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CONIC SECTOR ANALYSIS OF HYBRID CONTROL SYSTEMS

by

Peter Murray Thompson

Submitted to the Department of Electrical Engineering and
Computer Science on August 13, 1982 in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

ABSTRACT

A hybrid control system contains an analog plant and a hybrid (or
sampled-data) compensator. In this thesis a new conic sector is determined
which is constructive and can be used to (1) determine closed loop stability,
(2) analyze robustness with respect to modelling uncertainties, (3) analyze
steady state response to commands, and (4) select the sample rate. The use
of conic sectors allows the designer to treat hybrid control systems as
though they were analog control systems. The center of the conic sector
can be used as a rigorous linear time invariant approximation of the hybrid
control system, and the radius places a bound on the errors of this
approximation. The hybrid feedback system can be multivariable, and the
sampler is assumed to be synchronous.

Algorithms to compute the conic sector are presented. Several ex-
amples demonstrate how the conic sector analysis techniques are applied.
Extensions to single loop multirate hybrid feedback systems are presented.
Further extensions are proposed for multiloop multirate hybrid feedback
system and for single rate systems with asynchronous sampling.

Thesis Co-Supervisor: 	 Dr. Gunter Stein
Title:	 Adjunct Professor of Electrical Engineering

Thesis Co-Supervisor:	 Dr. Michael Athans
Title:	 Professor of Systems Science and Engineering
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1. INTRODUCTION

1.1 Motivation

Digital computers are commonly used to control analog systems.

Examples can be found across the spectrum of engineering disciplines -

chemical process control, automobile engine control, aerospace systems,

mass transit systems, electromechanical servomechanisms, and radar 'racking

systems. Much of the technology has been pushed by the aerospace -ndustry

for use in aircraft, helicopters, missiles, and satellites. Digital

computers have gained wide acceptance because they are reliable, easily

reprogrammed, and not subject to drifts in parameter values. Control

algorithms can be implemented (such as gain scheduling) that are

difficult or impossible to implement using analog techniques. Of

primary concern to this thesis is the ability of digital computers to

mimic (over a certain frequency range) the behavior of analog compensators,

in spite of their "sampled-data" nature.

The digital computer is embedded in a compensator that also contains

a prefilter, sampler, and hold. This collection of analog and digital

devices will be called a "hybrid compensator." A feedback system that has an

analog plant controlled by a hybrid compensator is called a "hybrid

feedback system." A block diagram of a hybrid feedback system i; shown

in Figure 1.1. The multivariable analog components are modelled as

Laplace transform matrices, and the multivariable digital computer is

modelled as a z-transform matrix.

Depending on where the feedback loop of Figure 1.1 is broken the

signal is either an analog signal (points 1 and 2) or a discrete

sequence (points 3 and 4). At the input and output of the plant the
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Figure 1.1; The hybrid feedback system.
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physical signals are analog. It is only internal to the hybrid com-

pensator that the physical signals are discrete sequences.

If the feedback loop is broken at points 1 or 2 then the transfor-

mation from these points to the output can be modelled by a continuous time

linear time varying (CTLTV) operator. This operator is difficult to

use for analysis techniques because it cannot be represented as a

transfer function.

A major simplification occurs if the feedback loop is broken at	
3

i

points 3 or 4. Here the hybrid feedback system can be modelled by a

discrete time linear shift invariant (DTLSI) operator, which in turn.

can be represented by a z-transform.

The use of z-transforms has led to the development of most of the

analysis and design techniques in use today for hybrid feedback systems.

It must be recognized, however, that these techniques can only be

applied to points 3 and 4 in Figure 1.1. Whenever z-transform techniques

are used the inherent (often unstated) assumption is that good feedback

properties at points 3 and 4 (internal to the compensator) imply good

feedback properties at points 1 and 2 (where the compensator interfaces

with the real world). Whether or not this implication is valid depends

on the choice of prefilter, sample rate, and the nature of the hold

device. Numerous ad-hoc ways to make these choices have been developed

concurrently with the z-transform techniques in the sampled-data control

literature.

The difficult and important problem of analyzing a hybrid feedback

system at points 1 and 2 of Figure 1.1 is the primary motivation of this

thesis:
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• Develop analysis techniques for hybrid feedback systems that
can be applied, and used constructively, where the signals
are analog.

The analysis techniques are divided into three categories:

• closed loop stability

• robustness with respect to plant uncertainties 
• steady state response to commands-

They should apply to multivariable as well as single input single

output (SISO) hybrid feedback systems.

The major difficulty with the analysis at points 1 and 2 of

Figure 1.1 is that the differential equations that describe the hybrid

feedback system at these points are time varying. one way to lessen

this difficulty is to approximate the CTLTV system with a continuous

time linear time invariant (CTLTI) system. Hence the second motivation:

• Develop rigcrous CTLTI approximations of the hybrid feedback
system.

The key word here is "rigorous". An approximation is rigorous if it

applies to all possible inputs and disturbances. It is well known that

for low frequency inputsa hybrid feedback system can be approximated by

a CTLTI system. This approximation is not rigorous, however, unless

it can be shown to be valid (in some sense) for all possible inputs.

The research motivated by the above requires a branch of system

theory that is general enough to be used for CTLTV systems and is able

to make use of CTLTI approximations. such a branch of system theory

does exist ((51 to 191). It was developed to analyze stability and

robustness properties of nonlinear time varying feedback systems.

one of the techniques is to represent a nonlinear time varying

device by a conic sector. A conic sector has a center and a radius.

lA feedback system is robust with respect to plant uncertainties if it
remains stable for all perturbations in a defined vet of the plant.

V
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The center is an approximation of the device, and the radius is a

rigorous bound on the errors of this approximation (i.e. a bound that

is valid for all possible input-output pairs).

These very general conic sector techniques were ynown to exist.

The conjecture was made (by Gunter Stein) that they are useful for the

analysis of hybrid feedback systems. Hence the third motivation;

• Determine whether or not conic sector techniques are useful
for the analysis of hybrid feedback systems, and if so,
develop these techniques and demonstrate their usefulness.

The full generality of these nonlinear conic sector techniques is not

needed because the hybrid feedback system is linear. The center of the

conic sector can be used as the CTLTI approximation of the CTLTV parts

of the hybrid feedback system.

^A

r-
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1. 2 Literature eurvev

The background material for this thesis can be grouped into three

categories-. 1)conventional analysis of digital or sampled-data control

sy:3tems, 2) conic sector analysis of nonlinear time varying feedback systems,

and 1) conic sector analysis of hybrid feedback systems. There are many

references in the first category, few in the second, and fewer in the

third. The third category is the subject of this thesis.

The conventional analysis of digital control systems uses z-transform

theory. The hybrid feedback system of Figure 1.1 is broken at points

3 and 4, and z-transforms are used to analyze stability, robustness, and

performance. No attempt is made here to survey the extensive literature

on digital control. Much of this literature has descended from journals

into textbooks and is taught at the undergraduate level. A represen-

tative member of this set of textbooks (the one used the must for this

research) is the text by Franklin and Powell [4]. The frequency domain

(z-transform) techniques presented in [4] can be generalized to the

multivariable case by the use of singular value techniques, just as

has been done for analog systems [1, 2, 31.

The stability of nonlinear time varying systems is a classic problem

in system theory. Our interest in this problem dates back to the land-

mark papers of Zames [5, 61. He showed how conic sectors can be used to

give sufficient conditions for closed loop stability of nonlinear time

varying systems.I

The landmark papers by Zames are very readable, but for further reference
see the textbook by Desoer and Vidyasagar [8].
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The starting point for Zames' work is the Small Gain Theorem,

which states that a system is closed loop stable if the loop gain

(appropriately defined) is less than one. Systems that satisfy this

condition are of limited practical use because good ceaw.nd following,

disturbance rejection, and insensitivity to modelling errors requires a

loop gain much greater than one (most often at low frequencies). A

generalization which makes the Small Gain Theorem more useful is made

possible by the Loop Transformation Theorem, which states that a system

(call it System 1) can be transformed to another system (call it System

2) in such a way that :he stability of System 2 implies the stability

of System 1. Zames [5] was able to show that if System 1 satisfies

conic sector conditions then it can be transformed to another system

(System 2) which is stable by the Small Gain Theorem, thereby implying

stability of the original system (System 1).

Some important generalizations of Zames' work are due to Safonov

[7]. He generalized conic sectors so that the centers and radii can

be operators (instead of constant multipliers). In this thesis conic

sectors with centers and radii that are CTLTI operators are extensively

used.

Safonov [7] goes much further in his generalizations. He defines

the feedback system of Figure 1.2 that has two "relations" K and G. 
1

The closed loop system is stable if K and -GI (the inverse relation)

are "topologically separated." Conic sectors are one way to show this

topological separation. The closed loop system is stable if a conic

1  "relation" is any subset of a cross product space X x V, where X and
V are extended normed linear spaces.
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Figure 1.2: The feedback system defined by Safonov (7)
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sector can be found that K is strictly inside of and -C I is outside of.

Conic sector stability theory and Liapunov stability theory are

similar in that they are very general results which cannot easily be

applied to specific problems l . The usefulness of Liapunov stability

theory depends on the determination of a specific Liapunov function.

Similarly, the usefulness of conic sector techniques depends on the

determination of a specific conic sector that is valid for the feedback

system of interest. No general guidelines exist that help the engineer

in his search for the "right" Liapunov function or conic sector.

The conjecture (or hope) of Stein was that a useful conic sector

could be found for hybrid fee&jack systems. The first conic sector was

found by Kostovetsky [17, 181, who was one of Stein's S.M. students at

MIT. Kostovetsky concentrated on a particular type of hybrid compen-

sator, which he discovered and named the "optimal hybrid approximation."2

The center of the conic sector is the CTLTI compensator that the hybrid

compensator is closest to, and the radius is a nondynamic operator

(i.e. a constant multiplier). Both the analog and hybrid compensator

must be open loop stable. Kostovetsky demonstrated by an example that this

conic sector gives conservative sufficient conditions for closed loop

stability. Because this conic sector applies to only a very particular

type of hybrid compensator it is not a "useful" conic sector.

A second conic sector was found by Stein [18), which is a

The similarity is no accident. Both conic sector and Liapunov stability
theory are special cases of the general results of Safonov [7). For a
description of Liapunov stability theory see Willems (29).

2The "optimal hybrid approximation" is the hybrid compensator that is
optimally closest to a CTLTI compensator. "Optimal" is defined as mini-
mizing the mean square difference of the outputs of the CTLTI and hybrid
compensators when the input is white noise. The optimal hybrid approx-
imation turns out not to be practical because the prefilter, computer,
and hold all contain comes of the CTLTI compensator.
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generalization of the first conic sector and exists for any stable

hybrid compensator. Any stable center can be used (poor choices result

in large radii), and the radius is again a nondynamic operator.

This second conic sector also proved not to be useful. The problem is

that the radius is a nondynamic operator, and any such radius results

in conservative sufficient conditions for closed loop stability. Hybrid

compensators behave like CTLTI compensators for low frequency inputs but

not for high frequency inputs. A nondynamic radius cannot distinguish

between low and high frequency inputs. Because it must be valid for all

inputs it will too large for low frequency inputs, which in turn results

in conservative sufficient conditions for closed loop stability.

Thus began the author's search for a conic sector with a dynamic

radius (i.e. a radius that is an CTLTI operator). The search lasted

for the better part of a year, and ended with the results presented in

this thesis. Preliminary versions of these result have been presented

in [18) and 1303.
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1.3 Contribu^lons of Thesis

Thi- thesis brings together two disjoint areas of control theory

conventional analysis of digital or sampled-data feedback systems, and

conic sector analysis of nonlinear time varying feedback systems. Tt

objective is to determine if conic sectors are useful for the analysis

of hybrid feedback systems. I The conclusion is yes, with some restric-

tions, they are useful.

The major results are:

• Proof of the existence of a new conic sector which contains
a stable hybrid operator.

• A modification of this new conic sector to create a conic
sector that the inverse of a hybrid operator (stable or
unstable) is outside of.

• Development of analysis techniques based on these new conic
sectors. Those pertaining to robustness form a unified
approach to the analysis of robustness properties of hybrid
feedback systems.

• Development of algorithms to compute the center and radius of
the new conic sectors.

• Demonstration that the new conic sector analysis techniques
are useful for the analysis of practical hybrid feedback
systems, including the selection of the sampling rate.

• Extension of the conic sector rerlts to single loop multirate
hybrid (SLMRH) feedback systems.

The new conic sectors are more useful than previous versions (17, 181

because the radii of the new conic sectors are CTLTI operators and there-

fore can be represented by Fourier transforms, thus avoiding the inherent

The hybrid feedback system may be SISO or multivariable and has a single
hybrid compensator with a synchronous sampler.

2The SLMRH feedback system considered in this thesis (Chapter 6) is SISO
and has two hybrid compensators in the same loop. The samplers are
synchronized and have sampled rates that form an integer ratio.
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conservativeness of conic sector& with radii that are constant

multipliers.

The results of this thesis are of interest to both control theoret-

icians and practitioners. The theoreticians will probably be interested

in the abstract properties of conic sectors (review9d here), the exis-

tence of specific conic sectors for hybrid operators, the method of proving

their validity, the gain of the hybrid operator, the signals that achieve

the gain, the restrictions on the use of conic sectors, and so on. Care

has been taken _a rigorously develop the mathematical background. The

new results are stated as theorems and proved.

Control practitioners are probably more interested in the new analysis

techniques - what they do, when they can be used, how they are imple-

mented, whether or not they are conservative, and whether or not they

offer anything that can't 41ready be done some other way. This thesis

addresses each of these issues. The following results are highlighted

as being of part±.cular interest to practitioners& (1) the ability to

rigorously approximate a hybrid feedback system by an analog feedback

system, (2) robustness analysis techniques for single and molt itLe

hybrid feedback systems that make direct use of the analog perturbation

of the nominal plant (Theorem 3.7), and (3) the use of the conic sector

radius to help select the sample rate. Both theoreticians and practi tioners

should be interested in the numerical examples, which complement and help

to explain the theoretical results.
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1.4 Summary of Thesis

The material in this thesis is organized as followst

Chapter 2: Preliminary mathematics

Chapter 3: New conic sectors for hybrid compensators

Chapter 4; Algorithms to compute the radius of the new conic
sectors

Chapter 5: Examples of the use of conic sector analysis techniques

Chapter 6: Multirate sampling issues

Chapter 7: Summary and extensions

Each of these chapters is now summari>ed.

Chapter 2 The mathematical review begins in Section 2.2 with

analysis techniques for multivariable CTLTI feedback systems. The

use of the loop transfer function and singular values is stressed. Plant

uncertainties are modelled as additive or multiplicative perturbations

that are bounded in magnitude. The relationship between multiplicative

perturbations, phase margins, and gain margins is discussed. The goal

(not fully realized) of conic sectors analysis techniques is to emulate

these powerful multivariable techniques recently developed for CTLTI

feedback systems.

The emphasis of Section 2.3 is on the conventional analysis of

hybrid feedback systems. The structure of the hybrid compensator is

described, and it is shown that the CTLTV input-output transformation

can be modelled by time and frequency domain methods. The z-transform

analysis techniques are presented for multivariable systems using singu-

lar values. Discretizing analog perturbations of the nominal plant is

discussed.

The difficult transition is then made to conic sector analysis

techniques for general (i.e. nonlinear time varying) feedback systems.
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The level of presentation in Section 2.4 is more mathematically precise.

Definitions are given for relations, operators, gain, stability, and

conic sectors. The sufficient conditions for closed loop stability are

fully devQloped. preliminary work by Stein (18) on using conic sectors

to analyze command response is presented.

As a breather before moving on to the new results, in Section 2.5

it is shown how conic sectors are applied to multivariable CTLTI feedback

systems. Results due to Safonov (9) are presented that prove the exis-

tence of conic sectors for analog plants which have bounded additive or

multiplicative perturbations.

Chapter 3 The major theoretical result of this thesis is the

proof of existence of a new conic sector which contains a stable hybrid

operator. 1 The moss- aifficult step of this proof is a frequency domain

inequality (Lemma 3.A) which makes use of Lebesque Dominated Convergence 

and the Cauchy-Schwartz inequality. Theorem 3.2 is modified to show

(1) :.he existence of a conic sector that contains the loop transfer

operator and (2) the existence of a conic sector teat the inverse hybrid

operator is outside of (Theorem 3.6).

Chapter 3 contains 8 t1worems, which form the basis for the

following conic sector analysis techniques:

• An upperbound on the gain of a hybrid operator. For SISO
hybrid operators the upperbound equals the gai.n (Theorem 3.1)

• Sufficient conditions for closed loop stability (Theorem 3.3)

The hybrid comE.w nsator is modelled mathematically as a hyj.id operator.

^Shankar Sastxy and Marcel F. Coderch pointed out the need to check the
conditions of Lebesque Dominated Convergence and helped to do so.
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• Sufficient conditions for robust closea loop stability ' i.e.
ciQsed loop stability for all perturbations in a defined
set of the nominal plant (Theorems 3.4, 3.5, and 3.7)

• An upperbound for the steady state error of a hybrid feedback
system (Theorem 3.8)

A distinction is made as to Whether the hybrid operator is inside

of or outside of a conic sector. The inside conic sector techniques

(Theorems 3.1 to 3.5) have the major restriction that the hybrid '

operator must be open loop stable. The outside conic sector techniques

(Theorem 3.6 and 3.7) are less restrictive because they only require

that the-hybrid feedback system is closed loop stable (which can be

determined by z-transform techniques).

When the hybrid operator is placed inside of a conic sector then

Theorems 3.4 and 3.5 form a unified approach to the analysis of robustness.

Both the hybrid compensator and the actual plant are approximated by

CTLTI operators (centers of conic sectors), and the respective errors

of these approximations are modelled by bounded perturbations (radii

of conic sectors). The point of view taken is that a hybrid compensator

is supposed to mimic a CTLTI compensator. The ex :ent to which it does

not is a sour , of error. By comparing the sizes of the radii as a

function of frequency the errors due to the use of a hybrid compensator

can be compared to the errors due to uncertainties of the plant (unmodelled

higher order dynamics, time delays, and so on).

Chester 4 Conic sectors would not be useful if it was not possible

l o compute the radius. l The most difficult parts of computing the radius

1Computing the center is no problem because ^ center can be used,
although some centers are better than others.
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are the summing of infinite and double infinite series of Fourier.

transforms (each term shifted in frequency). Three ways to compute

the radius are

• Sum a finite number of terns of single infinite series (the
double infinite series can bE broken down into several single
infinity series).

• Sum a finite number of terms of the double infinite series.

• Find an exact analytical solution to the single infinite series.

These approaches are discussed and compared. Bounds are placed on the

remainders of the truncated infinite series. Several cases where exact

analytical solutions can be found are presented. In the examples the 	 !
I

second approach is used,

Chapter 5 The conic sector analysis techniques are demonstrated

in the examples of Chapter 5. They are shown to work well for SISO

hybrid feedback systems but to be conservative for multivariable hybrid

feedback systems. More work is needed to remove this conservativeness.

Section 5.2 contains an extensive example of a SISO hybrid feedback

system. A lead-lag compensator is designed for a stable 2nd order plant

using classical control techniques, and then the analog compensator is

discretized to form the digital computer part of the hybrid compensator.

Each of the 8 theorems of Chapter 3 are used to analyze the hybrid feedback

system. In addition, the size of the radius (as a function of frequency)

is used as a measure to

• select sample rates

• compare discretization techniques

• compare different types of errors (due to the use of a hybrid
compensator and due to time delays in the plant)
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A control problem with an integral compensator is presented in

Section 5 . 3. The hybrid operator cannot be placed inside of a conic sector,

but the inverse hybrid operator can be placed outside of a conic sector,

which is then used to analyze robustness.

Section 5.4 contains a SISO and multivariable version of a hybrid

feedback system for controlling motion in the pitch axis of a high

performance aircraft. The analog compensators are designed using linear

quadratic Guassian (LQG) techniques, and then the analog compensators

are discretized to form hybrid compensators. The conic sector analysis

techniques must be slightly modified when the loop transfer operator

is placed inside of a conic sector to account for the fact that the

plant is open loop unstable. The multivariable hybrid operator is

placed outside of a cone, which is shown to result in a conservative

robustness margin.

Chapter 6 extends the conic sector results of Chapter 3 to the

single loop multirate hybrid (SLMRH) feedback system of Figure 6.1.

These extensions are useful for a limited class of feedback systems,

and should be considered preliminary results for the more general and

more important problem of analyzing multiloop multirate hybrid feedback

systems.

The new conic sectors are based on a frequency domain description

of the input-output transformation of the cascaded hybrid compensators.

The key observation is that the frequency domain description (6.3) has

a similar structure to the description (2.51) of a single rate hybrid

compensator operating at the slower of the sample rates. The ^Ietailr

are presented in Section 6.2. An example is presented in Section 6.3.

Chapter 7 7ontains a surmiary and suggestions for future research.
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i

In the summary the entire thesis is described as revolving around the

major result of Theorem 3.2. The suggested topics for future research

are:

• Removal of open loop stability restriction

• Generalization of conic sector techniques to sector techniques 	 i

• Less conservstive multivariable robustness margins

• Synthesis techniques

• Multirate sampling issues

• Asynchronous sampling issues

• Finite wordlength issues.
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2. MATHEMATICAL PRELIMINARIES

2.1 Introduction

The background material for this thesis is reviewed in this chapter.

The starting point is in Section 2.2, where a set of results are presented

about multivariable analog linear time invariant (LTI) feedback systems.

The emphasis is on analysis techniques to determine closed loop stability,

command response, and robustness with respect to modelling uncertainties.

The results presented in Section 2.3 are from the conventional

analysis of multivariable hybrid feedback systems. The components of the

hybrid compensator are described, and then it is shown how to use

z-tranforms to determine closed loop stability, command response, and

robustness.

A much more general feedback theory is presented in Section 2.4,

The components of the feedback system are modelled as "operators" and

"relations." Closed loop stability, command response, and robustness

are analyzed with "conic sectors." These analysis techniques are

general enough to apply to both analog and hybrid feedback systems.

Section 2.5 reviews how conic sectors are used to analyze analog feed-

back systems. The contribution of this thesis is to use conic sectors to

analyze hybrid feedback systems, which is done in Chapter 3.

The general feedback theory is presented in a rigorous fashion.

Starting from a set of definitions, the major results are presented in

a series of lemmas. When it is felt to be necessary the proofs are

included in the appendix to Chapter 2. An attempt is made to keep the

presentation at the minimum required level of generality. This is

consistent with the main thrust of this thesis, which is to apply a
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general fE:dback theory to a specific problem.

The reader is assumed to be familiar with Laplace and z-transfcMm

theory, state space techniques, and singleminput single-outp lst (STSO)

analog and digital control. The use of the loop transfer function and

the return difference eglatioa for the analysis of feedback systems is,

stressed. Students of control theory will probably have had exposure

to these subjects by the end of their undergraduate curriculum.

The reader is asmmmmed to be lass familiar with the use of singular

values for the analysis of multivariable control systems, and even less

familiar with general feedback theory. Some exposure to the theory of

Hilbert spaces will be helpful for an understanding of the general

feedback theory.

There are ms4erous well-smitten journal articles and textbooks that

can be used for further reference. The use of singular values for the

analysis and design of multivariable analog feedback systems is explained

in (1, 2, 31. The analysis and design of SISO digital feedback systems

is explained in (4). Conic sector analysis of general feedback systems

is explained in (5] to (9].

2.1.1 Notation

Rn, e, x,, c, -finite dimensional real and complex Euclidean
spaces

L 2 = n-dimensional space of square integrable functions
L ee = extended L 2n space

t2 = space of infinite dimensional vectors

R+ = real numbers ? o

-32-
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A e Crum = matrix (underlined capital Raman letters)

a, a e Cn = vector (underlined small Raman and Greek letters)

a, a e Cn = scalar (small Raman and Greek letters)
m

A E L ee x L 2 = relation or operator (capital script letters)

a e L 2e = function (small Raman letters underlined by a tilda)

A-1 = matrix inverse

AT , aT = matrix and vector transpose

AH , aH = matrix and vector Hermitian (complex conjugate transpose)

AI	 inverse of relation or operator

11.2 IIE = Euclidean vector norm

ll A 11 = matrix norm, induced by Euclidean vector norms

Il a "L = L 2 function norm
2

11 a 
11 T 

= truncatee function norm

11A11 L = operator norm, induced by functions norms
2

Amin [A] = minimum singular value of A

Amax [A] = maximum singular value of A

Associated with each LTI operator A (or with each a E L2e):

A(s) = Laplace transform

A(jW) = Laplace transform evaluated at s = jm

A(t) = inverse Laplace transform, impulse response

A(nT) = sampled version of A(t)

A(z) = z-transform of A(nT)

A* (s) = T E A_ (s-j 27—T k) = A(z)
 lz=e

STk 

r
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The following notational abbreviations are used:

Fk - F ( 3o) ^ jo)sk)	 (subscript k sometimes replaced by n)
^o

E( 0 )	 E	 C•)
k	 k=-ca

00

E (•, = E	 (')
n#k	 n--- o

n#k
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2.2 Analysis of Analog Feedback Systems

2.2.1 The Analog Feedback System

The analog feedback system is shown in Figure 2.1. The plant and

compensator are multivariable LTI systems with Laplace transform matrices

G(s) and K(s). The output x(s) and the error e(s) are related to the

command input r(s) by

y(s) = GK (I + GK) -1 r(s)
	

(2.1)

e(s) = (I + GK) -1 r(s)
	

(2.2)

Analysis techniques repeatedly use the loop transfer function and

the return difference equation, this due to the fact that closed loop

properties can be determined by how signals propagate around the loop.

For multivariable systems the loop transfer function differs depending

on where the loop is broken. Natural places are where signals enter

the loop, such as points (1) and (2) of Figure 2.1. Most of the atten-

tion in this thesis is focussed on point (1), where the loop transfer

function is

Tl (s) = G(s) K(s)	 (2.3)

and the return difference equation is I + T1(s).

2.2.2 Plant uncertainty

The Laplace transform matrix G(s) is a mathematical model of a

real system. The model will always be inexact, for many reasons

including:

• inaccurately measured or slowly tune-varying parameters

• unknown or purposely neglected high frequency dynamics (such as
bending modes of mechanical systems)
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Figure 2.1: The analog feedback system
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• neglected time delays (far away right half plane zeros)

• changes in the operating point about which a nonlinear model
is linearized

The actual plant is assumed to be d(s), which is related to G(s) by-

the additive perturbation

d(s) - G(s) + Ea (s)
	

(2.4)

It is assumed that G(s) and G(s) have the same number of unstable poles,

which will definitely occur if E a (s) is stable and may occur if Ea(s)

is unstable.

The only other information known about Ea (s) is the following

constraint on its magnitude:

Cy 
max 

[Ea (jw)] < ta (w) for all w
	

(2.5)

The symbol "(T 
max 

[Ea (jw)]" indicates the maximum singular value of

Ea (jw), as defined and discussed in the next subsection. Uncertainties

that are bounded in magnitude, such as E a 0w), are called "unstructured"

uncertainties.

It is also possible to characterize plant uncertainty by the

multiplicative perturbation:

G(s) = G(s) (I + E (s))	 (2.6)
-	 -	 -	 -m

It is assumed that G(s) and G(s) have the same number of open loop

unstable poles. The only other information known about Em (s) is

a
max [EmQw)J < t  M for all w	 (2.7)

The two types of perturbations are related by

E
a 
(s) = G(s) F:

-m (s)
	 (2.8)

-	 - 
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and their bounds are related by

La ((0)	 max [G (j(0) I m (W)
	

(2.9)

Whether the additive or multiplicative perturbation is used is often

a matter f convenience, and results using one type of perturbation

can usually be expressed using the other. The additive perturbation

is more suited to conic sector analysis, whereas the multiplicative

perturbation is more natural to use for an analysis of phase and gain

margins.

Analysis techniques usually assume that the compensator Laplace

transform matrix K(s) is exactly known- the reason being that it would

be foolish to build an uncertain compensator. Nevertheless, if any

perturbations exist they can be combined with the plant perturbations

to create a perturbation of the loop transfer function. For example,

if the actual plant and compensator are

G(s) = G(S) + E (s)	 (2.10)-	 -	 -a

K(s) = K(S) + Eka (s)	 (2.11)

then the actual loop transfer function is

T l (s) = d(s) R(s) . G(s) K(s) + Etas)	 (2.12)

where

Eta (s) s G(s) Eka (s) + E a (s) K(s) + Ea (s) Eka (a)	 (2.13)

amax [E
ta

(jW) I < amax [G(J(J) I tka (w) + ta (w) • ate [K(ja) I

+ to(W) • tka (W)	 (2.14)
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More sophisticated (less conservative) techniques f— combining pertur-

bations are given by Safonov [10) and Doyle [11).

2.2.3 Singular Values

The singular values of a matrix A e C 11m are defined as:

CY (A) D [^► i (AHA)3 1/2 	for i - 1,...,m	 (2.15)

The notation X i ( • ) indicates eigenvalue. of the many properties of

singular values, the ones that used in this thesis are listed in Table

2.1. For further reference see [12).

Singular values are used to determine the gain of a matrix. Suppose

the matrix A is multiplied by the vector x. The gain of A in the

direction x is the ratio of the Euclidean vector norms' 1' Ax 11 E / 11 x11 E.
The maximum gain is dmax (A), which by property 2 of Table 1 is equal to

the  induced vector norm 11 A11- The minimum gain is 0 min (A). If a square

matrix A has Qmin (A) = o then the matrix is singular and cannot be
-	 -

inverted.

