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(U) SUMMARY (U)

(U) An experimental investigation has been conducted in the Langley 8-Foot
Transonic Pressure Tunnel of a 0.237-scale force model of a remotely piloted
research vehicle. The model was equipped with a thick, high-aspect-ratio
supercritical wing and employed elevons for pitch and roll control. The pur-
pose of the investigation was to provide experimental data for a prediction of
the static stability and control characteristics of the research vehicle. In
addition, the purpose was to provide an estimate of vehicle flight character-
istics for a computer simulation program used in the planning and execution of
specific flight-research mission. The wind-tunnel test conditions were for a
Reynolds number of 16.5 x 10 6 per meter at Mach numbers from 0.30 to 0.92. The
model test variables were as follows: symmetric and asymmetric elevon deflec-
tion angles from -90 to 60 ; rudder deflection angles from -9 0 uo 00 ; sideslip
angles from 00 to 60; and angles of attack from -40 to 180 . Three model config-
uraticns that differed only with the addition of two ventral pod designs were
investigated.

(U) At some test conditions the model exhibited longitudinal instability char-
acterized by a "pitch-up" behavior. An adequate margin of the stability was
determined for a cruise condition. The pitch-control effectiveness was shown
to be sufficient to trim the model at all Mach numbers tested. The model also
had positive roll-control effectiveness, positive yaw-control effectiveness,
positive effective dihedral, and directional stability.

(U) INTRODUCTION (U)

(U) The Drones for Aerodynamic and Structural Testing (DAST) project (ref. 1)
is a NASA flight program which uses a modified Firebee II target drone vehicle
as a test-bed aircraft for testing aeroelastic research wings (ARW). In the
integrated design of the second wing (ARW-2), the structural integrity of the
wing depends on the successful operation of several active control systems.
The ARW-2 design includes active controls for maneuver load alleviation, gust
load alleviation, relaxed static stability, and flutter suppression.

(U) This vehicle will be flight tested with simultaneous operation of all active
control systems. The successful conduct of this flight-test program depends to
some degree on prior prediction of the performance, flightworthiness, and sta-
bility and control characteristics of the research vehicle. Wind-tunnel investi-
gations are used to predict these characteristics. In addition, the wind-tunnel
data are used to T.: -^vide an estimate of vehicle flight characteristics for a com-
puter simulation program. The simulation program is used in the planning and
execution of specific flight-research missions and as an aid in the prediction
of structural loadings at critical points in the flight envelope.

v..
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(U) Results, with limited analysis, of wind-tunnel measurements of the total
aerodynamic forces and moments for a 0.237-scale model of the Firebee II air-
craft (ref. 2) equipped with a thick, high-aspect-ratio supercritical wing
(fig. 1) are documented in this paper. Three configurations of the wind-
tunnel model were tested. Each configuration differed only by the absence or
addition of one of two ventral pods that were designed to house instrumenta-
tion. and ballast weights for the flight-test vehicle. The wind-tunnel tests
were conducted in the Langley 8-Foot Transonic Pressure Tunnel at Mach numbers
from 0.30 to 0.92, angles of attack from approximately -40 to 180, angles of
sideslip from approximately 00 to 60, and a Reynolds number of approximately
16.5 x 10 6 per meter.

(U) SYMBOLS (U)

(U) The results presented herein are referred to the stability-axis system for
the longitudinal aerodynamic characteristics and to the body-axis system for
the lateral-directional aerodynamic characteristics (ref. 3). Force and moment
data have been reduced to conventional coefficient form based on the geometry
of the reference wing planform (i.e., the planform generated by extending the
straight leading and trailing edges of the outboard sections of the wing to the
fuselage centerline). Moments are referenced to the quarter-chord point of the
mean geometri ,: chord of the reference wing panel (model station 1.06, fig. 2) .
All dimensional values are given in ST units; however, measurements and calcula-
tions were made in U.S. Customary Units.

b	 wing span

c	 streamwise local chord of wing (includes trailing-edge extension)

c	 wing mean geometric chord

ct	elevon mean geometric chord

CD	drag coefficient (corrected for fuselage base pressure), Drag
qS

CDa	 slope of drag curve, per deg

3CD
CDde	 elevon effectiveness in drag parameter, 

2d 
per deg

e

Lift
CL	lift coefficient,

qS

CL, O	 lift coefficient at zero angle of attack

CLa	
lift-curve sloe, per deg
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aCL
CLde	 elevon effectiveness in lift parameter, a

	
per deg

e

Rolling moment
C I	rolling-moment coefficient,

qSb

AC1

C IS	 effective dihedral parameter, es , per deg

ac t

C 1 ^	 asymmetric elevon effectiveness parameter, 
as 

per deg

	

a	 a

act
C16	 effect of rudder deflection on rolling-moment coefficient, ad

	

r	 r
per deg

Pitching moment
Cm	 pitching-moment coefficient,

qSc

Cm' O	 pitching-moment coefficient at zero lift

Cmct	slope of pitching-moment coefficient against angle-of-attack curve,
per deg (Cma < 0 indicates stability)

\\	 / 

aCm
Cm de	 elevon effectiveness in pitch parameter, as per deg

e

Yawing moment
Cn	yawing-moment coefficient,

qSb

6Cn

Cns	
directional-stability parameter, QS , per deg (Cns > 0 indicates

stability)

Cn6	effect of asymmetric elevon deflection on yawing-moment coefficient,

	

a	 acn

as per deg
a

aCn
Cndr	rudder-effectiveness parameter, as , per deg

r
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Side force
Cy	 side-force coefficient,

qS

dCy
Cys	 side-force parameter, QS , per deg

Cys	 effect of asymmetric elev, deflection on side-force coefficient,
a	 aCy

as , per deg
a

aCy
Cy	 effect of rudder deflection on side-force coefficient, —, per deg

dr	 Hr

M	 free-stream Mach number

C

D/	
aerodynamic range parameter, product of M and L

(CD

aCD
MDD	 Mach number at which am = 0.10 (drag divergence)

q	 free-stream dynamic pressure

R	 radius

S	 planform area of basic wing panels (including fuselage intercept)

t	 local wing section thickness

x	 streamwise distance measured from leading edge of wing, positive
toward wing trailing edge

y	 spanwise distance measuL,2d normal to model plane of symmetry, zero
at fuselage centerline

z	 vertical distance measured normal to x, positive upward

a	 angle of attack, deg

aO, L	zero-lift angle of attack, deg

6	 angle of sidesl1p, deg
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da	effective asymmetric elevon deflection angle (positive, right wing

dHL - 6HR
down) ,	 2 —, deg

de	symmetric elevon deflection angle (positive trailing edge down), deg

Cma

dea	 symmetric pitch-control index,

CMae

dHL	 left elevon deflection angle (positive trailing edge down), deg

6HR	 right elevon deflection angle (positive trailing edge down), deg

dr	rudder deflection angle (positive trailing edge left), deg

Cns

Srs	 rudder -control index, -

Cnd r

e	 angle of twist of local airfoil section (angle between the wing refer-
ence plane and a line through the leading edge and a point midway
between the upper and lower surfacer at the airfoil maximum thick-
ness), deg

Abbreviations:

M.S.	 model station, m

W.L.	 water line, m

Subscript:

max	 maximum value

(U) APPARATUS AND PROCEDURE (U)

(U) MODEL DESCRIPTION (U)

(U) The wind-tunnel investigation was conducted using a 0.237-scale model of
the test-bed aircraft, a modified Firebee II target drone (ref. 2), equipped
with a thick, high -aspect-ratio supercritical wing. The general arrangement of
the basic wind-tunnel model (configuration A) is shown in figure 1 and the model
planform with selected geometric data is shown in figure 2.

