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STATIC LONGITUDINAL AERODYNAMIC CHARACTERISTICS
OF A MODEL WITH A MODIFIED 17-PERCENT-THICK
SUPERCRITICAL WING (U)

James C. Ferris
Langley Research Center

SUMMARY

An investigation was made of the static longitudinal stability characteristics of a
0.09-scale model of an airplane with a modified 17-percent-thick supercritical wing.
Modifications were made to the wing to reduce a gradual buildup of boundary-layer shock
loss preceding drag divergence (drag creep) noted in an earlier investigation. The longi-
tudinal aerodynamic characteristics were determined over a Mach number range from
0.30 to 0.76 at angles of attack that generally provided a lift-coefficient range from 0 to
buffet onset.

Results of the investigation indicate that the modifications to the airfoil essentially
eliminated the drag creep associated with the airfoil that occurs between the critical Mach
number (the free-stream Mach number at which the local velocity becomes sonic at some
point on the airfoil) and the drag-divergence Mach number Mpp. These modifications
also reduced the minimum drag at all test Mach numbers and the drag due to lift at Mach
numbers of 0.70 and 0.73.

INTRODUCTION

The advantages of the supercritical airfoil have been realized on a wide range of
aerodynamic configurations. Supercritical airfoils have been applied to transport aircraft
to increase cruise speeds, to variable-wing-sweep fighter airplanes to improve transonic
maneuvering performance (ref. 1), and to propellers to allow higher propeller tip speeds.
In all cases, application of the supercritical airfoil has enhanced the performance of the
configuration and in many cases, improved other characteristics of the design, For exam-
ple, the excellent low-speed characteristics of the research airplane with a supercritical
wing for which data.are presented in references 2 to 6 generated considerable new inter-
est in high-*Yhicknes§-ratio airfoils, especially in the general aviation (see ref. 7) and
STOL transport areas.
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One problem with the research airplane of refererice 2 was a gradual buildup of
boundary-layer shock loss preceding drag divergence (drag creep) at the higher Mach
numbers. Although analysis of these previous results indicated that part of the drag
creep was due to adverse wing-fuselage interference, wing section drag measurements
indicated that part of the creep was due to the airfoil itself. Recent two-dimensional air-
foil research on a 10-percent-thick airfoil has been directed toward reducing this drag
creep, and data from this wind-tunnel investigation are presented in reference 8. Com-
parison of an experimentally designed supercritical airfoil with a theoretically designed
one is presented in reference 9.

The purpose of the present report is to present longitudinal aerodynamic results
from a wind-tunnel investigation that used a modified 17-percent-thick airfoil (based on
the two-dimensional studies of ref, 8). The results of this investigation showed improve-
ment in the drag creep characteristics of the original research airplane model with a
thick supercritical wing. (See ref. 2.)

The investigation was conducted in the Langley 8-foot transonic pressure tunnel.
Data were obtained at Mach numbers from 0.30 to 0.76 for the basic configuration (con-
figuration 2). Modifications to the airfoil were made, and data were obtained at Mach
numbers from 0.50 to 0.75 for the modified configurations (configurations 4 and 8).

SYMBOLS

The longitudinal results are referred to the stability-axis system. The origin of
the stability axes is at the moment reference center, located at 25 percent of the refer-
ence length (¢) and 1.084 cm above the fuselage reference line. (See fig. 1.) All data
presented herein are based on the planform dimensions of the wing.

b reference span, 98.618 centimeters

c - local chord, centimeters

c model reference length, 20.318 centimeters

Cp drag coefficient, Drag

cL lift coefficient, %ﬁ ’
CLy lift-curve slope, ?-a%, per degree '

2 GElNNR




G

Pitching moment

Cm pitching-moment coefficient, 452
Cmg longitudinal stability derivative, 2Cm

L 3aCy,
Cm,o pitching-moment coefficient at zero lift
L/D lift-drag ratio
M free-stream Mach number

