -.0642 b -.0187 -.0843
.7000 -.0031 -.0584 -.0230 -.0789
.7500 -.0086 -.0525 -.0278 -.0728
.8000 -.0146 -.0468 -.0329 -.0668
.8500 -.0212 -.0434 -.0384 -.0620
.9000 -.0279 -.0424 -.0441 -.0599
.9500 -.0343 -.0435 -.0502 -.0603
1.0000 -.0424 -.0448 -.0582 -.0622
17



TABLE I.- WING AIRFOIL COORDINATES - Continued

zu/c for — zl/c for - zy/c for — z;/c for —
x/c n=0.25T8; c=23.995cm (9.447in); x=0 | n=0.3111; c=20.759 cm (8.173in.); x=0
at fuselage station 57.506 cm (22.64 in.) at fuselage station 62.205 cm (24.49 in.)
0 -0.0796 -0.0796 -0.1014 -0.1014
.0025 -.0711 -.0868 -.0941 -.1080
.0050 -.0679 -.0901 -.0909 -.1113
.0100 -.0636 -.0948 -.0870 -.1156
.0150 -.0604 -.0981 -.9841 -.1188
.0250 -.0564 -.1030 -.0793 -.1233
.0500 -.0494 -.1108 -.0719 -.1300
.0750 -.0446 -.1161 -.0668 -.1344
.1000 -.0410 -.1197 -.0629 -.1378
.1500 _ -.0359 -.1240 -.0572 -.1422
.2000 -.0325 -.1265 -.0535 -.1444
.2500 -.0304 -.12717 -.0512 -.1453
.3000 -.0291 -.1280 . ~.0496 -.1452
.4000 -.0293 -.1256 ¢ . -.0493 -.1431 ¢
.5000 -.0321 -.1205 i ..0511 -.1376 !
.5500 -.0345 -.1169 -.0525 -.1327
.6000 -.0371 -.1121 -.0540 -.1281
.6500 -.0400 -.1065 -.0561 -.1216
.7000 -.0431 -.0998 -.0581 -.1137
1500 -.0464 -.0922 -.0607 -.1050
.8000 -.0503 -.0849 -.0639 -.0967
.8500 -.0545 -.0793 -.0675 -.0906
.9000 -.0595 -.0766 -.0721° -.0879
.9500 -.0659 -.0774 -.0782 -.0896
1.0000 -.0751 -.0798 -.0879 -.0925
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TABLE I.- WING AIRFOIL COORDINATES - Continued

zy/c for — z, fc for — zy/c for — g /c for -
x/e n=0.3516; c=19.342 cm (7.615in.); x=0 | n=0.3864; c=18.514cm (7.289in.); x=0
at fuselage station 64.948 cm  (25.57 in.) at fuselage station 66.929 cm (26.35 in.)
0 -0.1144 _ -0.1144 -0.1237 -0.1237
.0025 -.1075 -.1216 -.1155 -.1320
.0050 -.1042 -.1248 -.1125 ~-.1353
.0100 -.0999 -.1289 -.1085 ~-.1392
.0150 -.0970 -.1318 -.1057 -.1418
.0250 -.0926 -.1356 -.1017 ~.1455
.0500 -.0856 -.1418 -.0950 ~.1511
.0750 -.0804 : -.1462 -.0904 -.1552
.1000 -.0766 -.1495 -.0870 -.1580
.1500 -.0712 -.1534 -.0815 -.1616
.2000 -.0675 -.1552 -.0777 -.1632
.2500 -.0649 -.1559 -.0751 - -.1639
.3000 -.0635 -.1558 -.0733 -.1635
.4000 -.0624 -.1532 -.0715 -.1607
.5000 -.0629 -.1475 -.0713 -.1551
.5500 ~-.0637 ‘ -.1425 -.0716 -.1509
.6000 -.0646 -.1379 -.0721 -.1455
.6500 ~.0658 ) -.1307 -.0729 -.1387
.7000 -.0677 -.1225 -.0741 -.1301
.7500 -.0696 -.1131 -.0761 -.1206
.8000 -.0725 -.1043 -.0785 -.1111
.8500 -.0759 -.09717 -.0817 -.1046
.9000 -.0805 -.0949 -.0858 -.1010
.9500 -.0867 -.0971 -.0917 -.1025
1.0000 -.0867 ERVRS T4 ) § - SRS DU -.1007 -.1105
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TABLE I.- WING AIRFOIL COORDINATES - Continued