Singular values can be used to give a quantitative measure of the

of 	 of a matrix2 . The matrix A is "large" if Qmin (A) >> 1, aad

1 The Euclidean vector norm is defined

II X H E nn	 12 1^2I xi 
i=1

where x, for i = 1,...,n are the elements of the vector x.1	 -

2 The number " 1" is used for comparison because the return difference
equation has the form I + A. Important properties (ased for performance
analysis) are that Amin (I + A_) z 

a min (A) if V min (
A) >> 1 and that

4max (I + A) Z 1 if amax (A) « 1 •	 -	 -
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(1) 0 i is real and ronnegative, for i	 1,...,n (the a i l s are ordered

from mAximum to minimum, with 
a l - amax

and 
an 

a a	
)min

IIE 11
(2) a
	 (A)	 = II A lI	 =	 max

-
-	 max	 II?►x 11 Emax

II x 11 E <- 11 X 	II 11 HE '°1E

JIM II E
(3i a	 (A)	 =min min	 --

-

-	 r^ax IIAX 11 E
11!H E <00 	II ! H E 11XIIE=1

(4 ) amin(A)	 112II E <	 11M II E 	<- amp(A)	 11 x II E 	 for a ll	 II X II E	 < m

(5)
13 
max0 l 1	 if A-1 exists

mine'

(6) (A + E)
-1 

exists if A-1 exists and a max 
(E) < a min (A)

(7) (Triangle inequality): ^max (A + E) < 0
max

(A) + amax(E)

(8) (Fan's Theorem ( 401). 0 i (A + E) < a i ( A) + 0
max

( E ) for i = 1,...,n

(Properties 9 and 10 are consequences of Fan's Theorem)

(9) a i (A) - 1 < a i (A + 1) < 0 i (A) + 1	 for i= l,...,n

(10^ 0 , ( A + F.) > a . !A) - 0	 (E)
min - - - min -	 max -

)t
)

s	 a

Table 2.i: Properties of sinqular values

6L-_
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"small" if Q	 (A) << 1.
max -

Singular values can be computed by stable and reliable algorithms

that are easily available well tested, and well documented [13).

Many of the analysis techniques for multivariable systems use

singular values. Readers unfamiliar with singular values should note

that for complex scalars:

11 a II = crmax (a) = amin (a) = jai
	

(2.16)

When working with SISO systems most of the singular value results can

be replace'. with absolute values.

2.2.4 Command Response

Specifications for control systems often include a constraint on

how well the output y(t) follows certain types of inputs r(t). Such

specifications can be stated as constraints on the singular values of the

loop transfer function. Specifications for disturbance rejection and

sensor noise attenuation can also be stated as constraints on singular

values. In this thesis, however, only the command response will be

analyzed.1

Consider the set of commands that have energy only in the fre-

quency range W0 < m < ml . The response to these commands will be

1 Specifications for command response (which usually take the form of
high gain at low frequency) are the same as specifications for the
attenuation of disturbances that are added to the output. Therefore,
results for command response can be restated as results for disturbance
rejection by replp.cinq r(t) by r(t) - d_(t). Specifications for sensor
noise attenuation must be treated differently (low gain at high
frequency). For a good treatment of the various performance specifi-
cations see (11.
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good if over this frequency range=

X (jw) = r(j(0)

<= a (jw) :: o

<=	 [I + GK(jw)] -1 	o [by (2.2 )]

<= Q
max 

[I + GK(jw)] -1 << 1

<= Gmin [I + GK(jw)l >> 1	 (property 5, Table 2.1)

<= Q
min 

[GK(jw) l >> 1	 (property 9, Table 2.1) 	 (2.17)
^-

Hence, a specification for command response can be stated

Amin [GK(jw)l > p(w) 	 for o < w < W 	 (2.18)

For example, if the command is the step function r(t) = a for t > o

then the steady state error is

e(t) = [I + GK(jo)] -1 a = b	 (2.19)

The relative error, expressed as a ratio of vector norms, has the

upper bound

lit H E	 -1	 1	 _ 1

a 

II	 < 6	
[ (I + GK) ) - Q min[^ + GKl	

(2.20)
max

E	
--	 P (o)II 

where it is assumed that p(o) >> 1.

The command response specification must be satisfied not just for

the nominal plant, but also for every possible perturbation of the

nominal plant. This is guaranteed by i-Acreasing the lower bound of

j
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equation (2.18)1:

	

a	 [GK(j(d)I >	
p 	 (2.21)min --	 I- ta(w) 
/Gmax 

IG Ow) ]

Therefore, if the additive perturbation l a (W)is 10% the size of

a
Max.

[G(j(0)] then command response specification must be increased by
-

about 10%.

2.2.5 Stability

It is important to kr xj whether or not the closed loop system is

stable. This is relitively easy to check for analog feedback systems.

In fact some desig: • .iethods, such as the linear quadratic Gaussian

method [Athans, 141, Waarantee closed loop stability (under mild

assumption:^) .

The closed loop system is stable if all of the closed loop poles

are in the left half plane (i.e. Re(s.) < o for all closed loop poles
i

si ). It is easiest to check this condition if a state space description

is known for G(s) K(s). In this case the closed loop poles are the

eigenvalues of the closed loop system matrix.

It is not always feasible to compute the closed loop poles. This

is the case when G(s) K(s) contains polynominals of very high order or

when they contain infinite dimensional terms such as the pure time

delay a-sT . For these cases a better way to check closed loop stability

is to use the multivariable Nyquist theorem. This is due to Rosenbrock

[15). A nice statement of the theorem is given by Lehtomaki (3).

Basically, this is applied by plotting the imaginary versus the real

1 It is assumed that t a ( )< amax[G(jw)] and that m in [GK(jw)] >> 1.

	

see [1].	 -	 -
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part of -1 + det[I + GK(j(;3)l (as (A) varies) and counting the number of

encirclements of the -1 point.

2.2.6 Robustness

It is not enough just to know whether or not the closed loop system

is stable. If it is stable it must also be known how close it is to

becoming unstable. This is the subject of stability-robustness (often

referred to just as robustness). The closed loop system must be stable

for all possible perturbations of the nominal plant G(s), in other

words for all possible 6(s) of equation (2.6). Sufficient conditions

for this to be true have been derived by Doyle, Stein, Lehtomaki, and

others 11, 2, 3l.

The sufficient conditions for robust stability have two parts.

The first is that the nominal platat G(s) must result in closed loop

stability. This condition is called "nominal closed loop stability."

The second condition can be expressed as a constraint on the maximum

singular value of the multiplicative perturbation:

Cy
max -m-

[E GK (I + GK) -1(jw)) < 1 	for all
- - --

<	 amax [Em(jW)1 < CFmin [I + (GK) -1 (jW) I 	 for all (a	 (2.22)

Most people find the nominal closed loop stability condition to be entirely

reasonable and the singular value i.neauality to be somewhat less that in-

tuitive. The basic idea of the second condition is that it guarantees that

the return difference equation I + GK(jw) remains invertible for all poss-

ible G's in the set defined by E_m

There are a plethora of other ways to express the robustness

results. For example, if the additive perturbation is used, the
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	singular value inequality changes too	 s

3

T

G	 [EaK (I + GK) - OW)] < 1	 for all W

<= Amax IEa OW) I < CT	
[K OW) + G(jW)]	 for all W	 (2.23)

)

It is not always obvious which of the various results is best to use.

For a method to derive these results and for some guidance on which to

use see Lehtomaki [3].

2.2.7 Phase and Gain Margins

These terms have been handed down to us from classical control

theory and are used to characterize the uncertainty of SISO plants.

Let the nominal and actual SISO plants be related by

g (s) = g (s) a (s)
	

(2.24)

To verify a phase margin specification let e ( s) = e3^. If the closed

loop system is stable for all g(s) such that 1^1 < 45 0 then the closed

loop system has a phase margin of 45 0 . Similarly, to verify a gain

margin specification let e ( s) _ t. If the closed loop system is stable

for all g ( s) such that t1 < ,Q < t 2 then it has a gain margin of [t 1 , t2].

The gain margin is usually expressed in terms of decibels: [20 log 10(t1)'

20 log 10(t2H H.

Phase and gain margins can be expressed as multiplicative per-

turbations. For SISO plants the multiplicative perturbation is

g(s) = g(s) [1 + em (s)]	 (2.25)

which is related to e(s) by

e (s) = e (s) - 1	 (2.26)
m
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A phase margin specification of 45 0 corresponds to the following bound

on the multiplicative perturbation:

Iem(jw)I 
< Iej45• 

-11 - tm (w) - .77	 (2.27)

Thus, if the closed loop system is nominally stable and if

11 + (gk) -1 (jw)I > .77	 for all w	 (2.28)

then the closed loop system has at least a 45 0 phase margin.

The correspondence can be turned around. Suppose that

11 + (gk) -1 (jw)I > tm (w) = a	 for all w	 (2.29)

Then the closed loop system has the following guaranteesl:

2

guaranteed phase -argin ± arccos R - 2)
(2.30)

guaranteed gain margin = jl , !-]

These are guarantees - the actual margins may be better.

The phase and gain margins cannot be simultaneously achieved. They

indicate robustness with respect to pure phase or pure gain perturbations.

It is possible, however, to analyze robustness with respect to simultaneous

phase and gain changes (16]. Let e(s) = te0 , a.id then find regions in

the 20 log 10 W x ^ space where Itej^ -11 < a. These regions are plotted

in Figure 2.2. Suppose that a - .8. Then any combination of t and ^

inside of the ellipse marked a = .8 will not affect closed loop stability.

1 This is shown by finding ^ such that (e j ^- 1 I < a and by finding t
such that It-11 < a.



+90

+60

+3t

2
b►
C
	 C

a

-3

'47'	
ORIGINAL PA;,"
OF POOR QUALITY

-6	 -4	 -2	 0	 2	 4	 6	 B	 10	 12

gain, dB

Fiqure 2.2: Simultaneous phase And gain changes that--correspond
to a constant multiplicative perturbation of ^m (W)	 Gt



-48-

The guaranteed phase and gain margins lie on the boundary of the ellipse.

Phase and gain margins can be generalized to multivariable systems

[7, 31. This is done by inserting the diagonal perturbation
}

1(;) = diag {ei(s))	 (2.31)

In which case, if

amin [I + (g) -1 (jw)) < a	 (2.32)

then the I s can simultaneously undergo phase and gain changes as

indicated in Figure 2.2.

The generalizations of phase and gain margins are sometimes subject

to misinterpretation. The danger lies in restricting attention to diagonal

perturbations. The closed loop system may be very robust with respect to

diagonal perturbations, but sensitive to off diagonal perturbations.

When this happens then a of (2.32) will be small, leading to conservative

guarantees for perturbations that are restricted to be diagonal.
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2.3 Conventional Analysis of Hybrid Feedback Systems

2.3.1 The Hybrid Compensator

A hybrid compensator consists of a prefilter, +,,mpler, digital

computer, and hold. A block diagram is shown in Figure 2.3. The word

"hybrid" emphasizes that the compensator has both analog and digital

parts. Both the input and output are analog signals, so from an input-

output point of view the hybrid compensator is an analog device. In-

ternally the signals are represented by discrete sequences, so from

this point of view the hybrid compensator is a digital device.

It is the sampler that converts an analog signal into a digital

sequence, and it is the sampler that complicates the analysis of hybrid

feedback systems. Associated with the sampler are the signals Ed (t)

ed (nT), ed* (t), and their respective transforms ed(s), ed (z), and

ed*(s). We show below how they are related.

The input to the sampler is the analog signal d (t). The sampler

is periodic and outputs a sample every T seconds, so the output is the

discrete sequence ed (nT). Another way to represent the output is the

input multiplied by a train of impulses:

ed*(t) =	 E ee (t)d(t-nT)
	

(2.33)
n

where d(t) is an impulse at time t=0. The following identities are

well known, and are derived in [4):

ems* (s) = T E ed (s-jw sn) , where w s = 
27T

	
(2.34)

n

ems* (s) = 2d (z) I	 sTz=e
(2.35)
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The star operation may be considered a mathematical operation

endent of its above use with sanders. its definition for Laplace

form matrices is

A* (s)	 T E A(s-jW n)
n —

,f the properties of the star operation are

I

(2.36)

A* (S) D A(z)I
z=e sT

(2.39)

A*(s-jWsn) = A*(s)	 for any integer n	 (2.37)

IA* (s) B (S) I *  = A* (s) B* (s)
	

(2.38)

Every z-transform matrix A(z) has associated with it on A*(s) defined by

An A*(s) matrix defined by ( 2.39) obeys properties ( 2.37) and (2.38),

and can be used interchangeably with an A*(s) defined by (2.36). In

this thesis the star notation is preferred to the z-transform rotation

(e.g. Figure 2.3).

The first part of the hybrid compensator is the prefilter. It is

a linear time invariant (LTI) system which has the Laplace transform

matrix F (s). Its main purpose is to low pass filter the input and

reduce aliasing. If F e(jw) is nonzero for IwI > n/T then aliasing

will occur, as readily seen from ( 2.34).1

lAliasing occurs if (Fe) * (jW) j > jF6 (jm) for 0 < W < Tr/T. Aliasing is

undesirable phOnomina for control systems. One of the effects of
aiidsinq is that high froquc^ncy inputs are interpreted as low frequency
inputs, which is particularly true of high frequency noise.
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The digital computer is a linear shift invaxiant 1 device with the

z-transform D(z). How the z-transform is derived is a synthesis prob-

lam and is not the main concern of this thesis. The two basic approaches

are (1) to discretize an analog compensator and (2) to discretize the

plant and synthesize D(z) by a direct method.

In the examples of Chapter 5 the Tustin with prewarping method

(4,p. 591 is used to discretize K(s). The z-transform for the computer

is set equal to

D(z) - K(s) I z-1 	 (2.40)
s a z+l

where	 a
W1

W1T
tan 2

Tustin with prewarping has the property that (respectively):

D(z)	
jW 

T = K(s)	 (2.41)

z=1, e 1	 s°0, jWl

The analog compensator is perfectly matched at s=0 and s=jwl.

The prewarped frequency w  should in, some respect be a "special"

frequency, such as the natural frequency of a pole or zero, the

frequency of maximum phase lag or lead, or the closed loop bandwidth.

1Linear shift invariance is the discrete equivalent of linear time in-
variance. It the input sequence is shifted an integer number of sample
periods then the output is the same except for being shifted the same
tuber of sample periods. Only linear shift invariant operators have

z-transforms defined for them.
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Tustin with prewarping has the advantage of being easy to compute.

Suppose that K(s) has the state space realization

x= A x + B u

(2.42)

Y= C x + D u

Then the state space realization of D(z) is

x(n+l) = F x (n) + G ud(n)

(2.43)

Yd (n)	 = H x (n) + K ud(n)

where

F = (aI-A)
-1
 (a2+A)

G = 2a(al-A) -2 B

H - C	 1	 (2.44)

K = C (aI-A) -1 B + D

W a = _	
W1T

tan 2 -

The hold device transforms a digital sequence into an analog signal.

The hold is modelled as a LTI svccem with the Laplace transform H(s).

The input to the i,old is a train of impulses ^i,* (t) with Laplar ^_ans-

form 2
d
*(s), and the output of the hold has the Laplace transform

H(s)2d* (s)
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The most common type of hold is the zero-order-hold. Its impulse

response and Laplace transform (for the SISO case) are

1	 0 < t < T

h,0 _	 (2.45)
0	 elsewhere

h(s) = s (1 - 
e-sT)	

(2.46)

A first order analog approximation of h(s) is

ha (s) = s +22/T	
(2.47)

Magnitude and phase Bode plots of h(jw) and ha (jw; are shown in Figure

2.4 (for T = .6283; Ws = 10). Below 4 ws rad/sec the 
approximation

is very good.

2.3.2 The Hybrid Operator

An operator transforms input signals (belonging to a set of al-

lowable input signals) to unique output signals. 1 An operator is a

mathematical model, as opposed to a physical system. The hybrid

operator is a mathematical model of a hybrid compensator. It is given

the symbol K, and the transformation from an input signal a to an out-

put signal u is represented by

u = K e	 (2.48)

1A more precise definition is given in Section 2.4.

.4

i
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The hybrid operator is a linear time varying (LTV) operator. The time

variations are due to the sampler. The same input signal shifted in

time by a fraction of sample period results in a different sequence

of samples.

A time domain description of the hybrid operator is given by the

convolution

U  _ ( K(tMe(9)d9	 (2.49)

where K(t,8) is an impulse response matrix. It is periodic in the

sense that

K(t+Tn, A+nT) = K(t,A)	 for any integer n	 (2.50)

The same input shifted by an integer number of sample periods results

?.n the same output shifted by the same integer number of sample periods.

It is this time domain description that was used by Kostovetsky

[17) (see also [181) to investigate some properties of hybrid operators.

HP was able to show that the gain of the hybrid operator is unbounded

as the prefilter approaches an impulse (F(s) - ► I). Also, he showed

how to select a prefilter, digital computer, and hold such that K(t,9)

is aptimally close to a specified LTI impulse matrix K(t).

This thesis uses the following frequency domain description of the

hybrid operator. If the input signal has the Laplace transform e(s)

then the output signal has the Laplace transform

u(s) = H(s) D*(s) [F(s) e(s)1*	 (2.51)
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This equation is crucial to the conic sector results of Chapter 3.

Note that(2.51)does not define a transfer function. Only LTI operators

can be represented by transfer functions.

One of the properties of the hybrid compensator that distinguishes

it from LTI compensators is that the hybrid compensator spreads out the

power spectrum of the input. This property is due to the sampler, which

when viewed in the frequency domain shifts and adds the power spectrum

of the sampled signal. An example is shown in Figure 2.5.The plots are

magnitude versus frequency for signals at different points in the hybrid

compensator. The input signal is bandlimited, but the output signal

has energy outside of this bandlimited region. A LTI compensator would

have energy only in the same bandlimited region as the input.

2.3.3 The Hybrid Feedback System

The hybrid compensator is one part of the hybrid feedback system

of Figure 2.6a. The plant G(s) is the same as in the analog feedback

system in Section 2.2.1 and Figure 2.1. As with the analog feedback

system, closed loop properties are determined by how signals pass

around the loop. The difference is that loop transfer operators must

be used instead of loop transfer functions.

Consider the loop broken at point (1) in Figure 2.6a. Inject the

input signal ein and let eout be the signal that returns after passing

around the loop. Their Laplace transforms are related by

-e'Out (s) = G (s) H (s) D* (s) [F (s) ein (s) )
	

(2.52)

This transformation can be represented by the loop transfer operator
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!out	 T1 !in	
(2.53)

E

but it is not possible to define a loop transfer function. The same

is true for the loop broken at point (2) in Figure 2.6a.

The conventional analysis of hybrid feedback systems avoids the

problems of dealing with LTV operators by analyzing the system at points

(3) and (4) of Figure 2.6a. Here the loop transfer operators T3 and T4

are linear shift invariant and can be represented by the z-transforms

T3 (z)and T4 (z). This simplifies the analysis, but at the cost of only

examining the system at the sample times.

The conventional analysis proceeds by transforming the hybrid

feedback system to a discrete feedback system. An intermediate step

is shown in Figure 2.6b. The block diagram maniupulation used to derive

Figure 2.6b is to pass the prefilter and sampler backwards across the

sum. The prefilter and hold can be grouped with the plant to form the

discretized plant

G-d*(s) = [F(s) G(s) H(s))*	 (2.54)

which can also be represented by the z-transform G W.

The discrete portion of Figure 2.6b is extracted to form the

digital feedback system of Figure 2.6c. The output Yd (z) and the

error .2d (z) are related to the command input Ed (z) by

Yd (z) = §d (Z) D(z) [I + GG (z)D(z) ) -1 r^(z)	 (2.55)

^d (z) _ [I + GG (z) D(z) ] -1 Ed (Z)	 (2.56)
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It is possible to compute the analog output y(s) given a command

input r(s):

*
y(s) = G(s) H(s) PVt (s) (F(s)r(s)]*	 (2.57)

where D* (s) = D* (s) [I + 2d* (s) D*(s)l -1	(2.58)ct

The closed loop operator is a linear time varying operator with the

same structure as the hybrid operator defined by (2.51).

2.3.4 Command Response, Stability, and Robustness

The discrete loop transfer function and the discrete return dif-

ference equation can be used to analyze the command response, stability,

and robustness of the digital feedback system of Figure 2.6c. These

results are analogous to those for the analog feedback system of

Figure 2.1. One of the differences is that the results in this sub-

section apply to discrete sequences - not to the analog signals - that

appear in the hybrid feedback system.

The command response is considered to he good if the discrete out-

Put yd (nT) tracks the discrete input rd (nT) with small error over some

frequency range. As seen from (2.56), this will be the case if the

return differeace equation (similarly the loop transfer function) is

large over the frequency range where the discrete input has significant

energy. A command response specification can be stated

amin [G%* (7W) D*()w)) ? p(W)	 for WO < W < W1	 (2.59)	 -
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The loop transfer function is periodic, and the specification should

only be given over a portion of the frequency range 0 to Tr/T rad/sec.

A discrete sequence Ed (nT) is said to have significant energy over sane

frequency range if rd (z) evaluated at z - e 3WT has large magnitude for

w in the specified frequency range.

The digital closed loop system is stable if all of the digital

closed loop poles have magnitude less than unity. The digital closed

loop poles can be founa by various frequency domain and state space

techniques (4].

Another way to determine stability is to use the discrete version

of the multivariable Nyquist theorem. It will be stated hare, using

the same notation as in [3] . Let N(S2, f (s) , C) denote the "number of

clockwise encirclements of the point 0 by the locus f(s) as s traverses

the closed contour C in the complex plane in a clockwise sense" [3, p. 761.

Let the contour D be the unit circle, with small expansions to include

the open loop poles of 2d (z)D(z) with unit magnitude (these are con-

sidered open loop stable). Let P re the number of open loop unstable

poles of 2d (z)D(z). The multivariable Nyquist theorem states that the

discrete closed loop system is stable (has no poles with magnitude > 1).

if and only if

N (-1, -1 + det [I + Gd*(s)D*(s)], D) =- P	 (2.60)

An important point to note is that the hybrid feedback system is

stable if and only if the discrete feedback system is stable. Hence,

the two stability tests just mentioned are useful fir the hybrid feed-

back system.
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The model of the plant is not exact, and closed loop stability

must be preserved for all possible perturbations of the plant. Robust-

ness results similar to those for analog systems can be derived. The

starting point is a z-transform description of the additive perturbation:

Gd (z) 
= Ed (z) + Ede (Z)

(2.61)

It is assumed that 2d (z) and 2d (z) have the same number of open loop

unstable poles, and that the magnitude of Ed. (z) is bounded by

01,11ax [Edak (jw) ] < Zda (w)
	for	 0 < w < 

W 
	 (2.62)

The digital closed loop system is stable if it is nominally closed loop

stable and if

Qmax [Kda* D* (I + Gd*D*)-1(7w)) < 1 for 0 < w < w 

<° amax [Eda*(iw)l < amin [D*(J w)
-1
 + 2d*()w)]	 for 0 < w < ws

(2.63)

The singular value inequality need only be checked over the fundamental

frequency range.

A digital robustness analysis can also be performed using the

discrete mult-licaiive perturbation:

Sid (Z)= !id (Z)[I
 + Edm (z))	 (2.64)
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It is assumed that 2d (z) and Gd (z) have the same number of open loop

unstable poles, and it is assumed that

amax [Edm*(]w)) < °dm (w)	 for 0 < w < w 	 (2.65)

The closed loop system is stable if the nominal system is closed loop

stable and if

amax [EdM* Sd* D* (I + Gd* D*) -1 (jw)] < 1 for 0 < w < w 

(2.66)

<° amax [Edm* (7w) ] < amin (I + (%* D*) -1( jw) ] 	 for 0 < w < W 

(2.67)

A digital robustness analysis starts with a discrete perturbation.

This is not a natural place to start, however, for a robustness analysis

of a hybrid system. It is the analog plant G(s) that is uncertain,

and its uncertainty is expressed by an analog perturbation. The analog

perturbation must be discretized in order to obtain a discrete pertur-

bation.

Consider when the actual plant is G(s) - G(s) + Ea (s). The actual

discretized plant is

2d * (s) - 2d* (s) + Eda* (s)	 (2.68)

where	 Eda*(s) _ [F Ea H(s )*	 (2.69)

The additive perturbation is discretized the same way as the analog plant.
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When multiplicative perturbations are used then W-e actual plant

is G(s) = G(s) (I + E0 (s)]and its discretized version is

G j * (S) = Gd* (s) + (F G E  H (s)) *	 (2.70)

This cannot easily be expressed as a discrete multiplicative pertur-

bation except when E  is a constant that commutes with H(s) 1 , in which

case

Gam, * (s) _ %* (s) [I + E.dm l , where Edm = EE
	

(2.71)

The analog and discrete multiplicative perturbations are equal.

Constant ms's can be used to find guarenteed phase and gain margins

(sep Subsection 2.2.7). By the argument of the above paragraph the phase

and gain margins of the digital system are also phase and gain margins

of the hybrid system.

Discretizing analog perturbations is one way to analyze the ro-

bustness of closed loop hybrid control systems. This is not, however,

the approach that is persued in this thesis. Rather, the approach is

to approximate the hybrid operator by a LTI operator and then to use

analog techniques to analyze robustness (Theorems 3.4, 3.5, and 3.7).

The "analog techniques" are conic sector techniques. They are

now reviwed, using a precise mathematical format.

1For SISO systems any constant E = e satisfies this condition. For
multivariable systems the easier? example is when both E  and H(s) arediagonal matrices.
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2.4 Results from General Feedback Theory

The hybrid compensator is modelled with a LTV operator which is

called a hybrid operator. The analysis techniques described so far

make no direct use of this hybrid operator. In order to do so,

this thesis makes use of a feedback theory that is more general than the

analog or digital feedback theory of the previous t.n sections. Components

of a feedback system are modelled with mathematical entities called

"relations." Hybrid compensators and the LTI plants am special cases

of relations, so analysis techniques for general feedback systems can

be applied to hybrid feedback systems.

The description given here of the general feedback system follows

the work of Zames, Safonov, Athans, Desoer, and Vidyasagar (5] to [9].

The most general part of the description is contained in the subsections

on relations and conic sectors. The subsections on the feedback systems

are less general because they assume that the feedback system is causal

and well-posed. 1 Evan with this restriction the components can be

nonlinear and time varying. It is not until specific .sonic sectors are

developed that further restrictions are needed.

2.4.1 Extended Normed Linear Spaces

The analog signals in a feedback system are members of an extended

nonmed linear space. A "linear space" is a basic concept of analysis.

Definitions and properties can be found in many textbooks (e.g. 191. A

"nonmed linear space" is a linear space with a norm defined for it.

The norm introduces the concepts of "size" and "distance". Element£

1 A feedback system is causal if its output at time t is independent
of its input after time t. It is well-posed if for every possible
input there exists an output.
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of a normed linear space must have finite norm. This restriction can

be removed by extending the nonmed linear space. The rasult is called

an "extended norme3 linear space."

In this thesis the only normed linear space that will he extensively

used i_s L 2n , the space of square integrable n-dimensional functions.

Elements of L 2 n are functions x: R + 4. Rn (from the set of real numbers

> o to the set of n-dimensional vectors) that have finite norm. The

norm is defined

x^^L 	 i^ x(t) 
^^E 

dt 
1/2

2	 0

(2.72)

L 2 n has engineering significance as being the set of signals with finite

energy. The square of the norm, 112dL is proportional to the energy of
2

the signal x(t).

The extension of L 2n is the extended normed linear space 
L2e'

Elements are functions x: R+ -* R  that have fin4 ;.e truncated norm I1 x (j ,

for all T e R+ , where

1/2

(2.73)

l °

Elements of L 2
 
 ,re automatically in the extension L 2e and have the

property that the limit as T + W of 	 T 	 x L . Examples of
2

functions that are in L 2e but not L 2n are x ( t) = t and x(t) = exp(t).

Examples of functions in neither space are x(t) = tan(t) and x(t)

1/(1-t2).
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2.4.2 Relations, Operators, Gain, and Stability

A relation H is any subset of the product space L n x L ^l
2e	 2e . 

The

range and domain of H are defined by

Ra(H) A {yl(x,y) F H	 for some x e L 2 e)	 (2.74)

Do(H) © {x l (x , y) e H	 for some y e L 2e}	 (2.75)

The inverse of the relation H is a set with the elements x and y arranged

in the reverse order. This inverse relation always exists and is defined

by

HI A{ (y,x) e L m x L n ! (x.y) a H)_	 - (2.76)

The composition product HK and the sum H + K are relations defined by

HK A {(x,z) a L 2e x L 2e I there e- cs a y e L 2e such that

(x, y) e K and (y, z) a H)
	

(2.77)

H + K 0 { (x, y) e L n x L 2e Ix e L 2e and y = yl + y2 for some
2e

yl t Ra(H) and y2 6 Ra(K))
	

(2.78)

An operator H is a relation which satisfies two conditions: 1)

Do (H) = L 2e, and 2' for each x e L 2e there exists a unique y e L 2e such

that (x,y) a H. The same notation is used for both relations and

operators. It is usually not important to distinguish between them,

and when it is, it is usually apparent. For the thesis, it would not

have been necessary to define relations, except that the inverse of
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operators are not necessarily operators.

The relation H can be considered to be a transformation from the

input space L 2n to the output space L 2e, in which case the notation

y = Hx indicates that (x,y) a H. This transformation is somewhat

dangerous to use, however, because there may be none, one, or several

y's for which (x,y) a H. if H is an operator then the transformation

is Well defined (it exists for every x e L 2e and is unique).

The gain (or norm) of the relation H is _defined by

IIHX II T

Il H 11L 
2 

A sup 

(I x 11T
(2.79)

where the suprenum is taken over all nonzero x e Da (H), all corres-

ponding Hx a Ra(H), and all T e R+• In other words, for all possible

input-output pairs and for all possible truncations. Note that the

rat 4 o is always finite, and only the suprenum can be infinite.

The relation H is defined to be L2e stable 	 if IIH II L < -, in
2

which case there exists a constant k such that

IIHXII T < k1IXIIT	 (2.80)

for all x e Do(H), all corresponding Hx a Ra(H), and all T e R+ . This

type of stability is usually called "bounded input bounded output"

stability.