(U) The supercritical wing was constructed of stainless steel and mounted in
a high-wing position. The wing reference plane had an incidence angle of Oo

r^
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with respect to the fuselage centerline. The wing had approximately 4.4 0 of
twist (washout) in the unloaded condition. The spanwise twist distribution
and the maximum thickness - to-chord ratio for the wing are shown in figures 3
and 4, respectively. The reference wing (excluding the trailing-edge exten-
sion) had an aspect ratio of 10.3, a taper ratio of 0.40, a quarter-chord sweep
angle of 270 and a dihedral angle of 00. The area of the reference wing plan-
form, including the fuselage intercept, was 0.183 m 2, the mean geometric chord
of the ief erence wing panel was 14.15 cm, and the span was 1.37 m. Nondimen-
sional wing airfoil coordinates at the wing-fuselage junction, the wing-planform
break, and the wing tip are presented in table I. The wing reference plane was
located at W.L. = -0.013.

(U) The model fuselage was constructed of fiberglass skin, aluminum bulkheads
and a steel beam 1.282 m in length (from M.S. = 0.433 to M.S. = 1.715) to
provide for a large degree of rigidity. Protuberances for angle-of-attack and
angle-of-sideslip measurements were not included on the model fuselage. The
abrupt change in fuselage area at the inlet duct on the flight Configuration
(ref. 4) was modified to provide a smooth contour on the model for attached flow
conditions. A sketch of the air inlet-duct area is shown in figure 5. Indi-
cated on the sketch is a faired line of the revised contour for the wind-tunnel
model. The exit-duct area was covered by a flat surface having a rectangular
clearance hole that provided t ,.;cess to the fuselage cavity for the model support
system. Cross-sectional views o:° the model fuselage geometry are presented in
figure 6. Static--pressure tubes were positioned at selected locations in the
fuselage to provide for base-pressure corrections to the test data.

(U) The tail surfaces of the model were constructed of stainless steel. The
rudder was attached to the ver :^a! fin by a hinge bracket that was fabricated
to provide rudder deflection ang:.cs from -12 0 to 00 in increments of 30. Ele-
vons (all-movable, diffeientiall-., , c,,-.,::ating horizontal-tail surfaces), which
provide for pitch and roll contra„ wi— a attached in a manner which allowed for
independent deflection anglcs f.:n+s -150 to 90 in increments of 30 . The ranges
of rudder and elevon deflection angi-P n or the full-scale vehicle were from
-100 to 100 and from -120 to 70, respectively.

(U) Three configurations of the wind-tunnel model were used during the test
program. The configurations, designated A, B, and C, differed only by the
absence or addition of one of two pod designs to the fuselage lower surface.
Configuration A refers to the basic wind-tunnel model shown in figure 1. Con-
figuration B refers to the basic wind-tunnel model with the addition of the pod
design shown in figures 7 and 8. Configuration C refers to the basic wind-
tunnel model with the addition of the pod shown in figures 9 and 10. Dimen-
sional data for the pod designs of configurations B and C are included in fig-
ures 7 and 9 along with their location on the fuselage. As indicated in the
sketc)• of figures 7 and 9, the primary difference in the pods of configura-
tions 3 and C is the fairing located downstream of model station 1.108.

(U) TEST FACILITY (U)

(U) The investigation was conducted in the Langley 8-Foot Transonic Pressure
Tunnel. This facility is a continuous-flow, single-return, slotted-throat

t.t
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tunnel having controls that allow for the independent variation of Mach number,
density, temperature, and dewpoint. The test section is square in cross section
with the upper and lower walls axially slotted (each wall having ar open ratio
of approximately 0.06) to permit changing the test-section Mach number continu-
ously through the transonic speed range. The stagnation pressures in the tunnel
can be varied from a minimum value of approximately 0.25 atm at all test Mach
numbers to a maximum value of approximately 1.5 atm at transonic Mach numbers
and to approximately 2.0 atm at Mach numbers of 0.40 or less (1 atm - 101.3 kPa).
A more detailed description of the tunnel may be found in reference 5.

(U) BOUNDARY-LAYER TRANSITION STRIPS (U)

(U) Boundary-layer transition strips were placed on all model components for
the entire investigation. All transition strips were 0.3-um wide and were made
of carborundum grit. The size and location of each strip were determined by
the techniques of references 6 and 7 and from experiences gained by putting
transition strips on similar wind-tunnel models (e.g., ref. 8). The strips
were fixed at the location shown in figure 11. The model surface forward of
the strips was kept smooth to maintain laminar flow.

(U) MEASUREMENTS AND TEST CONDITIONS (U)

(U) Six-component force and moruent data were obtained with an electrical strain-
gage balance housed within the fuselage. Angle of attack was meas^ired by means
of a t10g linear servo accelerometer that was also housed within the fuselage
and aligned with the pitch reference axis (1g = 9.8 misec 2 ). Model. static
pressures were measured in the vicinity of the strain-gage balance and in the
sting clearance opening at the aft fuselage.

(U) Measurements were taken over a Mach number range from about 0.30 to 0.92
for angles of attack that varied from about -4 0 to 180 at sideslip angles from
00 to 60 at a Reynolds number of approximately 16.5 x 106 per meter. The entire
investigation was conducted at a stagnation temperature of 322 K and at a dew-
point low enough to avoid significant condensation effects (see ref. 9).

(U) Basic longitudinal and lateral data were obtained for all undeflected con-
trol surfaces. "aw-control data were obtained by rudder deflections, and pitch-
and roll-control data were obtained by symmetric and asymmetric elevon deflec-
tions, respectively.

(U) ACCURACIES AND CORRECTIONS (U)

(U) The maximum allowable loadings for the six-component force balance used
in this investigation were as follows: normal force, 11.1 kN; axial force,
2.22 kN; side force, 1.78 kX; pitching moment, 1130 N-m; rolling moment,
848 N-m; and yawing moment, 508 N-m. The model sting support, however, had a
maximum allowable loading of 8.90 kN, which was used as the limiting normal
force. The accuracy of each component of the balance was estimated to be one-
half of one percent of the maximum value.

UNCLASSIFIED	 7
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(U) The angle of attack of the yodel was corrected for flow angularity in the
tunnel test section. Sideslip angle was corrected for sting bending. Lift,
drag, and pitching-moment coefficients were corrected to a condition of tree-
stream static pressure at the base using the static pressures measured in the
balance cavity and in the sting access opening at the aft fuselage. No cor-
rections have been applied to the data for sting interference effects or for
tre effects of either solid wake blockage or lift interference due to wall
effects. The estimated accuracy of Mach number was 0.003. The accuracy for
the angular deflection of the elevon and rudder was estiated to be within
approximately t1 0 and ±0.1 0, respectively. It is believed that angle of attack
and angle of sideslip are accurate to ±0.10.

