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DESIGN OF A HELICOPTERAUTOPILOT BY MEANSOF LINEARIZING TRANSFORMATIONS

G. Meyer, R. L. Hunt, and R. Su
NASAAmes Research Center, Moffett Field, California, U.S.A., 94035

SUMMARY

A method for designing automatic flight control systems for aircraft that have complex characteristics
and operational requirements, such as the powered-lift STOL and V/STOL configurations, is presented. The
method is effective for a large class of dynamic systems that require multiaxis control and that have highly
coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. The method
exploits the possibility of linearizing the system over its operational envelope by transforming the state
and control. The linear canonical forms used in the design are described, and necessary and sufficient condi-

tions for linearizability are stated. The control logic has the structure of an exact model follower with
linear decoupled model dynamics and possibly nonlinear plant dynamics. The design method is illustrated with
an application to a helicopter autopilot design.

1. INTRODUCTION ...

Consider in general terms the control-system design problem. Let us take the usual hardware/software
model of the problem in which the hardware consists of the plant together with all the sensors and actuators
which are connected to a digital computer, and in which the software embodies theLcomplete control strategy.
The hardware is fixed; we may change only the software, over which, however, we have full control. So one
may say that since the underlying physical process is to remain fixed, only its representation may be changed.
If this point of view is taken, then much of the control-system design problem may be interpreted in terms
of transformations.

This paper outlines a design approach that is being developed from the transformations point of view,
and describes an application to the control of a helicopter. This approach, first outlined in Ref. i, has
been applied to several aircraft of increasing complexity, and the completely automatic flight-_ontrol system
was first tested on a DHC-6. The reference trajectory used in the flight test.exercised a substantial part
of the operational envelope of the aircraft. Despite disturbances and variations in plant dynamics, the
system performed well (see Ref. 2). Next, the technique was applied to the Augmentor Wing Jet STOL Research
aircraft, the successful flight tests of which are reported in Ref. 3. Methods for providing pilot inputs to
this design were examined in Ref. 4, and application of the scheme to the control of an A-7 aircraft for
carrier landing and testing in manned simulation is reported in Refs. 5 and 6. The design method is currently
being applied to the UH-IH helicopter, again with the substantial portion of the operational envelope of this
aircraft being used.

The key concept of the approach is to simplify the representation of the plant dynamics by means of a
change of coordinates of the state and control. The design proceeds in three steps. First, the given non-
linear system - possibly time-varying, multiaxis, and cross-coupled - is transformed into a constant, decou-
pled linear representation. Second, standard linear and nonlinear design techniques, such as Bode plots, pole
placement, LQG, and phase plane, are used to design a control law for this simple representation. And third,
the resulting control law is transformed back out into the original coordinates to obtain the control law in
terms of the available controls.

The mathematical foundation for the approach is provided by modern differential geometry, the necessary
and sufficient conditions for linearizing have been established, and the theory is given in Refs. 7-15.

2. CANONICALFORM

Suppose that the given natural representation $I of the physical process is given by the state xz,
control ul, and field f_,

xl = f1(xz,ul) (I)

and that we wish to change S_ into $2 with state x2, control u2, and field f2,

x2 = f2(x2,u_) (2)

This change will be accomplished, and hence a large part of the design problem solved, once we construct the
appropriate transformationsof the state and control,

x2 : T(xz) (3a)

ul : W(xl,u2) (3b)

which relate St to S2 so that for all admissible (xz,u2),

B--T-T(xl)f1[x1,W(xl,u2)] : f2[T(xl),u2] (4)Bxl

The function W is the control law.

The construction of the transformation (T,W) is often greatly simplified by the introduction of an
intermediate canonical representation SO as shown in Fig. I. To obtain (Tz2,W12), which links Sz to S2,
both Sl and S2 are first transformed into the canonical representation So • Then
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G TI= " l'i2)T1o (5a)

W12 - WIoW(J (5b)

In the design procedure being described, the
Brunovskyform (Ref. 14) ts taken to be canonical.
In linear theory this form is basic. It consists of
decoupled strings of integrators which may be dia-
grammedas shownin Fig. 2 where each dot represents
a scalarIntegrator.