It may not be immediately apparent why an extended spaces are

needed. The reason is that unstable : rations cannot be defined on

the unextended product space L 2 n x L 2m . A xelation that is L2e-stable

maps L 2n into L 2m , but an unstable relation maps L2n into L 2e. There-

fore, to consistently define L 7.e
-stable and unstable relations it is
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necessary to use extended nonmed linear spaces.

2.4.3 Conic Sectors

In this section the concept of conic sectors is defined and dis-

cussed. Necessary and sufficient conditions for relations to belong to

a conic sector are presented. The reason for using conic sectors will

become apparent later - When sufficient conditions for closed loop

stability are stated in tarms of conic sectors.

Let H be a relation, and let C and R be operators. If

11 y - Cx11T < HR x11 T - C 11 x 11 T	 (2.81)

for all (x,y) t H, T e R+ , and for same c >.o then H is said to be

"str'_ntly inside the conic sector with center C and radius R;" which

is eq; -._valentl - stated "s` _ ict".} inside cone (CM." If (2.81) is

true for some e. > o then H is "inside cone (CM."

Now turn around the inequality sign. If

I.y -Cx112 > 11Rx112+C 11X112
	 (2.82)

for all (x,y) a H,T a R+ , and for sane 
C> o then H is "strictly outside

cone (C,R)," and if (2.82) is true for same C > o then H is "outside

cone (C,R`."

The easiest visual example of conic sec*jrs is obtained from

relations H which are munoryless nonlinear operators y = h(x). For

example, consider the function y = h(x) plotted in Figure 2.7.

function is bounded by lines with slopes c-r and c+r, which can be used

to show

iy - cx+ < +rx;	 (2.83)
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Figure 2.7: A memoryless nonlinearity inside conic sector (c,r)
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This inequality implies (2.81) with E=0, and therefore H is inside of

cone (C,R), where C and R are memoryless linear operators defined by

y = cx and y = rx .

One way to interpret H being inside of a cone (C,R) is to think

of the center C as an approximation of H and to think of the radius R

as a bound on the errors due to this approximation. Presumably if the

approximation is to be of any use then R must in some sense be small.

At the very least it'should be the case that for a certain class of

inputs x e S that J j Rx 
11 T << I I Cx I I T.

Another way to interpret conic sectors is to think of them as a

bound on the energy of various signals. Consider the case  when for

all x E L2

fl(H-c) 
x"

L 	 < II Rxjj1
2	 2

(2.84)

The L 2 norm is a measure of energy, so this inequality states that the

energy of (H-C)x is less than or equal to the energy of Rx. Let

x E S be a set of signals that are in some way special. For example,

inputs that have > 99% of their energy below 10 Hz. Then the center

is a good approximation of H if the energy of (H-C)x is small for all

x E S. One possible way to be quantitative about the approximation is

to require for all x E S that Rx has < 1% of the energy of Cx.

Two lemmas are now presented that give necessary and sufficient

conditions for an operator to be either inside or outside of a cone. The

1 The assumptions for this case are that H,C, and R are operators,
H-C is stable, R is stable, and H is inside cone (C,R).
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conic sector inequalities (2.81 1 and (2.82) are satisfied if and only if

certain composi;e operators have gain 4 1. Safonov 1 states the results

[9, p. 42Cj, which to him fall into the "it can be shown" category. Here

the attitude is not so cavalier, and proofs are included in the Appendix

to Chapter 2.

Lemma 2,1 Let H, C, Q, and R I be operators such that H-C, R, and

RI are L2e-stable. Then the following are equivalent:

(a)H is strictly inside cone (C,R)

T 2
(b) (H-C) R' 11L < 1 - C	 for some C > o	 • (2.85)

2

Lemma 2,2 Let H, C, R, RI , and (I + CH) I be operators such that

R, R I , and H(1 + CH) I are L2e-stable. Then the following are equivalent

(a) -HI is outside cone (C,R)

(b) 11 R (I + CH) I
jj
2 < 1
	

6(2.86)
Ic

The radius R is a very special type of operator. In these two

lemmas, and everywhere else in this thesis, it is assumed that R and RI

are L2e-stable operators. The assumption that they are operators is

enough to imply a one-to-one mapping between functions in the domain

and range of R. The additional assumption that R and RI are L2e-stable

implies a one-to-one mapping between the finite norm parts of the

domain and range.

What all of this means for LTI operators is that the Laplace

1 see also Zames [51 and Desoer and Vidyasagar [8).
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transform mat,rix R(s) is properl and have no poles or zeros with real
-	 i

parts > o, and in addition, R -1 (s) is proper and has no poles or zeros

with real parts > o. Examples are r(s) = 1, r(s) _ (s+l)/(s + 10),

and r(s) _ (1 - .5e -sT)/(1 - .9e-sT).

One of the subtle interpretations of Lemma 2.2 is that being outside

of a cone is an inherently closed loop property 2 . If -HI is outside

of cone (C,R) then it is not useful to think of C as an approximation

of -HI . It is better to think of C as any operator that stabilizes

the feedback system

y = Hx

(2.87)
x=u - Cy

The assumption that (I + CH) I is an operator guarantees that the

feedback system is well-posed (see Willems [201). The additional

assumption that H(I + CH) I is stable is another way of saying- that the

feedback system of (2.87) is closed loop stable.

2.4.4 The General Feedback System and the Small Gain Theorem

The general feedback system is shown in F 4 rure 2.8. It will be

referred to as System 1. The equations that define System 1 and the

assumptions that the components satisfy are

u = Ke

g=r - Gu

r, e e L 2e, u e L2e (2.88)
Le

G, K, and (1+ GU I are causal operators

1 R(s) is proper if amax[R( O0)] < m, ie # poles = # zeros, ie R(ju)) does
not roll-off or qrow as w, -+ co.

2 I contrast to outside conic sectors being closed loop properties,
inside conic sectors are inherently open loop properties.
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Figure 2.8: System 1, the general feedback system
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Any mathematical model that represents a physical system should be

well-posed and causal. The assumptions in (2.88) guarantee this. The

stability theory of Zames 15,61 and Safonov [7,9) does not require

well-posedness and causality. These assumptions are made here because

the extra level of generality is not needed to analyze hybrid control

3yStemS.

The closed loop operators of Sys:.jm 1 are E and U, where

E A ((r,e)1(r,e) E L 2e x L 2e and there exists u such that

(2.88) is satisfied)	 (2.89)

and where U is defined in a similar way. The closed loop system is

stable if E and U are L 2e-stable. Hence, closed loop stability is proved

by showing that 11 E 111 and 11U 1i 1 are bounded.
2	 2

The Small Gain Theorem is used to show that a certain class of

systems is closed loop stable. The proof differs little from those of

[5, Theorem 11 and j8, Theorem III.2.11.

Lemma 2 .3 (The Small Gain Theorem) Consider System 1. If

II K II L	- IIGII L	 < 1
2	 2

	

then E and U are L2e-stable.	 a

The Small Gain Theorem has a nice interpretation using the SISO

Nyquist Theorem. Assume GK is SISO, LTI, L 2e-stable, and that

9

IIGK 11L	 = max Igk(;G)) I < 1
2	 W

(2.90)

The sufficient condition of the Small Gain Theorem is satisfied and

therefore the closed loop system is stable. The Nyquist plot is inside
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the unit circle and cannot encircle the (-1, 0) point. Hence, by the	 .

Nyquist Theorem the same conclusion is reached that the closed loop

system is stable.

Unfortunately, any system that satisfied (2.90) is of little

practicai use, because good command response (and other performance

specificat-ons) generally require that lgk(j4))l >> 1 over some frequency

range. The Small Gain Theorem would likewise be of little practical

use if it were not for the Loop Transformation Theorem, which is

discussed next.

2.4.5 Sufficient Conditions for Closed Loeg Stability

If the operators G and K of System 1 satisfy certain conic sector

conditions then the system is closed loop stable. This result is an

extension of the Small Gain Theorem.

The extension it made possible by the Loop Transformation Theorem.

A system is transformed to another system in such a way that the stability

of the transformed system implies the stability of the original system. If

G and K satisfy certain conic sector conditions then by the Small rain Theorem

the transformed system is stable, and by the Loop Transformation Theory

the original system is stable.

This approach is due to Zames [5, 61. His results are less general

because the cone center and radius are constant multipliers. The

generalization presented here, which allows the center and radius to

be operators, is due to Safonov [7]. He goes even further in his

generalizations, and the main results presented in this preliminary

chapter (Lemmas 2.5, 2.6, and 2.7) are special cases of 17, Theorem 2.1].
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The transformations of system 1 are shown in Figure 2.9a. After

a few block diagram manipulations the result in System 2 of Figure 2.9b.

The defining equations and the assumptions for System 2 are:

u2 = K2 e2 + Cr

e2 = Rr- G2 u2

(2.91)

r, e2 a L 2e; u 2 E L2e

G2 , K2; and (I + G 
2 
K 2 ) I are causal operators

The transformations from System 1 are described algebraically by:

K2 = (K-C) RI

G 2 = RG (I+ CG) I

(2.92)

u2 = ( I + CG) u

e2 = Re

The closed loop operators E 2 and U2 respectively relate r to e2 and u2.

Lemma 2.4 (Loop Transformation Theorem)

(a) r, u, and a are solutions of System 1 if and only if r, u2,

and e2 are solutions of System 2.

(b) Furthermore if (I + CG) I and R I are L 2e-stable then the

stability of System 2 implies the stability of System 1. 	 •

The proof of part (a) differs little from those of [S, Theorem 21]

and [8. Theorem I11.6.31. Part (b) follows after a few steps from (2.92).
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Figure 2.9a: Transformations of System 1
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K2 = (^-C )RI	 62 = RG (1+66)

Figure 2.9b: System 2



Lemma 2.5 (Sufficient Conditions for Closed Loop Stability, K

Inside of a Cone). Consider System 1. Let C and R be operators such

that (I + CG) I , GU + CG) I , K-C , R, and RI are !2e-stable. Then

System 1 is closed loop stable if

U) K is strictly inside cone (C,R)

(ii) -G I is outside cone (C,R)	 •

The proof is now sketched out. If the conic sector conditions

(i) and (ii) are true then (by Lemmas 2.1 and 2.2) it follows that

< 1- e for some E > o

By the Small Gain Theorem (Lemma 2.3) it follows that System 2 is closed

loop stable, and by the Loop Transformation Theorem (Lemma 2.4) it

follows that System 1 is closed loop stable.

The major restriction of Lemma 2.5 is that K-C must be L2e-stable.

Whatever is placed inside of the conic sector must be bounded by a stable

Lemma 2.5 is a robustness as well as a stability result. The

closed loop system will be stable not just for a particular K and G but

for any K that satisfies (i) and a_.X G that satisfies (ii).

Condition (i) of Lemma 2.5 stages that the compensator K is inside

of a cone. Sometimes it is more convenient to think of the plant G as

being inside of a cone. Sufficient conditions for closed loop stability

can also be derived when this is the case. A different transformation

of System 1 is required, as shown in Figures 2.10a and 2.10b; and a

different version of the Loop '.cansformation Theorem is required, so

that stability of System 3 in Figure 2.10b implies the stability of
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Figure 2.10a: Alternate transformation of system 1

Figura 2.10b: System 3
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System 1. The final result is shown below.

Lemma 2.6 (Sufficient Conditions for Closed Loop Stability, -K I

Outside of a Cone). Consider System 1. Let C and R be operators such

that (I + CK) I , K(I + CK) I , G4 , R, and RI are L2e-stable. Then System

2 is closed loop stable if

(i) -KI is outside cone (C,R)

iii) G is strictly inside cone (C,R)
	 •

The major restriction of Lemma 2.6 is that G-C must be L2e-stable.

Just as is the case for Lemma 2.5, Lemma 2 . 6 is a robustness as well as

a stability result.

Some of the references for t. - eneral feedback theory Pet up a

version of System 1 that has symmetric inputs, thereby avoiding separate

derivations for inside and outside conic sector conditions for closed

loop stability. Symmetric inputs are not usual for hybrid control

systems, however, and therefore for this thesis it was decided to include

the two derivations.

One more set of sufficient conditions for closed loop stability

is included. Me difference here is that the loop transfer operator

T1 = GK is placed inside of a cone. The general feedback system can

still be considered to have two elements - one is T 1 and the other is I.

Lemma 2.7 (Sufficient conditions for closed loop stability. T1

'	 inside of a cone). Consider Systez, 1. Let C and R be operators such

that (I + C) I , T1 - C, R, and RI are L 2e-sable. System 1 is closed

loop stable if

(i) T1 is strictly inside cone (C,R)

(ii) R (I + C) 
I 

^, L < 1
2
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If condition (ii) is true then -1 is outside of cone (C,R). The

E	 major restriction of Lemma 2.7 is that T 1 - C must be LZe-stable.

2.4.6 Conic Sector Analysis of Command Response

Conic sectors can be used to analyze the response to signals that

enter the feedback loop. The only signal that enters the general feed-

back system of Figure 2.8 is the command input r, which enters just before

the prefilter.

In this thesis we will be interested in the steady state response to

commands that belong to a set of command signals S C L2e . In particular,

we will be interested in the steady state response of low frequency

sinusoidal inputs. Transient errors (overshoot, risetime, settling time,

etc.) are not analyzed in this thesis.

The error signal is

e = (1 + GK) I r	 (2.94)

and the steady state command response specification is

II elI T
lim	 -	 < q for all r C S 	 (2.95)
T-*w	 11 r II T

The constant "q" is called the "quality measure". By wetting the transient

time T approach infinity the transient errors become insignifi^"ant, and

t',erefore the quality measure is a measure of the steady state error. It

is in general difficult to compute the quality measure. As will be shown,

conic sectors can be used to find an upperbound for q.

There are two approaches. The first is to place the loop transfer

operator GK inside of a cone, and the second is to place the closed loop

I

Eq

^i.
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operator (1 + GK) I inside of a cone. The first approach is due to Stein

(18) 1 , and the second approach is new.

Placing GK Inside of a Cone

Assume that the operators GK and C are L 2e-stable, and assume that

GK is inside of the cone (C, R 1 ). Expand the error equation (2.94) as

follows:

e= (I+ GK) Ir

(I+C+GK- C)Ir

= (1 + C) I (I + (GK - C) (1 + C) I I I r

(1 + C) I {I - 11 + (GK - CHI + C) I ) I (GK - CHI + C) I, r

(2.96)

Take the truncated norm of each side of (2.96), and then use singular

value and conic sector inequalities to obtain

I

II ell T < II (1 + C) I EN T +	
II (I + C) IIL 2 I,	

II R1 (I + C) I r II T
1 - II R1 (I + C)

 11L 2

for all r E L2e and all T e R+	(2.97)

Stein (18) I-'efiries the quality measure by

IeIIT
< q for all r E S and for all T e R+

II r 1I T	
..

This quality measure is valid for transient as well as steady state errors.



-86-

An upperbound for the quality measure is

q < qo (1 + m*
* rl) for all r e S

ORIGINAL PAG -:
Of POOR QUALITY

(2.98)

where

IIcT + C) I rII
q < lim	 T	

for all r e S
II = II T

m* = 1 - II R  (T + C) I II L
z

S* =	 (I(T + C)IIIL
2

II Rl(I +C)I 
rlqo < lim	 for all r e S

VIM	 II r II 
T

(2.99)

The constant "qo is the "nominal quality measure," which is obtained

when the operator GK is
*

replaced by C.	 The constant (1 + m* rl ) is the

amount by which q0 must be raised to obtain an upperbound for q. If the

set S is sinewaves with frequencies less then coo , and if C and Rl are

LTI operators, then the consta-ts in	 (2.99)	 are

qo =	 max	 Amax	 [(I + C) -1	(jw)]
o<W<W

0

r„* = 1 - max	 Q	 [R	 (I
1max + C) -1	(jw) ]

w (2.100)

s* = max	 Cr HI + C) _ 1 (jW) ]
max

W

max
 x	 Amaxr lgc [Rl	(I + C) -1	]

0<0
0
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Two restrictions to the use of (2.98) are (1) that GK must be open

loop stable and (2) that the cone around GK must meet the sufficient

I ' conditions for closed loop stability. 1 In addition to these restrictions

there is also the problem that (2.98) may give a conservative upperbound

for q. By "conservative" it is meant that the upperbound for q is higher

than it needs to be. If the cone around GK is not very tight, then m* will

be small and r  will be large - both of which lead to conservativeness.

Two more sources of conservativen-ss are that both m* and s* use operator

norms, and hence must be t.-ue for all input signals and not just r E S

Despite the problems mentioned above, equation (2,98) is a natural

generalization of LTI results - specifically (2.21) and [1, equation (19)1.

It is a first attempt at using conic sectors to analyze command response

(as opposed to the more common uses of conic sectors to analyze closed

loop stability and robustness). One advantage of working with GK instead

of (I + GK) I is that the perturbations of G and K are easier _o separate.

For example, a multiplicative perturbation of G is also a multiplicative

perturbation of GK, but not of (I + GK)I.

Placing (I + GK) I Inside of a Cone

Assume that the operators (I + GK) I and (I + C) I are L2e-stable,

and assume that (1 + GO is inside of the cone [(1 + C) I , R 2 7. 2 Expand

l It must be true that ij R 1 (I + C)I11L < 1, which is the sufficient
2

condition for closed loop stability given in Lemma 2.7. If this in-
equality is not satisfied then m* < o.

2The operator C is an approximation of GK. The open loop stability
assumptions of C and GK are replaced by the less restrictive assumptions
of closed loop stability.
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the error equation ( 2.94) by. adding and then subtracting (I + C) I r:

e = (I + GK) I r

_ (I + C) I r + ((I + GK) I - (I + C)) r	 (2.101)

An upperbound for the quality measure is

q < qo (1 + r2 )	 for all r e S
	

(2.102)

where

II (I+C)I rl)
q^ 1im	 T	 for all r e S	 (2.103)o- T..,eD	

I I^ I I T

II (I'+ GK) I - (I + C) I rll
r2go < lim	 T for all r e S	 (2.104)

T-).W	 11=1lT

As before, the constant q. is the nominal quality measure. The constant

(1 + r 2 ) is the amount that q  must be raised to obtain an upperbound for

q•

I
One way to compute the constant r 2 is to construct a cone ((I + C)

R2) that contains (I + GK) I . It follows that

r2go 
< 

1IR 20 T	
for all r e L2e and all T e R+	 (2.105)

Ilr 11T

Equation (2.105) may result in a conservative ( i.e. large) estimate for r2go

because ( 1) the conic sector does not take advantage of the restricted

set r e S anal ( 2) the conic sector must be valid for all possible trunca-

tions of the input signal.
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An alternate form of (2.104) is

II[GK U+GK) I - C(I+C) I ] rll
	r2 g

o < lim	
T for all r e S

	

T''°°	 II = I I T
(2.106)

which is derived from (2.104) by use of the identity

(I + A) Z - 1 - A (I + A) I 	(2.107)

This alternate'forn is easi.r to use for hybrid operators. It is

interesting to note that conic sectors that contain (I + GK) I and

GK (1 + GK) I have the same radius.

In this subsection two different approaches have been discussed for

using conic sectors to analyze the steady state response to commands.

Either the loop transfer operator GK or the closed loop operator (I + GK) I

can be placed inside of a cone.
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2.5 Conic Sector Analysis of Analog Feedback Systems

The general feedback theory is just that- general. It is only

when specific assumptions are made about the feedback system that the

results from the general feedback theory can be applied.

In this section the conic sector analysis techniques are applied

(for better or for worse) to the analog feedback system of Section 2.2.

The feedback system is briefly described, sufficient conditions for

LTI operators to be inside or outside of a cone are presented, and then

sufficient conditions for robust closed loop stability are presented.

The conic sector analysis techniques are not as general as the analysis

techniques of Section 2.2. The distinction is that conic sectors cannot

be used for unstable perturbations of the analog plant.

The compensator and nominal plant are modelled, respectively, by

K and G. The uncertainty of the nominal plant is modelled by the

additive perturbation E a , where

G = G + E
	

(2.108)
a

and where Ea is a L 2e-stable LTI operator. The only other information

known about Ea is a bound on the magnitude of its Fourier transform

matrix:

Q
max	 a

[E (jm)] < a (W)	 for all co	 (2.109)
-	 - 

The uncertainty of the nominal plant can also be modelled by the

multiplicative perturbation Em , where

G = G(1 + E

Tr

)	( 2.110)

Amax [E
m (jw)I < t 

M 
M	 for all w	 (2.111)
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and where Ea = GE  is L 2e-
 
stable. 1

Three Lemmas are now presented: Lemma 2.8 gives sufficient condi-

tions for G to be strictly inside of a cone, Lemma 2.9 gives sufficient

conditions for -K 
I  

to be outside of a cone, and Lemma 2.10 combines

the previous two and gives sufficient conditions for robust closed loop

stability.2

Lemma 2.8 Let G, G, R, and RI be LTI operators such that 6-G, R,

and R I are L 2e-stable. G is strictly inside cone (G , R) if

min [R(jw)) >	 1c	 1 2
(	

amax [G(jw) - G(jw)) 	 (2.112)
1^E) ^

	

for all w and some E > o	 a

Lemma 2 .9 Let K, C, R, and R I be LTI operators such that

	

K(1 + GK) 
1, 

R, and R I are L 2e-stable.	 -K I  is outside cone (G,R) if

amax [RK (I + GK) -1 (jw)) < 1	 for all w
	

6(2.113)

Lemma 2.10 Consider the analog feedback system containing the LTI

operators K, G, and G. Let R and R be L 2e-stable LIT operators. The

closed loop system is stable for all possible G's if there exists an

R(jw) such that

The requirement that E is L2e-stable means that the exact number and
the exact location of unstabie poles of G(s) must be known. The less
restrictive requirement in Section 2.2 is that G(s) and G_(s) must have
the same number of un:..able poles, which means that only the exact
number of unstable poles must be known.

2
Lemmas 2.8, 2.9, and 2.10 (for analog systems) correspond, respectively,
to Theorems 3.2, 3.6, and 3.7 (for hybrid systems). Lemmas 2.8 and 2.9
are due to safonov 19, Lemmas A4 and A2;. He gives necessary and
sufficient conditions to be conic. Only the sufficient conditions are
presented here, to facilitate ccnparison with the results for hybrid
systems.
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(i) K U + GK) I is L -stable

(ii) aMAX [RK (I + GK) '1 (jw)I < 1	 for all w	 (2.114)

(iii) a[R(jw))	 t (w)	 for all w	 (2.115)
min	 a

The proof for Lemma 2.10 can be quickly sketched out. Conditions

(i) and (ki) guarantee that -K t is outside of cone ((; , R). Condition

(iii) guarantees that G is strictly inside cone (G , R). Hence, by

Lemma 2.6, the analog system is closed loop stable.

The first step in applying conic sectors to analog feedback systems

is to construct a cone (G, R) such that all possible G's are strictly

inside of it s By Lemma 2.8, this is true if

Amin [R (jw) >	 11/2 
1_a (w)

( 1-e)

for all w and some e > o

(2.115)

The E term is a nuisance. It suffices to retrace (2.115) with the strict

inequality)

v
min 

[R(jw)) > t 
a 

(w)	 uniformly in w	 (2.117)
- 

If the uncertainty is modelled by a multiplicative perturbation then

(2.117) is replaced by

Qmin [R(jw)] > t m
	 max
(w)• Q	 [G(jw)1	 uniformly in w	 (2.118)

--	 -

Note that the additive perturbation Ea cannot in general be used

as the radius of the cone. A radius must have the property that both

it and its inverse are 1 2e-stable. This is not assumed about Ea - only

that Ea is stable. The problem is that E a (jw) may roll off, whereas

R(jw) mmust eventually flatten out (or beccme periodic). This distinction
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is not cf practical importance, howevsr, because the radius can be

arbitrarily close to bound la (CO out to arbitrarily high frequencies.
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ARj2endix to Cha tp er 2

This appendix contains proof of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1 Here I'_ is shown that H is strictly inside of

cone (C, R) if and only if the operator (H - C) R I has gain < 1 - e for

some E > o. The operators are defined on the cross product spaces:

H, CC 
L 2e x L2e

	R C L2e x L2e	
(2.A.1)

(H-C)F.I C L2e 
x L2e

Each step in the proof is equivalent. Explanations are enclosed in

parenthesis.

H is strictly inside cone (C,R)	 (2.A.2)

<-^	 ^i y - Cx 11 2 < (^ Rx 112
	

E ll x 1, 2	 (2.A.3)I

	

T	 T	 T

for all (x,y) a H, all ' e R+ , and some E > o

(definition of strictly inside)

<->	 jj(H-C) xi1 2̂  < ^^^'x11 2 - E	 II x 11 2	 (2.A.4)

for all x e L 2e, all T e R+ , and some E> o

(because H, C, and R are operators with the same

dotiains)

<->	 II ( H-C)R I E ll 	 < II	 11 2 - E II R IE II T	 (2.A.5)

for all E e L 2e, and T e R* , and some E > o

where Q Rx

(because R and R I are operators)
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OF PUOR Qu+ i
<-^ II (H-C)R I 	IITi t	 IIT (,-E

1
) (2.A.6)

for all a e, all T e R , and some E" > 0 	 3

i
where E` a2  and

II RIB II
a<	 T-	 for all	 o

II0I T 	 T

(a < because RI is L2e-stable)

II (H-C) RIE 11
1

<-> (I(H- C)R1 112 	 ;up	 T	 < 1 - E'	 (2. A. 7)

11 & IIT

suprenum taken over all ^ e L?e with

II II2 
3^
o and all T e +

(only possible if H-C and R I are L2e-stable)

This complete the proof.
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Proof of Lema►a 2.2 Here it is shown that -HI is outside of a cone

if and only if the operator RH(I + CH) I has gain < 1. The operators are

defined on the following cross product spaces:

-HI . CC L2e x Lee

R C L 2e x L 2e	 (2.A.8)

RH (I + CH) I G L2e x L e

Note that the center and radius differ from those of Lemma 2.1. Each

step in the following is equivalent:

	

-HI is outside cone (C,R)
	

(2.A.9)

<=> 11 x - c- T ^ JI Ry Ij T 	 (2.A.10)

for all (y,x) a -HI and all T e R+

(by definition)

<_> II (1 
+ CH) 

x II T> 	 II RHx II 2
	 (2.A.11)

for all x e L2e and all T e R+

(because H is an operator)

<=> 1I	 IIT > II RH (I+ CH) 
I 

E II T 	(2.A.12)

for all E L 2e and all T E R+

(because (I + CH) and (I + CH) I are operators)
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+ CH).	 2
RH U

2<=>	 II RH (I + CH) II 2 	 2sup	 (2. A. 13)

suprenum taken over all e L2e with	
2 0	n 
	 T

and all T e R

(only possible if R and H(I + CH) are L 2e-stable)

This completes the proof.

MW
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3. CONIC SECTORS FOR HYBRID OPERATORS

3.1 Introduction

The major theoretical results of this thesis are presented in this

chapter. It is here that the conic sector analysis techniques developed

for general feedback systems are applied to hybrid feedback systems.

The results are condensed into eight theorems, which are now briefly

described:

Theorem 3.1: An upper bound for the gain of the hybrid operator.

Theorem 3.2: Sufficient conditions for a hybrid operator to be
inside of a cone.

Theorem 3.3: Sufficient conditions for closed loop stability
when the hybrid operator is inside of a cone.

Theorem 3.4: First approach to sufficient conditions for robust
closed loop stability when the hybrid operator is
inside of a cone.

Theorem 3.5: Second approach to sufficient conditions for robust
closed loop stability when the hybrid operator is
inside of a cone.

Theorem 3.6: Sufficient conditions for a hybrid operator to be
outside of a cone.

Theorem 3.7: Sufficient conditions for robust closed loop sta-
bility when the hybrid operator is outside of a cone.

Theorem 3.8: Use of the closed loop hybrid operator to analyze
command response.

The theorems about closed loop stability and command response

(3.3, 3.4, 3.5, 3.7, and 3.8) all begin with the statement: "Consider

the hybrid feedback system." This refers to the hybrid feedback system

of Section 2.3, which is a special case of System 1 of Section 2.4.

For the hybrid feedback system:

The compensator is modelled with the casual hybrid operator K,
which relates the Laplace transforms of its input and output
by u(s) = H(s) D*(s) [F(s)e(s))*.

a
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The nominal and actual plants are modelled by the causual LTI
operators G and G, which are related by either the additive
perturbation E or the multiplicative perturbation E , as
described by equations (2.108) to (2.111). 	

m

. Associated with the hybrid feedback system are the LTI operators
C, R, and RI ; which form the center and radius of various conic
sectors. It is a.-ways assumed that R and RI are L 2e-stable. This,
and any other assumptions of open loop or nominal closed loop
stability, are explicitly stated in the Theorems,

The hybrid feedback system is assumed to be well-posed and causal,
in other words it is assumed that (14K) I is a casual operator.
For Theorems 3.3, 3.4, and 3.5 it is also assumed that (I+CG) I is a
casual operator.

A distinction is made between "closed loop stability" (Theorem 3.3)

and "robust closed loop stability" (Theorems 3.4, 3.5, and 3.7). The

former applies only to the nominal plant G, and the latter to all pos-

sible plants G. A distinction is also made as to whether the hybrid

operator is inside of a cone (Theorems 3.2 to 3.5) or outside of a cone

(Theorems 3.6 and 3.7). When the hybrid operator is inside of a cone,

then the center C can be viewed as a LTI approximation of K. On the

other hand, when the hybrid operator is outside of a cone, the center

C can be viewed as an approximation of the plant, and is usually set

equal to the nominal plant G.
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3.2 The Gain of the Hybrid Operator

One of the properties of an operator is its gain [see (2.79)].

It is the maximum ratio of outpyt norm to input norm. An ulperbound

for the gain of the hybrid operator K is presented -I ii Theorem 3.1.

When K is SISO then an input signal can be constructed which achieves

the upperbound, hence the upperbound actually is the gain.