W) PRESENTATION OF RESULTS (U)

(U) The results of this investigation are presen' A in the following figures;

Figure
Basic longitudinal aerodynamic characteristics:

Effect of model configuration . . . . . . . . . . . . . . . . . . . . 	 12
Effect of sideslip	 . . . . . . . . . . . . . . . . . . . . . . . . . 	 13
Effect of pitch control (symmetric elevon deflection) . . . . . . . . 	 14

Summary of longitudinal aerodynamic characteristics:
Variation of zero-lift angle o:: attack with Mach nu,aber for model

configurations A,	 B,	 and C;	 Se = 00	.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 15
Variation of lift coefficient at 	 a = 0	 with Mach number for

model. configurations A,	 B,	 and C;	 Se = 00	.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 16
Variation of zero-lift pitcaiag-moment coefficient with Mach

number for model configurations A, B, 	 and C;	 6e = 00 .	 .	 .	 .	 .	 .	 . 17
Variation of drag coefficient with Mach number for model

configurations A, B, and C for several lift coefficients 	 .	 .	 .	 .	 . 18
Variation of drag-divergence Mach number with lift coefficient

for model configurations A,	 B,	 and C	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 19
Variation of aerodynamic range parameter with Mach number for

five	 lift coefficients	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 20
Variation of lift-curve slope with Mach number for model configu-

rations A,	 B,	 and C.	 de = 00 ;	 S = 00	.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 21
Variation of static stability derivative with Mach number for

model configurations A, B, and C.	 Oe = 00 ;	 a = 00 .	 .	 .	 .	 .	 .	 .	 . 22
Longitudinal static stability boundaries 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 23
Variation of drag-curve slope with Mach number for model

configurations A,	 B,	 and C.	 6e = 00 ;	 S = 00 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 24
Variation of elevon effectiveness in lift with Mach number.

Model configuration C;	 -90 :	 Se 5 30 ;	 s = 00 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 25
Variation of elevon effectiveness in pitching moment with Mach

number.	 Model configuration C; -90 S de S 30 ;	 R - 00	.	 .	 .	 .	 .	 . 26
Variation of elevon effectiveness in drag with Mach number.
Model configuration C;	 -90 S 6e 5 30 ;	 a = 00 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 27

Variation of pitch-control index with Mat-h number for
model	 configuration C	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 28
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Figure
Basic lateral-directional aerodynamic characteristics:

Effect of model	 configuration	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 29

Effect of sideslip	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 30

Effect of roll	 control	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 31
Effect of directional	 control	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 32

Summary of lateral-directional aerodynamic characteristics:
Variation of lateral-directional stability characteristics with

lift : afficient for two ranges of sideslip angle. 	 Model
configuration C .	 . 33

Variation of lateral-directional stability characteristics with

Mach number for two ranges of sideslip angle. 	 Model

configuration C	 .	 .	 .	..	 .	 .	 .	 .	 . .	 34
Variation of roll-control derivatives (asymmetric elevon
deflection) with lift coefficient for model configuration C .	 .	 . .	 35

Variation of roll-control derivatives (asymmetric elevon
deflection) with Mach number for model configuration C 	 .	 .	 .	 .	 . .	 36

Variation of rudder-control derivatives with rudder deflection
for model	 configuration C	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 37

Variation of rudder-control derivatives with Mach number for
four rudder deflection angles.	 Model configuration C . 	 .	 .	 .	 .	 . .	 38

Variation of rudder-control index with lift coefficient for
four rudder deflection angles. 	 Model configuration C .	 .	 .	 .	 .	 . .	 39

Variation of rudder-control index with Mach number for four

rudder deflection angles.	 Model configuration C	 .	 .	 .	 .	 .	 .	 .	 . .	 40

(C) DISCUSSION OF RESULTS (U)

(U) Measurements of the basic data for the longitudinal and lateral-directional

characteristics were obtained in different angle-of-attack ranges for the three
model configurations. The initial tests were made using model configuration B

to determine a "well-defined" maximum value for the lift coefficient. During
these tests, severe buffeting :and;or rolling moments were encountered at the
higher angles of attack and Mazh numbers. To avoid possible damage to the model
or instrumentation, the angle-of-attack range for subsequent Lests of model con-
figurations A and C was limited by buffet onset or balance off-scale loading.
Also, comparable data at selected Mach numbers were not obtained for all config-
urations. This additional limitation on the data of the test pro gram was con-
sidered to have a negligible effect on the test results.

(U) The resulting data from the wind-tunnel tests (figs. 12 to 14 and 29 to 32)
were reduced to coefficient form and fitted with a smooth curve generated by a
tension-spline computer program (ref. 10). The computer program was also used

to generate the interpolated data for the summary of the longitudinal aerody-
namic characteristics (i.e., figs. 15 to 18) and for the derivatives of the
summary (i.e., figs. 19, 21 to 24, and 37 to 39). A linear least-square fit
based on the method of reference 11 was used for the derivatives of figures 25
to 27 and figures 35 and 36. The derivatives of figures 33 and 34 were obtained
from calculations of the incremental changes of the variables.

UNCLASSIFIED	 9
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(C) LONGITUDINAL AERODYNAMIC CHARACTERISTICS (U)

(U) Basic Characteristics (U)

(U) The effect of model configuration on the longitudinal aerodynamic charac-
teristics is indicated in figure 12. Data are presented for model configura-
tions A, B, and C at a sideslip angle of 0 0, at a symmetric elevon deflection
of 00, and at Mach numbers from 0.300 to 0.920. The data indicate similar
variations of the longitudinal characteristics for each model configuration.
At M g 0.860 and above, the configurations with pods have increasingly greater
drag with increasing Mach number, and somewhat lower lift at corresponding
angles of attack. The effect of the pods on pitching moment is not consistent
with increased drag below the moment center, indicating that there may be other
interference effects due to the presence of the pod.

(U) The effect of sideslip on the longitudinal aerodynamic characteristics is
indicated in figure 13. Data are presented for model configuration C at three
sideslip angles (nominal values of 0 0, 2.50, and 5.00), a symmetric elevon
deflect i on of 00, and for Mach numbers from 0.300 ro 0.920. At a Mach number
of 0.300, pitching-moment coefficient increased as sideslip was increased for
the range of angles of attack. At the higher Mach numbers (M z 0.700), the
data show a "cross-over" angle of attack where the pitching-moment coefficient
decreased with increased sideslip. This cross-over angle of attack decreased
as Mach number increased from Mach 7.700 to 0.900. A seoondary effect of side-
slip is best illustrated at Mach 0.800 by the small reduction in the magnitude
of the lift coefficient at an angle of attack of 2 0. The effect of sideslip
on the lift coefficient appears to be associated with the larger increments in
pitching-moment coefficient due to sideslip. In general, the data indicate a
substantial effect of sideslip on the pitching-moment coefficient, and a small
or negligible effect of sideslip on the lift and drag coefficients.