TIO T20
The numberof strings,whichmay be of different

lengths,equalsthe numberof controlswhichitself
WlO W2_ equals the numberof Kronecker indexes

kl z k2 _ • • • _ km. The lengths of the tth string
is givenby ki and the dimensionof the statespace @

m

n=T: ki .
T12 _ I=_

Q I ( S_ _ Let the canonical state x0 E Rn con.rol UO_ Rm,

and denote the canonical field fo b/
4

W12 S0 - AoX0 + BoU0 (6)
Fig. 1. Manipulation of system representations.

Accordingto lineartheoryany constant,linear,

u: : : : - . . . . _ kI INTEGRATORS controllable system maybe viewed as a nonstngular

u_ _: : _ . . • . _K21NTEGRATORS transformation of an appropriate Brunovsky form.Thus, if Sz is given by the state xz e Rn, control

m ...... : : : ;_.._'km ul E Rm, and fielduo : : : : INTEGRATORS

Fig. 2. Diagramof Brunovskyform. ' 11 = A_xz + Bzul (7)

with controllable (Ax,BI), then there ts a Brunovskyform that can be transformed into Sx by meansof non-
stngular transformations (T,W nonstngular)

xl = T-ix o (Ba)

ul = WUo + Qxz (8b)

Of course,SO may a]sobe transformedintononlinearand time-varyingsystemswithoutany lossof
informationby allowlngthe transformationsin Eq. (8) to be nonlinearand time-varyingbut stillnonsingular:

xl = T-1(Xo,t) (%)

ul = W(xl,uo,t) (gb)

ThlS factglvesrlseto our designprocedure.When presentedwith a nonlinearsystem Sz, the firststep
is to try to llnearizethe systemover Itswholeoperationalenvelopeby constructingiT,W)whichmaps Sz
into So. Then a controllaw Issynthesizedfor themuch simpler SO• Flnally,the So controllaw is
transformedIntothe coordinatesof $I toobtainthe controllaw for Sz.

3. TRANSFORMABILITY

__ "_ i_ F_I x_ r_'l _, r"_ x_ A class of systems particularly amenableto this
approach has the_following form. The control u e Rm,
the state x _ Rm x R_ x . . . x Rm and the field f
iswithouttransmissionzeroesand invertible.An
exampleis shown_n Flg.3. Inthis example,the
state xe Rm x R,, the control u e Rm, and the .
fteld f,

xz = Fz(xz,xz,t) I (10)!Ftg. 3. An exampleof a block triangular system. _2 = Fz(xz,x2,u,t)

and FI and F2 are tnvertible relattve to (x2,iz) and (u,R2). That ts, functions h, and h2 can be con-
structed so that If

x2 m hz(Xz,xz,t) ! (11)
u " h;_(xz,x2,1±,t) )

then

Fl[xl,hl(xl,xl,t),t] = xl I (12)
F_[x_,x_,h_(x_,x_,_,t),t] " x_)



3

on the operationalenvelope.Becauseof the formof Eq. (i0),suchsystemswill be calledblock-
triangular.

For thisexample,the canonicalform S_ has m Kroneckerindexes,all equalto2. The state
x°_ Rm x Rm, the control u°_ Rm, and the _ield,

x_ : x_)

_ :u°I (13)

The map linkingEq. (10)withEq. (13)may be obtainedby lettingxl = x_(t)and pushing,as it were,
the time-historyx_(t)upstreamthrough f to obtain u(t). Thus

% xl : x_

_i = A_ : x_

x2 = h1(x_,x_,t) (14)

@hl @hzuo + _

oo"
u = h2(xl,x2,x2,t)

In general,the canonicalform So of a blocktriangular$I willhave m Kroneckerindexes,all
equalto n/m where n is the dimensionof the statespaceof S_.

Thisprocedureof constructingthe linearizingtransformationswillfail if S_ doeshavetransmisslon
zeroes. In thatcase,one obtainsdifferentialequationconstraintson u, therebydestroyingits statusas
an independentcontrolvariable.Nevertheless,suchsystemsmay stillbe linearizable.Forexample,the
scalarsystem

ia = + u (15)

_3

is linearizedby the transformation

= x_+½ (x_)_x_

x_ : x2 (16)

X_ : X 3

U = U °

On theotherhand itwill be shownthatthe system

i2 = + u (17)

i3

is not linearizable;the nonlinearityin thiscase is intrinsicand cannotbe removedby a changeof coordi-
nates. The conditionsunderwhichlinearizationis possibleare summarizednext.