'theorem 3.1 Let K be a stable hybrid operator.

#;a) An upperbound for the gain of K is

Il x ll<_ o<w< '^ z	 IlHkll 
21112 

IID* II	 J E IIFnIl 2^ -	 (3.1)

	

2	 — T	 lk	 n

(b) Furthermore, if K is SISO then ( 3.1) is true with equality.•

The proof is presented in the Appendix to Chapter 3. Included in

the proof of part (b) is a signal which achieves the upperbound. At

the end of the proof a conjecture is made about the actual gain in the

multivariable case.

After some thought (possibly after considerable thought), Theorem

3.1 should be is intuitively reasonable as the corresponding result for

a LTI operator H, which is

	

II H II^	 _ max II H(jw)II
2

The input signal that achieves the maximum gain for LT'. operators is a

sinewave at the frequency w  that maximizes (3.2). The corresponding

input signal for hybrid operators is an infinite series of sinewaves.

The fundamental frequency is the W  that maximizes (3.1), and the other

frequencies are shifted away from w  by integer multiples of ws.

(3.2)
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The gain of the hybrid compensator depends on how fast the pre-

filter rolls off. Consider when the impulse response of the SISO pre-

filter approaches an impulse, i.e. when f(jw) -► 1. The infinite sum

E 11fn112 approaches infinity, which P.iplies that the gain of the hybrid
n

operator approaches infinity. Spurious inputs such as noise will be

greatly amplified. Hence, Theorem 3.1 can be used to justify the need

for adequate prefiltering. This duplicates a result of Kostovetsky [17).

The gain also depends on how fast the hold rolls off. In fact, the

hold is treated exactly the same way as the prefilter. This results in

the intuitively pleasing symmetry of equation (3.1). This symmetry is

important when the hybrid compensator is included in a feedback system,

in which case it is not obvious which parts of the loop should be in-

cluded in the prefilter and which parts should be included in the hold.

t!



where	 rI(w)

r2(w)

r3(w)

2
T

1

T2

kl
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ORIGINAL PACE IS

3.3 A Cone that Contains the 	 OperatorHybrid	
OF ROOF QUALITY

y 

3.3.1 Existence

For any stable hybrid operator K there a'.ists a cone (C,R) such

that K is strictly inside of the cone. This result is presented in

Theorem 3.2.

Theorem 3.2 Let K be a stable hybrid operator, let C be any LTI

!_2e-stable operator, and let R and R I be LTI Lee-stable operators.

(a) K is strictly inside cone (C,R) if

Amin (R ( jw), >	 1 1/2 Jr, (w) -r2 (w) +r 3 (w), 1/2	 ( 3.3)
ttt	

(1-E)

for all w and some e > 0

go

^k 11Hk1121 . llD* ll 2 . [n ll '11 2 1	 (3.4)

k 
ilk D*Ql 2	 (3.5)

T N
D*Ek 

Ck112	 (3.6)

(b) Furthermore, the optimal center

C(s) = T H ( S) D* (s) F ( s)	 (3.7)

minimizes the lower bound for 
Dmin 

(R(jw)).	 a

The proof of this result is in the Appendix to Chapter 3. A few

remarks are now made to highlight the theorem. A conic sector exists

for any stable hybrid operator. The stability requirement is the major
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limitation of this theorem, in fact it is the major limitation of all

the inside conic sector results. Unstable hybrid operators (which in-

cludes hybrid operators with digital integrators) cannot be bounded by

finite radii.
(
(

The conic sector is not unique - and not always useful. The choice

of center determines to a large extent how useful the conic sector is.	
g

The center should be a good approximation of the low frequency behavior

of the hybrid operator.

Usually, but not always, the optimal center ( 3.7) is a good choice.

It has the distinct advantage of minimizing the radius. Also, since

this choice makes r 3 (w) = 0, there is one less term to compute. The

optimal center is an infinite dimensional LTI operator. If a low order

rat:.onal polynominal center is desired then use

C(s) = T H
$ 

( s) K(s) F(s)	 (3.8)

where fi 3 (-) ?s an approximation of a zero-order-hold, such as (2.47). If

the objecti:^; is to compare different discretization techniques then use

C(s) = l—r, H(s) K(s) F(s)	 (3.9)

The magnitude of the radius will rise or fall depending on how well D*(s)

approximates K(s) at low frequencies.

An alternate equation for the radius uses a double summation:

Amin (R(jw)^	
11 /2 

(r4 M +r 3M 1/2	 (3.10)t	 11111	 (1-F')	 t
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where

r4 (w) = Z L E I ( HND*Fj 
12

T k n#k
(3.11)

and wher. r3 (w) is given by (3.6). For S1SO systems r4 (w)=r1 M -r2(w),

and for multivariable systems r4 (w)<rI M -r2
 
M. Whether to use (3.3)

or (3.10) to compute the radius is primarily a computational issue,

as discussed in Sectiow 4.3.

Theorem 3.2 only gives a lower bound for the radius. It is always

best to choose R(jw) so that it actually equals the lower bound, because

this choice gives the least conservative stability and robustness re-

sults. If R(jw) is multivariable then all of its singular values should

be set equal to the lower bound. This is done by making R(jw) a diagonal

matrix with equal diagonal entries.

An important point to make about the radius is that it is computable.

In the examples of Chapter 5 the radius is computed for many different

values of w and then plotted on a magnitude Bode plot. The radius is

periodic with period w s , and need only be computed over the frequency

range 0 to ws/2.

The radius R(jw) corresponds to an additive perturbation, whereas

the quantity R(jw)C-1 (jw) corresponds to a multiplicative perturbation.

The quantity R C-1 (jw) is called the "multiplicative radius." It con-

tains information about the size of the radius relative to the center,

which is usually more important than the absolute size of the radius.

The center C(jw) is a good approximation of the hybrid operator K over

the frequency range where 0 a, IR C-1 (jw), << 1.

If the hybrid operator isSISO and if the optimal center is used

for the cone then the multiplicative radius is independent of the
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computer transform d*(s). In this case the multiplicative radius de-

pends orly on the prefilter and hold. All of the closed loop stability,

robustness, and performance results do depend (of course) on the com-

puter z-transform.

The last comment is that Theorem 3.1 is a special case of Theorem 3.2.

If the choice of center is C(s )=(l, then r 2 (w) = r3 (w), which means that

-r2 (w) + r3 (w) = 0. What remains of ( 3.3) can be used in place of (3.1)

of Theorem 3.1.

3.3.2 Closed Loop Stability

The hybrid operator K is one part of a hybrid feedback system.

Sufficient conditions for closed loop stability are now presented.

Theorem 3.3 Consider the hybrid feedback system ( see Section 3.1).

Assume K, C, R, and RI are L2e-stable. The hybrid feedback system is

closed loop stable if a C and R exist such that

(i) K is strictly inside cone (C,R)

(ii) G(I+CG)I is L2e-stable

(iii) Amax I
R G(I + C G) -1 OW)I < 1 for all w	 n (3.12)

The proof can be quickly sketched out. If condition ( i) is true

then K is strictly inside cone (C , R). Such a cone always exists (by

Theorem 3 . 2), because it is assumed that K is L2e -stable. If conditions

(ii) anal ( iii) are true then -G I is outside of the same cone (by Lemma

2.8). The fact that K is strictly inside and --GI is outside of the same

cone implies that the hybrid system is closed loop stable (by Lemma 2.5).

Theorem 3.3 is applied by first constructing a C(jw) and R ( jw) such

that condition ( il is true, and then by using C ( jw) and R ( jw) to check

conditions ( ii) and ( iii). The major restriction of this theorem is

that the hybrid operator must be open loop stable. This guarantees
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the existence of a C(jw) and R(jw) such tha,

If the hybrid operator is not open loop stable then Theorem 3.3 cannot

be used to determine closed loop stability.

Condition (ii) is a check for nominal closed loop stability. The

nominal system is an analog LTI system, and therefore standard techniques

can be used to determine closed loop stability (see Subsection 2.2.5).

The singular value inequality (3.12) can be graphically checked on

a magnitude Bode plot. This is done in the examples of Chapter 5. The

inequality (3.12) is implied by either of the following:1

Amax 
JE(jW)j - Q 

max 
(G (I + C G) -1

 
OW) I < 1	 for all w	 (3.13)

amax JE C-1 (jw)I < 
amin 

(I + (C G) -1 (jw),	 for all w	 (3.14)

It is (3.13) that is used in the examples. The problem with (3.14) is

that it cannot be used if C(jw) = 0 for some w. This happens whenever

the hold H(jw) is a ze-ro-order-hold and the center that is chosen in-

cludes H(jw). The only way that (3.14) can be used is if the center

includes an approximation to H(jw), such as Ha (jw) of (2.47).

3.3.3 Robust Closed Loop Stability

one of the problems with Theorem 3.3 is that plant uncertainties

are not explicitly included in the sufficient conditions for closed

loop stability. The closed system should be stable not just for the

nominal plant G but for all possible plants G in a defined set.

1Note the similarity of (3.13) and (3.14) to the robustness conditions
(2.23) and (2.22) for analog feedback systems.
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Two robustness results are now derived. The first result uses

the fact that conditions ( ii) and ( iii) are true for a set of linear

operators, of which G is one element. This set will contain all pos-

sible G's if the condition of Theorem 3.4 is satisfied.

Theorem 3.4 Consider the hybrid feedback system. Assume that all

of the assumptions and conditions of Theorem 3.3 are satisfied. The

hybrid feedback system is closed loop stable for all possible G's if

CY

^(w)	
min

amax[G C(j 0) ] + a 
max 

[R G(jw) ]	 for all w • (3.15)m 

The proof of Theorem 3.4 is included in the Appendix to Chapter 3.

Theorem 3.4 is set up to be used when the uncertainty of the nominal

plant G is characterized by a multiplicative perturbation. The hybrid

operator K is inside of the cone (C,R), and if the conditions of Theorem 3.3

are satisfied then -GI is outside of this cone. If in addition the

condition of Theoren 3.4 is satisfied then all possible -G I 's are out-

side of this cone.

The next robustness result uses a different approach. The per-

turbation of the nominal plant is used to increase the size of the

radiur (the radius of the cone that the hybrid operator is inside of).

This is accomplished by grouping (I + EM), the multiplicative pertur-

bation, with the hold.I

Theorem 3.5 Consider the hvbrid feedback system. Assume :hat

K, G, Em , C, R, and R 
I

are L2e-stable. Choose the center

1Similar results are possible by grouping the multiplicative pertur-
bation with the prefilter.
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ORIGINAL PAGE 13

OF POOR 
QUALITI V

C(s)	
T 

H(a) D* (6) F(a)	 (3.16)

(a) The composite operation ( I+iEM)K is strictly inside cone

(C,R) if

Q min II
I 0W )I >	

11/2 
1r5 W - r6 (w) + r7 (w)1 1/2 	(3.17)

 (1-C)

for all w and some c > 0

where

r5 (w) - T2 
I k

(1
+emk) 2 • j I^jI 2

1	
iiD^1 2 ' t n II	 I I	 (3.18)

r
66 (w) = 2 E(1 + t ) 2 • i^^ 

D* E, 112 (3.19)
T k

r7 (w) = z E t,2 • 11 
H D*	 PI 

2	
(3.20)

T k

(b) .he hybrid system is closed loop stable for all pc831ble

G's if

(i) (I+Em)K is strictly inside cone (C,R)

(ii)GO + CG) I is L2e-stable

(iii) CTmax I R G (I + CG) -1 (jw), < 1 for all w	 • (3.21)

The proof of Theorem 3.5 is a composition of the proofs of Theorems

3.2 and 3.3. The proof of part ( a) differs from the proof of Theorem

3.2 only in that H(s) is replaced by (I + E )H(s), and the following

inequality is inserted in the appropriate place in the proof:
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II(i+,) H ( ,))II < II(i+ ) II • IlH(i^) II

< (l +

< (1 +	 (3.22)

The proof of (b) differs from the proof of Theorem 3.3 only in that K

is replaced by (I+Em)K. The hybrid operator ( I+Em)K is strictly inside

of cone (C,R) if condition (bi) is true, and -GI is outside of the same

cone if conditions (bii) and (biii) are true. Hence, the closed loop

system is stable for all possible G's in the set defined by i .
m

An alternate expression for the radius (3.17) uses a double sum-

oration:

0minlijow)1
111 >	 11,2 Ira(w) + r7 (w)1 1/2	(3.23)

(1-E) '

for all w and some e > 0

where

r8 (w) = r 5 (w) - r6 (w) = 2 E E	 ( l + Qom ) 2 • II HAD*F 1i 2
T k nft

(3.24)

and where r
7
(w) is defined by (3.20)

Constant values of @m (w) are useful for phase Ind gain margin

analysis (see Subsection 2.2."	 Suppose

m
(w) = 't	 for all w	 (3.25)
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Then the -various components of the radii of Theorems 3.3 and 3.5 are

related by

r5 (w) _ (l+a)^ rl(w)

r6 (W) _ (l+a) 2 r2(w)

2	
(3.26)

r7 (w) = a r2tW)

r6 M _ (l+a) 2 r4 (w)

The significance of (3.26) is that the same computations for Theorem

3.3 suffice for Theorem 3.5.

It is possible to systematically find the maximian value of a such

that the robustness coadition (3.21) is satisfied. Let m(w) = a and

substitute parts of (3.26) into (3.21) to obtain:

1/2
l+(1)2r2 + a 2 r 2 	 g(1+cg)-1 < 1	 for all w	 (3.27)

4	 31

Change the inequality to an equality, and manipulate (3.27) to obtain

	

a2 + a + c = 0
	

(3.28)

where b and c are functions of r 3 , r4 , c, and g. If the stability con-

d°.tion (3.12) is true (i.e. if (3.21) is true when a =0) then c < 0

and (3.28) has one negative and one positive real root. Let the posi-

tive real root be 011 (w), which is a function of W. The maximum value

of a that satisfies (3.21) is



a = min a1(w)
W

(3.29)
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Note that al (w) is minimized over w

As just shown, Theorem 3.5, equations (3.28) and (3.29), can be

used to find a guaranteed phase and gain margin. Minimizing over w

the positive real root of the quadratic equation (3.28) is not diffi-

cult, but it is nevertheless easier to use Theorem 3.4, equation (3.15),

to find a guaranteed phase and gain margin. As will be seen later,

Miecrem 3.7, equation (3.40) can also be used to find a guaranteed phase

and gain margin.	 In general, Theorems 3.4, 3.5, and 3.7 will give

different margins.

n ii



-112-

3.4 A Cone that Contains the Loop Transfer Jperator

The entire loop transfer operator can be placed inside of a cone.1

This will usually result in less conservative sufficient conditions for

closed loop stability and robustness. The size of the radius depends

on the anount of aliasing of both the prefilter and the hold. In-

cluding the plant with the compensator will usually help because the

rolloff of the plant reduces the amount of aliasing of the prefilter

and/or the hold.

There are some pitfalls, however, the most impw-tant of which is

where to include the plant. There are three choices:

Case 1: with the hold

Case 2: with the prefilter

Case 3: with a combination of the hold and prefilter

The three cases are illustrated in Figure 3.1.

Case 1 corresponds to breaking the feedback loop before the pre-

filter. The loop transfer operator at this point can be used to analyze

the response to signals injected there (such as r).

Case 2 corresponds to breaking the loop before the plant. The

loop transfer operator at this point can be used to analyze the response

to signals injected at this point.

Case 3 does not correspond to breaking the loop at any physical

point. Both the prefilter and the hold are replaced by (F G H)1/2.

Case 3 is the best to use to analyze closed loop stability and robustness.2

1Whatever is placed inside of a cone must be open loop stable. If the
plant is open loop unstable it can be split into a stable part and a
unit magnitude unstable part, and then the stable part can be included
in the cone. See Section 5.4 for an example.

`Nowhere does the square root actually have to be computed, because

11 (F G H) 1/2 
II 2 = 

11 
F G H 11 .
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e	
F 	 G H	

y

Case l: Plant included with the hold

`—'-• F G	 D`	 H	
u

--	 T	 -	 -

Case 2: Plant included with the prefilter

--^ (F G H)i	D^	 (F G H)---	 T	 -

Case 3: Plant included with a combination of the hold and prefilter

Figure 3.1: Three cases of including the plant with the hybrid
compensator.
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Theorems 3.1 to 3.5 are used when the hybrid operator is inside

of a cone. With appropriate modifications these theorems can also be

used when the loop transfer operatcr is inside of a cone. Me modifica-

tions are described in the following paragraph.

In each of the theorems the hybrid operator K is replaced by the

appropriate loop transfer T. Depending on where the plant is included:

Case 1: Replace H by G H

Case 2: Replace F by F G

Case 3: Replace H and F by (F G 
H)1/2

In Theorem 3.3 replace G by I, and the three conditions for closed loop
stability become

(i) T is strictly inside cone (C,R)

(ii) (I+C) I is L2e-stable

(iii) amax (R(I+C) -1 (jw)I < 1	 for all w	 (3.30)

In Theorem 3.4 replace the condition for robust closed loop stability

by

Q[I + C(jw) I - Q 
max 

[R(jw) )
t (w) < 

min — —	 —	 (3.31)m	 amax [C(jw)) + amax [R(jw))

In Theorem 3.5 replace G by I and replace the three conditions for robust

closed loop stability by

(i) (I+Em)T is strictly inside cone (C,R)

(ii) (I+0 1 is L2e-stable

(iii) amax IR(I+C) -1 (jw)l < 1	 for all w	 (3.32)
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The significance of case 3 is that for SISO systems the radius is

smaller (for each w) than the radii for cares 1 and 2. Hence, case 3

gives the least conservative sufficient conditions for closed loop

stability and robustness. The Cauchy-Schwartz inequality is used to

show this.

The equation for the radius in Theorem 3.3 is 

r (w) = Ir 
1 M - r 2 (w) + r 3 (w), 1/2
	

(3.33)

Far SISO systems r2 (w) and r 3 (w) do not change for the three cases.

Therefore, whatever differences exist in r(w) are due to differences in

r10W). 2  The equations for r 1 M are:

Case 1: r l (w) - T
2 L k I gk x 2i • I d* 2 In  If n 2 11

Case 2: r l (w) =	 2	 (hkl2- Id* I 2 . JE
Ifngn12(.34)

T
 JE

k	 J	 n

Case 3: r l (w) =	
2Ik

E I f k9k--k ) 2 - j d* 12
T 

By the Cauchy-Schwartz inequality:

-Without loss of generalty the e term has been ignored.

2For multivariable systems both r 2 (w) and r 3 (w) differ for the three
cases, because matrices do not commute.
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lk (fkgkhk ( , 2 < J k Igkhk 12 1 	 n IfnI21

(3.35)

IE  I f kgk--k I J 
2	 J	 I "7c 12
	 I f ngn 12

k	 n	 J

Therefore r1 (w) for case 3 is less (for each w) then r  M for the other

cases. It follows that r(w) for case 3 is less (for each w) then r(w)

for cases 1 and 2.

Without further information about h(s) and f(s) it is not possible

to tell which of the radii for cases 1 and 2 is smaller. Some indica-

tion of which radii is smaller can be gleaned by comparing the relative

magnitudes of 1 E,hk 1 2 and E If 1 2 , but the best way is just to graphicallyT2 k	 n n
compare the radii. In general, neither will be smaller for all w.

t
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3.5 A Cone that the Inverse Hybrid Operator is Outside of

3.5.1 Existence

Just as there exists a conic sector that K is inside of, there

also exists a conic sector that -K I is outside of. This result is

presented in Theorem 3.6. It is proved in the Appendix to Chapter 3.

Theorem 3.6 Let K be a hybrid operator, let C be any LTI operator

such that K(I+CK) I _is L. 2e-stable, and let R and RI be LTI L2e-stable

operators. -KI is outside cone (C,R) if

max k0w) < 	 for all w	 (3.36)
 r

where r(w)	 =	
1 	

11J12
	 11D* 112
	 1 n 11 F112	 (3.37)9

I k	 I	 t

t^(s) = D*(s) II + [F C H(s)]* D*(s), -1 	 •	 (3.38)

The outside conic sector conditions do not require open loop sta-

bility of the hybrid compensator. This removes the major restriction

of the inside conic sector conditions. Taking its place is a require-

ment that K(I+CK) I is L2e-stable. The composite operator K(I+CK) I is a

hybrid operator (see the proof). It is stable if all of the poles of

Pa (z) have magnitude < 1 (see Subsection 2.3.4).

3.5.2 Robust Closed Loop Stability

Sufficient conditions are presented for the hybrid feedback system

to be closed loop stable for all possible plants G. The robustness re-

sult follows much more naturally than in Subsection 3.3.3. Here the
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hybrid operator -KI is outside of a cone and the plant operator G is

inside of a cone. This is more natural because the nominal plant G

and its additive or multiplicative perturbation can be used to place

G inside of a cone.

Theorem 3.7 Consider the hybrid feedback system. Assume R and RI

are L2e-stable. The hybrid feedback system is closed loop stable for all

possible 6's if an R(jw) exists such that

(i) K(I+GK) I is L2e-stable

(ii) -KI is outside cone (G,R)

(iii) amin [R(jw)] > ta (w)	 for all w.	 n (3.39)

The proof is sketched out here. If condition (i) is true then a

R(jw) can be constructed such that condition (ii) is true (by Theorem

3.6). If condition (iii) is true then G is strictly inside of cone

(G,R). Hence, the hybrid system is closed loop stable for all possible

G's (by Lemma 2.6).

If the uncertainty of the nominal plant G is modelled by a multi-

plicative perturbation then (3.39) has the alternate form:

fm(w) < amin (R(jw))/Amax (G(jw))	 for all w
	

(3.40)

If tm (w) = a then the maximum value of a such that (3.40) is true can

be used to find guarenteed phase and gain margins.

s i
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3.6 CoMand Response of Hybrid Feedback Systems

Conic sectors can be used to analyze the steady state command

response of a hybrid feedback system. The objective is to find an upper -

bound for the quality measure "q", which is defined by equation (,e.95) of

Subsection 2.4.6. Either the loop transfer operator GK or the closed

loop operator (1+ GK) I can be placed inside of a cone.

The first approach uses Theorem 3.2 or Theorem 3.5 to place the

loop transfer operator GK inside of a cone. l The loop is broken where

the command signal enters the loop, which is just before the prefilter,

and the plant is grouped with the hold (case 1 of Section 3.4). The cone

is placed around either GK (if the nominal plant is used) or GK (if the

perturbed plant is used). The center and radius are used via (2.98) and

(2.99) to compute an upperbound for q.

The second approach to computing an upperbound for q is to place

the closed loop operator GK(1 + GK) I inside of a cone. The center of the

cone is C(1 + C) I , where C is a LTI approximation of GK. 2 The closed

loop operator GK(1 + GK) I has the same structure as a hybrid operator.

The input-output transformation of GK(1 + GIO I is given by (2.57), which

is repeated here:

y(s) = G(s) H(s) D*cy-(s) [F(s) r(s)]*	 (3.41)

where

D*
ct

(s) = D*(s)[I + Gd* D*(s)] -1	(3.42)

1Theorems 3.2 and 3.5 must be modified as discussed in Section 3.4.

2This is equivalent to placing (1 + GK) I inside of a cone with center
(1 + 0 1 . See (2.106) and (2.107).



ORIGINAL PAGE IS
	-120-	 OF POOR QUALITY

Gd*(s) _ (HGF(s))*	 (3.43)

Theorem 3.2 (appropriately modified) can be used to construct a cone that

contains GK(I + GK) I , The radius of this cone can then be used, via

(2.105), to compute an upperbound for q.

Significant improvements can be made to the second approach by

taking advantage of the fact that the command signals are restricted to

a set S C L 2e. Rather than meet the conic sector inequality

11 [GK(I + GK)" - C(I + C) I)r11 T < it R'!11 T

	

for all r CL 2e and T e P+	(3.44)

it is only necessary that

11[GK(I + GK) , - C(I + C) I Ir11 T	 IIR3r11 T
lim	 < lim
T-W	 I I r I 1 T	 -r-+c	 11 r 11 T

	for all r e S	 (3.45)

By virtue of the fact that S C L 2e it follows that

11 R 3=11 T	II R2=11T
lim
TROD	 11 r 11	 < T—	

II r 
II	

for all r e S	 (3.46)

T	 - T

A particular set Sa C L2e is now defined:

Sa = {sinewaves with frequency < T}(3.47)
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An important property of signals in this set is that they do not cause

any aiiasinq when they are sampled.

The following theorem can be used to analyze the steady state res-

ponse to commands that are members of S a . The proof of Theorem 3.8 is in

the Appendix to Chapter 3.

Theorem 3.8 Consider the hybrid feedback system. Assume that

GK(I + GK) I and C(I + C) I are L ee-stable. Then

IGK(I + GK) I - C(I + C) I lrII	 IIR
3
 111

lim	
T 
	

T

T'1OD	 II r I I T	 T-'°°	 it r II T

for all r e 
Sa

if

(3.48)

amin[R(jw)l ? [r 10 (w) + rll (w)) 1/2 
for IwI < T	 (3.49)

where

r10 (w) __ 2 kEo II 
Gk Hk =cC F II 2

T

rll (w) = II T G H Dj F (jw) - C(I + C) -1 (jw) 11 2	 • (3.50)

Theorem 3.8 can be used to find an upperbound for the quality measure

q. Let the set of command signals be sir.ewaves with frequency less than

W (which is a subset of S ). Then it follows that
o	 a

q < q  (1 + r 3 )	 (3.51)
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where

	

= max v	 M+ C)"i (jw))	 ( 3.52)
g° o<w<w 

max°

	

r3go s nu^ac Q	 % ( jw) )	 (3.53)
max

o<w<w
-- o

This completes the section on using conic vectors to analyze the

ste., .dy state response of the hybrid feedback system to command signals.

The suggested approaches are (1) use Theorem 3.2 to construct a cone

that contains GK, (2) use Theorem 3.2 to construct a cone that contains

GK (I + IGK) and (3) use Theorem 3.8 to construct a cone that contains

GK(I + GK)I but is only valid for command signals r E S 	 In the examplea

of Subsection 5.2.11 the third approach is shown to give the least

conservative (lowest) upper-bound for the quality measure q.

i
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Avvendix to Chapter 3

This appendix contains proofs for Theorems 3.1, 3.2, 3.4, 3.6,

and 3.8. The proofs of the remaining theorems of Chapter 3 are

sketched out in the text.

This appendix begins by stating and proving a lemma which is an	 3
t

intermediate stop used in the proofs of Theorems 3.1, 3.2, and 3.b.

The lemma is a frequency domain inequality that is usr-i for signals

that art` input! of 1 ►ybrikl Compensators. Tliv proof uses the Cauchy-

Schwartz inern-ality (V), p. 341 and Lebesque Dominated Convergence

121, p. 44) .

Lemma 3.A Lot KT^(s) be Laplace transform matrices for all inte-

yors n, and let e(s) bo tht` Laplace transform of r t 1 .,. Furthormure

(to assure	 Dominated Convergenc-1 assume for If"I suf-

'iciently laryr that

i• 1
ff	

n

	

i Kn (Jt^^) ^^L	
^. i 	 for some a, (3	 0	 (1. A. 1)

n	 ! ut,

Then

J"

1	 :'

n

1Ihtt(1"'_lw k)jt"	 IIr(lw) I1 F. Liu'	 r	 (3.A.:')
_ `	 1? t t
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Proof of Lemma 3.A The proof is a long series of equalities and

inequalities. Justification for each step is included in parenthesis.

11F
11 E K (jw) a ( jw- jwsn)jj 2 dw

n

2n 1	 E I1K( jw ) e ( jw-.;wsn )11 E 2 dw	 (3.A.3)
^n

(because iia+bjL < (ialL + IibiL)

	

^s 2n 
FI E 

 
(ixn(jw) 

11 
-ii e(jw-jwsn) 1I

E1
2 dw	 (3.A.4)

_oo n

(because iiA 1!11 E	 iiAii	 IIbII E )

1^	 1	
1

- 1	 iix^(jw) Ii2J 
.[k 

1^e(7w-j wgk) 11 2 
dwdw	 (3.A.5)

_ m

(By the Cauchy-Schwartz inequality. Let an = Ily(jw)II2

and bn = iie(jw-jwsn ) iig . For each w, an and bn are non-

negative real numbers. Let a and b be Z2 vectors (of

infinite length) containing the a n I s and bn I s. The

Cauchy-Schwartz inequality states that

IaTbl _ IIaII E ' IIbIIE)•
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= 2n E 1 in tIKn (jW) 1 2
1	

llo(jw-jwsk) 112 dw	 (3.A.6)

(move sum over k outside integral, which is valid

by Lebesque Dominated Convergence).

z

j00

n k 
J 	 n I^ K ( j^ jwsk ) ^^ 2 ^ 	

ll

e (] W) (^ 2 d^	 (3.A.7)

_oo

(for each k change the variable of integration

to w=w-W k).
s

= 1	 I lk
Z E 11 Kn (jw+jwsk) ^^' 1	 Ile()113) I+ E dw(3. A. 8)

J 	 n	 !

(move sum over k back inside the integral).

This completes the proof.
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Proof of Theorem 3.1 The objective is to show that equation (3.1)

is an upperbound for the gain of a hybrid operator. The proof essentially

boils down to an application of the frequency domain inequality of

Lemma 3.A. Some extra work is required, however, both before and

after this lemma can be applied. The operator gain is defined in the

time domain using truncated norms [see (2.79)]. A truncated function

is defined so that L2 function norms can be used in place of the trun-

cated norms. L 2 function norms are needed so that Parseval's Theorem

can be used to switch from the time to the frequency domain. While

in the frequency domain Lemma 3.A is applied. Parseval's Theorem is

then used to switch back to the time domain, and finally the truncated

function is used to switch back to truncated norms.