zy/c for — zy/c for — zy/c for — zyfc for -
x/e n=0.4251; ¢=17910cm (7.051in.); x=0 n=04638; ¢=17.308cm (6.814in.); x=0
at fuselage station 69.113 cm * (27.21 in.) at fuselage station 71.272 cm (28.06 in.)
0 -0.1319 -0.1319 -0.1404 -0.1404
.0025 -.1239 -.1402 -.1325 -.1487
.0050 -.1208 -.1433 -.1295 -.1517
.0100 -.1167 -.147 -.1255 -.1554
.0150 -.1140 -.1498 -.1228 -.1581
.0250 -.1100 -.1536 -.1188 -.1618
.0500 -.1036 -.1591 -.1124 -.1673
.0750 -.0990 -.1628 -.1079 -.1709
.1000 -.0957 -.1655 -.1048 -.1734
.1500 -.0910 -.1685 -.1004 -.1764
.2000 -.0874 -.1702 -.0971 -.1776
.2500 -.0849 -.1703 -.0939 -.1779
.3000 -.0825 -.1700 -.0912 -.1771
.4000 -.0799 -.1669 -.0884 -.1736
.5000 -.0788 -.1612 -.0864 -.1678
.5500 -.0788 -.1572 -.0862 -.1636
.6000 -.0791 -.1515 -.0860 -.1579
.6500 -.0794 -.1444 -.0863 -.1506
.7000 -.0806 -.1356 -.0873 -.1417
7500 -.0823 -.1259 -.0886 -.1318
.8000 -.0843 -.1165 -.0902 -.1223
.8500 -.0872 -.1097 -.0930 -.1153
..9000 -.0913 -.1064 -.0972 -.1121
.9500 -.0971 -.1079 -.1030 -.1139
1.0000 -.1063 -.1161 -.1122 -.1221

20




TABLE I.- WING AIRFOIL COORDINATES - Continued

zyfe for — z;/c for — zy/c for — zl/c for —
x/c 7 =0.5024; c=16.703cm (6.576in.); x=0 | n=0.5411; c=16.096 cm (6.337in.); x=0
at fuselage station 73.431 cm (28.91 in.) at fuselage station 75.565 cm (29.75 in.)
0 -0.1495 -0.1495 -0.1597 -0.1597
.0025 -.1417 -.1576 -.1518 -.1676
.0050 -.1388 -.1608 -.1488 -.1705
.0100 -.1350 -.1645 -.1451 -.1743
.0150 -.1324 -.1671 -.1426 -.1768
.0250 -.1285 -.1708 -.1385 -.1803
.0500 -.1221 -.1760 -.1321 -.1854
.0750 - 1177 -.1797 -.1278 -.1888
.1000 -.1145 -.1820 -.1244 -.1909
.1500 -.1100 -.1850 C-.1194 -.1937
.2000 -.1066 -.1856 -.1155 -.1941
.2500 -.1031 -.1855 -.1121 -.1937
.3000 -.1000 -.1846 -.1096 -.1927
.4000 -.0967 -.1810 -.1056 -.1889
.5000 -.0943 -.1748 -.1027 -.1823
.5500 -.0939 -.1707 -.1021 -.1785
.6000 -.0936 -.1652 -.1017 -.1738
.6500 -.0934 -.1572 -.1010 -.1644
.7000 -.0940 -.1478 -.1012 -.1545
.7500 -.0951 -.1382 -.1023 -.1455
.8000 -.0969 -.1291 -.1037 -.1359
.8500 -.0995 -.1216 -.1064 -.1288
.9000 -.1034 -.1186 -.1100 -.1252
.9500 -.1093 -.1203 -.1160 -.1271
1.0000 -.1186 -.1287 -.1255 -.1355
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TABLE I.- WING AIRFOIL COORDINATES ~ Continued

1.0000

zy/c for — zj/c for — zy/c for - zy/c for —
/e T 0.5797; c=15.623cm (6.151in.); x=0 | 7=0.6184; c=15.091 cm (5.913in.); x =0
at fuselage station 77.724 cm (30.60 in.) at fuselage station 79.883 cm (31.45 in.)

