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INTRODUCTION 

The ability of a helicopter to fly a prescribed flight path and 

speed profile is intimately dependent upon the accuracy of the position 

and velocity estimates provided by the navigation system. Typically, a 

navigation system must process raw position data (aircraft range, azimuth 

and elevation signals) provided by a ground-based landing guidance system 

(LGS) using an on-board digital processor, to obtain estimates of the air­

craft position and range rate. These estimates are then used by the pilot 

or an automatic guidance and control system to fly the helicopter along 

a commanded position and velocity profile. 

In order to evaluate the sensitivity of the helicopter performance 

(in terms of errors in following desired position and velocity profile) 

to the navigation system errors, it is necessary to analyze and model 

.the raw navigation signals from the ground-based LGS as well as their 

on-board processing to provide the aircraft position and rate estimates. 

A routinely used mathematical model for the overall navigation system is 

as shown in Figure 1. The model consists of a ground-based element des­

cribing the generation of the raw position signal (range, azimuth or 

elevation) y by the LGS and an airborne element representing the on-
m 

board processing of the raw position signal y to provide the estimate y. 
m 

The position error or noise (Ym - y) in the raw measurement signal is 

modeled as the sum of a zero mean correlated random process n (with 

correlation time constant T and standard deviation cr ) and a constant 
n n 

bias error b. The on-board processor typically consists of a sampler and 

quantizer followed by a second-order low pass filter (usually an a-S filter 

configuration) whose outputs provide position and rate estimates. The 

configuration and parameters of the on-board navigation system depend upon 

the ground-based signal accuracy, and must be based upon apriori knowledge 

of the noise characteristics, 

Mathematical models as shown in Figure 1 are frequently used in off­

line or piloted simulation investigations of helicopter navigation, guid­

ance and control system performance. The usefulness of the findings from 

such studies is clearly related to the veracity of the mathematical models 

used to represent individual subsystems. 
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Figure 1. Navigation System Model 

2 

'" y 



OBJECTIVE 

The objective of this study was to develop a possible mathematical 

methodology for describing the navigation signal error or noise character­

istics (range only) of the microwave landing system (MLS) using flight 

test data during constant speed/glideslope helicopter approaches. The 

MLS range navigation system error was analyzed to determine the feasi­

bility of identifying a Gauss-Markov stochastic model structure. 
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MLS NAVIGATION ERROR ANALYSIS 

This section presents the results of analyzing the MLS range naviga­

tion system estimate r from a modeling viewpoint. Data from NASA/FAA 

flight tests conducted at NASA's Crows Landing test facility were used. 

The characteristics of the combination of the on-board processor and 

the ground-based LGS noise were analyzed from measurements of the 

navigation system error (rNSE = r - r) time history. Note that both 

the true ranger and the estimate range r must be available to extract 

the navigation system error. A time history of the true range r was 

available at NASA's Crows Landing facility when these flight tests 

were conducted from the TTR and MTR radars. However, even the radar 

position measurements were not without noise as is shown later and 

cannot be used without some filtering/ smoothing-. Furthermore, the 

position provided by the MTR radar differed from that obtained from 

the TTR radar. The difference was usually less than about + 5 ft in 

each coordinate (x, y and z) but could be as high as ± 20 ft. As a 

result, the approach taken in this study was to assume the smoothed 

or low frequency component of radar range to be the true range (r) 

time history. Thus: 

= 

A 

where r = MLS range 

o rM = low frequency component of MLS range 

rMN = random component of MLS range. 

As a check, a similar procedure is applied to TTR radar data to give 

o 
rIm: r R - r R 

where r
R = radar range 

0 low frequency component of radar range r R = 

r RN = random component of radar range. 
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The low frequency components r~ and r~ should ideally be obtained 

by filtering/smoothing the actual MLS and radar measurements rand r R, 

respectively. However, the application of these algorithms for reference 

trajectory computation was considered beyond the scope of this preliminary 

effort. Instead, the following sequence of steps (essentially a lineariza­

tion of the problem) was used to compute the smoothed and random com­

ponents. 