The truncated function is defined by

e(t)	 t < T

e (t)^
	

(3.A.9)

0	 t > T

The proof uses the notation:

Kn (jw) ft H ( jw) D* ( jW) F (jw-jwsn)
	

(3.A.10)

and the following:

11-Kn (jw-jwsk) 112	 ll% *-Fn1k112
k n	 k n 

(3.A.11)
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< k n 
[II^II 2  IID*II 2 	IIE,+k
 112

 J

W-

(3.A.12)

oRiGnNAL PAC
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_ I E 11!!
k

11 2 ^ ' IID*11 2 ' I n IIF,II2I

	

(3.A.13)

The last step, (3.A.13), is possible because E IIF,II 2 is periodic with
n

period ws.

The main part of the proof is now presented. Fo. all e c L 
2 and

all T e R+:

IIKe1I T = II KeT I1 2 	 (because K is causal)
	

(3.A.14)

< II KeT II 2	 ( norm increases as T -i oo)
2

2
j0D
 II (Ke T ) (t) II E dt	 (by definition)

_00

(3.A.15)

(3.A.16)

1 foo II (KeT ) (jw) I1 2 dw	 (Parseral ' s Theorem)
27T -C

(3.A.17)

1fo IIE KK ( jw)e,i (jw-jwsn) IIE dw 	 (3.A.18)
 n

[where Kn is defined by (3.A.10)]
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< 2	 E E II,Kn (]W-JWSk ) 11 21	 II^ ( J w) II 2 dw	 (3.A.19)

-CO k n

(by Lemma 3.A)

<
-L f go _L
21T 	 T2 

lk Ilk
 Ii 2 1 ' Ilk* 

112 ' ^n IIFn Ii 2 1 ' II ^(]W) 112 dw
_00

(3.A.20)
[by (3.A.13)]

< g2 1TTI f 112,(7 W) 112 dw	 (3.A.21)
-00

r	 1/2	 1/2
where g = "	 ^ T	 II' 11 2 	II D* II	 E IIFn11 2

< <—	 lk  	
f

O w 	In	 1	 1
— —T

(3.A.22)

(restricted frequency range used because

the bracketed term is periodic with period

W  and is symmetric about W=0)

= g2 112211 L	 (Parseval ' s theorem)	 ( 3.A.23)
2

= g2 11 2 11 2	 [2^(t) = 0 for t > T]	 (3.A.24)

By definition of the gain of an operator:

IIKeII
11K 11 L	 = sup	

11 2 11 2	 < g	
(3.A.25)2 

T

This completes the proof of part (a).
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Part (b) of Theore- 3.1 is proved by showing that the following

input (for the SISO case) achieves the upperbound:

e 	 = E Ianl	 cos I 
(W 
o

-W 
S 
n) t + Arg (a n) 	 (3.A.26)

n

where	 an = d*(-jwo) f(-jwo + jwsn)

w  = frequency the maximizes (3.A.22)

The norm of this function, expressed as a limit, is:

lim 1' I I e I) T = IZ 	 I an 1
211,2 

= I d*(jwo )I 	I f(]wo-]wsn) 12 1/2
n 

	 JE

	

n	 1

(3.A.27)

The output of the hybrid compensator is

u(t) =T E I bk l	 cos I (wo-wsk)t + Arg(bk),	 (3.A.28)
k

where	 b  = h(jwo-jwsk) • E Ian12
In	

11

and the norm of this output signal is

r	 1/2

II T = T 1 k (h(jwo-jwsk)) 21	
•In 

Ian I 2 1 	(3.A.29)
T-)'m T 11 UHT 	 1
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The gain for this input signal is

Jim IIuiIT
= g	 (3.A.30)

T-NO 
IIeIIT

This completes the proof.

Remark The input (3.A.26) and the output (3.A.28) have sinewaves

at the same frequencies. The an o s in (3.A.26) are chosen so that the

Cauchy-Schwartz inequality is met with equality (see (3.A.5)).

Conjecture (Multivariable version of Theorem 3.1, part (b)).

The gain of the multivariable hybrid operator is

IIKIIL = 
maxi2 

E E IIH D* FI
I21	

(3.A.31)
2 0<W^ 9 k n
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Proof of Theorem 3.2 The objective is to show that the hybrid

operator K is strictly inside cone (C,R). This proof is aimilar to the

proof of Theorem 3.1, and again essentially boils down to an applica-

tion of Lemma 3.A. Parseval's Theorem is used to pass between the time

and frequency domain, and the following truncated input is used to

pass between the truncated norm and the L2 function norm:

	

(Re) (t)	 > -c

ST  	 _	 ( 3.A.32)

0	 t < T

The input is tnlncated only after it is convolved with the radius.

Rather than show that ll(K-C)ell T < ( lRel`C , the main part of the proof

shows thatll(K-C)RIeTIIL < Ile TIIL' Yet another complicating factor

	

2	 2
is that the E term must be manipulated to show strict inequality. This

is possible because R is L 2e-stable. The middle part of this proof

[steps (3.A.45) to (3.A.50), which includes the application of Lemma 3.A1

is the only part that differs significantly from [9, Theorem A.4].

It is convenient to introduce the notation

TH (s) D* (s) F (s) - C (s)	 n=0

Kn (s) n	(3.A.33)

TH(s) D* (s) F(s -jwsn)	 00

which is used to express the Laplace transform of (K-C)e as

u(s) - C(s)e(s) = E Kn(s)e(s-jwsn)	 (3.A.34)—	 — —	 n	 —
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Midway through the proof the following inequality is used:

E E II^,	 s(jw-jwk) 11  - E E 11 K ,	 g(jw-jwk) (I2 + E IIK( jw-jw ak) 
11 2
	

-

k 	 knf0	 k

(3.A.35)

- k n T I I	 D* --n+k II 2

k T
I I k D* Fk 112

+ k (I T k * Ek _ C	 (3.A.36)

JZz 	 II	 II 21 ' I I D* II 2 ' [ E i l z-n	 - r2 (W) + r3 (W)
T k	 J	 n

(3.A.37)

= r1 (W) - r2 (W) + r3 (W)	 (3.A.38)

= r(w)	 (3.A.39)

Part (a) is now proved. For all e e L 2 and all T e 
R+:

II (K-C) a 
11 2 	

11(K-C) RIRe 
112
	 (because RI exists)	 (3.A.40)

= II(K-C)RIeT II T 	(because R is causal)	 (3.A.41)

< II (K-C)RIeT II 2 	 (norm increases as Tom) (3.A.42)

2
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foo II(K-C) RIe T (t) II E dt	 (3.A.43)
0

(by definition of the L 2 norm, the integral

exists because K,C, and RI are L2e-stable)

2 f II (K-C) RI e T (jw) I) 
E 

dw	 (Parseval 's) 	 (3.A.44)
_00

2 1 11  
K R-1 e (jw) II E dw	 [by (3.A.33)]	 (3.A.45)

n

< a^	 E E I) K(jw-jwsk) II 2 	 IIR 1^(jw) IIE dw	 (3.A.46)

-W k n

(by Lemma 3.A)

2n 
Jx 

r(w) - IIR
-l

eT (jw)11 2 dw	 [by (3.A.39))	 (3.A.47)

< zn 1	 r(w) ' IIR
-1

(jw) II 2 ' II^(jw) IIE dw	 (3.A.48)
_00

21T	 f	

r(w)	
cm2	 [R(jw)l	 Il e (jw) IIE dw	 (3.A.49)

_ o0

<	 1fW (1-E) • IIeT(jW)IIE dw	 [by (3.3))	 (3.A.50)— 27T
_00
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Ile T 11 2	 (3.A.51)
2

	

_ ( 1-E)IleT I1 2 	(3.A.52)

	

(1-s) II Re11 2	 (3.A.53)

< IIReII T - e 'Ne11 2 	(3.A.54)

where e' - e I I R II
2

It has been shown that K is strictly inside cone (C,R). This completes

the proof of part (a).

The objective of the proof of part (b) is to show that the optimal

C(s) of (3.7) minimizes the lower bound of amin [R(jw)]. Note that

C(jw) enters only in r3 (w) f and that r1 (w), r2 (w), and r3 (w) are all

nonnegative real numbers. If the optimal center is used _hen r3(w)-0,

which minimizes r  M - r2 (w) + r3 (w). This completes the proof of

Theorem 3.2.

(1-e)
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Proof of Theorem 3.4 This theorem gives sufficient conditions for

robust closed loop stability when the hybrid operator is inside of a

conic sector. The objective of the proof is to show that conditions

(ii) and (iii) of Theorem 3.3 are true for all possible G's.

The first part of this proof uses the LTI robustness resslt (2.22).

Conditions (ii) of Theorem 3.3 is that 6(145) I is L2e-stable for all

possible G's. The assumption is made that G(I+CG) I is L2e-stable. It

follows from (2.22) that 6(146) I is L2e-stable for all possible G's if

(w) <	 Gmax+[^ `(3w)]	
for all w

m 
(3.A.55)

This inequality is implied by (3.15) of Theorem 3.4. Hence, if (3.15)

is true then condition (ii) of Theorem 3.3 is true for all possible G's.

The second part of the proof uses the following string of in-

equalities:

amax 
[ R G (I + C G ) -1 ] ^ 6max [R G]/Amin [I + C G]	 (3.A.56)

< Gmax [R G1 (1+P-m)/amin [I + C G]

(3.A.57)

(by the triangle inequality)
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< cm" (R G) (1+ 
M)/{Umin 

(i + C G] - Cmax (C G) m

(3.A.58)

(by property 10 of Table 2.1)

< 1	 (if (3.15) is true)	 (3.A.59)

Hence, if (3.15) is true then conditions (iii) of Theorem 3.4 is true

for all possible G. This completes the proof.



-137-	 ORIGINAL PAGE IS
OF POOR QUALITY

Proof of Theorem 3.6 The objective is to show that -K I is outside

of cone (C,R). This will be true (by Luna 2.2) if and only if

IIRK(I+CK) I II L	 1. The proof of Theorem 3.6 is basically an applica-
2

Lion of Lemma 3.A to show that the composite operator has gain < 1.

Condition (i) of Theorem 3.6 assumes that the following feedback

system is closed for stable:

e e - Cu

Ke

u3 Ru

(3.A.60)

A block diagram of this feedback system  is shown in Figure 3.A.1. The

closed loop operator is RK(I+CK)I.

Given the Laplace transform e 3 (s) of the input, the Laplace trans-

form of the output is

u 3 (s)	 R(s) H(s) D* (s) ,1—̂ ) F'(s-jwsn ) e3(s-jw&n)
n _
	 (3.A.61)

An alternate expressi •an for (3.A.61) is obtained by defining

Kf1(s!-\ T R(s) H(s) C* (s) F(%-jwan) 	 for all n	 (3.A.62)

1The subscript "I" is used to be consistent with Figure 2.10b of
Subsection 2.4.5.
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POOR 	 15
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kK(T+CK)

!3 -	 it	

—

	
M.

ICI

Figure 3.A.I: Feedback system used in proof of

Theorem 3.6.
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and then by substituting (3.A.62) into (3.A.61) to obtain

u3 (s) = E Kn(s)e(s- jWsn)
	

(3.A.63)
n

The closed loop system has the same structure as a hybrid compensator,

except that D*(s) is replaced by its closed loop counterpart D*(s).

Define the truncated input

e (t)	 t < T

e W =	 (3.A.64)

( 
0	

t > T

The main part of the proof now follows. For all e e L 2 and all T E R+:

RK(T+CK) Ie^^ T 	= IjRK(1+CK) IeT j1 T 	(3.A .65)

< IIRK(I+CK ) IeT 111	 ( 3.A .66)
2

= 1TTr `. 11 E K ( jW ) e ,^( jW-jWsn) 11 2 
dW	 ^3.A.67)

n

< 2^ J^ f E E IIxn (jW-jWSk) II 2
1 

jje' W) IIE au
lk n

(3.A.68)

(by Lemma 3.A)
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(
m

< 2 1	 T ^k IIRII 2 ' II_%II 21 . II^11 2 ' JE II	 11 2 1 . II^(Jw)IIEaw
J

(3.A.69)

(& = R because R is periodic)

1'2	 IIRII 2 ' r9 (w) ' 1I^(lW)11 2 aw	 (3.A .70)
—ao

E

(r9 M defined in (3.37)]

2 i00 11, ( ]w) 11 2 dw	 (1-Y ( . 3 -))	 (3.A.71)

—ao
E

1I eT 11 ^	 (3.A.72)
2

= 11e11 T	(3.A.73)

It has been shown that the operator RK(I+CK) I has gain < 1, and there-

fore that -KI is outside of cone (C,R). This completes the proof.
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Proof of Theorem 3.8 The objective is to show that the inequality

(3.48) is satisfied for all r 6 Sa . The property of signals r e Sa that

is exploited in this proof is that these signals are not aliased when

they are sampled. This lack of aliasing eliminates the need to shift and

add the prefilter F(jw).

The following is valid as T— and for all r E Sa.

II [GKU + GK) I - C(I + C)'Ir112

2
II[rK (I + GK) I - C (I + C) I ) rIi	 (3.A.74)

2

= If oo IIGHDCP 
1 n F

nrn	 - C(I + C)-lrII2	 ( 3.A.75)

	

J^ oo	 —

1	 (2k+1) T	 1	 1	 2
FF

	

k	 ( I GHD T n Fn r
n	 IIE dW	 - C ( I + C) r

27T
• 	J(2k-1)--

	

T	 (3.A.76)

1	
n/T	

* 1	 -1
"—	 IIG HD 	 EFr	 -C (I+C) r If dW
27r k J-7r/T 

-k-k-ce T n -n+k-n+k -k - -k -k E

(3.A.77)

27r

	

j7T/T	

[
k9d

Z ol l ^kH}cDc * T Fr IIE
 7r/T 

+ I) GHD^ 
1 

Fr - C(I + C)-1rV do) (3.A.78)
- E

(because there is no aliasing)

	

1r/T	 *

2 J ^/T [
k'o 11 gkH-kDct T F I 1 2

+ II GHDct 
T F - C(I + C)-111 I II r IIE dW

(3.A.79)



(3.A.80)

(3.A.81)

(3.A.82)

(by (3.49))
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2n 

7r/T II 
R3r II 2 dW

J IT/T	 E

= IIR3=11L
2

= IIR3=11^

This completes the proof.
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4. NUMERICAL CONSIDERATIONS FOR THE COMPUTATION OF THE CONE RADIUS

4.1 Introduction

The previous chapter contains many different cones that the hybrid

operator is either inside of or outside of. For each of these cones the

radius must be computed. In this chapter it is shown how to compute

the different radii.

Equations for the radius are given in Theorems 3.2, 3.5, and 3.6.

The equations contain several parts that are combined in straightforward

ways. What is not straightfoward is that each of the parts contain

infinite series that must be summed. The infinite series take the form

s(W) = k (IAk1I2	 (4.1)

r4 (w) = 2 k nJk II %P*FA II 2	 (4.2)

T

The "A" matrix is either the prefilter, the hold, or any of several

different combinations of the prefilter, hold, and plant. Equation

(4.2) has appeared earlier as equation (3.11).

The computational results of this chapter are grouped into three

sections. In Section 4.2 the infinite sum (4.1) is approximated by summing

a finite number of terms. Sufficient conditions are given for the

remainder to be bounded. In Sectioa 4.3 the double infinite sum (4.2)

is approximated by summing a finite number of terms. Analysis of the

double infinite sum is aided by splitting it into several single in-

finite sums. The double infinite sum is finite if the single in-

finite sums are finite. 	 In Section 4.4 analytical solutions for

s( W ) of (4.1) are presented. Analytical solutions have been found

when A(s) = a(s) is single input single output (SISO). The major
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results of this chapter are summrized in three theorems:

Theorem 4.1: Upperbound for the remainder of the truncated
infinite seriias for s(w).

Theorem 4.2: Analytical solution for s(w) when a(s) has a state
space realization.

Theorem 4.3: Analytical solution for s(w) when a (s) = h(s) a(s),
where h(s) is a zero-order-hold and°a(s) has a state
space realization.

It is helpful to understand some of the qualitative behavior of the

infinite series for s(w). The sum is even [i.e. s(w) = s(-w)] and periodic

with period ws [i.e. s(w) - s((4-kws ) for any interger k]. 	 Because of

these two facts it is only necessary to compute s(w) for points between

0 and ws/2 = 1f/T (the foldover frequency). If A(jU)) is small above the

foldover frequency then the aliasing is insignificant and s(w) 1/2 will

be approximately equal to 11 A(jw)1i for jwj < TI/T.

An example will help to clarify this qualitative behavior. Consider

the first order lag

a(s) -	
1

s + 1

A magnitude Bode plot of a(jw) is shown in Figure 4.1. The same Bode

plot contains several different plots of s(w) 1/2 , each for a different

sample interval T.

The break point of a(jw) is at w = 1. If 1 << w  then s(w)1/2 z

la(jw)l for o < w < ws/2. On the other hand, if 
W  

<< 1 then s(w)

(T/2) 1/2 for all W. At high frequencies (wr << w) it is always true

that ja(jW)j << s(w) 1/2 , because la(jw)l rolls off and s(w) 1/2 is

i

(4.3)

periodic.



1

s(jw)2 for wS= .2(T=10v)

ws = .4(T = 57r)	 wS= 2(T =,r)

wS =10(T=ir/5)

ws= 20 (T=,r/10)

10(jw)l

10

10-2

a^

.01

0
2 10I

..145x.

0IRT-lif"A lL

POOR QUAUTY,

10 2	 10 I	 1
	

10
	

102

Frequency
Figure 4.1: Comparison of la(jw)I and s(w)1/2
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4.2 Truncating an Infinite Series

One way to compute s(w) is to sum a finite number of terms of the

infinite series (4.1). Whether or not this is feasible depends on the

behavior of the remainder.

In this section sufficient conditions are presented for the re-

mainder to be bounded. One example of these sufficient conditions is

that the remainder is bounded if A(jw) has an one pole rolloff. These

sufficient conditions show that the remainder approaches zero as

the number of terms of the truncated series increases. This information

can be used to determine where to truncate the infinite series so that

the remainder is less than a specified amount.

Some new notation is needed. Let the truncated series and its

remainder be defined by

sN (w)	 E 11A  112
	 (4.4)

k=-N

rN (w)	 s (w) - sN (w)	 (4.5)

Two assumptions are made about A(jw). It is assumed that above

some frequency 
W  

that 11 _.(jw)ll lies below a straight line asymptote:

+^ A(jw) 11 < b 	 for w > Wo	 (4.6)

rw p
where b(w) i 1 	 1	 (4.7)

This assumption is illustrated in Figure 4.2. On a log-log scale the

straight line asymptote has a slope of -p. If p = 1 then A(iW) is said

to have at leastan one pole rolloff.
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WO ) 
P

^max[A(jw)^x^^^(jw^^^ 	 ^b(c^l-^ W

v	 'min[A(jw)]	
wo

E

0 1	 V//A

`'S log w

s'D

Figure 4.2: Assumption that jj A(jw)jjlies below a straight
line asymptote
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The second assumption about A(jw) is that 	 •

11 A(jw) 11 < -	 for all w	 (4.8)

If this assumption is true then the boundedness of rN (W) implies the

boundedness of s(w).

The main result of this section is now presented. The proof is in

the Appendix to Chapter 4.

Theorem 4.1 Consider the Laplace transform matrix A(s).

(a) If (4.6) is true for p > Z then

O 
2p	 2p-1

(4.9)rN (w) < ( 
2 1	 0	 1

2p-1	 ws	 N-1 

O
for o <w<w and N>

S	
-(TS)

(b) Furthermore, if (4.8) is true then

s 	 < g for all w and some g < -	 • (4.10)

The upperbound on rN (w) is only valid over the fundamental frequency

range. Only at the cost of considerable notation can the result be

extended to other frequency ranges (see the remark in the Appendix to Chapter

4). The lower bound on N, which is one of the conditions of (4.9), assures

that all of the terms of the remainder are bounded by b(w) of (4.7).

When A(jw) has an one-pole rolloff then (4.6) is true for p - 1.

The upperbound on the remainder is given by

2

rN(w) < 21	 (4.11)
s

The remainder is (approximately) proportional to N, which is characteristic
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of an incredibly slow rate of convergence. ) Each extra decimal point of

accuracy requires 10 times as many terms in sN (W .

Theorem 4.1 can be used to determine the value of N such that the

upperbound of rN (w) is less than a specified amount. 2 If this is im-

portant then it should be recognized that the upperbound (4.9) can be

tightened, and may result in a value of N larger than necessary.

The best use of Theorem 4.1 is to help understand the qualitative

behavior of the remainder (such as when it is bounded and, if bounded,

what is its rate of convergence).

1Slow compared to exponential convergence.

2For example, if p = 1 then N > ( 2 /E) (w	 2o/ws ) guarantees that rN (w) < E

for o<w<u
s'
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4.3 Truncating a Double Infinite Series

The double infinite series (4.2) can be decomposed into several

single infinito series:

r4 (^)	 T2 k ny(k iI ^?*^n II 2	
(4.12)

=
 2 E E II -k?*? ., II 2' T2 E I I -kD*Fk II 2	 (4.13)

T2 	n	 T k

2	 II H k lI 2	 q D* II 2	 E II Fn f 1 2 - z E II°*Fk iI 2
T	 n	 T k

(4.14)

The inequality in (4.14) can be replaced by an equality if the matrices

are replaced by scalars.

The double infinite series (4.12) is finite for each w if E IIH kIJ2,
k

IID* 112 , cuk^ E IIFn 112 are all finite for each W. Each term of (4.12)
n

is nonnega*_ive, z- 14.12) is lower bounded by zero. The subtraction

in (4.14) cannot result in a negative number.

A truncated version of (4.12) is defined:l

-3a

r4N (W) = 2	 E	 E	 II HkD*Fn 112

T k=-N n=-N
npik

(4.15)

The remainder r4 (w) r 4 (w) can be analyzed by using the remainders

of the single infinite series of (4.14). Tais analysis is cumbersome

and will not be attempted here. The endpoint of this analysis is

clear - if HOW) and F(jw) both have at least a one pole r_.11off then

`Equation (4.15) with N - 20 was used in the examples of Chapter 5.
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the remainder r 4 (W) - r 4 (W) is bounded and approaches zero as N -* -.

Truncating the double infinite series is often prefereable to trun-

cating the various single infinite series of (4.14). For multivariable

systems the double infinite series has the distinct advantage of being

less than or equal to (4.14).

The double infinite series has another advantage in that it avoids

a common numerical problem. The double infinite series (which sums to

r^; (W)] is converted to (4.14) by adding and substracting 2 
1:

T k x
For some values of W this tern, may be orders of magnitude larger than

r4 (W). This introduces numerical problems when finite precision

arithmetic is used, because (4.14) involves the substraction of two

large numbers, which results in a loss of accuracy. An example of this

loss of accuracy is shown in Subsection 5.2.6.
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4.4 Analytic Solutions

In some cases an analytic solution can be found for s(w) of (4.1).

The Laplace transform matrix A(a) must be a scalar, in other words

A(a) = a(s).

.equation (4.19) is used to find analytic solutions for s(W). This

equation is now derived. Let b (s) be a Laplace transform, b(t) the

inverse Laplace transform, and b (z) the z-transform of the samples b(kT)1.

It is well known 14, pp. 77-80 1 that

k b
k = T - b(z) I	 jWT	 (4.16)

z^

Define

b(s) A a(-s) a(s)	 (4.17)

and then it follows that

b ( jw ) = a(- jcu) a ( jw) _ la(jw ) 1 2	(4.18)

s(W) 
= k 

jak12 
= k b  = T-b(z)(	 jW,r	 (4.19)

z=e

Whether or not (4.19) is useful depends on how easy it is to derive

an expression for b(z). Given an expression for a(s) the way to find

b(z) is to respectively find a(-s), b(s), b(t), b(nT), and then b(z).

This procedure will be followed for the following cases:

Zero-order-hold
2) First order tag
3) Cascaded zero-order-hold and first order lag
4) a(s) given by a state space representation

Any region of convergence (ROC) can be used. If the ROC ^f b(s) is
so < Re(s) < s  then the corresponding ROC of b(z) is e yO < Iz I, < es1T.
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5) a(s) given by a state space representation cascaded with a
zero-order-hold.

The last two cases are sufficiently general to present them as theorems.

Case 1 If the hold device is a zero-order-hold then a 1 (s) = h(s)

has the following Laplace transform:1

al (s) = 
1-e-sT	

(4.20)

It is straightforward but tedious to compute b 1 (s) = a1 (-s) a1 (s) and

then to compute the inverse Laplace transform to obtain b l M. A

shortcut is to recognize that the inverse Laplace transform of al(-s)

is al (-t), and that b1 (t) = a1 M * a1 (-t). This convolution ib shown

in Figure 4.3. There is only one nonzero sample of b1 (t), which is

b1 (o) = T. The z-transform of b1 (nT) is

b1 (z) = T	 (4.21)

Therefore the analytical solution for s(W) is

s(w) = n laln' 2 = T2	
(4.22)

which is a remarkable simplification!

Case 2 If the prefilter is a first order lag then a 2 (s) = f(s)

has the following Laplace transform:

a
a 2 (s) = s +oa	 (4.23)

0

Unlike the previous rase there is no shortcut around the page or two

of mathematical tedium which results in the desired expression

y'Che subscripts "1" through "5" are used to distinguish the a's and
b's of the five cases.
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i(t)=h(t)
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(-t)
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bi(t) =00 -a,(-t)
,T

-T	 T	 t

-2T -T	 T	 2T	 t
Figure 4.3: Zero-order-held
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a
b2 (z) = 2	 2 az

z -Sz +1

where

-155-	 ORIGINAL PAGE Is
OF POOR QUALITY

a = exp (-a0T) -exp (a0T)

= exp (-a0T) + exp (a T)
0

Case 3 Part of the radius calculation has the hold and prefilter

in the same infinite sun [e.g, r2 (W) of Theorem 3.2] . In this case a

zero-order-hold is cascaded with a first order lag:

-sT	 a
a
3 

(S) = 1_ s	 s +a	 (4.24)
0

Again the intermediate steps are left to the reader. The final result

is

2
b3 (z) = 2a
	

a2z-1)	 + T	 (4.25)

	

o	 z -Sz + 1

The a and a are the same as for the case 2. The denominators of b2(z)

and b3 (z) are the same.

Example Consider a S.i►O hybrid compensator with a first order

lag and a zero-order-hold. The digital computer z-transform is arbit-

rary. The results of the first three cases of this section can be used

to place this hybrid compensator inside of a cone.

Choose the optimal center of the cone:

c(s) = Th(s)d*(s)f(s)	 (4.26)

From Theorem 3.2 the radius r(s) must satisfy the inequality:

jr(Jw) l ? [r 1 M - r2 Ml 1/2	(4.27)
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After a few substitutions it follows that

rl(W) - r2(W) _ ^d(z)12 ^bl(z) b2(z) - T b3(z)}+	 c^T	
(4.28)

z=e3

Case 4 If a4 (a) has a state space realization then an analytical

solution can be found for s((J). This case is useful when the prefilter

is more complicated than the first order lag of case 2.

Let the state space realization of a 4 (s) be

z=Ax+bu,

y	 `	
(4.29)

= cx 

The Laplace transform of (4.29) is

a4 (s) = c (sI - A) -1 b	 -(4.30)

and the Lap ' -re transform of aT4 (-s) is

a4 (-s) = -bT (sI + AT) 
1 

cT	(4.31)

which has the state space realization

x=-ATx+cTu^

T
	 (4.32)

y = -b x	 1

The cascade of the . two systems (4.29) and (4.32) has the Laplace

transform b
4 (s)= a4 (-s) a4 (s). The state space realization of b4 (S) is

z Ax+bu)
-- 	 (4.33)

y=cx

1The transpace aT (-s) is used so that A has the form of a Hamiltonian
matrix.
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where

A	 o	 A	 b_
A	

-CTc -AT	
b = o

(4.34)

C = [o	 bT)

The causal impulse response of b 4 (s) is

b4 (t) = c eAt b	 for t > o	 (4.35)

and the z-transform b4 (z) of the samples b4 (nT) is

00

b4 (z) = nEo b4 (nT) z
-n	

(4.36)

= h (zI - F) -1	 (4.37)

where

F = exp (AT)

g = Fb	 (4.38)

h = c

The result just derived is presented as a Theorem.

Theorem 4.2 If a4 (s) has the state space realization (4.29) then

2
S(w) = n J a4n I = T • b4 (z) I	 (4.39)

z=e jWT

where b4 (z) is given by (4.37) and (4.38). 	 •

Case 5 In this case a5 (s) is a zero-order-hold cascaded with a4(s)

of the previous ease. This case is a generalization of case 3. It is

useful when a prefilter that is more complicated then first order lag

is cascaded with a zero-order-hold. This case is also useful when

the plant is cascaded with a zero-order-hold.
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State space realizations of a4 (s), a4(-s), and b4 (z)are given in

the previous case. Let h(s) be a zero-order-hold and let

b1 (s) = h(-s) h(s)
	

(4.40)

b 5 (s) = b4 (s) b  (s)	 (4.41)

The impulse response b 5 (t) is a convolution of b4 (t) (the causal impulse

response of (4.35)] and b 1 (t) (the non-causal impulse response in Figure

4.3]. Sample b5 (t) and compute the z-transform of these samples. The

result is

b5 (z) = h5 U1 - F5)-1 25 + k5	(4.42)

where

F5 = exp (AT)

T

25 
= J exp (AT) ST dT

0
T

+ F  1 exp (AT) b (T-T) dT	 (4.43)
0

h5 =c

T
k5 = c	 exp (AT) b(T-T) dT

0

One more step is needed to avoid the integrations of (4.43). The

trick is to use the augmented matrix.