0 -0.1689 -0.1689 -0.1801 -0.1801
.0025 -.1613 -.1768 -.1725 -.1878
.0050 -.1584 -.1797 -.1696 - -.1906
.0100 -.1548 -.1834 -.1661 -.1942
.0150 -.1521 -.1857 -.1634 -.1965
.0250 -.1482 -.1890 -.1595 -.1997
.0500 -.1418 -.1941 -.1530 -.2049
.0750 -.1373 -.1970 -.1484 -.2074
.1000 -.1339 -.1991 -.1449 -.2092
.1500 -.1284 -.2010 -.1392 -.2108
.2000 -.1244 -.2014 -.1352 -.2112
.2500 -.1211 -.2008 -.1317 -.2103
.3000 -.1184 -.1996 -.1288 -.2088
.4000 -.1139 -.1954 -.1238 -.2043
.5000 -.1106 -.1885 -.1203 -.1973
.5500 -.1097 -.1839 -.1190 -.1925
.6000 -.1089 -.1776 -.1180 -.1861
.6500 -.1084 -.1699 \ -.1173 -.1783
.7000 -.1084 -.1605 -.1170 -.1688
.1500 -.1089 -.1502 -.1174 -.1583
.8000 -.1106 -.1411 -.1187 -.1491
.8500 -.1132 -.1342 ©-.1213 -.1422
.9000 -.1174 -.1317 -.1252 -.1396
.9500 -.1238 -.1344 -.1315 -.1421
-.1342 -.1442 -.1418 -.1521
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TABLE 1.~ WING AIRFOIL COORDINATES - Continued

zy/c for — zl/c for — zy/c for — zy/c for —
¥/e | 06570, c=-14.343 cm (5.674 in); x=0 |n=-0.6916; c=13.807 cm (5.436 in); x =0
. at fuselage station 82.042 cm (32.30 in.) at fuselage station 83.972 cm  (33.06 in.)
0 -0.1919 -0.1919 -0.2046 -0.2046
.0025 -.1843 -.1995 -.1972 _.2112
.0500 -.1815 -.2023 -.1945 -.2150
.0100 -.1782 -.2060 -.1910 -.2185
0150 -.1755 -.2084 -.1883 -.2208
.0250 -.1715 -.2113 -.1842 -.2238
.0500 -.1649 -.2162 -.1776 -.2282
.0750 -.1603 -.2186 -.1730 -.2306
.1000 -.1567 -.2201 -.1695 -.2319
.1500 -.1511 -.2215 -.1636 -.2330
.2000 -.1466 -.2213 -.1590 -.2328
.2500 -.1431 -.2204 -.1553 -.2314
.3000 -.1401 -.2188 -.1520 -.2295
.4000 -.1349 -.2141 -.1466 -.2246
.5000 -.1307 -.2066 -.1419 -.2168
.5500 -.1290 -.2016 -.1400 -.2117
.6000 -.1279 -.1953 -.1385 -.2052
.6500 -.1270 -.1875 -.1376 -.1972
7600 -.1263 -.1775 -.1367 * -.1874
.7500 -.1267 -.1673 L -.1365 -.1769
.8000 -.1278 -.1581 -.1375 -.1678
.8500 -.1299 -.1510 -.1396 -.1610
.9000 -.1339 -.1484 -.1434 -.1580
19500 -.1402 -.1510 -.1496 -.1605
1.0000 -.1501 -.1608 -.1607 -.1704
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TABLE I.-WING AIRFOIL COORDINATED - Continued