. . SCD
Mpp drag-divergence Mach number, Mach number for which D 0.1
p; free-stream total pressure, newtons per square meter
q free-stream dynamic pressure, newtons per square meter
R Reynolds number based on model reference length
S reference wing area, 0.192 square meter
X ordinate along airfoil reference line measured from airfoil leading edge,
centimeters

y spanwise distance from plane of symmetry, centimeters
4 ordinate rlormal to airfoil reference line, centimeters
o angle of attack referred to fuselage reference line, degrees
Subscript:
max maximum

APPARATUS AND PROCEDURES

Model Description

The model of the present investigation was a sting-supported 0.09-scale model of an
airplane with an unswept wing employing supercritical airfoil sections having a constant
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spanwise thickness ratio of 17 percent. Figures 1 and 2 are drawings and photographs
of the model; the geometric characteristics are presented in table I. Table II contains
coordinates of the airfoil for the original model (configuration 2 of this investigation)

at a semispan station of 0.4245, and table III contains coordinates for the final configu-
ration (configuration 8) at semispan stations of 0.4245 and 0.7325. Airfoil sketches are
shown in figures 1(b) and 1(c). Of the configurations investigated, data are presented for
configurations 2, 4, and 8 only, since the other minor changes had no significant effect on
the aerodynamic characteristics. Configuration 4 was a modification of the forward half
of the airfoil only; it had the coordinates of configuration 8 over the forward 50 percent
of the airfoil and those of configuration 2 over the aft 50 percent of the airfoil.

The incidence of the horizontal tail and the deflection of the elevator were main-
tained at 0° for this investigation.

Tunnel Description

The investigation was conducted in the Langley 8-foot transonic pressure tunnel,
which is a single-return tunnel having a rectangular slotted test section to permit con-
tinuous operation through the transonic speed range. This facility has the capability of
independent variation of Mach number, density, temperature, and humidity. The stagna-
tion temperature and dewpoint were maintained at values sufficient to avoid significant
condensation effects.

Measurements

Six-component force and moment data were obtained with an electrical strain-gage
balance housed within the fuselage. Measurements were made at Mach numbers from
0.30 to 0.76 and over an angle-of-attack range that generally provided a lift-coefficient
range from 0 to buffet onset (approximately -4° to 6°). The wind-tunnel conditions for
which the measurements were obtained are presented in table 1V,

Boundary-Layer Transition

All tests were made with transition fixed on the model. Boundary-layer trips were
applied to the upper and lower surfaces of the wing by use of the technique described in
references 10 and 11 to simulate the displacement thickness of the turbulent boundary
layer at the wing trailing edge for a full-scale Reynolds number. This technique requires
that laminar flow be maintained ahead of the trips, and as a result, model surface regions
ahead of the trips were maintained in an extremely smooth condition.
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The location and the size of the grains used for the boundary-layer trips are shown
in the following table:

Surface Type of transition strip Location

Fuselage No. 150 carborundum grains | 3.1 cm aft of nose apex

Wing upper surface | No. 120 carborundum grains | 27 percent of local
streamwise chord

Wing lower surface | No. 120 carborundum grains | 37 percent of local
streamwise chord

Wing-tip-mounted No. 150 carborundum grains | 3.3 cm aft of nose apex

fuel tanks -
Horizontal and No. 180 carborundum grains | 10 percent of local
vertical tails streamwise chord

Corrections

The drag data have been adjusted to the condition of free-stream static pressure
'acting over the fuselage cavity and base areas. Corrections have been made to the angle
of attack for model support sting and balance deflections, which occur as a result of aero-
dynamic loads on the model. Further corrections to the measured angle of attack have
been made for tunnel airflow angularity and for the first-order boundary correction cal-
culated by the methods of reference 12,

Accuracy

The accuracies of the individual measured quantities, based on calibrations and
repeatability of the data, are estimated to be within the following limits:

O +0.008
L0 5 S +0.0007
Gl © v v vt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e +0.0020
O, A8 v v i e e e e e e e e e e e e e e e e e e e e e e e e e e e e +0.07
1 O £0.002
qa, N/ L L e e e e e e e e e e e e +70.0

DISCUSSION OF RESULTS

The basic longitudinal aerodynamic characteristics are presented in figure 3 and
are summarized in figures 4 to 7. Results for configuration 4 are not included in the
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summary data, since the values were not significantly different from those of configura-
tion 8. The basic configuration (configuration 2) was investigated throughout the Mach
number range (from 0.30 to 0.76) before modifications were made to the airfoil, since the
fuselage had been modified to receive a sting support system through the top and a rudder
was added to the vertical tail for spin studies. The configuration, therefore, differed
slightly from that reported in reference 2.