Let x _ Rn, u _ Rm, and the field

R : F(x,u) (IB)

Thereare fourconditionsfor thissystemto be linearizable.First,it is necessaryto be ableto construct
a new controlvariable,€,

: h-_(x,u)
(19)

u : h(x,¢)

SO that € enterslinearlyintothe field:

m

F[x,h(x,¢)]: f(x)+ _ gi(x)¢i (20)
i=_

The remainingthreeconditionsare technical,and theyare best expressedby meansof Lie bracketsdefinedas
follows. If f and g are C_ vectorfieldson Rn, the Lie bracketof f and g is

_f (21)If'g]: -_xf - _ g
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andwe set

(adOf,g) = g

(adZf,g)= If,g]

(ad2f,g)= If,If,g]]

(adkf,g): [f,(adk-lf,g)]

A collectionof C= vectorfields hz,h2..... hr on Rn is involutlveif thereexist C= functions

Yljk with
r 9

[hi,hj]= k____=Yijkhk, I ( i , j ( r , I _ j

Now,supposethatwe wishto transformEq. (20)into So with Kroneckerindexes kz ) k2 ) . . . _ km.
Definethe sets

C = {gz,[fzgz]..... (adkZ-Zfzgz),

g2,[fzg2]..... (adk2"Zfzg2),

gm,[fzgm]..... (adkm'Zfzgm)}

Cj = {gz,[fzgz]..... (adkj'2fzgz),

g2,[fzg2]..... (adkj'2fzg2),

gm,[fzgm]..... (adkj'2fzgm)}for j = I,2..... m

Then it can be shownthatthe transformationis possibleifand only if at eachadmissiblex,

I. The set of C spansan n-dimensionalspace

2. Each Cj is involutivefor j = I,2..... m

3. The span of Cj equalsthe spanof Cjn C for j = 1, 2, . .., m

Fora linearfield,R = Ax + Bu, the spanningcondition(I)or C is equivalentto controllability,rank
(B,AB.... ,An'ZB)= n. The otherconditionsareautomaticallysatisfied.The new coordinatesurface
Tz(x)= constantin a planethroughtheoriginin the old statespace. For nonlinearfield,T:(x)= constant
willbe a generalsurface. The involutivitycondition(2)guaranteesthatthissurfaceisconstructiblefrom
localconditions(integrabilitytheoremof Frobenius).

Supposewe wish to transformsystem(17)into SO with k = 3. Herethe set C = {g,[f,g],(ad2f,g))
spans R3. But the Cz = {g,[f,g],[g,[f,g]])alsospans R3; therefore,system(17)is not transformableinto
SO. For furtherdetailson the transformationtheorysee Refs.7-15. Let us turnour attentionnextto the
controlstructureinwhichtheseideasof transformabilitymay be implementedin practicalcases.

4. EXACTMODELFOLLOWER

If the plant Sz is equivalentto a system $2 in thesensethateachcan be transformedinto theother
by nonsingulartransformations,thenone may constructan exactmodelfollowerinwhichthe plant Sz will,
exceptfor disturbances,followexactlythe system S2, whichis interpretedas beingthemodel. Let the
systemrepresentingthe trackingerrorbe denotedby $3. The threesystems,are relatedto eachotherand
to the Brunovskyform So as shownin Fig.4.

Fig.4. Plant Sz, model $2, and regulatorS_.
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NOW consider the structure of the model fol"- .... h_-x_ . [ " IXn _ I xl •

Iower as shown in Fig. 5. There are five subsys- _ _ _L_J , [] [

transformations.'The desired system behavior is !

defined in the model servo. The model servo law MODEL I I p :

may be nonlinear, time-varying, and dynamic. SERVO I |' _-_ I I L--1-] I I _1- _
The TW-map (T,z,W2,) transforms the $2 system CONTROL I I I --I II I ';'

_m m m L I 4_ _ --.. l:L

= . (22). Aw. I l ," : "-J,,. . ; m ..
_,m3= f_(xm,um) (23) I u! ' I &l,J IU3 _,ID I Ll=W.=,,=l_ !