A 

1, Plot MLS range r versus time and select the time segment 

corresponding to a constant speed/glideslope approach. Fit 

the MLS range versus time plot with a straight line 
A* A , 

r :::; -at + r ,where slope -a corresponds to the average con­
.0 

stant range rate of the helicopter. 

2. Compute and plot the MLS range residual (MRR) 

MRR = ~ - r* 
versus time. 

3. Filter MRR with a low pass path following error filter (PFEF) 

as described in the Appendix to extract the "linearized" MLS 

path following error (MPFE). 

4. Subtract MPFE from MRR to compute the MLS path following range 

residual (MPFRR) 

MPFRR = MRR - MPFE 

5. Filter MPFRR with a high pass control motion noise filter 

(CMNF) as described in the Appendix whose output is the MLS 

control motion noise (MCMN), the random error component of 

the MLS range. 

MCMN 

Steps (1-5) ,,,ere also applied to radar (TTR) range data. The 

variable names are obtained by replacing 'M' with 'R'; thus: 
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MLS Radar 

" r r R 

f:* ... 
r A 

R 
MRR RRR 

MPFE RPFE 

MPFRR RPFRR 

MCMN RCMN 

r MN rRN 

0 0 rM r R 

Steps (1-5) are applied to one sample of MLS·range data corresponding 
" ,,* to a 30 GIS constant speed approach. Figures (2-7) show the plots of r, r , 

MRR, MPFE, MPFRR, and MCMN (=rMN), respectively. Similarly, Figures (8-11) 

show the results for radar range data (TTR radar) for the same approach 

profile where the figure numbers correspond to variables RRR, RPFE, RPFRR, 

and RCMN (=rRN), respectively. In both cases, the PFEF and CMNF filters 

(described in Appendix) have roo 0.6 radls and rol = 0.6 radls, respectively. 

These values were chosen by trial and error and reflect a tradeoff in 

separating low frequency actual aircraft motion from high frequency naviga­

tion noise. 

Figure 11 shows that RCMN (=rRN) may be neglected. Thus, the low 

frequency component of radar range (r~) is assumed to be the true range 

(r). Comparison of MPFE and RPFE (Fig. 12) indicates that the MLS low 

frequency error component is essentially zero, since: 

MPFE RPFE 

This indicates that the MLS and radar measurements are essentially 

equal for low frequencies, or that 

== r 

Thus 

MCMN = rMN == r NSE 

is the MLS navigation system error. The remainder of the results deal 

with analyzing the statistical properties of r NSE as shown in Fig-. 7. 
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Histogram of r NSE is shown in Fig. 13, which indicates that r NSE is 

Gaussian with a bias b = 0.1 feet and a standard deviation a = 5.9 feet. 
n 

The sample autocovariance function of r NSE is shown in Fig. 14. The 

navigation system error r NSE may be modeled as a Gauss-Markov process 

as shown in Fig. 15. 

n "'i 

White 

Ground-Based 
System 

Airborne System 

N (0,1) Noise On-Board n I 
Filter Processor 

Noise G (s) Colored I G (s) n Noise p 

----...------~--~-lir_-----------
I 

G(s) = G (s) G (s) 
p n 

Figure 15. Gauss-Markov Noise Model 

r NSE 

Nav 
S st 

igation: 
y em Error 

Note that the navigation system error r NSE is ob~ained by "passing" 

normalized white noise n through two filters; a filter G (s) corresponding 
n, 

to the ground-based LGS characteristics and a filter Gp(s) reflecting the 

on-board processing of raw MLS data. However, given r
NSE 

alone, only the 

combined filter transfer function G(s) can be identified. 

Autoregressive-Moving Average Modeling of r NSE 

The approach taken in this study is to model r NSE as an autoregressive­

moving average (ARMA) process. A general ARMA (p,q) progess is defined by: 

p q 

Zt = L: <Pi Zt_i + at + L: 8i 
a

t
_

i + ~ 
i=l i=l 

where the a. are a normally distributed white noise sequence with mean a 
~ 

2 and variance cr ~ is the mean of the process Zt (1. e. r NSE )· a 
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Software from the International Mathematics· and Statistics Library 

(IMSL) was used to identify the parameters ~., 6., ~ and 0
2 using a 

~ ~ a 
maximum likelihood procedure [1]. The pertinent program FTMXL from the 

IMSL package requires as input the order (p) of the AR and the order (q) 

of MA processes. In addition, the user may give initial estimates of 

the AR (~., i=l ••• p) and MA (6., i=l .•• q) parameters. The program 
~ ~ 

then uses an iterative search technique to obtain the maximum likelihood 

estimates of the·parameters of the process described by (1). 