(U) The effect of pitch control (symmetric elevon deflection) on the longitud-
inal aerodynamic characteristics is presented in figure 14. Data are presented
for model configuration C at five symmetric elevon deflections (-9 0 , -60, -30,
00, and 30) and for the tail-off condition at a sideslip angle of 0 0 fni Mach
numbers from 0.300 to 0.900. A- elevou deflection was varied from -90 to 30,
the data indicate that the lift coefficient increased and that the pitching-
moment coefficient decreased for each Mach number. In general, the results
indicate that the model could have been trimmed throughout the ranges of Mach
number and angle of attack with a relatively small symmetric deflection angle.
For a given angle of attack, more negative symmetric elevon deflection is
required with increasing Mach number.

(C) Summary Characteristics (U)

(U) Variations of the zero-lift angle of attack, the zero-angle-of-attack lift
coefficient, and the zero-lift pitching-moment coefficient with Mach number are
presented in figures 15 to 17, respectively, for model configurations A, B,
and C with symmetric elevon deflection of 0 0 . Small changes in the values of
the zero-lift angle of attack (fig. 15), the zero-angle-of-attack lift coeffi-
cient (fig. 16), and the zero-lift pitching-moment coefficient (fig. 17) are

10	 UNCLASSIFIED



indicated for the lower Mach numbers (M 5 0.750 or 0.800). At the higher Mach
numbers, all parameters changed rapidly with Mach number. For each model con-

figuration, a positive value for the zero-lilt pitching moment is also indicated
throughout the range of Mach numbers. In genes^ o l, the data of figures 15 to 17
indicate only small changes due to changes in modes ^onf?guration, but signifi-

cant variations with increasing Mach number at the high Mach numbers.

(U) The drag characteristics for each model configuration are Fir ented in
figure 18. For each lift coefficient, the data show a character?stic drag rise
at Mach numbers from about 0.80 to 0.92. The data al-c o show a significant
effect of model configuration. For a given Mach number, the smalleit drag
coefficients were usually obtained for confi guration A, whereas the ' argest
drag coefficients were usually obtained for configuration B. The improvement
(reduction) in the drag coefficients of configuration C oocmpared with that of
configuration B is attributed to the longer aft pod fairing of configuration C
(fig. 9). This longer, more streamlined pod had a smaller "dead-air" region
behind it than the relatively blunt-ended pod of configuration B.

(C) The drag-divergence Mach number MDD is presented as a function of lift
coefficient in figure 19 for each configuration. The data show that a maximum
value for the drag-divergence Mach number was obtained at a lift coefficient
of 0.20 for configurations A and B, and at a lift coefficient of 0.30 for con-
figuration C. The highest drag-divergence Mach number (MDD - 0.832) was
obtained for configuration A.

(U) Variations in the aerodynamic range parameter M(L/D) with Mach number
are presented in figure 20 for all model configurations and for lift coeffi-
cients from 0.30 to 0.70. The range parameter, which is proportional to the
range of the full-scale flight vehicle, was computed for each configuration by
obtaining the product of Mach number and lift-drag ratio C L/C;) at each lift
coefficient. The data of figure ,. may be used to obtain an estimate of a
cruise flight condition (the flight condition for maximum range in the absence
of propulsive and structural trade-offs). An obvious choice is the flight con-
dition associated with the highest value of M(L/D). The combinations of Mach
number and lift coefficient for maximum M(L/D) ire different for each con-
figuration. However, with only one exception, all curves in figure 20 peak at
a Mach number of approximately 0.80 (M - 0.80 t 0.02). :since only an estimate
is sought, a Mach number of 0.80 is a reasonable single choice which applies
to the three model configurations. A lift coefficient of 0.60 results in the
largest value of M(L/D) at a Mach number of 0.80 for all configurations.
However, for this combination of Mach number and lift coefficient, the data in

figure 12(e) exhibit a pronounced change in the Elopes (breaks) of the lift and
pitching-moment curves. These breaks are usually indicative of buffet onset
and stability problems (Cm. Z 0). Thus, a lift coefficient of 0.50 was chosen

to provide some margin prior to the occurrence of buffet and instability. For
each mode] configuration, the data of figure 20 indicate a reduction of only
5 to 6 percent in the value of the range parameter M(L/D) at a Mach number
of 0.80 when the lift coefficient changes from 0.60 to 0.50. Accordingly, the
estimate for an efficient cruise flight condition is a lift coefficient of 0.50
at a Mach number of 0.80. This flight condition, agrees well with the cruise
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flight condition reported in reference 12 for a wind-tunnel investigation of
a similar high aspect-ratio supercritical wing mounted on a wide-body type
fuselage.

(U) Variations of the lift-curve slope with Mach number are presented in
figure 21 for model configurations A, B, and C. Data are presented for the
results of figure 12 at angles of attack from -4 0 to 30 in the range of test
Mach numbers. The effect of model configuration on the variation of lift-
curve slope was generally small or insignificant. The data of figure 21 show
that the lift-curve slope gradually increased to a peak value and, thereafter,
decreased rapidly as the Mach number was increased. Significant differences
in the magnitude of the lift-curve slope are indicated after the peak.

(U) Variations of the static stability derivative with Mach number are pre-
sented in figure 22 for model configurations A, B, and C. Data are presented
for the results of figure 12 for angles of attack from -4 0 to 30 in the range
of test Mach numbers. The data indicate that the model configurations were
statically stable (C < 0^ from a Mach number of about 0.30 up to a Mach num-

ber which varied from 0.75 to 0.90 depending on angle of attack and model
configuration.

(U) The stability boundaries for model configurations A, B, and C are presented
in figur? 23 based on the information of figure 22. The figure presents bound-
aries in terms of Mach number and angle of attack and in terms of Mach number
and lift coefficient. The dashed lines represent the combination of either Mach
number and angle of attack or Mach number and lift coefficient for which the
longitudinal static stability &7ivative has the largest negative value.

(U) Variations of the drag-curve slope CDC with Mach number are presented

in figure 24 for model configurations A, B, and C. Data are presented for the
appropriate slopes from the data of figure 12 for lift coefficients from 0.0
to 0.60. The data indicate similar trends for each model configuration in the
range of test Mach numbers. At Mach numbers above 0.80, large variations of
the drag-curve slope are indicated. As l'-ft coefficient was increased, the
variations of the drag-curve slopes became more severe. Both lift coefficient
and Mach number have considerable effect on the drag-curve slope. For lift
coeffi^.ients at and below 0.40, the effect of model configuration on the drag-
curve slope is, in general, secondary.

(U) Variations of elevon effectiveness with Mach number are presented in
figures 25 to 27. The data are presented for model configuration C at angles
of attack from 00 to 30 in figures 25 and 26, an! for lift coefficients from
00 .00 to 0.60 in figure 27. Symmetric elevon deflections were varied from -91
to 30 . The elevon effectiveness in lift (fig. 25) and the elevon effectiveness
in drag (fig. 27) were essentially unchanged in the Mach number range from 1.30
to approximately 0.70, aid small changes gradually developed at Mach numbers
from about 0.70 tc 0.90. The effect of angle of attack on elevon effectiveness
in lift or the effect of lift coefficient on elevon ef--tiveness in drag was,
in u^neral, insigificant for the range of test variabl_s. A small increase of
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elevor, effectiveness in pitching moment (fig. '6) was obtained as Mach number
was varied from 0.30 to 0.90. It is apparent that the effect of angle of attack
on the elevon effectiveness in pitching moment was insignificant.