I i I t
The TiC-map (Tz,,W,) transforms the plant S, MODELSERVO TW-MAP I REGU-

TW-MAP PLANT
LATOR

x, : f1(xz,ul) (24) Fig. S] S£ructure of the modei follower. "

into S3

)<3= f3(x3,u3) (25)

That is, when seen through the TW-map (Tz3,W_3)in terms,of (x_,u3), the plant looks like Eq. (25); which is
also how the model looks through the TW-map (T23,W23).

In the absence of disturbances and with proper initializationof the model (i.e., xm(o) = T12[xz(O)]),
the plant will follow the model exactly in the sense that the error defined by

•_; _ ._ ' _i L _ . _.

e3 = x3 - xm .... (26)

will be zero for t _>0. In a realisticsituation, disturbances, say, d, are present, and they are controlled

by means of the regulator which transforms the tracking error e3 into corrective control 6u3. The error
dynamics are given by ." :

m m (27)e3 = f3(x3,uz) - f3(x3,Uz) ' "

which for small errors simplifies to "

= BT3 e3 + _T3 $u3 + d

In particular, if $3 is chosen to coincide with So, so that f3 = fo,.then without approximation,

eo = Aoeo + Bo_uo ,+d . .- , (28)
• ..,

It may be noted that the regulator need not be gain-scheduled;that function is accomplished automatically
by the TW-map.

This completes the outline of the design approach. Consider next an application to a helicopter.

5. THE PLANT-A HELICOPTER

The helicopterwill be represented by a rigid body moving in three-dimensionalspace in response to
gravity, aerodynamics, and propulsion. The state,

x = (r,v,C,w)T E X c R3 x R3 × S0(3) x R3 (29)

where r and v are the inertial coordinates of body center-of-massposition and velocity, respectively,and
C is the direction cosine matrix of the body-fixed Bxes relative to the runway-fixed axes (taken to be
inertial). The attitude C moves on the sphere S0(3). The body coordinates of angular velocity are
represented by w. .. _,..

The controls,

u = (uM,uP)T € Uc R3 x R (30)

where-u M is the three-axismoment c°ntr°l' that is, roll cyclic and pitch.cyclic,which tilt the main-rotor
thrust, and the tail-rotor collective, which controls the yaw moment; ancl uP is the main-rotor collective,,.,
which controls the main-rotor thrust.

The effectively 12-dimensionalstate equation consists of the translational and rotational kinematic and
dynamic equations:

: r = v

(, = fF(x,ui
, ,, (31)

_ = s(_)c

_'="fM(x,u)
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where fF and f/4 are the total force and momentgeneration processes, and ix,u) are defined by Eqs. (29)
and (30)• This is the natural representation Sz of the helicopter.

Consider next the transformation of Eqs. (31) into a Brunovskyform So bymoans of the transformations
u = W(x,uo) and xo - T(x).

6, THETW-MAP

In genera.I, the momentgeneration process _ ts tnverttble with respect to the patr (_,uM), and for
the restricteo c_ass of maneuversbeing c_nstdered in this experiment (t.e., no 360° rolls_ fF ts
tnverttble with respect to the pair (_:,u_). Thus, in the present case for the set of angu(ar and vertical
acceleration commandsrestricted to the set

U_ • ((_,v3) : (_t( _ 1.0 rad/sec 2, t l 1o2,3, I0,1_ o•s g} (32)
f

a function hM:x x U_ _ U can be constructed So that tf

u - hM[x.(_)o,_o)] (33)

then

_'_o }
• (34)

V_ = V30

If (_o,_o) are chosento be the new independent control variables to replace the natural controls (uM,uP),
then the stale equation (31) becomesthe following:

F-v

iv') " f°(r'v'C) + " f'[r'v'C'w'(_o'V,o)]_

v, • V,o (35)

€ •s(w)c

- 60

where € - 1 and f_ is such that fl[r,v,C,O,(O,O)] - O.

The function f° is lnverttble with respect to the pair, ([v_,gz,E3(_)],C) in which E3(_) is an elemen-
tary rotation about the runway z-axis, representing the heading of the helicopter.