TheMLS range NSE (rNSE) was used as input data to the program FT}~ 

for identification of the ARMA parameters. Two different models were 

considered: 

(1) First order autoregressive (AR) process 

A first order AR process is defined by: 

= 

An initial estimate of ~ can be obtained from the auto covariance 

of the r NSE data: 

"'(1) 
= Y(O) 

n-r 

where y(r) = N=r ~ rNSE(n) rNSE(n+r) 
n=l _ 

r = O,l, ••• m 

For the data considered in this study, ~o = 0.753. Using this as an 

initial estimate, the program FTMXL results in the following identified 

model parameters: 

~ = .7513 

~ = .1137 

2 = 14.92 cr 
a 

Figure 14 shows the autocovariance of the measured data and of the 

AR process as identified by FTMXL. The results clearly indicate that 

the first order AR process does not adequately model the MLS navigation 

system error (rNSE) for lags greater than about 0.1 seconds. 
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The maximum likelihood technique for a first order AR process computes 

the pole $ in order to fit the auto covariance (equivalently the auto­

correlation) for lags r=O and r=l. Clearly, this may result in a poorer 

autocovariance fit for r>l when the process being modeled is not AR(l) 

(Fig. 14). A better fit of the autocovariance function is obtained by 

choosing $ = .9. Figure 16 shows the autocovariance of the measured data 

(rNSE) and of an AR(l) model with $ = .9. The figure shows that with 

~ ~ .9 the model auto covariance matches more closely the auto covariance of 

the measured data for a lag up to 1 second than the maximum likelihood 

(~ = .7513) covariance results (Fig. 14). 

Maximum likelihood techniques generate AR(p) parameters using auto­

correlations up to lag r=p. New techniques [2], recommend taking auto­

correlations of lags r>p in order to estimate the AR parameters. These 

new techniques do not seem to demonstrate the parameter hypersensitivity 

seen in the classical Yule-Walker type algorithms. 

(2) Second order ARMA (2,1) process 

Program FTMXL was used to model r NSE as an ARMA (2,1) process: 

= 

The initial e"stimates for the parameters were obtained by discretizing 

an equivalent continuous ARMA(2,1) process [3] : 

~o = 1.86 1 

$0 = -.87 2 

8° = .53 
1 

FTMXL converged to: 

~l = 1. 6060 

<P = -.6142 2 

81 = .9111 
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= .0036 

= 14.28 

Figure 17 shows the autocovariance of the ARMA(2,1) process super­

imposed on the auto covariance of r NSE • The figure shows that the auto­

covariance of the ARMA(2,1) model is a better fit to the observed data 

for lag greater than 1 second as compared to the AR(l) model (Fig. 14). 

It is conceivable that an ARMA(3,1) model would closely match the data 

over all lags. 

The results above incidate the need to apply systematic model struc­

ture/parameter idenfication techniques to the observed MLS range NSE (rNSE). 

This was considered to be beyond the scope of the current study. 
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CONCLUDING REMARKS 

A preliminary analysis of the MLS range data indicates that the 

navigation system noise is Gaussian and may be represented as an auto­

regressive - moving average' (ARMA)·process. The data available for 

this study was already filtered by an on-board digital processor. 

Further research with MLS raw unfiltered signals (range, azimuth and 

elevation) using systematic model structure determination and para­

meter identification methods is recommended. 
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APPENDIX 

PFE AND CMN FILTERS 

Path Following Error Filter (PFEF) 

G (s) 
PFEF 

= 
w n 

2 

s2 + 2r;; w s + w 2 
n n 

r;; = 1. 
1 w = --w 

n .64 0 

Control Motion Noise Filter (CMNF) 

G (s) 
CMNF 

= s 
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Low-Pass 

High-Pass 
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