(U) The variation of the pitch-control index B ea with Mach number is presented

in figure 28. Data are presented for model configuration C at angles of attack
from 00 tc 30. The data show substantial variations of the pitch-control index
for Mach numbers above 0.70. The excursions of the pitch-control index are
associated with changes in the longitudinal :static stability of the model
(figs. 22 and 23) at the higher Mach numbers. At Mach numbers from 0.73 to
0.86, the pitch-control index decreased rapidly as angle of attack was increased
from 1 0 to 30. and at Mach numbers from 0.86 to 0.90, the pitch-control index
increased rapidly for angles of attack `rom 00 to 30. The data of figure 28
indicate that, in general, pitch-control index was significantly affected by
angle of sttack and Mach number for Mach numbers above 0.70.

(U) LATERAL-DIRECTIONAL AERODYNAMIC CHARACTERISTICS (U)

(U) Basic Characteristics (U)

(U) The effect of model configuration on the lateral-directional aerodynamic
characteristics is presented in figure 29. Data are presented for model co:.fig-
urations A, B, and C at a sideslip angle of 0 0 . The data indicate that the
lateral-directional characteristics were essentially unchanged at the lower
Mach number of 0.300 and for angles of attack in the range from about -4 0 to 80.
As Mach number was increased, the angle-of-attack range for very small or insig-
nificant changes increased for the yawing-moment and side-force (--efficients,
and decreased for the rolling-moment coefficients. At Mach numbers above about
0.800, the rolling-moment coefficient oscillates with increasing angle of attack.
A significant effect of model configuration is also indicated on the roiling-
moment coefficient for the higher Mach numbers of 0.900 and 0.920. The change
in rolling-moment coefficient is probably associated with an asymmetric loss
of lift at the higher angles of attack.

(U) The effect of sideslip on the lateral-directional aerodynamic character-
istics is presented in figure 30 for model configuration C at nominal sideslip
angles of 00, 2.50, and 5.00. For all three sideslip angles, the data show a
significant effect of angle of attack on the rolling-moment coefficient. As
sideslip angle increased the effect oi angle of attack on the rolling moment
became more pronounced. Significant negative and positive rolling moments are
indicated for Mach numbers of 0.700 and 0.840 (figs. 30(b) and 30(e)). A
negligible effect of angle of attack on the yawing-moment coefficient is indi-
cated throughout the Mach number range, except at a Mach number of 0.300 for
an angle of attack of 10 0 where data were obtained at a longitudinally unstable,
pitch-up condition. The side-f crce coefficient generally shows a mall or
negligible effect of angle of attack for a sideslip angle of 0 0. For a side-
slip angle of 2.50 at Mach numbers above 0.900 (fig. 30(g)) and for a sideslip
angle of 5.00 at Mach numbers above 0.860 (fig. 30(f)), the data show that as
angle of attack was increased the side-force coefficient increased significantly
in the negative direction.

UNCLASSIFIED	 13
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(U) The effect of roll control on the lateral-directional aerodynamic charac-
teristics is presented in figure 31. These data were obtained for model con-
figuration C with asymmetric elevon deflections of -6 0, -30, -1.50, 00, and 30.
The data show significant nonlinear variation of the rolling-moment coefficients
near angles of attack corresponding to the longitudinally unstable condition.
These variations (also obtained in the investigation of ref. 13) are considered
to be primarily associated with asymme-ric wing stall and occur at lift coeffi-
cients that are well beyond the operating range of the flight vehicle. The
effects of angle of attack and Mach number on the yawing-moment and side-force
coefficients are not considered significant.

(U) The effect of directional control on the lateral-directional aerodynamic
characteristics is presented in figure 32. The data were obtained for model
configuration C with rudder deflection angles of 0 0, -30, -60, and -90 (trail-
ing edge to the right). The primary effect of rudder deflection is indicated
by the relatively large positive yawing-moment coefficient and the associated
no-native side-corce coefficient for the ranges of angle of attack and Mach num-
ber. •iL:c A?ta also indicate a small effect of rudder deflection on the rolling-
mcment coefficient at angles of attack where the model was stable (fig. 32(c)),
and that there was a negligible effect of angle of attack and Mach number on the
yawing-moment and side-force coefficients. In general, the results indicate
that rudder deflection provides a significant positive di*,;!ctional control, a
significant side effect on side force, and a small side effect on rolling moment.

(U) Summary Characteristics (U)

(U) Variations of the lateral-directional static stability characteristics with
lift coefficient are presented in figure 33. Data are presented for model con-
figuration C over two ranges of sideslip angle for the range of teat Mach num-
bers. The lower range of sideslip angles had nominal values from 0 0 to 2.50,
and the upper range of sideslip angles had nominal values from 2.5 0 to 5.00.
The actual values of the ranges of sideslip angle are indicated on the figure.
The rolling-moment derivative (dihedral effect) is shown in figure 33(a), the
yawing-moment derivative (directional stability) is shown in figure 33(b), and
the side-force derivative is shown in figure 33(c). Positive effective dihedral
(C is < 0) was obtained for Mach numbers up to 0.80 for both ranges of sideslip

angle. Both positive and negative effective dihedral are shown for the higher
Mach numbers (M > 0.80) at selected lift coefficients and sideslip angles. The
reversai of dihedral effect (C is > 0) is attributed to asymmetric wing stall.

In figure 33(b), the data indicate that the model was directionally stable
(Cns > 0) for all test conditions. The directional stability was significantly

larger for the upper range of sideslip angles than for the lower range of side-
slip angles. Although the effect of lift coefficient was not consistent in the
range of Mach numbers, the largest effect occurred at a Mach number of 0.84 and
is ind ; -ated by a gradual increase in directional stability of approximately
31 percent_ for the upper range of sideslip angles and 73 percent for the lower
range of sideslip angles. The data of figure 33(c) indicate that lift coeffi-
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cient has a small effect on the side-force derivative for both the upper and
the lower ranges of sideslip angle. The near-linear reduction in the value of
the side-force derivative for the upper range of sideslip angles varied from
about 15 percent at a Mach number of 0.30 to about 14 percent at a Mach number
of 0.92 in the range of lift coefficients. The side-force derivative was
always smaller for the upper range of sideslip angles for the range of test
conditions.