0

If the horizontal acceleration commandsare restricted to the set

U_ - {(vl,v2) : I_tJ s 0.5 g, t - 1,2) (37)

then a function hF : R3 _ R_ . U_ x S0(2) _ S0(3) can be constructed so that the helicopter attitude given by •

Co " hF[r.V.vo.E_(_o )] (38)

results in the commandedacceleration,

; " Vo (39)

Equations (33) and (38) are the trim equations of the helicopter (31) without the parasitic effects (€ = 0
in Eq. (35)). That is, for a gtven motion {r(t),E3[_(t)]),t _ O, the corresponding trim state and control
may be computedas follows:

ro - r(t)
Vo- Ht)

Co - bF(ro,Vo,_o(t),E:[_o(t)]}

eo " q[_o(t)CoT] (40)

_o" _o(t)

Uo - hM[rooVo.Co.- O,(Wo,V,o)]
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where the function q extracts _ from S(_) = _cT.. The.. y5 y4 y3 .y2 yl
required time derivatives in Eq. (40) are computable pro-

vided that the motion (r,E3) is generated by the strings ---_ ; = • = r1
of integratorsshown in Fig. 6 where a dot represents a •
scalar integrator,and yS_ R. is an independent control
variable. The system shown in Fig. 6 (Kroneckerindexes
{4,4,2,2})will be taken as the canonicalmodel of the
helicopter. The canonical variableswill be denoted by-.y >- _ . =.... = a. r2 .
rather than xo to reduce the number of subscripts. The ,. ;
transformationand feedback that change the natural repre-
sentation (Eq. (31)) to the canonical representationare ..... _
approximately the following. _ = = E3.

The coordinate change, y = T(x), is given by

yl = (_',y_)T : (r1,_2)T' _ _ = : r3 :

y2 = (y_,y_)T : (vl,v2)T Fig. 6. Canonical model of helicopter.(41 ' -

y3 = (y_,y_,y_,y_)T= (f_,f_,E3(_),r,}T ._"

_y_)'y_,y_I,L,y_'T = _-_-w,%,r,Bf° " Ty"

where _

' 2 i 2 C .
'cos€ = c11/c,_in € = c12/c, c = (c_l + c12) / , and (cij) =

The control variable change, u = w(x,ys) is defined _n two'steps_

...._ ! ( af° _I/'sI_I- - . 0 0 '_ \y_/ .... (42)

and . .

u = hM[r,v,C,_,(_,G3)] (43)

The effects of the various approximationsmade in the construction of these transformationsare relegated to
the regulator.

, • .
7. MODEL SERVO AND REGULATOR " "_

The field of the model $2 is chosen to be canonical as defined in Fig. 6. The design of the three
trajectory channels of the model servo is shown in Fig. 7. There are four 3-axis integrators. .Twoaxes
correspond to the horizontal strings (rl,r2) in Fig. 6. The third axis represent_.th'e-vertical(r3) string,
but with two additional smoothing integrators. The exceedingly simple structure of the field (i.e., linear,
decoupled) greatly simplifies the servo design"process. The inner loop (ao,_o) is designed to be an acceler-
ation servo whose input aI is the sum of coarse acceleration command a* from the coarse command gener-
ator, and aao wllichis generated by the outer loop to smoothly reduce any discontinuities in.the commanded
position and velocity vectors, r* and v*, respectiyely. The acceler_tioh servo bandwidth is 0.63 rad/sec.
The bandwidth of the outer loop is 0.1 rad/sec. Large position errors are reduced at the rate of 6 m/sec.

The heading model servo is shown in Fig. 8. It is designed to have two scalar integrators corresponding
to the E_ ,stringin Fig. 6. The heading error,

%0 = cos @o sin _* - sin @o cos €* (44).. ....

is computed in the q-block. Block S represents, together with the integrator, the kinematicequation
of E_.

The model reference state Yo and control y_ in Fig. 5 are defined (see Figs. 6-8) as follows:

y_ = (r_o,r_o)T .....

y_ : (V_o,V_o)T

' y_ = [a_o,a_o,E_(_o),r_o]T " (45)

y_ • • T--(a_o,a_o,%o,V_o)

y_ ..... T: (a_o,a_o,_3o,a_o)
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ro

WAYPOINT

V0

r'- "-I

a* E3(_e) --""-'_ I _"- = E3('_O)
f

'o ----e_ ° ...