zy/c for - 'zj/c for — zy/c for — zy /e for ~
x/c n=0.7343; ¢=13.200cm (5.197in.); x=0 | 7=0.7729; c=12.593 cm (4.958in.); x=0
at fuselage station 86.36 cm (34.00 in.) at fuselage station 88.519 cm (34.85 in.)
0 -0.2182 -0.2182 -0.2328 -0.2328
.0025 -.2109 -.2255 -.2256 -.2400
.0050 -.2083 -.2285 -.2228 -.2427
.0100 -.2047 -.2317 -.2191 -.2460
.0150 -.2021 -.2340 -.2167 -.2484
.0250 -.1980 -.2372 -.2126 -.2513
.0500 -.1911 -.2410 -.2062 -.2552
.0750 -.1867 -.2432 -.2015 -.2571
.1000 -.1831 -.2445 -.1977 -.2512
.1500 -.1770 -.2455 -.1913 -.2589
.2000 -.1722 -.2450 -.1869 -.2585
.2500 -.1683 -.2434 -.1813 -.2559
.3000 -.1649 -.2414 -.1780 -.2540
.4000 -.1591 -.2361 -.1726 -.2485
.5000 -.1540 -.2281 -.1674 -.2405
.5500 -.1520 -.2228 -.1652 -.2350
.6000 -.1503 -.2161 -.1632 -.2281
.6500 -.1491 -.2080 -.1616 -.2200
.7000 -.1481 -.1983 -.1605 -.2102
.71500 -.1477 -.1879 -.1600 -.1998
.8000 -.1483 -.1785 -.1602 -.1903
.8500 -.1501 -.1717 -.1621 -.1836
.9000 -.1538 -.1687 -.1655 _.1806
.9500 -.1602 -.1712 -.1718 -.1828
1.0000 -.1714 -.1807 -.1825 -.1922
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TABLE I.- WING AIRFOIL COORDINATES — Continued

zy/c for — zyjc for — zyjc for - zz jC for —
x/e 7=0.8116; ¢ =11.989 cm (4.720in.); x=0 | 7=0.8502; c =11.382 cm (4.481in.); x=0
at fuselage station 90.678 cm (35.70 in.) at fuselage station 92.812 cm (36.54 in.)
0 ‘ -0.2483 -0.2483 -0.2653 -0.2653
.0025 -.2411 -.2555 -.2583 -.2724
.0050 -.2385 -.2581 -.2557 -.2750
.0100 -.2349 -.2613 -.2524 -.2782
.0150 -.2324 -.2637 -.2499 -.2804
.0250 -.2285 -.2664 -.2458 -.2831
.0500 -.2221 -.2703 -.2392 -.2866
.0750 -.2173 -.2721 -.2345 -.2886
.1000 -.2134 -.2731 -.2307 -.2897
.1500 -.2070 -.2735 -.2245 -.2901
.2000 -.2022 -.2728 -.2194 -.2890
.2500 -.1978 -.2709 -.2148 -.2868
.3000 -.1941 -.2686 -.2110 -.2844
.4000 -.1876 -.2624 -.2041 -.2779
.5000 -.1820 -.2544 -.1990 -.26817
.5500 -.1797 -.2482 -.1957 -.2631
.6000 -.1773 -.2413 -.1932 -.2562
.6500 -.1757 -.2332 -.1913 -.2478
.7000 -.1744 -.2234 -.1899 -.2381
.7500 -.1737 -.2132 -.1888 -.2281
.8000 -.1738 -.2037 -.1886 -.2185
.8500 -.1753 -.1968 -.1899 -.2114
.9000 -.1785 -.1936 -.1928 -.2081
.9500 -.1845 -.1956 -.1986 -.2098
1.00090 -.1961 -.2047 -.2088 -.2187
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TABLE I.- WING AIRFOIL COORDINATES — Concluded

zy/c for - z; /¢ for — zy/c for — z;/c for —
*/¢ | 1 -09352 c=-10.051cm (3.957in): x=0 | 7= 0.9676; c=9.492 cm (3.737 in), x=0
at fuselage station 97.561 cm (38.41 in.) at fuselage station 99.416 cm (39.14 in.)
0 -0.3088 -0.3088 -0.3302 -0.3302
.0025 -.3028 -.3153 -.3238 -.3367
.0050 -.3002 -.3180 -.3209 -.3390
.0100 -.2963 -.3213 -.3174 -.3420
.0150 -.2935 -.3231 -.3148 -.3440
.0250 -.2900 -.3256 -.3110 -.3467
.0500 -.2834 -.3297 -.3040 -.3505
.0750 -.2786 -.3320 -.2992 -.3521
.1000 -.2747 -.3328 -.2952 -.3535
.1500 -.2684 -.3326 -.2884 -.3533
.2000 -.2629 -.3310 -.2834 -.3513
.2500 -.2586 -.3287 -.2794 -.3489
.3000 -.2546 -.32517 -.2754 -.3459
.4000 -.2469 -.3181 -.2672 -.3376
.5000 -.2403 -.3081 -.2605 -.3271
.5500 -.2371 -.3022 -.2571 -.3209
.6000 -.2343 -.2954 -.2539 -.3139
.6500 -.2319 -.2867 -.2511 -.3050
.7000; -.2297 -.2767 -.2492 -.2957
1500, -.2278 -.2670 -.2478 -.2858
.8000 -.2270 -.2577 -.2468 -.2766
.8500 -.2282 -.2500 -.2466 -.2688
.9000 -.2304 -.2457 -.2484 -.2643
.9500 -.2347 -.2469 -.2537 -.2655
1.0000 -.2451 -.2548 -.2636 -.2732