A b 0 1 2n
C=	 0	 0	 1	 1	 (4.44)

0 0 01 11
t-r a-► 4-+

2n 1	 1

im
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The dir-!nsions of each of the sub-matrices are indicated, where n is the

order of a4 (s). As shown by van Loan [22), the matrix exponential has the form:

Fl gl hl

exp (CT) = 0	
f2 92

0 0 f3

where

Fl = exp (AT)

f2=1

f3 = 1

T
gl = ( exp (AT) b dT

Jo

g2=T

T
Jhl =	 exp (AT) b(T-T) dT
0

Hence, by substituting (4.46) into (4.43)

F5 = Fl

g5 = Tg1 + (F1 - I) hl

h5 =c

k = chl
S

(4.45)

(4.46)

(4.47)

The result just derived for case 5 is summarized in the following

theorem.
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Theorem 4.3 Let a5 (s) - h(s) a4 (s), where h(s) is a zero-order-hold

and a4 (s) has the state space realization (4.29). Then

s(w)	 n la 12- T-b5(z)I	 lilT
z=ej

(4.48)

where b5(z) is given by (4.42) and (4.47). 	 a

This completes the section on analytical solutions of (4.1). The

Fourier transform matrix A(jw) must be a scalar A(jw)=a(jw). The matrix

exponential is used for the analytical solutions of Theorems 4.2 and 4.3.

The a(jw) of Theorem 4.2 is represented by a state space description,and

the a(jw) of Theorem 4.3 is represented by a state space description

cascaded with a zero-order-hold.
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Appendix to Chapter 4

This appendix contains the following proof:

Proof of Theorem 4.1 The objective of part (a) is to show the

validity of (4.9), which is an upperbound for the remainder r N M of the

truncated series (4.4). An upperbound is found for each term of the

infinite series for rN (w), and then an upper bound is found for the sum

of the infinite series of upperbounds.

An intermediate step in the proof is to find an upperbound for

^	 ^
f	 (4.A.1)

rN	
kr) 2p

N \k/

This series is known to converge l if and only if p >2. An upper bound

is

00	 (1 2P	 1	 1 2p-1

r  < f N-1 \x/	 dx = ^2p-1) CN-1) 	
(4.A.2)

This inequality is illustrated in Figure 4.A.1. The sum r  is the area

of the rectangular boxes, which is less than the area under the curve.

The main part of the proof now follows. For o < to < W and
-	 - s

N> (w o 
1w s ):- 

- (N+1)1 	
1I A(jW-jwsk) ;^ 2 + F

	
II A(-j(o+jwsk) II 2rN (w) =	 (4.A.3)

k=-0D	 k=N+1

(by definition)

An analytical solution is known for the case

E ^1)2 = n2
k=1 k	 6
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Go
E	 11 A(jw+Jw k) 11 2 +	 E	 11 A(—jw+jw k) 112	 (4.A.4)

k-N+l	 R	 k-N+l	 s

(In the first series replace k by -k. In

the second series use the identity

11 A ( jw) 11 - 11 A (-j4 i) .

<
CO
 E	 [b(W+W k)2 + b(-W+W k ) 2 ]	 (4.A.5)

k-N+1	 s	 s

(for all k both w+W k and -w+w k are > w ).
s	 s	 o

00	 W 2
E	

4}+W k	 + (--W^k(4.A.^)k=N+1	 s

(substitute (4.7) for b(w)1

W	 W	 2P

< 2	 E	
w 

(k-1)	 (4.A.7)
k=N+l	 s

(This step removes the dependence on w.
Hence, the convergence is uniform for
o<W<W)

s

"'o2p 

o0	 1Ip
2	 E	 (k `	 (4.A.8)

s	 k=N

2
pp-1

('Os 

;.f p >2 , by (4.A.2)]

This completes the proof of part (a).

Part (b) is true if sN (W) is finite for all W, which is in turn

true if 11& W)i1 is bounded for all W. This completes the proof.
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2D

f(x) =I z^

r = ^ i 2p< 0°N _ f f  dxks N k	
N-1

N-1 N N+1 N+2 x
Figure 4.A.1: An upperbound for an infinite series
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Remark The upperbound for rN (w) is only valid for w In the funds-

mental frequency range o < ra < (a	 This is a consequence of the fact

that sN (w) and rN ((0) are not periodic. The finite sum sN (w) is centered

around the fundamental frequency range. To extend the upperbound to other

frequ ency ranges then sN (w) must be defined to be centered around the

other frequency ranges.	 t

There is no need to go through this trouble, because s(w) is

periodic. Compute sN ((j) over the fundamental frequency range and then

shift it as needed by multiples of W_.
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5. ANALYSIS OF HYBRID SYSTIIS AND NUMERICAL EXAMPLES

5.1 Introduction

The examplesin this chapter show how conic sectors can be used to

analyze hybrid feedback systems. In the first example the plant is a

SISO open loop stable system. An analog lead-lag compensator is designed

by classical control techniques. The analog compensator is discretized,

a prefilter and hold are chosen, and then the resulting hybrid system

is analyzed by conventional z-transform techniques. The first new

technique is the use of Theorem 3.1 to compute the gain of the hybrid

operator. Theorems 3.2 to 3.7 are then used to analyze closed loop 	 3

stability and robustness. The analysis techniques basal on these

theorems are grouped according to whether the hybrid operator is

inside of a cone, the loop transfer operator is inside of a cone, or

the hybrid operator is outside of a cone. The example continues with

three more uses of conic sectors - selecting the sample rate, comparison

of discretization techniques, and robustness with respect to extra

delay. The example then shows how conic sectors can be used to

analyze command response.

The second example is not as extensive as the first. The plant

is SISO and open loop stable, and the hybrid compensator is a discretized

version of an analog integrator. Pm attempt is made to place the hybrid

compensator inside of a conic sector, but the attempt fails because the

radius is not finite. The example then goes on to show that 'Theorems

3.6 and 3.7 (for which the -KI is outside of a cone) can be used to

analyze the robustness of this integral control problem.

In the third example the plant is a linearized model of motion

''
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in the pitch axis of a high performance aircraft. Both SISO and multiv

variable analog compensators are designed using Linear Quadratic

Guassian (LQG) methodology, arA then the analog compensators are dis-

cretized to form hybrid compensators. For the SISO hybrid feedback

system the compensator is open loop stable and the plant is unstable.

The hybrid operator can be placed inside of a conic sector but the

loop transfer operator cannot be. The example shows how to proceed by

placing a stable version of the loop transfer operator inside of a conic

sector. For the multivariable version of this example, Theorems 3.6

and 3.7 are used to analyze robustness. The margins are shown to be

conservative.

Before starting with the examples the difference between the

nominal and actual feedback systems sh%.;ld be made clear. The nomi-

feedback system differs depending on how the conic sectors are applied.

The actual feedback system is the same (of course) no matter how the

conic sectors ara applied.

If the hybrid operator (or loop transfer operator) is inside of

a cone then the nominal feedback syst em is an anal LTI feedback

system. The center of the cone is part of this nominal ff.edbac:c system.

Perturbations of the nominal feedback system have two causes: (1) due

to the use of a hybrid as opposed to an analog coanpen3ator, and (2) due

to the actual plant being different from the nominal plant. The

robustness results (Theorems 3.4 and 3.5) assume that the nominal

feedback system is closed loop stable (as determined by analog

techniques) and then give sufficient conditions for all perturba-

tions in a defined set to preserve closed loop stability.
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On the ether hand, if the hybrid operator is outside of a cone then

the nomin«'. feedback system is a hxbbrid feedback system. Perturbations

are due to the actual plant being different from the nominal plant.

The robustness result (Theorem 3.7) assumes that the nominal feedback

system is closed loop stable (as determined by digital techniques)

and then gives sufficient conditions for all perturbations in a defined

set to be closed loop stable.
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5.2 Lead-lag Cmensato-

5.2.1 Classical Control resign

This example begins as a standard classical control problem. The

open loop plant has the following transfer function:

g(s) =	 150
(s+l)(s+3)

The plant is single-input-single-output, 2 nd order, and open loop stable.

There is no particular system that g(s) is supposed to represent (this

is an academic example), but such a transfer function is typical of

same kinds of rotating mechanical systems,

The objective of the classical control design is to find a com-

pensator k(s) that meets the following specifications:

(i) steady state error < 2% to a step input (dc ga4- > 50)

(ii) phase margin > 45°

(iii) maximize crossover frequency, but not above the uncompensated
value.

The do gain of g(s) is 50, so no extra gain is needed to meet the

steady state error requirement. Phase lead is needed around crossover

to meet the phase margin specification. A lead compensator provides the

phase lead, but cannot be used because it would raise the crossover fre-

quency and violate the third specification. so  phase lag is added below

crossover, followed by phase lead around crossover.

Having decided on the type of compensator (phase lag followed by

phase lead) there are numerous systematic and unsystematic ways to

select the parameters. This is fairly easily done using a Bode plot.

The details don't concern us, only the final result:

(s+3)2
k(s) = (s+.4)(s+22.5)	

(5.2)

(5.1)



_169-	 ORIGIOOR Q
O^OF P	 "

The magnitude and phase Bode plots of g(s) and gk(s) are shown in

Figure 5.1. The closed loop system is stable, with poles at s = -11.7,

-3.0, and -6.1 ± 1.2j. The bandwidth is 7 rad/sec (down from the

uncompensated bandwidth of 12 rad/sec), and the phase margin is 600.

The phase margin specification has been exceeded by 15 0 , which is some-

what conservative, but is in anticipation of the unavoidable phase lag

due to the hybrid implementation.

5.2.2 Hybrid Implementation

The analog compensator is converted to a hybrid compensator. The

different parts of the hybrid compensator are:

f(s) = 2	 2500	 (poles at s = -35± 3Sj)
s + 70s + 2500

T = .031416 sec (foldover = T = 100 rad/sec)

d(z) _ •80498 (z-.90993)2	
(5.3)

(z-.98750)(z-.47744)

-sT
h(s) = 1—e--- (zero-order-hold)

s

The sample rate is chosen so that the foldover frequency is about 14

times the bandwidth (100 versus 7 rad/sec).

The prefilter is a 2nd order Butterworth filter with a break

potent at 50 rad/sec. It contributes 11° of phase lag at 7 rad/sec

and has a magnitude of .24 at 100 rad/sec.

The z-transform d(z) is a discretized version of k(s). The Tustin

with prewarping method was used (see Subsection 2.3.1). The prewarped

frequency is chosen to be tt,l = 3 rad/sec, which is the natural frequency

of the zeros at s = -3.
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A zero-order-hold is used to convert the d i gital sequence at the

output of the computer to an an-^log signal. The zero-order-hold is a

standard choice for control system design, and in this example it

contributes 6 0 of phase lag at 7 rad/sec.

This completes the choice of the hybrid compensator. There are

many different ways to choose the hybrid compensator, but it is not the

intent of this thesis to recommend one way over another. Rather, the

intent is to provide tools to analyze a particular choice of a hybrid

compensator.

5.2.3 Digital Analysis

Before going on to the conic sector analysis techniques we do a

quick digital analysis. The hold and prefilter are groupee, with the

plant and the combination is discretized1:

Z fh(s)g(s)f(s)) = gd(z)

.0094 (Z + 6.059)(z + .609) (z + .066) 	
(5.4)

(z - .969) (z - .910) ((z - .145) 2 + (.3)2]

This combined with the computer z-transform [d(z) of (5.3)] gives the

discrete loop transfer function:

t3 (z) = g  (z) d (z)
	

(5.5)

Its discrete Nyquist plot (t 3 (z) evaluated for z = ejWT) is shown in

Figure 5.2. The number of clockwise encirclements (zero) of the 1

E	 point equals the number of open loop unstable poles, so the digital

closed loop =rstem is stable. Closed loop stability can also be

The script z indicates the z-transform of the samples of the inverse
Laplace transform, see (4, Sections 3.4 and 6,21.
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real ga(z)d(z), where z=el``'T

Figure 5.2: Discrete Nyquist plot of g d (z)d(z), where z = e7WT
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determined from the location of the digital closed loop poles, which all

have magnitude < 1: z = .910, .873, .812± .204j, and .109± .271j.

From the discrete Nyquist plot of Figure 5.2 it is seen that the

digital closed loop system has a phase margin of 46° and a gain margin

of lOdB. This implies that the hybrid closed loop system has these

same phase and gain margins (see Subsection 2.3.4 Therefore the hybrid

closed loop system meets the phase margin specit'_.:ation of > 45°.

5.2.4 Gain of the Hybrid Operator

The first result of Chapter 3 (Theorem 3.1) is an upper bound on

the gain of the hybrid operator. For SISO hybrid operators (as in

this example) the upper bound actually is the gain.

The gain of the analog compensator is

max Ik(jw)j _ jk(j0)j = 1
	

(5.6)
W

and the gain of the hybrid operator is

1/2	 11/2
I K i^^ =	 max	 2 E ihk12	

• Id*1 • n if n 1
2= 1.004

2	 1'	 T	 k
o<W<-
 (5.7)

W= o 	 = 1	 = 1	 =1.004

The maximum for tie hybrid operator occurs at W = o. The hold term

is =1 at W = o (actually for all W ), and the computer term is =1

at W = o (z = 1). The extra gain is due to dliasing of the prefilter,

which, in this example, does not amount to much.

Different prefilters that cutoff less sharply or cutoff at higher

frzquencies will result in a hybrid compensator with a larger gain.

For example, if f(s) = 50/(s+50) then 11K "
L
 = 1.094, and if f(s)
2

100/(s+100) then ^K ^j^ = 1 .309. As the gain gets higher the
2
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compensator is more sensitive to noise. Thus, the higher gains are an

indication of inadequate prefiltering.

5.2.5 Hybrid Operator Inside of Cone

Theorem 3 . 2 can be used to construct a conic sector that contains

the hybrid operator. The choice of center is arbitrary. Here we

choose the center that minimizes the radius:

c(s) = T h (s) d(eST) f(s)	 (5.8)

The loop transfer function of the nominal feedback system is cg(s).

At low frequencies c(s) should be a good approxima tion of k(s).

This is checked with the magnitude and phase Bode plots of Figure 5.3.

The magnitudes are close (within 1 dB) below 30 rad/sec, at which

point the extra rolloff due to the prefilter and hold causes c(s) to

diverge from k (s). The phase difference shows up at lower frequencies -

the phases are close (within 5*) below 2 rad/sec. At 7 rad/sec the

phase lead is reduced from 28 0 to 12 0 (which was ,anticipated). Above

100 rad/sec the phase of c(s) rapidly swings over the entire 360° range.

The equation used to compute the radius is

1	 20	 20	 ]1/2

r(jW) = T %=-20 n_;20 Ihkd * fn I 	 for o ^ W < T	 (5.9)nj4k

which is a truncated version of (3.11). Because the optimal center is

used,the r 3 (W) term of (3.6) is equal to zero. A plot of the radius

is shown in Figure 5.2a. The radius is periodic with period WS = NO

rad/sec.

More important than the magnitude of the radius is the relative
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magnitude of the center and radius. In Figure 5.4b the magnitude of

c-1r is plotted. This is called the "multiplicative radius." When it

is «1 then the center can be considered a good approximation of the

hybrid compensator.l

When the multiplicative radius is near unity or greater then the

center is a poor approximation of hybrid compensator. Over this frequency

range the analog loop transfer function cg(jo))should be rolled off (have

magnitude < 1) in order to meet the stability and robustness requirements

of Theorems 3.3 to 3.5. In this example +La (jW) I < . 1 over the fre-

quency range where 1c-1 r(jw)I > 1, which should be considered "good".

Stability

Theorem 3.3 gives sufficient conditions for the hybrid feedback

system to be closed loop stable. The three conditions of Theorem 3.3

will now be checked.

Condition (i) is that the hybrid operator K is strictly inside

cone W ,R). ThP center and radius were constructed so that this is true.

Condition (ii) is that the nominal system (with the loop transfer junction

cg) is closed loop stable. This is verified by the Nyquist diagram of

Figure 5.5a. 2 The third and last condition is that

Irg (1 + cg) -1 (jW) I < I	 for all w	 (5.15)

1 For example, the center is a good approximation when 'c -Ir(jw)' < .1,
which is true in Figure I.Ab for (o 6 rad/sec.

2 The number of open loop unstable toles is zero. The nu.,..)er of clock-
wise cncirclements of the -1 point is zero. Since these two numbers
are equal, the analog system is closed loop stable.
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This is verified in Figure 5.5b. Hence, the hybrid system is closed

loop stable. Of course, we already know this from the earlier digital

analysis.

Robustness •- First Attempt

Beyond mere stability is robustness. Theorem 3.4 gives sufficient

conditions for an entire set of plants to be classed loop stable. In

this example the plant uncertainty is characterized as a phase uncertainty

at the crossover frequency as high as 45 0 . The first step in applying

Theorem 3.4 is to model this uncertainty as a multiplicative perturbation.

As explained in Subsection 2.2.7, a multiplicative perturbation of

m
	 (5.16)

covers phase uncertainties up to ±45 0 (at all frequencies).

The robustness condition of Theorem 3.4 is graphically checked in

Figure 5.6. It is seen that

lcg + ^^921I ' • 57 for all (u
	

(5.17)

This corres ponds to a phase uncertainty at all frequencies or 33", so

based on Theorem 3.4 we cannot guarantee that the prase margin speci_fi-

cation o` 45° is actually satisfied. Because Theorem 3.4 give- only

sufficient conditions, we know that the phase margin is > 33°, but we

do not have enough information to say whether or not the actual phase

margin is = 45°.

Robustne ss - Second Attempt

Theorem '.5 can be used to analyze robustness. The procedure

is to (1) choose a multiplicative perturbation, (2) use part 'a) of

9
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Theorem 3.5 to conscruct a cone around (I + Em) K, and (3) use part (b)

of Theorem 3.5 to check if --GI is outside of this cone. If part (b) of

Theorem 3.5 checks out then the closed loop system is stable for all

plantw defined by G = G (I + Em).

In this example the multiplicative perturbation has already been

chosen (a = . 77). The center of the cone around (I + Em)K is given by

5.8)and is the same as the center of the cone around K. The radius of

the cone around (I + Em 
)K is computed via (3.23) and is plotted in Figure

5.7a. It is compared with the radius of the cone around K.(a = o).

The nominal plant will be outside of the cone that contains (I + Em)K

if	

irg (1 + cg) -1 OW) I < 1	 for all W
	

(5.18)

This inequality is checked in Figure 5.7b, and it is not satisfied. If

a is backed down to a = . 72 then the inequality is satisfied. Therefore,

we can say the guaranteed phase margin is 42 0 , which doesn't quite make

it to 45°, but is less conservative than the 33 0 of Theorem 3.4.

5.2.6 Loop Transfer Operator Inside of Cone

The entire loop transfer operator can be placed inside of a cone.

As discussed in Section 3.3, there are three ways that the plant can be

included with the compensator:

Case 1: with the hole, (replace h with gh)

Case 2: with the prefi]-er (replace f with fg)

Case 3: with a combination of the hold and prefilter. (replace
both h and f with (fgh)1/2)

For each of the three cases Theorem 3.2 wall be used to construct a

cone. After this is done, Theorem 3.3 will be used to see which of the

three cases meet the sufficient conditions for closed loop stability.

t
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A robustness analysis using Theorems 3.4 and 3.5 is then performed for

case 3.

For each case the center of the cone is

c (s) = g (s) 
T 

h(s) d* (s) f (s)
	

(5.19)

The loop transfer function for the nominal feedback system is c(s). In

Figure 5.8 the magnitude and phase Bode plots of c(s) and gk(s) are

compared. The center is a yaod approximation over the same frequency

ranges as in Figure 5.3.

The radii for each of the three cases are shown in Figure 5.9a. As

expected, the radius for case 3 is the smallest for eacl W. At low

frequencies the radii are significantly different, with t:he radius for

case 1 (plant with hold) being the largest.

The significant differences came as a surprise, and further analysis

was conducted to explain the differences. The detailed calculation for

the radii at w = .01 (the leftmost points in Figure 5.9a) are shown in

Table 5.1. The infinite series that are part of the equation for the

radius were truncated at ±100 terms. A large number of significant

digits are needed in Table 5.1 because accuracy is lost when two large

numbers are substracted (for case 3,r = r  - r 2 , where r 2 .001 and both

r  and r 2 are z2500).l

An indication that the radius for case 1 ( plant with hold) is

larger than the radius for :ase 2 (plant with prefilter) is given by the

1 This prob:em with loss of accuracy does not occur when tba double
infinite sum, r4 of (3.11), is used to compute the radiuE 	 The double
infinite sum does not contain the large term (r 2 z 2500) V ch is
added and then subtracted to convert the double sum to several single
SUMS.
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Case 1

r(j.01) - Id	 ([T2i •	
k Ih7c

kgkl2	

n 

Ifnl2_ - r2 1/2

= .99970 1[2499.722291 [1.00844497] - [2499.7222341) 1/2

= 4.29

Case 2

r(j.01) = Idl ' (IT2

k 
Ihk l 2 ^	 nIgnfn4r2 1/2l

= .99970 1[1) [2499.7222541 - [2499.7222343)1/2

= .00454

Case 3

r(j.01) = Idl ^ (I;li k Ih g kfk l1 2 _ r2 1/2
_7c	 1

	= .99970	 (49.99722228457912 - [2499.7222337453)1/2

= .00156

where

r 2 = T
2 k Ihkgkfkl2

Table 5.1; Calculations for r QW) at W = .01



comparison;

n	

Ifn12
= 1.00S > 1 =

k 
Ihk12	

for w = .01	 (5.20)

T

The apparently small difference of .008 is amplified by a multiplication

of 2500, which is approximately the difference (.008 x 2500 = 4) between

the two radii at w = .01.

The intuitive reason for including the plant with the compensator

is that the extra rolloff of the plant will reduce aliasing and thereby

make the radius smaller. The comparison (5.20) indicates that including

the extra rolloff with the prefilter is better than including it with

hold. The theoretical analysis of Section 3.4 indicates that it is

even better to replace the prefilter and hold with (hgf)1/2.

Moving on now to Figure 5.9b, the multiplicative radii (c-1r) are

compared. Despite large differences at low frequencies, they cross

unity at about the same frequency (w = 80 rad/sec). All three are < .1

over the bandwidth of the analog loop transfer function (w < 7 rad/sec).

Theorem 3.3 is used to check sufficient conditions for the hybrid

system to be closed loop stable. The Nyquist plot of c(jw) is shown in

Figure 5.10a. The Nyquist plot indicates (for each of the three cases)

that the nominal analog system is closed locp stable.

It is in the application of the stability test

r(l+c)-1(jw) < 1 for all w
	

(5.21)

that the most significant differences in the three cases show up. As

shown in Figure 5.10b, cases 2 and 3 meet the sufficient conditions

but case 1 does not. Only one of the cases has to meet the sufficient
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conditions in order to guarantee closed loop stability. I*_ comes as

some relief to know that case 3 will always be the least conservative.

An analysis of robustness is performed just for case 3. Figure

5.11 shows that

l+c j - jrj > .74	 for all w
	

(5.22)
Icl + Irl

This is the single condition of Theorem 3.4 (appropriately modified for

case 3). The bound on the multiplicative perturbation is tm (w) = a = .74,

which corresponds to a giiaranteed phase margin of 430.

Theorem 3.5 can also be used to compute a guaranteed phase margin.

A cone is constructed around (I + Em)T, The largest a such that

lr(l+c) -l l < 1	 for all w	 (5.23)

is found to be a = .75, which corresponds to a guaranteed phase margi.,

of 44 °. This is very close to the specification of 45°.

5.2.7 Hybrid Operator Outside of Cone

Accordirg to Theorem 3.6, a cone can be constructed such that -KI

is outside of the cone if the hybrid operator K 1 + GK) I is L2e-stable.

From the digital analysis of Subsection 5.2.3 we know that this stability

requirement is satisfied.

The c._nter of the cone is the nominal plant g(s). The radius is

computed via (3.36) of Theorem 3.6. Rather than show a plot of the

radius, a plot of the multiplicative radius Ig -1r.(jw)j is shown in

Figure 5.12. The multiplicative radius is mo-e useful for grap`ical

tests of robustness margins. In this example the plot is almost identi-

cal to the plot of Figure 5.11. To two significant digits the minima

are the same (a - .74)
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From Theorem 3.7 we know that the minimum of lg-lr ow)l can be used

to guarantee that the hybrid closed loop system is robust with respect to

a multiplicative perturbation of the form lm (w) - a - .74. This corres-

ponds to a guaranteed phase margin of 43•.

In this lead-lag example there have been 5 se parate tests for ro-

bustness. They are compared in Table 5.2. The actual phase margin (from

the digital analysis) is 46 0 . The guaranteed phase margins of tests 2

through 5 are not significantly different. Only test 1 is conservative.

Table 5.2

Comparison o% Guaranteed Phase Margins

Guaranteed
Test Theorem a phase margin

1 Compensator inside ^one 3.4 .57 330

2 it	 91 3.5 .72 420

3 Loop operator inside cone 3.4 .74 430

4 " 3.5 .75 440

5 Compensator outside cone 3.7 .74 41'

The major advantage of the outside conic sector analysis i.3 that

it can be used with open loop unstable compensators and plants. This

advantage is not needed iii this example.

5.2.8 Selecting the Sample Rate

The loop transfer operator can be placed inside of a cone (see

Subsection 5.2.6). The idea now explored is that the multiplicative

radius of this cone car. be used to systematically select the sample rate.

The centea is a good approximation of the loop transfer operator

over the frequency range where the multiplicative radius has magnitude

<< 1. By varying the sample rate, this frequency range can be adjusted

to correspond to the bandwidth. of the analog system (i.e., adjust T so

-lthat (cr(jw)l <<l  for	 such that lgk(jw), > 1).
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This procedure `or sil;cting the sample rate is demonstrated for

the lead-lag exampl— x'.1 of the components of the hybrid compensator

roust change as the sample rate is varied. The components are selected

so that the sample rate is the only variables

Prefilter: 2nd order Butterworth with break frequency . 2T

Computer: Tustin prewarped version of k(s), with aS, - 3
A

Hold: Zero-order-hold.

For each of five sample rates a cone is constructed around the

loop transfer operator. 1 The multiplicative radii are shown in Figure

5.13a, and compared with the center of the cone when T = .031416.

All bW. one of the multiplicative radii are < .1 over the bandwidth

of the analog system (w < 7 rad/sec). The conclusion based on Figure

5.13a is that all but the lowest sample rate (T = .31416) is acceptable.

Further tests should be conducted, however, because the fact that

Ic-lri << 1 over the analog bandwidth is not by itself a guarrntee of

closed loop stability or adequate robustness margins.

:ne magnitude of the multiplicative radius can be compared with the

magnitude of other multiplicative uncertainties. This comparison can

also be used to help select the sample rate. The idea is to select the

sample rate so that Ic-1r(jW)) <M M j over the bandwidth of tae ana-

log system. Lowering the sample rate (increasing T) will cause the

errors due to .sampling to dominate the other uncertainties, which is

undesirable. On the other hand, increasing the sample rate (lowering T)

1 The five sample rates are (T - .31416, .062832, .031416,.062832, and
.0031416),which correspond to foldover frequencies of (n/T - 10, 50,
100, 500, and 1000)	 rie case 3 loon transfer operator is used
(prefilter and hold replaced by (fgh)1/2).
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will not result in any benefit, because the other errors (e m) are not

affected and will dominate the errors due to sampling.

For example, suppose the following delay exists in the feedback loop:

g(s) = gi(s)	 (5.24)

where i(s) = e-sTd , Td = .05 seconds

The delay can be modelled as the multiplicative perturbation:

g(s) = g[1 + em (s)]	 (5.25)

where m(s) = e-sTd -1, Td = .05 seconds

In Figure 5.13b the magnitude of t  M is compared with the multiplicative

radius when T = .031416. The magnitude of tm (m) dominates for w < 100

rad/sec. The conclusion is that there is nothing to gain by increasing

the sample rate (lowering T).

5.2.9 Comparison of Discretization Techniques

Another use of the multiplicative radius is to compare discretiza-

tion techniques. Tustin with prewarping was used in this lead-lag

example to transform k(s) into d(z), but this is only one of many

techniques. The following discretization techniques are compared:

Tustin with prewarping: (see Subsection 2.3.1)

Forward rectangle rulr_: d(z) = k(s)
s=(z-1)/T

Backward rectangle rule: d(z) = k(s)l

Pole-zero mapping [4, p. 611:

If pi is a pole of k(s) then epiT is a pole of d(z)
ziT

If z  is a zero of k(s) then a 	 is a zero of d(z)

If - is a zero of k(s) then -1 is a zero of d(z)

Choose constant so that k(s) ^	 = d(z)I
s=o	 z=1
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The standard by which they are compared is the magnitude of the

multiplicative radius. Each of the loop transfer operators (case 3) are

placed in cones. In order to make a comparison the center of the cone

is chosen to be the same for each of the discretization techniques:

c(s) = T h(s) k(s) f(s)
	

(5.26)

Note that c(s) is not the optimal center. The center and the different

multiplicative radii are shown in Figure 5.14.

The multiplicative radius is smallest when the Tustin with prewarping

technique is used, following by the pole-zero, backward rectangle, and

forward rectangle techniques. All of the techniques, however, should

be considered "good enough" for this example, because all of the multi-

plicative radii have magnitudes < .1 over the bandwidth of the system

(W < 7 rad/sec).

There is a great deal of freedom in how to discretize k(s). This

example demonstrates that to a large extent it does not matter what

discretization technique is used.

5.2.10 Extra Delay

Suppose an extra delay exists in the feedback loop. The delay can

be modelled as a multiplicative perturbation of the plant, and then any

of the robustness results (Theorems 3.4, 3.5, and 3.7) can be used to

determine if the closed loop system is robust with respect to this

multiplicative perturbation.

The delay may be a computational delay, in which case it will be a

fraction of a sample period. On the other hand, the delay may be

characteristic of the plant, such as a transport delay for mechanical

systems. In this example the delay is chosen to be T d = .05 seconds.
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It is between one and two sample periods, to emphasize that there is no

need for the delay to be an integer number of samiple periods.