Drag Characteristics

The results of figure 3 indicate that the minimum drag coefficient was reduced for
the modified configurations throughout the Mach number range and that the reduction was
greater at high Mach numbers. The drag due to lift was also reduced at Mach numbers
of 0.70 and 0.73. The variation of drag as a function of Mach number is presented in fig-
ure 4. The drag creep associated with the airfoil occurs between the critical Mach num-
ber (the free-stream Mach number at which the local velocity becomes sonic at some
point on the airfoil) and the drag-divergence Mach number. Comparison of the results of
figure 4 with the section drag results of reference 3 for the unmodified airfoil suggests
that the drag creep associated with the airfoil has been essentially eliminated. For
example, at a lift coefficient of 0.4 between Mach numbers of 0.50 and 0.73, the differ-
ence between the total drag creep for configuration 2 and that for configuration 8 (pre-
sented in fig. 4) is about 0.0021. This value is about equal to the profile drag creep of
the wing shown for the unmodified airfoil in figure 8 of reference 3. This improvement
in drag for configuration 8 is a direct result of changes to the forward part of the air-
foil and the associated reduction in induced velocities. The drag-divergence Mach num-
ber Mpp was not significantly changed by these modifications. The variation of
untrimmed (the trim requirements for both configurations are about the same) maximum
lift-drag ratio (L/D),,, and lift coefficient at (L/D)y 55 are presented in figure 5.
Note that (L/D)max is improved for configuration 8 throughout the Mach number range
and has increased by 10 percent at a cruise Mach number of 0.73. The lift coefficient
at (L/ D)max is also increased throughout the Mach number range.

Lift and Longitudinal Stability

The basic longitudinal stability data of figure 3 indicate some small changes for the
modified wing. The stable break in the pitching-moment curves (abrupt increase in sta-
bility level) at Mach numbers of 0.70 and 0.73 is extended to higher lift coefficients for
configurations 4 and 8. Increases in the lift coefficient for the modified configurations
are observed throughout the Mach number and angle-of-attack ranges. As expected, the
break in the lift curve is extended to higher lift coefficients at Mach numbers of 0.70
and 0.73. The data of figure 6 show a small increase in Cp, o and in stability (decrease
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in CmCL) at high Mach numbers. The lift-curve slope C1,, as a function of Mach
number is shown in figure 7 for configuration 2 only, since CL, Wwas not significantly
changed for configurations 4 and 8. The increase in Cr,, at Mach numbers from 0.60
to 0.75 is a result of the development of a region of supersonic flow over the upper sur-
face of the wing.

SUMMARY OF RESULTS

An investigation conducted in the Langley 8-foot transonic pressure tunnel at Mach
numbers from 0.30 to 0.76 to determine the effects of airfoil modifications on drag creep
for a thick unswept supercritical wing has indicated the following:

1. On the basis of comparisons with previous results, modifications to an original
17-percent-thick supercritical airfoil essentially eliminated that part of the drag creep
associated with the airfoil, although the total aircraft combination does exhibit some drag
creep.

2. These modifications also reduced the drag due to lift at a Mach number of 0.73
and resulted in a 10-percent increase in maximum untrimmed lift-drag ratio at this
cruise Mach number,

3. Only slight changes were noted in the longitudinal stability and lift characteris-
tics, and the stable break in the lift curve was extended to higher lift coefficients at Mach
numbers of 0.70 and 0.73.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., February 18, 1975,
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TABLE 1.- MODEL GEOMETRIC CHARACTERISTICS