(U) Variations of the lateral-directional static stability characteristics with
Mach number are presented in figure 34. The data, which are cross plots of the
results of figure 33, are presented for model configuration C at lift coeffi-
cients from 0.0 to 0 . 50 for two ranges of sideslip angle. One range of sideslip
angles had nominal values from 00 to 2.50, and the other range had nominal val-
ues from 2 . 50 to 5.00. The actual values of the ranges of sideslip angle are
indicated on the figure. The rolling-moment derivative (dihedral effect) is
shown in figure 34(a), the yawino-moment derivative (directional stability) is
shown in figure 34 (b), and the side-force derivative is shown in figure 34(c).
In figure 34(a), large excursions of the dihedral effect are indicated at Mach
numbers above 0.80. The data also indicate that an unstable dihedral effect
(C is > 0) occurred for both ranges of sideslip angle. For the lower Mach ntmu-

bers (0.30 to 0.70), small or insignificant changes in the dihedral effect a.e
indicated for both ranges of sideslip anle. The data of figure 34(b) indicate
that the model was directionally stable ^Cn^ > 0) at all test conditions. The

data also indicate that the model had more directional stability at the upper
range of sideslip angles than at the lower range of sideslip angles. A signif-
icant increase of directional stability occurred at the higher Mach numbers
(above 0.80) for both ranges of sideslip angle. The data of figure 34(c) indi-
cate that the side-force derivative was negative for all test conditions. As
Mach number was increased, larger negative values of the side-force derivative
were obtained.

(U) Variations of the roll-control derivatives (asymmetric elevon deflection)
with lift coefficient are presented in figure 35 for model configuration C.
These data were obtained for asymmetric elevon deflections of -6 0 (S HL = -90,
8H = 30 ) , -30 (6HL = 00• 6HR = 60) , -1.50 (6HL = -30, d HR = 00 ) , 00

(6n = 00, dHR = 00), and 30 ( 6HL = -30, d HR = -90). The data of figure 35
show that the roll-control effectiveness was positive (positive values of the
rolling-moment derivative). The effect of lift coefficient on the roll-control
effectiveness was significant but not consistent at all test Mach numbers. The
largest effect, however, is indicated for a Mach number of 0.90 where the roll-
control effectiveness increased approximately 94 percent over the range of lift
coefficients (0 to 0.6). The data also indicate a near-linear reduction of the
yawing-moment derivative with increasing lift coefficient for the test Mach num-
bers. In the range of lift coefficients, a reduction of about 65 percent is
indicated for a Mach number of 0.30, and reductions of about 31 percent and
34 percent are indicated for Mach numbers of 0.80 and 0.90, respectively. The
side-force derivative due to asymmetric elevon deflection increased (became less
negative) with lift coefficient for the test Mach numbers. The increase of the
side-force derivative was nearly linear with lift coefficient and the slopes

4k.,
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were approximately equal for the test Mach numbers. The largest increase of
side-force derivative (38 percent) was for a Mach number of 0.90 over the range
of lift coefficients.

(U) Variations of the roll-control derivatives (asymmetric elevon deflection)
with Mach number are presented in figure 36 for model configuration C. These
data are cross plots of figure 35 for a range of lift coefficients from 0.0 to
0.60. The data show that there was a small or negligible effect of Mach number
on the roll-control effectiveness up to a Mach number of approximately 0.70.
The data show (depending on lift coefficient) changes of roll-control effective-
ness as Mach number was increased from 0.70 to 0.90. A pronounced effect of
Mach number is indicated for the yawing-moment and side-force derivatives. As
Mach number was increased, the yawing-moment derivative increased and the side-
force derivative decreased for all lift coefficients. The results of figure 35
show that Mach number and lift coefficient had a significant effect on the roll-
control derivatives; however, Mach numbers up to about 0.70 had only a minimal
effect on the roll-control effectiveness.

(U) Variations of the rudder-control derivatives with rudder-deflection angle
are presented in figure 37 for model configuration C. These data were obtained
from cross plots of the results of figure 32. The data of figure 37(a) show
that the rudder deflection had a considerable effect on the rolling-moment
derivative. The most pronounced effect of rudder deflection is indicated for a
Mach number of 0.90, where the largest effect of lift coefficient is also indi-
cated. The data of figure 37(b) show the effect of rudder deflection on the
yawing-moment derivative (directional-control derivative). The salient feature
of these data is the nonlinear variation of directional control with rudder
deflection. A small change (increase) in directional control is indicated for
rudder deflection angles from 00 to about -30 or -40, and the more significant
levels of directional control occurred at the largest deflection angles. The
data of figure 37(c) show the effect of rudder deflection on the side-force
derivative. In general, the maximum (positive) values of the side-force deriv-
ative occurred near a rudder deflection angle of -8 0 and the minimal values
occurred at rudder deflection angles from 0 0 to about -30 or -40, depending on
Mach number and lift coefficient. Values of the side-force derivative were con-
sistently positive for all test variables.

(U) Variations of the rudder-control derivatives with Mach number are presented
in figure 38 for model configuration C at four rudder deflection angles. These
data are cross p:.ots of the results of figure 37. The data of figure 38(a) show
characteristic reversals of the rolling-moment derivative at Mach numbers above
0.70 for rudder deflection angles of -90 , - 30, and 00 . The data also indicate
that the direction and severity of the reversals for the rolling-moment deriv-
ative are dependent on lift coefficient and rudder deflection angle. The data
of figures 38(b) and 38(c) show variations of the yawing-moment derivative
(directional-control derivative) and side-force derivative with Mach number,
respectively. These data indicate that the effects of Mach number (and lift
coefficient) were relatively small on the directional-control and side-force
derivatives. The data also indicate that rudder deflection provides signifi-
cant directional control and side force.
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(U) Variations of the rudder-control index with lift coefficient are presented
in figure 39 for model configuration C at four rudder deflection angles. Data
are included for the upper and the lower ranges of sideslip angle: and the
actual values of sideslip angle are shown in the figure. The data show that the
rudder-control index was not significantly affected by lift coefficient for most
test conditions. The largest change in rudder-control index is shown for a Mach
number of 0.840 at the lower rudder deflection angles. Decreased rudder-control
sensitivity is also indicated as the rudder deflection angle was varied from
00 to -90 . At corresponding test conditions, the rudder-control index is sub-
stantially larger for the upper range of sideslip angles than for the lower
range of sideslip angles.

(U) Variations of the rudder-control index with Mach number are presented in
figure 40 for model configuration C and at rudder deflection angles. These
data are cross plots of the results of figure 39. Data are included for the
upper and the lower ranges of sideslip angle, and the actual values of sideslip
angle are shown in the figure. The data show that the rudder-control index was
relatively insensitive ':o Mach numbers in the Mach number range from 0.30 to
0.80. A significant increase of rudder-control index is also shown as Mach
number was varied from 0.80 to 0.90 for all lift coefficients.

(U) CONCLUDING REMARKS (U)

(U) A wind-tunnel investigation has been conducted to determine the longitu-
dinal and lateral-directional static stability and control characteristics of a
0.237-scale force model of a remotely piloted research vehicle with a thick,
high-aspect-ratio supercritical wing. Three configurations of the model were
tested at Mach numbers from 0.30 to 0.92, at angles of attack from about -40
to 180, and at angles of sideslip from 00 to 60. Regions of longitudinal
instability were identified for the model. The horizontal-tail effectiveness
in pitch was shown to be sufficient to trim the model for Mach numbers up to
0.90. The model had positive effective dihedral for Mach numbers up '_o about
0.82. In addition, the model was directionally stable, had positive effective-
ness of roll control, and had positive effectiveness of yaw control for Mach
numbers up to 0.90.