26




o

- =~

TABLE II.- INBOARD PYLON ORDINATES (NORMAL TO LEADING EDGE)

X, X, Y, y, t/C,
cm in. cm in. percent
0 0 0 0
.0376 .0148 .0854 .0336 4.48
.0762 .0300 .1168 .0460 6.13
.1138 .0448 .1394 .0549 7.32
1525 .0600 1557 .0613 8.18
.1900 .0748 .1708 .0672 8.97
.22176 .0896 .1821 .0717 9.56
.2657 .1046 .1922 .0757 10.09
.3038 .1196 .2022 .0796 10.62
.3425 .1348 .2097 .0826 10.68
.3800 .1496 2173 .0855 11.41
.5701 .2244 .2437 .0959 12.79
1567 .2979 .2610 .1028 13.65
.9500 .3740 .2700 .1063 14.18
1.1400 .4488 .2751 .1083 14.44
1.3301 .5236 .2763 .1088 14.51
1.5210 .5985 .2751 .1083 14.44
1.7101 .6733 .2738 .1078 14.37
1.9002 7481 .2612 .1029 13.72
2.0902 .8229 .2512 .0989 13.19
2.2802 .8977 .2386 .0940 12.53
2.4696 .9723 2211 .0870 11.60
2.6603 1.0474 .2022 .0796 10.62
2.8502 1.1221 .1809 .0712 9.49
3.0402 1.1969 .1557 .0613 8.18
3.2302 1.2717 .1269 .0499 6.66
3.4203 1.3466 .0980 .0386 5.14
3.6103 1.4214 .0641 .0252 3.36
3.8100 1.5000 .0264 .0104 1.39
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(a) Planview, configuration B,.

Figure 5.- Model photographs.
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(b) Front quarter view, configuration B,

Figure 5.- Continued.
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L-73-8024
(¢c) Rear quarter view, configuration Bl'

Figure 5.- Continued.
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L-73-8026

(e) Bottom view, nacelles located at 0.35b/2.

Figure 5.- Continued.

37




L-73-8027
(f) B1 configuration with inboard nacelles, tunnel installation.

Figure 5.- Continued.




(g) B, configuration with inboard nacelles, tunnel installation.
g) B4 gu

Figure 5.- Continued.
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L-73-8029
(h) B1 configuration with inboard nacelles, tunnel installation.

Figure 5.- Continued.
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L-73-8030
i) B, configuration with outboard nacelles, tunnel installation.
1 )

Figure 5.- Continued.
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L-73-8031
(j) Modified Blconﬁguration with extended pylons, tunnel installation.

Figure 5.- Continued.
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L-73-8032

(k) General tunnel installation.

Figure 5.- Concluded.
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Figure 6.- Boundary-layer transition strip pattern. Dimensions are in cm (in.).
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Figure 7.- Internal drag correction based on estimated skin friction. Two nacelles.
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Figure 8.- Cross-sectional area distribution of configuration B.
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Figure 10.- Comparison of drag rise characteristics for configurations B and By,
CL= 0.40.
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Figure 1_7.- Sketch illustrating location of fuselage shock on wing.
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Figure 31.- Effect of nacelle location on fuselage pressure distribution for the
B1 configuration with no area ruling for nacelles. Cj, = 0.40.
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Figure 31.- Continued,
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Figure 32.- Effect of nacelle position on incremental pressure coefficient on fuselage.
Cy, = 0.40.
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Figure 35.- Summary of nacelle installation drag characteristics. Fuselage area
ruled for nacelles, CL = 0.40.
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Figure 36.- Effect of area ruling for nacelles located at 0.35b/2 on longitudinal
aerodynamic characteristics.
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Figure 36.- Continued.
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(b) M =0.95.
Figure 37.- Continued.
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Figure 37.- Concluded.
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Figure 38.- Effect of area ruling for nacelles located at 0.35b/2 on fuselage pressure
distributions. Cy, = 0.40.
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