Wing:
Total ared, M2 . . o v v v it e e e e e e e e e 0.192
Aileron area (one aileron), m2 ., . . ... ... ..... ... ... .. .... 0.007
Span (theoretical), Cm . . . . . . . . . i it e e e e e e e e e e e e e 98.618
Aspect ratio . . . ¢ L i s s e e e e e e e e e e e e e e e e e e e e e e 5.07
Taper ratio . & . v ittt e e e e e e e e e e e e e e e e e e e e e s e e e 0.496
Dihedral angle, deg . . . . . .t i i e e e .. 3.323
Incidence at root, deg . . . . . . . . L. . L e e e e e e e e e e e e e e 2.5
Incidence at tip, deg . . v« . v i i L e e e e e e e e e e e e e e e e e e e e 1
Airfoilatrootandtip .. .. ... ... ... ... ... ..., See tables II and III
Mean aerodynamic chord, cm . . . . . . . . . . . 0 i ittt e e e e e e 20.318
Horizontal distance to center line of airplane,em . ... .. ... ... ... 21.735
Vertical distance to fuselage reference line at 25-percent-chord
line, Cm . . . . o e e e e e e e e e e e e e e e e e e e e e e 1.084
Incidence, deg . . . . . . o o L L L e e e e e e e e e e e e e e e s 2
Horizontal tail:
Total aTed, M2 . . . . o e e e e 0.054
Elevator area (total aft of hinge line), m2 . . . . . ... .. ........... 0.016
SPaAN, CIMl & 4 ¢ ¢ ¢« v v vttt e e e e e e e e e e et e e e e e e e e e e e 49,131
Aspectratio . . . . o o i i e s e e e e e e e e e e e e e e e e e e e e 4.47
Taper ratio . . . . . . L i L L s e e e e e e e e e e e e e e e e e e e e e 0.508
Dihedral angle, deg . . . . . . . . i i e s e e e e e e e e e e e e e e e e e e 0
Airfoilatrootandtip .. ... ... ... .. .. ... .. ..., NACA 657A012
Mean aerodynamic chord, cm . . . . . . . . . . . . .t it e e e e e e e e 11,533
Horizontal distance to center of airplane,cm . . ... ... ......... 10.923
Vertical distance to fuselage reference line at 25-percent-chord
¢ T 5 5 5 13.076
Vertical tail:
Total area (exposed), M2 . . . . . . .. i i e e e e e e 0.027
Rudder area, M2 L e e e 0.007
Span (theoretical, exposed), cm . . . . . . . . . . . . i i i e e e 22.055
Aspect ratio (Xposed) . . . . . . .t e e e e e e e e e e e e e e e e e 1.800
Taper ratio (EXPOSEd) . . . v v v i vt e e e e e e e e e e e e e e e e e e e e 0.375
Airfoilatrootandtip,ecm . . . . . ... ... ... ... . ... NACA 631A012
Mean aerodynamic chord,cm . . . . . . . .. . . . 0 e e e e e e e e 13.385
Vertical distance to fuselage reference line,ecm . . . . . . ... ... .. .. 16.848




TABLE II.- WING AIRFOIL COORDINATES ALONG STREAMWISE CHORDS
AT SEMISPAN STATION b—% = 0.4245 FOR CONFIGURATION 2

[Leading-edge radius _ 0.0428}
Local chord

x/c 2/

Upper Lower
0.0125 0.0292 -0.0312
.0250 .0397 -.0414
.0375 .0464 -.0482
.0500 .0518 -.05634
.0750 .0591 -.0606
.1000 .0648 -.0658
.1250 .0694 -.0700
.1500 .0733 -.0730
.1750 .0766 -.0756
.2000 .0792 -.0777
.2500 .0831 -.0804
.3000 .0861 -.0818
.3500 .0880 -.0816
.4000 .0892 -.0805
.4500 .0894 -.0780
.5000 .0885 -.0737
.5500 .0865 -.06875
.5750 .0852 -.0634
.6000 .0834 -.0587
.6250 .0815 -.0533
.6500 .0791 -.0477
.6750 .07765 -.0419
.7000 .0736 -.0359
.7250 .0696 -.0299
.7500 .0654 -.0239
L1750 .0612 -.0183
.8000 .0561 -.0131
.8250 .0504 -.0087
.8500 .0443 -.0052
.8750 .0376 -.0030
.9000 .0314 -.0013
.9250 .0237 -.0012
.9500 .0162 -.0022
.9750 .0090 -.0045
1.0000 0 -.0077