(U) Limit	 performance analysis indicated that maximum values of the drag-
divergence Mach number occurred at lift coefficients between 0.20 and 0.30 for
the model configurations. A cruise condition based on the aerodynamic range
parameter was identified to be a lift coefficient of approximately 0.50 and a
Mach number of 0.80.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
April 16, 1980
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OF POOR QUALITY

(C) TABLE I.- STREAMWIDE AIRFOIL COORDINATES (U)

Y
(a) b/2 = 0.071 (wing-fuselage junction)

X/C

Z/C

Upper Lower
surface surface

0,00000 0.00149 0,00149

,00200 .UQ989 0,01321
,0050n 001616 0.01929
1 01000 .02306_. !-,.42b31
.020on .03193 - .n3487
.03o n 0 803711 0.04052
.04000 ,04119 6.04506
1 9S0n0 .94433 0104900

.16000 .04696 •.05242

._070.00.. .() 4917 x.0555.5__.
1 0A000 .n5107 -.05841
,0904n .05277 0,06119
,Imoon 005415 •,06371
,I1nn0 ,015533 .06601

.1200() ,n56?9 0,06821

..13000 ,05715 •,07020_

.1unon „()4791 0.07209

.1Snno .059137 •.n73A8
,160n n 0nSQ12 •,071545
,17nn0 POS957 .,07692

,1Ann0 'n6nn3 =.07826
.19n(in ,obn26 •.o795u

,20000 .06nun .,08069

.21000 ,n6nu3 0.08174

,220nn ,06047 0.08268
,2300() 'n6nj9 .,483152
,?4000 .06()32 0,08425
,25000 ,1)6()fu ..08487

X/C

Z/C

Upper Lower
surface surface

.260(in 0()5997 - , 0 A 5 5 n
,27onn ,n5969 •,o8bn2

,240 1) 0 .05942 0.08643
.20000 .05904 0.08686
.3n000 .OSA67 0.09117
.31onn .0582Q 0.nA748

.32000 .05781 0.OA181
1 33000 .05734 we 08802

.3 ,40()0 .n5675 0.06825

.35000 .05617 =.QA1136

.36000 .05544 0.0A848

.370nn 9054179 0,08449
,38000 005412 0.nA850
,3Qnn0 .OS33? 0.08841
.40000 ,05254 •.nA832
,alnnn ,05175 O,nAA13
.42000 .n5n8b 0.08782
,13(100 ,OUQ97 •.08753
,aU0n0 .0400A •.0A713
,45nno ,04109 6408662
,4h000 .o471n 0.0A612
,470n0 A00611 0,08552
,4Hnn0 .045(12 .,0A4A1
s u9oon ,04392 0,08411

,1500") 6042A3 •.08319
,51ono ,nu16u 0.082?9
,52non .n4n441 080Al2A

0 133nnn 003925 0.OA017
,154000 0 03794 0.n79n7
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X/c

Z/c

X/c

Upper	 Lower
surface	 surface

Z/c

	Upper	 I	 Lower

	

surface	 surface

4160 TABLE I.- Continued (p)

(a) Concluded

.5S000 .03664 0,07775

.56ono ,n353b 0,07644

.570 n 0 .03395 •.07503

.59000 .03255_ •.07353

.59000 .0311.6 •.07213
,60000 .02978 •.07n63
.61000 .02829 •.06014
.62000 .02679 •.06755
163000 .0253n .06506
„641000 .02362 437
.650nn .02223 •.06290
,66000 .0?nm6 006122
667000 001906 ..(159hb
. 68 0 00 .01737 .,05819
.b g nnn . nt5b9 •.^5675
^len1 -)n ,01u0t 0.05541.
,71000 .01234 ..054()7
• 7 20 00 ,01056 •.05273
.73000 .nO871% ..05150
,740nn .00701 0,05039
,75non ,no514 0.044;,)7
.7b00n #4005 27 •,n481S
.770' nn ,n014n .,na714
,78 p no •,0004h 08041624
.79nn0 •, (10242 0.04543
A 0000 .,nn439 .104461

5 81000 0,0()634 0.00340
.AT00n .,OOAuIl 0,04329

.83000

.eUn^n
,85000
.86000
.87000
.AR000

11990n0
.90000

.91000

.92000

.93000

.9unnn

.Q5n00

.Q6non

.97nno

.9A nnn
,99nnn

t.n00nn

•.01045
•.01250
•.01455
•,01659
•.01839
-.n206a
•.02265
•.n24bh
•. ()2667
•^02A64
•,03n65
•.n32bu
-.03461
•,0 3658
•,0385a
•,c^4AaA
•.n42an
•.04431

c	 24.87 cm

E = 2. 45 0

•.04278

•.04236
•.04204
•.04181
•,O4t67
•.0(4162
•.0176
•.n41R4
•,n4213
•,04254
•.043()3
•.04372
•,04444
•,04534
•.04638
•,04761
.,049nq
•,n5t16 4
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4W TABLE I.- Continued (U)

(b) 1- = 0.426 (planform break)

x/c

z/c

Upper Lower

surface surface

0.0onno 0,00436 0,00430
8 00200 .0n499 ..01319
1 00500 ,00990 0,91822

^ 11 a_000 .148' LP.02^2.
.021100 .02111 -.02925
.03n^0 .02559 .03359
,040n,^ ,02896 0.03682
.05000 .03145 00903935
.or,non .03403 -.04150
.Q70 n 0 ,03.0+11 W.94.348
.0A000 ISO 3010n 04"4520
.090no .03969 0.04672
.100110 ,n 4126 0,04813
.11000 104p6S Ima0493S
.12000 '04393 •.05056
,i3n0g .04522 01051ee
.1u0nO ,n4640 0,,0526,0
.1511110 ,0x749 0,05361

0 16000 .04847 0005443
,170nn ^0ug46 0,05524
,18nn0 ,n503a 0,05595
,19000 ,05113 0105667
,200nn ,05191 0105728
.210n0 ,(15260 0,05790
. 22nno ,()5320 0,05841
,23000 ,05397 ,0,05883
.24nno A0545ti 0,05924
.2S000 .05514 0fn5966

x/c

z/c

Upper Lower
surface surface

.2600n ,05563 0.0 5 997

.27110n .0!5612 0.06028

.2 A 000 ,05660 •.06050

.290no ._05646 - .06072
,3nonn .05737 0.06093
.31000 .OS765 0106105
.32000 .05794 .,061n6
.33000 .05823 0.061nA
.34000 .n51151 0 .0bloq
.35no0 .05870 0.06110
36n on .nSpAA 10406102

.37000 ,05907 0.06093

.38000 ,05915 0.06085

.300nn .n5924 0.06066

0 400n0 ,(15933 ..06n47
,410nn ,nS941 0,06019

6 42000 00594o 0.0S9g1

0 43001) .115039 0.05952

0 44000 P05037 0.05913

.0 450no }05035 0.05865

0 460nn .05924 0.n5816
,1170no 005913 0.05758
.48000 8115901 0,056go
,49oon .nSAAn 0.05621
.S11^0o .115850 •.05543
,511100 r05A37 0 .115454
,S211nn IOSA16 0.05366
.5300() .005744 ..05267