Theorems 3.6 and 3.7 will be used to analyze robustness. The basic

idea is to construct a cone such that the hybrid operator is outside of

the cone, and then to show that all perturbations of the plant in a defined

set are inside of this cone. The delay is modelled as a multiplicative

perturbation, as shown in equations (5.24) and (5.25). The robustness

analysis consists of checking the three conditions of Theorem 3.7.

Condition (i) is that K(I+GK) I is L 2e^stable. This is true because

the discrete closed loop system is sta ple, as shown in Subsection 5.2.3.

Condition (ii) is that -KI is outside cone (G,R). The existence of

such a cone is guaranteed by the fact that condition (i) is true. The

radius is computed as shown in Theorem 3.6. The multiplicative version

of this radius, ig- 1r(;ra)I , is plotted in Figure 5.15.

Condition (iii) is that

tm (W) < Ic- 1r(jw)I	 for all CO	 (5.27)

This is shown to be true in Figure 5.15. Hence, all perturbations of

the plant in a defined set are inside of cone (G,R).

All three conditions of Theorem 3.7 are satisfied. Hence, the

hybrid system is robust with respect to an extra delay of Td = .05

seconds.
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5.2.11 Analysis of Command Response

Conic sectors can be used to analyze the steady state response to

commands, as discussed in Subsection 2.4.6 and Section 5.6. The res-

ponse to commands is good if th- following error signal is small:

P_ = (I + GK) i r
	

(5.28)

Conic sectors are used to find an upperbound for q, the quality measure

defined by

11	 n
^IIZ

lim	 < q for all r e S

T-*w 	II r II T
(5.29)

This inequality only has to be satisfied for input signals in the set

S C L 2e , ar.; -rNv letting the truncation time tend to infinity the tran-

sient erroiz in the command response become insignificant.

Three attempts are made to find an upperbound for qt

(1) Theorem 3.2 is used to construct a cone that contains GK,
and then (2.98) to (2.100) are used to compute the
upperbound for q.

(2) Theorem 3.2 is used to construct a cone that contains
( I+ GK) I , and then (2.102) and (2.105) are used to compute
the upperbound for q.

(3) Theorem 3.8 and equations (3.51) to (3.53) are used to compute
the upperbound for q.

The first attempt fails due to restrictions on its use. The second

attempt is conservative, and the third attempt works well.

The first step for all three attempts is to define a nominal analog

feedback system and then to compute the nominal quality measure qo . In

all of the attempts let the nominal loop transfer function be

c(s) = T g(s) h(s) d*(s) f(s)	 (5.30)
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and let the set of command signals be

S {sinewaves with frequency < . 1 rad/sec)	 (5.31)

The nominal quality measure is

qo 	 0max .1 
1 (1+c) -1 ( J(j) ( - .02
	

(5.32)

The magnitude Bode plot of (1+0 -1 is shown in Figure 5.16a.

Earlier in this example  Theorem 3 . 2 was used to construct a cone

that contains the loop transfer operator GK. The center and radius of

this cone can be used via (2.98) to (2.100) to find an upperbound for the

quality measure q. one of the restrictions of this first attempt is

that the sufficient conditions for closed loop stability given by Theorem

3.3 must be satisfied. As shown in Figure 5.10b the sufficient condi-

tions are not satisfied, and therefore the first attempt at finding an

upperbound for q fails.

The second attempt uses Theorem 3.2 to construct a cone that con-

ti::ins the closed loop operator (I+GK) I . The centeris (1+c)-1,

where c (s) is given by (5.30). Both the center and radius are shown

in Figure 5.16a. Equations (2.102) and (2.105) are now used to upper-

bound the quality measure:

r
2
 qo= o<^1 

Ir(jW) _ .09
	

(5.33)

q < qo (1+r2 ) - .11
	

(5.34)

This upperbound is significantly more than the nominal quality measure

of qo - .02.

1Case 1 of Subsection 5.2.6. The center and radius are shown in Figures 5.8
and 5.9.
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Figure 5.16a: Center and radius of a cone that contains (I+GK)I,

when the radius is computed by Theorem 3.2.

Figure 5.16b: Radius of cone that contains (I+-GK) I , when the
radius is computed by Theorem 3.8. This cone is

only valid for input signals that are sinewaves with
frequency < 7/T = 100 rad/sec.
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The second attempt at finding an upperbound for q is conservative

because the radius computed by Theorem 3.2 does not take into account

(1) the restricted set of input signals and (2) the truncation time of

(5.29) which tends to infinity. Addressing the second point, the radius

computed by Theorem 3.2 is valid for any truncation time (see (2.81)),

and therefore the upperbound for q which uses (2.105) is likewise valid

for any truncation time. One interpretation of this conservative

upperbound is that it is conservative for steady state errors because

it must also be valid for transient errors.

The third attempt at finding an upperbound for q makes use of

Theorem 3.8, which explicitly takes into account the restricted set of

input signals and the truncation time that tends to infinity. The

radius computed by (3.49) of Theorem 3.8 is shown in Figure 5.16b. The

upperbound for q is found by equations (3.51) to (3.53):

rq	 max Jr(JW)) - 5 x 10-8	(5,35)
3 0 o<LK .1

q < qo (1 + r3) - .02	 (5.36)

The increase from the nominal value of qo = .02 is insignificanti

The use of conic sector8 to analyze ccmmnand response is new with

UE) and this thesis, and we must be careful not to make hasty genera-

lizations about the very tight upperbound for the quality measure just

demonstrated. Nevertheless the following statement appears to be

justified - the nominal analog feedback system gives a very good

approximation of the quality measure of a hybrid feedback system.

Three attempts were made to analyze command response. A straight-

forward use of the same conic sector used to analyze stability and

robustness (Theorem 3.2) was shown to give a conservative upperbound
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for the quality measure. Refinements of this conic sector (Theorem 3.8)

significantly decrease the upperbound, and indicate that the nominal

•	 quality measure is a good approximation of the actual quality measure.

This analysis of command response completes this extensive lead-lag

compensator example.
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5.3 Integral Control Ex4"le

The next example demonstrates that the outside conic sector results

can be used to analyze control systems with integrators in the forward

loop. These types of control systems are used to achieve zero steady

state error to constant inputs.

In thim simple example the SISO plant is

g (s) - 1s+l

and the compensator is

k(s) - 1s

(5.37)

The analog system has closed loop poles at s = .5 ± j.87. The bandwidth

is w - .8 rad/sec, and the phase margin is 52°.

The following hybrid implementation of k(s) is used:

f(s)	 2 25	 (2nd order Butterworth break frequency = 5 \
s +7s+25 rad/sec)

T - .31416	 (foldover frequency 
T 10 rad/sec)

(5.39)

d(z) - .1579 z+l (Tustin prewarped about wo = .8 rcA!sec)

_ -sT
h(s) - 

1 
s	

( zero-order-hold)

At the crossover frequency (w - .8 rad/sec) the prefilter contributes

13° of phase lag and the hold contributes 7 6 of phase lag, so we expect

the phase margin of the discrete closed loop system ( i.e. the actual

phase margin of the hybrid closed loop system) to drop from 52 0 to about

32°.

Due to the digital integrator there does not exist a conic sector

with a finite radius that contains the loop transfer operator. The

^r
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calculations for the radius  are performed to demonstrate this fact.

The optimal center of the conic sector is chosen:

C (s) = T < 1 (s) h (s) d* (:;) f (s)
	

(5.40)

The radius is plotted in Figure 5.1.7a. The problem with the radius is

immediately apparent - it has beaks of infinite height at frequencies

that are multiples of 27T /T.

A consequence of the infinite peaks is that the sufficient conditions

for closed loop stability given by Theorem 3.3 cannot be met. This does

not necessarily mean that the closed loop system is unstable, it may

simply mean that the sufficient conditions are "infinitely" conservative.

Condition (iii) of Theorem 3.3 (for the loop transfer operator inside of

the cone) is that Ir(1+c) -1 (jW)I < 1 for all W. Due to the infinite

peaks of r(jm), this contlition cannot be met.

The optimal center and the multiplicative radius are plotted in

Figure 5.17b. The multiplicative radius, c-1 r, is independent of the

computer z-transform d(z). Hence, c -1 r does not have the problem with

the .infinite peaks. From Figure 5.17b we see that jc-1r l << Icl over

the bandwidth of the analoq system 0) < .8 rad/sec).

There are no open loop stability restrictions for the outside conic

sector results of Theorems 3.6 and 3.7. The discrete closed loop system

is stable, as demonstrated by the discrete Nyquist plot of Figure 5.18a.
I

Therefore z cone can be constructed such that --Y. I is outside of the cone. The

-1
center is q(jw), and the multiplicative radius is i q r(je))j, where r(jc,) is

computed via equation (3.36). The multiplicative radius, g 1 r, is shown

lCase 3 is used, whi-1i means that the prefilter and ?Hold are each re-
placed by (fgh)1/2.

A J
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in Figure 5.18b. Its minimum value is a = .53, which corresponds to a

guaranteed phase margin of 31 0 , and which is only 1° less than the

actual phase margin of 320.

In this short example it has been demonsfia*_ed for integral control

problems that (1) there does not exist a conic sector with a finite radius

that contains the loop transfer operator, (2) Theorem 3.3 cannot be used

to determine closed loop stability, and (3) Theorems 3.6 and 3.7 can

be used to determine guaranteed robustness margins.
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5.4 High Performance Aircraft

The next example contains both a SISO and a 2-input 2-output control

system design for the pitch axis of a highly maneuverable aircraft. This

aircraft has served as a test bed for multivariable design techniques

(23, 24, 25, 261. The analog compensators used in this example are

designed using linear quadratic Guassian (LQG) methods, and are similar

to the designs that appear in [261. This example goes one step further

and analyzes a hybrid implementation of these control laws.

The designs are based on a linearized model of motion in the

vertical plane. The flight condition is Mach .9 at an altitude of

25,000 feet. A 4-state, 2-input, 2-output state space model is given

in Table 5.3. The states and inputs are:

x = 5V = forward velocity

a	 angle-of-attack

q	 pitch rate

E3J	 pitch attitude

u = S =
e	

elevator/elevon
- 

canard
L

The model leaves out hydraulic actuators with time constants of 70 rad/

sec. The uncertainties in the model (data lint: time delays and bending

modes) are such that the control loop should be rolled off before 10

rad/sec [261.

5.4.1 L G Design of SISO Analog Compensator

In the first design the elevator/elevon input 4s used to command

the pitch attitude. The transfer function of the open loop plant is

g(s) _	 -77.81 (s+.0232) (s4-1.962)	 -	 (5.41)
(s+.2576) (s+5.676) ((s-.6895)2 + (.2484)21
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-.02257 -36.62 -18.9

A =	 .00009 -1.90 .9831

.01233 11.72 -2.6320

0 0 1

-32.0900

-.0073

0

0

	

-.9821
	 -.76260

B =	 -.4144	 -.00496

	

-77.81
	 22.4

	

0
	

0

	

0	 1
	

0
	

0
C =

	

0	 0
	

0
	 1

Table 5.3 State space model of highly maneuverable
aircraft
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Due to its deliberate relaxed static stability design, the plant is open

loop unstable, with a pole pair at .6895 ± j.2484.

The Bode plot of g(s) is shown in Figure 5.19. The bandwidth of

g(s) is acceptable. :,ut the magnitude Bode pot of g(s) has ao unde-

sirable features - low gain for w < .1 rad /sec and a resonant peak around

W = .5 rad/sec. The claim of LQG design methodology is that a k(s) can

be found that (1) "shapes the loop" to eliminate the undesirable features,

(2) guarantees closed loop stability, and (3) provides adequate robust-

ness margins.

The number of variations of LQG methods is somewhat greater than

the number of people who know what the abbreviation "LQG" stands for.

Here we step through a particular LQG design method and provide the

reader with enough information so that the design can be duplicated.

The steps are [35):

(1) Choose h to shape the magnitude Bode plot of h(sI-A)-lb.

(2) Choose p to obtain desired bandwidth of k_ (sI-A)-lb.

(3) Solve LQ Riccati equation to obtain kc.

(4) Choose process and measurement noise covariance matrices by
the robustness recovery procedure [27).

(5) Solve Kalman filter Riccati equation to obtain k^.

(6) Use LQ and Kalman filter optimal gains to form analog
compensator.

For the linear quadratic (LQ) regulator problem the open loop plant

is

'	 x= Ax+bu)

y =cx

lt' (5.42)

In this example the plant is controllable and observable. The LQ
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J = 
	
(xThThx + puTu ) dt	 (5.43)

0

The input that minimizes the cost function is

u = -k x	 (5.44)
-c-

where

k = 1 b T K	 (5.45)
-c	 p - -

and where K > o is the unique solution of the algebraic Riccati equation

o =

	

A 
T 
K + KA + h T h - 1 KbbTK	 (5.46)

--	 --	 --	 p --- -

For the Kalman filter problem the process and measurement noise

enter the state space system as shown below:

x=Ax+bu+Y'
(5.47)

y=cx+B

The noise sources have zero mean and intensities

E K (t) ^ (s) J = d ( t -s)
(5.48)

E[@ (t) 6 (s) ) = o (t-s) I

The Kalman filter gains are

kf = 1 CTE	 (5.49)

where E > o is the unique solution of

o = AE + EAT + lyT - 1 EcTcE	 (5.50)

After solving the LQ regulator and Kalman filter problems the LQG
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compensator is formed by

xk = (A - bkc - kfc) - + kfe

(5.51)
u=kxk

A

Tht first step of the design procedure is to choose h to shape the

magnitude Bode plot of h(sI-A) lb. Let us look ahead a bit and explain

why we want to do this. The IQ loop transfer function is kc(sI-A)-lb,

and for W such that 4kc (jWI-A) -lbi >> 1 the following approximation is

valid-.l

Ik (jWI - A) -lbI	 a^h(jWI-A) 11	 for some a	 (5.52)-c - -

The ultimate objective is to shape the magnitude Bode plot of kg(s).

If the robustness recovery procedure is used then for some finite region

of W:

kg(jw) Z kc (j(13I-A) -lb
	

(5.53)

Therefore, the reason that we want to shape 1 h(jWI-A ) -lbl is that the

magnitude of the loop transfer function Jkg(jw)J will approximate this

shape.

The poles of h(sI-A) -lb are the eigenvalues of A. If the zeros are

at s = -.2 and -2.5 then Jh(jWI-A) -lbI has a shape that corrects for

the undesirable features of the shape of (g(jw)l . An h that places

zeros at s - -.2 and -2.5 can be computed by the method of Harvey and

Stein [28):

The constant "a" is us1d for scaling. It is the shape, not the
magnitude, of h(sI-A) - b that is important.
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h = [9.3x10-5 1.481x10-3 -9.061x10-6 -1.254x10-`1	 (5.54)

The bandwidth of k c (sI-A) -lb depends on the choice of the control

weight p. A choice of

p = 1.6 x 10-3
	

(5.55)

results in a bandwidth of 7 rad/sec.

The Kalman filter is designed by the robustness recovery procedure

[27). Choose

Y =b
	

(5.56)

and adjust Ii to select the frequency range over which kg(s) approximates

kc (sI-A) -lb. For this example use

V = 3.4 x 10 -7	(5.57)

For the choices given above of h, p, Y, and u the LQG compensator

has the transfer function

k(s) _	
-11,750 (s+.195)(s+1.395)(s+6.305)	 (5.58)

(s+.02319)(s+1.962)[(s+261.8) 2 + (261.8)2]

The Bode plot of kg(s) is shown in Ficure 5.19. The bandwidth is

7 rad/sec, the phase margin is 64°, and the gain margin is [-14.5dB,

37.8 dB). The closed loop system is, of course, stable.

5.4.2 Conic Sector Analysis of SISO Design

The analog compensator is converted to a hybrid compensator. This

is done in a way similar to the earlier examples in this chapter:
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f(s) = 2	
2500	

(2nd order Butterworth,
s + 70s + 2500	 break frequency = 50 r?d/sec)

T - .02 (foldover frequency = T = 157 rad/sec)

d(z) =	
-6.233 (z-.99611)(z-.97244) (z-.88119)(z+l)	 )	 (5.59)

(z-.99954)(z-.96145)((z+.63763) 2 + ( . 26229)2)

(Tustinized version of k(s), prewarped frequency =
7 rad/sec)

-sT
h(s) = 1_ s
	

(zero-order-hold)

The sample rate is 50 samples per second, which is typical for flight

computers in fighter aircraft.

Ciosed Loop Stability by Theorem 3.3

Conic sector techniques will now be used to determine if the

hybrid closed loop system is stable. A stable version of the loop

transfer operator will be placed inside of a cone and then the sufficient

conditions for closed loop stability given by Theorem 3.3 will be checked.

The hybrid operator is open loop stable, but the plant is not. The

loop transfer operator is therefore unstable, and it is not possible to

place an unstable operator inside of a cone. This problem is circumvented

by separating the plant into a stable part multiplied by an allpass

network. The stable part is created by mapping the unstable poles to

their mirror images about the jw-axis. The allpass network has unit

magnitude for all W:

g(s) = 9s (s) gap (s)	 (5.60)



gaps) _ [(s + .6895)2 + (.2484)2]

[ (s - .6895)	 + (.2484) )

The hybrid operator and the stable part of the plant are Placed

inside of a cone. The optimal center of the cone is used:

c(s) = 1—,Z gShd*f(s)	 (5.

The hold and prefilter are each replaced by (hg 
s 
f) 1/2 , and the radius

of the cone is computed by

20	 20	
1/2

r(jw) = 1 T k=E20 nE_20I(hgsf)k ( hgs fn)I	
^d*(jw)^	 (5.63)

n#k

The radius is shown in Figure 5.20a. The center and the multiplicative

radius are in Figure 5.20b.

The sufficient conditions for closed loop stability given by Theorem

3.3 are now checked. Condition (i) is that the hybrid operator and the

stable part of the plant are strictly inside cone W ,R). This cone has

just been constructed. Condition (ii) is that the analog system with the

loop transfer operator cg 
ap

(s) is closed loop stable. This is verified

by the Nyquist diagram of cg ah (s) shown in Figure 5.21a. 1 condition (iii)

is that

Irgap (1 + cgap )
-1 

(jw)J < ] for all w

This condition is verified in Fiqure 5.21b. Since all three conditions

of (the appropriately modified) Theorem 3.3 are satisfied, the hybrid

system is closed loop stable.

The number of open loop unstable poles = 2, which equals the number
of counter-clockwise encirclements of the -1 point.



I*- s

si s

F 11 3

11 4

si s

-218•

ORIGINAL PACZ::`

OF POOR QUALM

--	
_03

frequency (redlssc)

Figure 5.20a: Radius of cone that contains a stable
version of the loop transfer operator.

see

1

1^ 1

11 ^

3

1cUW)
Ic ^rQw)

1

"Ti	 1s 1	 1	 It	 Ur 11

frequattcy ( red / ssc)

Figure 5.20b: Center and multiplicative radius.



T
V	 `

.^RQ

i

e

.l

lrgap (I+cgap ) X 010 < 1

t

1s--1

le'^

C

F1^ 3

1!-4

-5..

30 
2	

1. 
1	

1

-rr? rtrr
to	 1!e

frequency (rod/sac)

Figure 5.21b: Stability test of Theorem 3.3.

r 1 f^---r-r
193

-219-	
CHI

OF Poor,

1s

so

-5

- 1•	 -s	 e	 f	 to	 Is

real cg QA
ap

Figure 5.21a: Nyquist diagram of cg ap 0w).



-220-

Robust C'.osed Loop Stability by Theorem 3.5

The actual plant is g(s) = g(s) [1 + em (s)]. Assume that the

multiplicative perturbation is bounded by the constant `e
m 
(jcw)l < a

for all w. Theorem 3.5 can be used to find the maximum value of a such

that g(s) weets the sufficibnt conditions for closed loop stability.

The maximum value is a = .36, which corresponds to a guaranteed phase

margin of 21°.

Robust Closed Loop Stability by Theorem 3.7

If the discrete closed loop system is stable then a cone can be

constructed such that -KI is outside of the cone. The condition of

discrete closed loop stability is verified by the discrete Npquist

diagram of d*gd*(s) plotted in Figure 5.22a.

The center of the cone '_s g(s), and the radius is computed by (3.36)

of Theorem 3.6. The multiplicative radius lg-1r(jw)j is plotted in

Figure 5.22b. By Theorem 3.7 the closed loop system is stable for

g(s) = g(s) [1 + em (s)] if lem (jw) I < ' g-1r(jw)'.

If the multiplicative perturbation is constrained to be constant

for all w then its magnitude must be less than the minimum value of

I
- 1
g r(jw)l, which is a - .68. This value of a corresponds to a guaranteed

phase margin of 40 0 , which is less conservative than the 21° obtained by

Theorem 3.5. The actual phase margin is 46 0 (obtained from the discrete

Nyquist diagram of Figure 5.22a).

This completes the SISO version of the high performance aircraft

example. The analog compensator was designed using LQG methods and then
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converted to a hybrid compensator. A stabl y: version of the loop transfer

operator was created by multiplying the unstable plant by an all-pass

network. Theorems 3.2, 3.3, 3.5, 3.6, and 3.7 were used in various ways

to analyze closed loop stability and robustness properties.

5.4.3 LQG Design of Multivariable Analog Compensator

The high performance aircraft used in this example has multiple

control surfaces (see [2,261) that allow independent control of attitude

and flight path motion. In the pitch axis the basic objective of the

multivariable design is to achieve independent control of pitch attitude

and angle-of-attack with approximately equivalent speeds of response.

This objective is met in the analog design described in [26).

The analog design uses LQG techniques. The plant G(s) of Table 5.2

is augmented to Ga (s) = s G(s) = Ca (sI-Aa ) -1 Aa by appending integrators

to the outputs (pitch attitude ang angle-of-attack). The Kalman filter

noise covariance matrices are

r = s^ (VC

(5.65)

N	 I

where

	

.962	 -.274

V =

	

-.274	 -.962

E = diag [1.8	 .00771

(5.66)
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The V and s matrices are, respectively, the right singular vectors and

the singular values of G Ow ) for w = 10' 5 . They multiply the B
-a o	 o	 -a

matrix in (5.65) so that the singular values of Ca (sI-Aa )
-1
 ! are

approximately equal at w 
0 

= 10*5.

The LQ regulator weighting matrices Q and R are chosen so that the

loop transfer function G 
a-
K(s) approximates the Kalman filter loop trans-

-

fer function Ca (sI-Aa )
-1
 K  over a finite frequency range:

= C 
T 
C

(5.67)

R = 10-6 I

The Kalman filter and W regulator problems are solved and used to

form the LQG compensator K(s). The analog closed loop system is guaran-

teed to be closed loop stable. The singular values of G
a	 -a-
(jw) and G K(jw)

-

are shown in Figure 5.23a, and the "shape" of the loop transfer function

GaK(jw) is used to analyze various performance measures (command response,

bandwidth, disturbance rejection, and so on, see [ 1]). The singular

values of I + (G 
a-
K) -1 (jw) are shown in Figure 5.23b and are used to

-	 -

analyze robustness with respect to perturbations inserted at the output

of the plant [i.e. when Ga (jw) is replaced by (I + Em)Ga (jw)]. In

Figure 5.23b it is shown that

G min [I + (
GaK)-1(jw)] > a = .54	 for all w	 (5.68)
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which indicates that the analog closed loop system will remain stable

for phase uncertainties up to -*31 0 , at any frequency, simultaneously in

any output channel (see Subsection 2.2.7).

5.4.4 Conic Sector Analvsis of Multivariable Design

The multivariable analog compensator is 
s
 K(s). The integrators

that were appended to the outputs of the plant are included with K(s).

The analog compensator
s
 K(s) is now converted to a hybrid compensator.

The prefilters and holds are chosen to be the same in their respective

input and output channels:

F(s) =	
2 

2500	 I

s +70s+2500

T	 = .02 seconds

(5.69)

D(z) = tustinized version of 
s 

K(s),

prewarped about 7 rad/sec

-sT
H(s) = (

1-e	
I

s

In this subsection closed loop stability and robustness margins w411

be determined. The conic sector analysis techniques of Theorems 3.6 and

3.7 will be shown to give conservative robustness margins.

The discrete version of the multivariable Nyquist criterion is used

to determine the closed loop stability of the hybrid feedback system.

The discretized plant is Gd*(jw) = [FGH(jw)]*, and the discrete loop
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transfer function is Gd*D*(jw). The Nyquist plot of -1 + det (I +

Gd*D*(jw)) is shown in Figures 5.24a and 5.24b. The first figure (which

is not to scale) shows the Nyquist plot as the frequency variable w is

varied from - T to T . The number of counterclockwise encirclements of

-1 point is 2, which is equal to the number of open loop unstable poles

of Gd (z)D(z), I Therefore, the hybrid system is closed loop stable.

An exploded view of the Nyquist plot is shown in Figure 5.24b.

The nearness to the -1 point is a good robustness margin for SISO sys-

tems, but not for multivariable systems. Much better is the singular value

plot of Figure 5.25a, 2 where it is shown that

Qmin [I + (Gd*D*)-1(jw)) > a = . 48 for all m
	

(5.70)

Figure 5.25a is used to analyze robustness with respect to multiplicative

perturbations inserted in the feedback loop just before the digital

computer, where the physical signal is a discrete sequence. If the

multiplicative perturbation is a constant diagonal matrix then it can

be moved in the feedback loop to just after the analog plant. The lower

bound a = . 48 indicates that the hybrid closed loop system will remain

closed loop stable for phase uncertainties up to t28°, at an y frequency,

simultaneously in any output channel.

1The two integrators in D(z) account for the encirclement between w = 0
and w = 0+

2Singular values are better than determinants for indicating the nearness
to singularity of the return difference matrix I + Gd*D*(jw).
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The conic sector analysis techniques of Theorems 3.6 and 3.7 will

now be used to analyze robustness. Theorem 3 . 6 is used to construct a

cone such that -K I is outside of the cone. The center of the cone is

the nominal plant G, and the radius is the R computed by (3.36). The

multiplicative radius is r(jw)/o 
max 

(G(jw)) and is shown in Figure 5.25b.

According to Theorem 3.7, the hybrid system will remain closed loop

stable for a multiplicative perturbation of the nominal plant if

r (jw)Y_
m (W) <	 Q	 [G(jw)]	

for all w
max

(5.71)

Unfortunately, this is a conservative result. In Figure 5.25b it is

shown that

(W) < a = .002	 for all w
	

(5.72)
m

which corresponds to a guaranteed multivariable phase margin of < 10.

More research is needed to remove this conservatism. Some indi-

cation of why this conservatism occurs is given by the following manipu-

lation of the corresponding robustness result for multivariable analog

systems:

^m(W) < o 
min [I + (GK) 	 for all w	 (5.73)

tm (W) < amax 1 [GK (I + GK) -1 OW) ]	 for all w	 (5.74)

^m (W) < amax 1 [GOW) ] amax 
(K (I + GK) OW)]	 for all w

(5.75)
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If (5.75) is used instead of (5.73) then the analog robustness test will

have approximately the same degree of conservatism as the result of

Theorem 3.7. The problem occurs in (5.75) because the matrix product

is split up, which is conservative when the minimum and maximum singular

values of G(jw) are far apart.1

This completes the multivariable conic sector example. A multi-

variable analog compensator was transformed into a hybrid compensator.

The resulting hybrid feedback system was analyzed with the use of the

discrete loop transfer function GdF(z), and then was analyzed with the

use of the conic sectors of Theorems 3.6 and 3.7. The conic sectors

resulted in a conservative robustness margin, which occured because the

multiplicative radius is conservative (small.) when amin [G(jw)] <<

Qmax [G (jw) ] .

-Note that 1 = O max (GG 1 ) < Q max (G) /o min (G), which is conservative when

Amin (G) << 
Qmax (G) .
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6. MULTIRATE SAMPLING

6.1 Introduction

The hybrid feedback systems considered up until now have had one

synchronous sampler. These are the most common types of hybrid feed-

back systems; however, there exist many applications where the hybrid

feedback system contains more than one synchronous sampler, each operating

at a different rate. These are called "multirate sampled-data systems".

Multirate sampling may occur because the measurements are discrete

(e.g. radar tracking, sun sensors for dual spin satellites, or image pro-

cessing algorithms for robot manipulators) and the digital computer used

to implement the control law is separate and operates at a different sample

rate. Multirate sampling may also be used if the plant has different time

scales, in which case multirate sampling can be used to significantly de-

crease the required computer capacity, i.e. "slow" control loops are

sampled at a slower rate as compared to "fast" ones.

A feedback system with two hybrid compensators in the same loop is

shown in Figure 6.1. This is called a sin,le loop multirate hybrid (SLMRH)

feedback system. the feedback loop is used for stability augmentation and

contains a hybrid comp,.nsator (modelled by the hybrid operator K 2 ) with a

sampling period of mT seconds (where m is an integer > 1). The hybrid

compensator in the forward loop (modelled by K 1) has the smaller sampling

period of T seconds, which allows the output to respond faster to commands

than to the feedback. The plant has the nominal model g(s) and the multi-

plicative pertuzbation e m (s), assumed bounded by lem (jw)l < CV (/ ,% I f-r all w.

All of the components in Figure 6.1 are	 input single ou:out (SISO).
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Conventional analysis techniques for single rate hybrid feedback

systems have been extended to the multirate case. A survey with ex-

tensive references is by Walton (31). A tutorial treatment of these

techniques is Ly Konar and Mahesh [32). The basic idea is to transform

the multirate hybrid feedback system into an equivalent single rate

hybrid feedback system and then apply standard z-transform techniques.

The only multirate technique used in this chapter is called the "fre-

quency decomposition" method (33, 34). Using this method, the SLMRH

feedback system in Figure 6.1 is broken at some point where the physical

signal is a discrete sequence, and then a z-transform is derived for the

linear shift invariant loop transfer operator.

Conic sector analysis techniques also can be extended from single

rate to multirate hybrid feedback systems. In this chapter they are e__

tended to the relatively simple SLMRH feedback systems. Further ex-

tensions to the much more difficult multiple loop cas e• will not be

attempted here. 1 The material in this chapter is simply a first step

that demonstrates that further extensions of the conic sector analysis

techniques are possible to more complicated multirate systems.