11




TABLE II.- WING AIRFOIL COORDINATES ALONG STREAMWISE CHORDS FOR CONFIGURATION 8

:

eading-edge radis _ 0-042%

Local chord

z/c at -
x/c Semispan station 1);_2 = 0.4245 Semispan station t% = 0.7325
Lower Upper Lower Upper
0.01 0.0262 -0.0268 0.0274 -0.0280
.02 .0354 -.0357 .0357 -.0366
.03 .0409 -.0422 0411 -.0420
.04 .0454 -.0469 .0455 -.0466
.05 .0491 -.0506 0495 -.0504
.06 .0523 -.0540 0575 -.0536
.08 .0579 -.0591 0578 -.0588
.10 .0627 -.0635 .0625 -.0628
.12 .0664 -.0671 .0662 -.0661
.14 .0690 - 0700 0691 -.0692
.16 .0774 -.0724 .0718 -.0716
.18 .01749 -.0746 .0744 -.0742
.20 0770 -.0763 .0764 -.0759
.25 .0816 -.0793 0810 -.0789
.30 .0850 -.0805 .0845 -.0809
.35 .0875 -.0805 .0869 -.0817
.40 .0890 -.0793 .0880 -.0806
45 .0889 -.0770 0880 -.0778
.50 .0878 -.0724 .0870 -.0735
.55 .0858 -.0666 .0850 -.0675
.60 .0825 -.0582 .0818 -.0589
.62 .0807 -.0543 .0802 -.0550
.64 .0789 -.0492 .0783 -.0506
.66 .0769 -.0442 .0763 -.0460
.68 .0744 -.0391 .0738 -.0409
.70 .0716 -.0346 .0712 -.0360
.72 .0684 -.0292 .0683 -.0311
.14 .0652 -.0243 .0646 -.0265
.76 .0617 -.0197 .0610 -.0222
.78 .0574 -.0154 0571 -.0180
.80 .0532 -.0114 .0531 -.0141
.82 .0490 -.0078 .0486 -.0107
.84 .0441 -.0050 .0437 -.0078
.86 .0392 -.0026 .0388 -.0055
.88 .0344 -.0008 .0341 -.0036
.90 .0290 +.0008 .0289 -.0024
.92 .0240 +.0012 .0234 -.0022
.94 .0185 +.0006 .0180 -.0026
.96 .0129 -.0008 .0125 -.0040
.98 .0069 -.0033 .0066 -.0065
1.00 0 -.0070 0 -.0095
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TABLE IV.- WIND-TUNNEL OPERATING CONDITIONS

Mach number Nl/):r,12 N;I‘;lz R
0.30 170 837 10 112 2.00 x 106
.50 146 561 21618 | 2.66
.60 159 872 31 591 3.33
65 175 1720 39 133 3.86
.70 167 677 | 41 466 3.86
.13 163 655 | 42828 | 3.86
.15 161 165 | 43 692 3.86
.16 160 016 | 44 132 3.86
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Configuration
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(b) Airfoil sketches.

(c) Airfoil sketches with z/c-scale expanded.

Figure 1.- Concluded.
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1.-70-6041
Lower side view

L-70-6040

Front view

Figure 2.- Concluded.
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(a) Concluded.

Figure 3.- Continued.
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Figure 4.- Variation of drag coefficient with Mach number.
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conducted so as to contribute . .

“The aeronantical and space actitities of the United States shall be
. 10 the expansion of human knowl-

edge of phenomena m the atniosphere and space. The Administration
shall provide for the widest practicable and appropiiate dissemination
of mformation concerning its activitics und the results thereof.”

— NATIONAL AYRONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES Informadon less broad
1n scope but nevertheless of importance as a
contribution to existing knowledge

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary daca, security classifica-
ton, or other reasons

CONTRACTOR REPORTS Screntific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English,

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publcatons include conference proceedings,
monographs, data compilations, handbooks,
sourccbooks, and special bibliographies

TECHNOLOGY UTILIZATION
PUBLICATIONS Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications Publications include Tech Briefs,
Technology Unlization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546