,S411nn .05753 005159

21



4

ORIGINAL PAGE Iii
OF POOR QUALITY

(C) TABLE 2.- Continued (U)

(b) Concluded

X/C

Z/c

Upper Lower
surface surface

.55000 .05721 010SOSO
1 56000 105640 0104922
1 57000 .0" '+39 0.04793
.58000 .OS.-'' •.046.55
1 5900n .05'	 -'- ..015()6
.4 0 000 .n549a 6101357
14.1000 805433 U.0419A
.62044 .05371 0.04040
.630-P A .05310 •103871
_.644 n o .1)52.35 -,918.2
.6%000 .05t67 •403523
.660no .nsoas •6(1 33 14
.670n0 POS004 0103155
.68000 .01913 6,02966
X 69000 .04821 0.02777
.70nno 004730 .,O?,5A9

0 71nn0 .04629 0802309
.720 1)0 .04527 0.02210
8 7300n .0441h ..0?021
.7unn0 ^ou3n4 0.01832
r 7500n ,041043 0.01613
0 760()0 ,04062 0,01454
.77oon .039on •,01265
.780no .03A09 0601046
.79000 is03b7A 0.00917
.A0000 003%37 0.007S8
0 81000 x03305 0.00509
.82000 ,03244 .,00450

Z/c

X/c
Upper Lower

surface surface

.830 n 0 .03093 ..00311

.840(1n .029U2 e,00195
1 85000 .027A1 0.0006 4
.86000 02620 ,00035
.87000 .02U49 600114
.8400(1 ,02277 .00172
.e90no .(12096 .00121
49n060 .01915 100249
8 91000 .n172U 600258
. g 20 n 0 2015.33 .00236
6 93000 .01332 .(10193
.940n0 001131 ,00133
6 950m) 100921 .0()042
.96000 .nn710 0400079
0 97000 .n0uA9 m.n02?0
.9900 () ,(1()254 0100392
0 990no *0no17 ..n0503

1.00000 . . n 0 ?34 0.00813

c =	 14.18	 cm

E = -0.530
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(C) TABLE I.- Continued	
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(c) b/2	
1.000 (wing tip)

----------
Z/C	

Z/c

Upper	 Lower	
Upper	 i	 Lowersurface -	surface	
surface j	 surface

0 , C A n 0 0
.00200
.00500
,010Cn
.n2o00
.03000
,04000
.050`0
.0600n
.07nn0
.09000
.0QOnn
.lpnmo
.31000
.120nn
,13o;)n
.14000
.ISoon
.1Fnnn

.1700n
f Annn

,19000
,2onno
.21n00

.22non
,23non
,24n0o
,25nnn

•.01350
• 100506

• .01350
CV* OVA 1

.2T

o,
04,130

^`
•.01374'4

• x 00074 •.02531 .214499  •.057S1
.00356224b .24559 •.05734

•00925 •.03467
. 2 ,OJ6i'4 9,05757

.01327 0.03823 .10000 104664 •.OS755

.'?i64n ..Q4p,g8 131000 .04711 •6057411

.01999 04p4295 .32noo .04759 •.05738

.02127 0.04472
.33000 .04804 .05722

.x02332 0.04425
.34000 .04844 W1057nS

xn251 9 0.04758
.35000 .048!}1 +	 !.05b88

. 0 2690 ..0487A .36000 .n1191A •.05662
•02A45 .,n4981

.37000 .04955 •,05635
.02QA9 •.05077

1390^0 •04988 •.056ns

•n312A •.05167
.39000 .05014 0.05572

."3261 •,0.5247
4 00 0 0 n 5. 410x!5535•.

x,.13384 0.15317
.41000 ,03068 w.V5495

. 0 3 50 3 0.053A3
.42no0 . ogngi 05449

. n 3h12 05440 .430nn
nS1OA

•.05394

• 0371 5 6,05490 .U4000 .05125 •.05349

• 03A 1 4 .OSS36
0450no .n5142 •.05200

An39n4 •,()5576
046000 .()51155 •.OS?30

,039QA .05612

1

. 47 0 0 0 •05162 0.05162
.04073 .,05648

,4An0p .45168 .050h8
n4 162 e,0505

,49000 "5173 • OS009
. 041? 32 •.05698

.SnOnn ."5176 0.049?6
•0143o2 •.05715

.51noo , «51 7Q 0,04834
,0'437? nS731

'
.S?nn0 .n5176 •,04741
,53non
.51jon0

.0517n 0.04639

.05164

i

•.04553
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d&jW TABLE I.- Concluded (u)

(c) Concluded

Z/C 	
I-

Lower
	 X/c

surface

Z/c

	Up per	 Lower

	

surface	 surface

ORIGINAL PAGE ILA

OF POOR OUALITY

X/C

.55000

.56000

.57000
ySE0.O0_
.59000

6P Ono
.61000
,62000
63040.

- . 6.9.0 09
.65000
.66000
,67000
.680^0
.69000
4b 11120
.11000
.720on

.73000
,740C")
.'5000
,_7agnn

.77000

.790nn

.800JO

.!^lOnn

.6ZQv0

Upper
surface

.0515b

.05141

.0S12S
-. 0 SIA18_

05088
.(15062
.OSM
.05004
.0497

_^ou_93S
.04895
,Q4A46

.^4t96
04744

.046m5_
_..?1a25-
.04563
.04494
r0a421
,6 542
n,^2Su

. C-141 z Q

.04PAO

.n39A2

.n3A83
,037AO
.03671
.(1.3559

•.04420

,04295
0.04163
!-0 0s11f 2 (
•.03874
0.03711
•,03564
•.03401
.03235
. 0306.8_
,02892
.02715

W,o2!?9
•.02342
•.42L5b
a.UIU_

.01768

.01574
3A0

-,011Ae
•.00442
0,0079.9
smoobOS
.,nnae'1
•.(10240
• 0 n 062 i

. CI O in1

.o02S5

.83000

.84000

.95000

.86000
P870no
,88000
.89000
.90000
.91000
.9.2000
.930nn
.o40on
.9g^n0

.960nO

.97000
,980(10

099000
1,On000

.03440
,03321
.03193

,03063
.02925
P.027Ab

.n2644
„02496
.023441
.02186
,02024
.01856
,01689

.(11506
,0131A

O.1 i 2 n
,n09ng

,00690

.00398

.00532

.00655

.00765-

.onBSS

.00431

.00991
•0',030
.011)50
,oInab
.01023
.00972
.00ltg9
.0OA03
.00687
,00541
.0n3h6
.00lb4

C = 7.62 cm

E = -1.570
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No. 120 carborundum grit -
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4.1	 ^ 0.3
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1n • tl	 29.1
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5. 7 1-^i
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Grit location o•, winq
lower surface

3.1
J.?

o. 100 carborunouni grit

100 ca rho rundum grit

No. 100 ca rho rundum grit	 =

3. 1^^

(C) Figure 11.- Model carborundum grit size and location. (Dimensions are
in centimeters.)	 (U)
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(C) Figure 12.- Effect of model configuration on longitudinal aerodynamic

characteristics. S = 00 ; 6e = 00 .	 ( U)
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