'r F

•
_. w30

Fig.7. Hodelservo-trajectory,r- (rz,r2,r3). Fig.8. Hodelse_o-heading E3(%).

The fieldof the regulatorS3 isalsochosento be canonicalSo. The regulatordesignisoutlined
in Figs.g-ll.

yl y2
I I

1 _ 3 4Yo Y4 Y4

Vo2 *_-__ll_ _:

_j ,,3o3

,,,o,'=°', E]_... E:q('!fl -:, _';J,:o "_ ,:
\v_d

Ftg. g. Regulator-horizontal axes. Fig. 10. Regulator - vertical channel.
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The estimated canonical state y is computed
from the estimated natural state by means of the 3 4
transformation T defined by Eq. (41). The outer Y3 =E3(_) Y3

bandwidth of 0.3 rad/sec, with a 3 m/sec large-

error reduction rate and 0.1-g authority limit.
The inner loop bandwidth is 3 rad/sec. The verti- Y 0 e@
cal channel, shown in Fig. 10, has a bandwidth of =
0.63 rad/sec, a 1.5-m/sec large-error reduction
speed, and 0.3-g authority. Finally, the heading

channel is regulated as shown in Fig. 11, where 4 ++
the heading error is given by Y30

ep = cos _ sin €o - sin _ cos _o (46)
5 5

The.bandwidth of the heading regulator is Y30 Y3
3 rad/sec.

The total regulatoroutput, 6ys, is added to Fig. 11. Regulator- the heading channel
the open-loop command, y_, resulting in the total
canonical control, yS. It is then transformed
by means of the W-map given by Eqs. (42) and (43) into the natural control u which, in turn, drives the
actual plant.

8. SYSTEMPERFORMANCE

The results of a manned simulation are summarized in this section. The code was implemented on the flight
Computer to be used in the flight test, and the mathematical model of the helicopter (UH-IH) was driven
through the actual hydraulics.

The experimental flightpath is defined by a set _,_

of way points, segments of lines and helixes, and a
speed profile, as shown in Figs. 12 and 13. As can
be seen from Fig. 12, the flightpath is a closed
curve. The time dependence is shown in Fig. 13.

-r
The experiment, _hich consists of automatically F-

flying this trajectory, exercises the system over
a wide range of flight conditions. The helicopter v--r
is taken from hover (way-pointI in Fig. 12) to _ E _
high-speed (50 m/sec) accelerating, turning, and -_ E 25 0

ascending flight. This input to the system is ._ m= m/s
coarse, with a variety of discontinuities. The ,_
required smoothing is provided by the model servo ___
discussed in the preceding section. ON

,,I 2438 m
For the data presented, the helicopterwas o

flown manually to the point • marked in Fig. 12. _"
There the automatic system was engaged. It takes
about 500 sec for the helicopter to go once around
the flightpath. Unlike the coarse accelerations _n 45m/s 30m/s
Fig. 13, _e model accelerations are smooth, as is
the vertical velocity, V3o. The second panel in
Fig. 14 (labeled "acceleration error") shows the
effects of the neglected parasitic terms on acceler- 600
ation. The acceleration errors are quite small -
less than 0.05 g. The regulatorcontrols these E
effects by means of position errors. The resulting z" 500
horizontal error is less than 2 m, and the vertical F-
error is below 0.5 m. The speed error,
ev = IIv!i- llVoll,is below 0.5 m/see. _ 400

Thus, the performance of the design in the sim- u.

ulation tests was good, and, at this writing, flight - 300
tests are in progress. <

200
;>

IO0

Fig. 12. Experimental flightpath shown in
horizontal and vertical planes.
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Fig. 13. Time-dependence of the coarse cor_nand.

V_o3Y20
.2g. _ MODEL ACCELERATION ss t_

-.2,L - L_-" V4o "_./
.2g

_a2 ACCELERATION ERROR
0 -.-J_,- _._._ ___ -- _ .... ......

_a1
-.2g

3

. ,,_1)-E,(Z)_
POSITION ERROR

-3
3 V3o

=_______;,------_.\.,,__MODELVELOC,TYo _o
ev !./-" _" "_'_'1_ _1_'

-3 v i , _ / ,
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RELATIVE TIME, sec

Fig. 14. System response- canonical variables.
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