Conic sectors can be used for multirate hybrid feedback systen.s

(either single or multiple loop) just as they can be used for single

rate hybrid feedback systems and analog feedback systems - to analyze

closed loop stability, command response, performance, disturbance re-

jection, and robustness with respect to plant uncertainties. If the

IMultiple loop multirate hybrid feedback systems are more common than
the single loop case because different time scales of the plant
naturally break down into multiple loops.
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multirate hybrid operator is placed inside of a conic sector, then the

center can be used as 4 rigorous continuous time linear time invariant

(CTLTI) approximation.

Conic sector analysis techniques are potentially more important for

multirate than for single rate hybrid feedback systems. The feedback

loop is nioken where the physical signal is analog and complexities due

to different sampling rates are subsumed by the use of conic sectors.

Techniques tc; analyze robustness do not currently exist, whereas conic

sector techniques are inherently robustness techniques (as discussed

in Subsection 2.4.5). The z-transform techniques used to convert multi-

rate to single rate systems have the problem of increased dimensionality

(proportional to the integer multiple of the sample rates). The conic

sector techniques do not suffer from this increased dimensionality.

In Section 6.2 the SU4R.H feedback system is described and frequency

domain input-output transformations for the multirate hybrid operators

are presented. Theorems 3.1 to 3.7 for single rate hybrid feedback

systems are extended to SLMRH feedback systems. These extensions are

presented in the multiple-part Theorems 6.1 and 6.2. The new conic

sector analysis techniques can be used to analyze stability and robust-

ness, but the techniques for analyzing command response (as in Subsection

2.4.6 and Section 3.5) have not yet been extended. In Section 6.3 a

multirate version of the lead-lag compensator example of Section 5.2

is presented.

6.2 Conic Sectors for Multirate Hybrid Operators

Conic sector analysis techniques are used by first dividing a

feedback loop into two subsystems, and second by constructing a cone
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such that it contains one of the subsystems and the other subsystem is

outside of it. There are numerous ways to divide up the SLMRH feedback

system of Figure 6.1. In this chapter the feedback loop is broken at

points 1 and 2 (at the input and output of the plant). The two sub-

systems are (1) the multirate hybrid operator K 
1 

K 
2 
and (2) the actual

plant G. A conic sector is derived in Subsection 6.2.1. that contains

K1K2 , and in Subsection 6.2.2 that -(K 1K2 ) I is outside of.

6.2.1 Existence of a Cone that Contains K 
1 

K 
2

The multirate hybrid operator K 
1 
K 
2 
is shown in Figure 6.2. The

analysis that follows assumes that the slower sampler is first l . The

existence of a conic sector that contains K 
1 
K 2 follows from the de-

scription of the input-output transformation from y to u. The assump-

tion is made that the two samplers are in synchronism, i.e. every mth

sample the two samplers coincide.2

The transformation from y to y2 is described by 

y2(]w) = h2(Jw)d2(ej mT) T E f2(]w-7 MT k)y(]w-J mT k)(6.1)
k

1  similar analysis can be performed if the faster sampler is first.
2 I the samplers are not in synchronism then an extra delay term must
be inserted between h2 (s) and f 1 (s). This does not invalidate what

-Tds
follows. Simply replace h 2 (s) by h2 We

3 T avoid confusion Detween sample times of T and mT seconds the star
•	 notation (see Subsection 2.3.1), the symbol "ws "and the subscripts

indicating frequency shifts are not used. The notation d2(ejWMT)

]WmTindicates d2 W evaluated at z = e.
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Similarly, the transformation from y 2 to u is describe3 by

	

u ( jW ) = h,(j(jj)d1(ejWT) m s f 1 (jW-j T7 n ) y2 ( jW- j TW n)	 (6.2)
u

Substitute (6.1) into (6.2) and cIA&nge the variable of summation to

obtain

u(jW) _	 (jW)d 
(e jund:c ) 1	 E f (jW-j 2^T k)y(jw-j 

2ii k)
	 (6.3)1	 2	 MT k 2	 mT	 MT

where

	

1 (M = hl(jW)dl(e3WT) T E fl(jw-j T n)h2(jW-j T n)	 (6.4)
n

The multirate hybrid operator described by (6.3) has the same structure

as the single rate hybrid operator described by (2.51), except that the

hold h2 (jw) is replaced by C 1 (jw). It is precisely this similarity in

structure that allows the conic sector results to be extended from the

single to the multirate case.1

The following five part theorem is an extension of Theorems 3.1

to 3.4.

Theorem 6.1 Let K 
1 
K 
2 be the multirate hybrid operator of Figure

6.2. Assume that K 
1 
K 
2 

is L2e-stable. Let C be aaa LTI L2e-stable

operator, and let R and RI be LTI L 2e-stable operators.

1The same structure i:- found if the higher rate sampler is first. The
conjecture is made that the same structure will be found if the sample
rates form a ratio that can be expressed as a rational number.
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(a) K 
1 
K 
2 
is strictly inside cone (C,R) if

j r ( jw) l ?	
1 

1/2 
[r4 (W) + r3 (W) ) 1/2	 (6.5)

( 1-e)

for all w and some c > 0

where

r
4
 (W)_	 2 Id2	

k n
(e,

^)12 • JE 
I
	

MT k)f 2 (3w-3 MT n)121
(MT)

(6.6)

	

1	 21	 jWMT	 2Tr	
212r3 (W) = J

MT  
1(jw-j 

mT 
k)d2 (e	 ) f2(JW-] 

mT 
k)-c(jW-j mT k)

(6.7)

(b) The optimal center

c(s) = ar Cl ( s)d2 (esmT ) 
2(s )	 (6.8)

minimizes the lower bound for Ir(jw)4.

(c) The gain of the multirate hybrid operator is

1/2

	

1K1K2 II L =	
1 
2 E IC 1 ( jW-j ^ k)1

2]
	 Id2(e3	 )I•

2	 0<W<—
 Tr I (MT)	 k

- -MT

 I

	

EIf2(jW-j mT n)I21

1/2 1

	(6.9)

(n•
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•	 (d) The SLMRH feedback system of Figure 6.1 is closed loop stable

for G = G (i.e. for the nominal plant with no perturbation) if

a C and R exist such that

(i) K 
1 

K 2 is strictly inside cone (C,R)

(ii) G(I+CG` I is L2e-stable (i.e. the nominal analog system

is closed loop stable)

(iii) Irg(l+cg) -1 (jw)l < 1	 for all w	 (6.10)

(e) The SLMRH feedback system is closed loop stable for all pos-

sible G's if in addition to the three conditions of part (d)

the following condition is true:

(W) < I 1+c ('W) I - I r (jW)	 for all w.	 • (6.11)m	 cg(jW) + rg(jw)

The proof of Theorem 6.1 is similar to the proofs of Theorems 3.1

to 3.4. The following steps prove part (a) of Theorem 6.1 by showing

that the conic sector inequality (2.81) is satisfied for all input-

output pairs defined by K1K2.

(1) Define truncated function to convert from truncated to L2

function norm.

(2) Use Parseval's theorem to convert from time to frequency
domain.

(3) Use frequency domain inequality of Lemma 3.A.

(4) Use Parseval's theorem again to convert from frequency to
time domain.

(5) Convert from L 2 to truncated function norm.
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Part (b) is proved by showing that the optimal center (6.8) makes r3(w)=0

and therefore minimizes r4 (w) + r3 (W) of (6.5). The proof of part (c)

uses the center c(s)-0 to find an upperbound for the gain of K 
1 
K 2 and

then constructs an input signal that achieves the upperbound. Part (d)

is an application of Lemma 2.5 to show closed loop stability. Conditions

(ii) and (iii) of part (d) guarantee that -G I is outside cone (C,R).

If inequality (6.11) of part (e) is satisfied then all possible -GI's

are outside cone (C,R).

If Theorem 6.1 is used to analyze a SLMRH feedback system then the

nominal feedback system is analog and has the loop transfer function

c(s)g(s). Stability and robustness properties of the SLMRH feedback

system depend on the stability of the nominal feedback system. The

radius of the conic-sector is treated as an additive perturbation of

c(s) .

To reiterate, Theorem 6.1 has the following five parts:

(a) sufficient conditions for the existence of a cone that con-
tains K 

1 
K 
2

(b) an optimal center for the cone

(c) the gain of K 
1 
K 
2

(d) sufficient conditions for closed loop stability

(e) sufficient conditions for robust closed loop stability

The analysis techniques laid out in Theorem 6.1 represent a new approach

to the analysis of multirate hybrid feedback systems.

6.2.2 Existence of a Cone such that -( K 1 K 2 ) I is Outside of the Cone

The alternative to constructing a cone that contains K 
1 

K 2 is to

construct a cone such that -( K 1 K 2 ) I is outside of the cone. The best
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choice for the center of this cone is G, the nominal plant. It follows

from Lemma 2.2 that - ( K,K„) I is outside of cone (G,R) if an R can be

found such thatljR K 1K2 (I+G K1K2 ) I
I1
L < 1. The only restriction is
2

that the multirate hybrid operator K1K1 (I+G K 
1 

K 
2 ) 
I must be L2e-stable.

The multirate hybrid feedback system that has the closed loop

operator R K1K2 (I+G K 1K2 ) I is shown in Figure 6.3a. By breaking the

loop at point 1 and manipulating the block diagram the equivalent feed-

back system shown in Figure 6.3b is obtained. The feedback loop is

digital and operates at the slower sample period of mT seconds. The

multirate hybrid operator K1K2 (I+G K 
1 

K 2 ) I is L2e-stable if this digital

feedback loop is stable.

It is possible to obtain the z-transform cf the loop transfer func-

tion of Figure 6.3b by the frequency decomposition method, see [31) to

[34]. Define the z-transform of the discretized plant as gd (z). The

loop transfer function is d 2 (z)gd (z), and stability is checked by the

discrete Nyquist criterion, which uses a plot of d2(e3WMT)gd(ejWMT)

from w = 0 to -L
MT

It is not necessary to go to the considerable trouble of finding

the z-transform g d (z). It is computationally easier to obtain gd(z),

evaluated at z=ejT, by summing truncated versions of the following

infinite series:
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Figure 6.3a: Multirate hybrid feedback system with the

closed loop operator R K1K2 (I+G K 1 K 2 ) I

r,

mT
	

T

MT u u u u T u u
ro

Figure 6.3b: Transformed version of 6.3a
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jWMT	
mT
1	

2	 MT
27r

 MT	
27f
mT	

21;
gd (e	 )	 k	 (]W-J	 k)fl(3W-3	

k)h2(jw-3
	 k)	

(6.12)

where

2 ( jW) = I T E f2(jW-j T n)g(jw-j T n)hl(jW-j T n)1 dl(ejWT
l	 n	 JJ

(6.13)

Before constructing a cone that -(K 1K2 ) I is outside of, an input-

output description of the multirate operator K 1K2 (1+G K 
I 
K 2 ) I must be

found. Using Figure 6.36b and equation (6.4), (6.12), and (6.13) we

obtain

u(jW) ^l(jW)s^(e3^) _LE f2(jW-j mT k)y3(jW-j MT k)	
(6.14)

k

where

dct(ejwmT) = d2(1+gdd2)-1 (ejwmT)	 (6.15)

Equation (6.14) has the same form as the single rate hybrid com-

pensator of (2.51), which makes possible the following extension of

Theorems 3.6 and 3.7:

Theorem 6.2 Let K 
1 
K 
2 
be the multirate hybrid operator of Figure

6.2, let G be any LTI operator such that K 1K2 (I+G K IK2 ) I is L2e-stable,

and let R and R I be LT1 L 2e-stable operators.

•	 (a) -(K1K2 ) I i5 outside cone (G,R) if
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Ir(jw)I <	 l	 for all w	 (6.16)
r

where

r
9 (W)-	 1 2 [ EI &I(jw-j mT k) 1 2

1 

. Idc^(ejwmT)I2

(MT)	 k

	

i
n)

E ( f 2(jw-j mT 
	 12,	 (6.17)

n

(b) The multirate hybrid feedback system of Figure 5.1 is closed

loop stable for all possible G's if an r(jw) exists such that

(i) K1K2 (I+G K 
1 
K 2 ) I is L2e-stable

(ii) -(K1K2 ) I is outside cone (G,R)

(iii) tm (w) < Ig 
-lr

(jw)I	 for all w.	 • (6.18)

If -(K1K2 ) I is placed outside of a cone, then the nominal feedback

system is the SLMRH feedback system with the nominal plant G. The

stability of the nominal feedback system must be checked, which is done

by constructing an equivalent single rate hybrid feedback system. It

is not necessary to explicitly find a z-transform description of the

single rate system. Instead, stability can be checked with the use of

equations (6.12) and (6.13).

The center of the cone that -(K IK2 ) I is outside of is the nominal

plant G. Part (a) of Theorem 6.2 gives a radius for this cone. Part

(b) is a robustness result which gives sufficient conditions for all

possible perturbations of the niminal plant to praserve closed loop

stability.
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6.3 Multirate Example

This example is a continuation of the lead-lag compensator example of

Section 5.2. A second hybrid compensator, operating with twice the sample

period, is added in the feedback loop. Theorem 6.1 is used to construct

a cone that contains the multirate hybrid operator K 1 K2 and to determine

closed loop stability. Theorem 6.2 is then used to construct a cone such

that —(K1 K 2 ) I is outside of the cone and to determine a robustness margin.

This multirate example will appear to be similar to the single rate

example of Section 5.2. 1 Though somewhat repetitious, this highlights the

fact that conic sector analysis techniques are just as useful for multirate

as for single rate hybrid feedback systems.

The SLMRH Feedback System

A block diagram of the SLMRH feedback system is shown in Figure 6.1.

The transfer function of the nominal plant G is

g(s) -	
150	

(6.19)
_

(s+l)(s+3) 

and the hybrid compensator K 1 (in the forward loop) is a hybrid implemen-

tation of the analog compensator

(s+3)2
k(s) _

	

	 (6.20)
(s+.4)(s+22.5) 

The prefilter, sample period (T = .031416 seconds), digital computer

z-transform, and the hold are given in equation (E.3).

The components of the hybrid compensator K 2 (in the feedback loop) are

1

iSpecifically, Subsections 5.2.5 and 5.2.7
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shown below;

f 2 (B) 	 5 ^- (2nd order Butterworth with break at
s +35s*625	 25 rad/.sec)

2T = .062832 seconds (m = 2, T - 50 rad/sec)

d2 (z) - z+ 2 2 (digital lead compensator)	 (6.21)

-2sT
h
2 (s)= 

1_ s
	

(zero-order-hold)

In the single rate example a continuous estimate of the output signal

was available. Here the estimate is undated every 2T seconds and held

constant between updates. The prefilter f2 (s) smooths the signal (prevents

aliasingl. The digital computer serves the purpose of adding phase lead

around the crossover frequency to partially compensate for the phase lag

due to the prefilter and hold.1

A Cone that Contains K 1 K 2

The feedback loop is broken before and after the analog plant, where

the physical signals are analog, and the multirate hybrid operator K 
1 

K 
2

transforms the output signal y to the input signal u.

Part (a) of Theorem 6.1 is used to construct a cone that contains

K 
1 

K 2 . The optimal center is chosen:

c (s) = T E 1 
(s)d2 ( e

smT
) f2 (s)
	

(6,2.2)

lAt w = 7 rad/sec the prefilter f (s) decreases the phase by 23 0 , the held
h 22 (s) decrease3 the phase by 13 3 , and the computer d 2 W increases the
pTiase by 4 0 , The phase margin of the single rate system of Section 5.2
is 46• , here we expect it to be about 46-23-13+4 = 14 0 (it turns out to
be 11').
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where ^ 1 ( s) is defined by (6.1). In Fiqure 6.4 the magnitude and phas4-

Bode plots of cg(jw) and kq(jw) are compared. The magnitude of cg(jw)

drops off sharply at about 20 rad/sec and has the expected extra phasc

lag at the crossover frequency of 7 rad/sec (phase margin = 14°).

The radius is computed by (6.5) 1 and is shown in Figure 6.5a, The

multiplicative radius c -1 r(jw) is shown in Figure 6.5b and ib compared to

cg(jw). Over the bandwidth of the nominal analog system (w < 7 rad/ser)

the multiplicative radius is <.12.

Closed loop stability is determined by the three conditions of part

(d) of Theorem 6.1. Condition (i) is that K 1K2 is strictly insides cone

(C,R) which is true by the way that the cone was constructed, Condition

(ii) is that the nominal analog system is closed loop stable, which is

verifies' v; the Nyquist plot of cg(jw) in Figure 6.6a. Condition (iii) is

that

'-g(1 + cg) -1 (jw)I < 1	 for all w	 (6.23)

which is verified in Figure 6.6b. All *_hrc--- conditions are true, hence the

SI14RH feedback system is closed loop stable.

A Cone such that —( K 1 K.,; 
I 

is Outside of the Cone

The nominal feedback system differs depending on how the cone is applied„

when K1 K 2 is inside of a cone than the r.om:nal fecus2ack system is analog.

In this part of the exa° tile -(K I K2 ) I is outsi6e of a cone, and the

Because the optimal center wits chosen r3 (jw) = o. The infinite sum for
t l(jW ) was truncated at +30 terms, and the double infinite sun for r4(jw)
was truncated at +20 terms.
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nominal feedback system is the SU4RH feedback system with the nominal

plant G. Its stability is verified by the discrete Nyquist plot of d 2g d(z)

shown in Figure 6.7a. 1 From this plot we obtain the discrete phase margin

of 11°.

Part (a) of Theorem 6.2 is used to construct the cone. The center

is the nominal plant G, the radius is computed by (6.16), and the multipli-

cative radius q-1r(jW) is shown in Figure 6.7b. According to part (b) of

Theorem 6.2, the SLMRH feedback system remains stable for any g = g(1 + e )m

if

m(W) < Ig-1
 
r(jW)1	 for all W	 (6.24)

and if t (W) is constrained to be constant then
m

t (W) < a = .19	 for all W	 (6.25)
M

This constant corresponds to a phase undertainty up to 11 0 at any frequency

(see Subsection 2.2.7).

This completes the multirate example. The conic sector analysis techni-

ques of Theorem 6.1 and 6.2 have been used to determine closed loop stability

and a robustness margin.	 These conic sector techniques are applied just as

were the corresponding techniques developed in Chapter 3 for single rate

hybrid feedback systems.2

of course we already knew the SLMRH feedback system is closed loop stable
form part (d) of Theorem 6.1.

2The second hybrid compensator has not affected closed loop stability, but has
significantly decreased the robustness margins. A step response will exhibit
large overshoot. This desiqn is probably not acceptable, but can probably
be corrected by adjusting d 1 W and/or d2 (z) to obtain more phase lead
around the crossover frequency.
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7. SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Summary

The major result of this thesis (Theorem 3.2) is the determination

of a new conic sector which contains a stable hybrid operator. Every-

thing else in this thesis leads up to, ,proves, modifies, constructs,

demonstrates, and extends this basic result.

The mathematical preliminaries of Chapter 2 lead up to Theorem 3.2.

Sections 2.2 and 2.3 contain a review of multivariable (singular value)

analysis techniques for analog (CTLTI) and digital (DTLSI) feedback

systems. A hybrid system with a single synchronous sampler is defined

and its properties are discussed. In Section 2.4 a precise mathematical

framework is set up for a conic sector analysis of nonlinear time varying

feedback systems. In this general framework, conic sectors are used to

analyze closed loop stability, robustness properties, and steady state

response to commands. The conic sector analysis techniques are not useful

unless a specific conic sector can be found for the feedback system of

interest. In Section 2.5 specific conic sectors are determined (due to

Safonov [7,91) for analog (CTLTI) feedback systems and then used to

analyze closed loop stability and robustness properties.

Theorem 3.2 gives sufficient conditions for the existence of a new

conic sector which is specifically for use in analyzing hybrid feedback

systems. Part of Chapter 3 is used top rove this basic result. The

most important part of this proof is Lemma 3.A, which is a frequercy

domain inequality that applies to all possible input-output pairs of

signals of the hybrid operator.

The remainder of Chapter 3 (there are a total of 8 theorems) is

used to modify Theorem 3.2. The entire loop transfer operator (not just
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the hybrid operator) can be placed inside of a conic sector, but what-

ever is inside of a conic sector must be open loop stable. Theorem 3.2

is modified to remove this open loop stability res*riction, so that the

inverse of any hybrid operator (stable or unstable) can be placed outside

of a conic sector (Theorem 3.6). The conic sectors of Theorems 3.2 and

3.6 are used for analysis techniques for hybrid feedback systems (just

as for the general feedback system of Section 2.4) to analyze closed

loop stability, robustness with respect to modelling uncertainties,

and steady state response to command inputs.

The algorithms and numerical results presented in Chapter 4 are

used to construct the new conic sectors. The center is arbitrary,

though some are better than others, and there is not any difficulty in

computing it. The radius, however, can be difficult to compute, and

various ways to do so are presented and discussed.

The examples in Chapter 5 demonstrate the usefulness of the new

conic sector analysis techniques. In addition to the analysis techniques

mentioned above, the conic sectors are used to select the sample rate

and compare discretization techniques. In the one multivariable example,

the robustness results are shown to be conservative.

The material in Chapter 6 extends the conic sector results of

Chapter 3 to single loop multirate hybrid (SIMRH) feedback systems.

This is done by combining the two hybrid operators with different sample

rates into a multirate hybrid operator which has an input-output trans-

formation with a structure similar to a single .rate hybrid operator with

the slower of the two sample rates. Once this simila2 structure is

established then Theorems 3.1 to 3.7 are extended and then demonstrated

by an example.
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The mathematical development leading up to and proving the major

result (Theorem 3.2) is highlighted as being of interest to control

thereoticians. The rigorous justification for treating hybrid feedback

systems as analog feedback systems, and the specific analysis techniques

based on Theorem 3.2 and its modifications are highlighted as being of

interest to control practitioners.
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q►.2 Suggestions for Further Research

The idea of using conic sectors to analyze hybrid feedback systems

originated with Gunter Stein and is now about 3 years old. This thesis

has developed this idea to the point where it can now be said that conic

sector analysis techniques are constructive and useful for hybrid control

systems. Time and further developments are needed, however, if these

conic sector analysis techniques are to become generally accepted.

Removal of Open Loop Stability Restriction The major restriction

to the use of conic sectors that contain hybrid operators is that the

hybrid operator must be open loop stable. This restriction prevents the

use of some of the conic sector analysis techniques for important control

systems such as those with integral control action. while it is possible

to eliminate this open loop stability restriction by placing the inverse

of the hybrid operator outside of a conic sector, 1 it is still desirable

to be able to place both open loop stable and unstable hybrid operators

inside of conic sectors. The advantages of having the hybrid operator

inside of a conic sector are (1) the center of the conic sector can be

used as an analog (CTLTI) approximation of the hybrid operator, and

(2) the nominal feedback system is analog (and therefore one of the

sufficient conditions for hybrid closed loop stability is that the

nominal analog system is closed loop stable).

It is not clear how (or even if) this open loop stability restriction

This alternative is significant and leads to the important robustness
analysis technique of Theorem 3.7. The assumption of open loop stability
of the hybrid operator is replaced by an assumption that the nominal
hybrid feedback system (with the nominal plant) is closed loop stable.
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can be removed, This restriction can be traced back to the Small Gain

Theorem (see Subsection 2.4.4), which gives sufficient conditions for

closed loop stability, but requires that the relations that define the

feedback system be open loop stable.

One suggestion for removing the open loop stability restriction is

to define the conic sector using the gap metric [36, Section 4.2, and 371.

The basic idea behind the use of the gap metric is that there is some

exact information which must be known about an unstable system before it

can be stabilized. For analog (CTLTI) systems this exact information is

the number of open loop unstable s-plane poles. For hybrid systems this

exact information may be (it still remains to be shown) the number of

unstable s-plane poles (of the analog components) plus the number of

unstable z-plane poles (of the digital components).

Generalization of Conic Sector Techniques to Sector Techniques. A

conic sector is a special case of a sector (see Safonov [ 7 ])• It should

be possible to develop analysis techniques for hybrid systems based on

the use of sectors. If an operator (of any type) is placed inside of a

conic sector then the radius of the conic sector is.analogous to an

additive perturbation. Sectors, on the other hand, can be set up so

that parts of the sector are analogous to addition, multiplication,

subtraction, and division perturbations (see Lehtomaki [38, p. 86]).

Sectors can be used to analyze combination operators. If G 1 and G2

are inside of sectors then it is possible to find sectors that contain 

G1 +G2 , G1-G2 , G1G2 , and G 1G 2I . These types of operations are needed to

1Conic sectors can be used for addition, subtraction, and multiplication,
but the results are conservative.
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analyze complicated feedback systems with multiple loops (such as multi-

rate multiloop hybrid feedback systems). References for combining sectors

are by Safonov [7, 10).

Less Conservative Multivariable Robustness Results. The conic

sector analysis techniques developed in Chapter 3 are valid for both

SISO and multivariable hybrid feedback systems, but have been shown by

example to be conservative for multivariable systems. 1 This problem

with conservatism must be corrected. It may be just a matter of breaking

the feedback loop at a different point in order to analyze robustness,

but the details remain to be worked out.

Even for SISO systems the conic sector analysis techniques are

sensitive to where the feedback loop is broken (see Section 5.2). This

property is counter-intuitive (at least it is counter to our intuitions)

and needs to be better understood.

Synthesis Techniques The emphasis of this thesis has been on the

development of analysis techniques. What the community of control

system designers really need, however, are synthesis techniques.

Therefore, the development of conic sector synthesis techniques is an ill-

defined but necessary extension of this thesis.

In some sense the sonic sector analysis techniques developed in

this thesis can be considered synthesis techniques. They can be used

to compare alternative designs for hybrid compenstators, and they can be

used as part of an iterative design process (at each step of the

iteration "engineering judgement" must be used to make changes in the

1
In particular, the multivariable robustness technique of Theorem 3.7
is conservative if the singular values of the nominal plant are far
apart (see Subsection 5.4.4).
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design). In the examples it was shown how the gain of the hybrid

operator can be used to help select the prefilter, and it was shown how

the magnitude of the multiplicative radius as a fun:.tion of frequency

can be used to select the sample rate.

Ultimately, what conic sectors have to offer is a rigorous justifi-

cation for keeping the design of hybrid compensator in the analog domain.

The point of view is that the hybrid compensator is supposed to mimic an

analog compensator, and the extent to which it does not is a source of

error (i.e. a perturbation of the nominal analog comepnsator) which is

treated just as a perturbation of the nominal analog plant. Specific

algorithms for trans`orming an analog compensator into a prefilter,

sampler, digital computer, and hold should have the goal of keeping

the perturbation of the nominal analog compensator small relative to

the perturbations of the nominal analog plant.

Multirate Sampling Issues Chapter 6 is a preliminary extension

of conic sector analysis techniques to multirate hybrid feedback systems.

More work needs to be done in this area, specifically (1) extend the

results of Chapter 6 to multiloop and multirate hybrid feedback systems

and (2) relax the assumption that the sample rates form an integer ratio.

In Chapter 6 two single rate hybrid operators K  and K 2 were

combined to form a multirate hybrid operator K^K2 , and then a conic

se-t:,r was constructed that contains K1K2 . A different approach that

should be tried is to place the single rate hybrid o perators K1 and K2

into their own respective conic sectors, and then to combine the centers

and radii to form a conic sector of the multirate hybrid operator. To
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do so in a nonconservative way may require the use of sectors as opposed

to conic Rectors.

Asynchronous Sampling Issues One of the assumption; made throughout

this thesis is that the single rate hybrid compensator contains a synchronous

sampler.	 This assumption is not valid if the sample periods are

variable, random, or dependent on the dynamics of the plant. These

types of asynchronous samplers are rarely used, so there is little need

to develop conic sector analysis techniques to handle them. It is just

as well, because we do no g have any suggestions for how to do so. The

input-output transformation must be defined, and then the conic sector

inequality (2.81) must be shown to be valid for all possible input-

output pairs of signals. Unfortunately, there are no systematic ways

to determine conic sectors.

More common then asynchronous sampling is synchronous that skewed

sampling, which occurs when the computational delay is a fraction of a

sample period. This thesis has not explicitly addressed the issue of

skewed sampling, but the conic sectors of Chapters 3 and 6 can be

modified to account for skew by changing the hold transfer function from
-Tds

h(s) to h(s)e	 This is easier, for instance, then using modified

z-transforms for digital control systems.

Asynchronous sampling may o ,?cur in multiratc hybrid feedback systems,

especially if the clocks that control the sample intervals are not

synchronized. Typical behavior is that the sample times slowly drift

with respect to each other. The z-transform techniques developed for

multirate systems are difficult to apply to this prnbleir. Conic sectors

.or sectors) offer the following approach: each hybrid compensator is

E
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placed in its own conic sector, and then the conic sectors are combined

to form a conic sector of the composite operator. By treating each

hyl+rid compensator separately it should not matter whether or nut they

are synchronized.

Finite Wordlength Issues If the effects of finite word length of

the digital computer are included in the model of the hybrid compensator

then the model is a nonlinear time varying operator. In this thesis

the effects of finite word length are assumed to be neglicable, thereby

allowing the model to be a linear time varying operator. With the 16

and 32 bit microprocessors currently available it is indeed very safe

to assume that the effects of finite word length are neglicable.

Nevertheless, this is a problem that has received a lot of attention

in the digital control literature (see [4, Chapter 71 and [391). The

practical effects of finite word length are (1) truncation errors in

computing, (2) t:uncati.,n errors in stored parameter values, and (3)

limit cycles in the feedback loop.

A motivation for further reserach is to determine if conic sectors

are useful for the analysis of hybrid feedback systems when the finite

word length of the digital computer is taken into account. As mentioned

for asynchronous sampling there are not any systematic ways to determine

conic sectors, so we cannot offer any specific guidance. If such a conic

sector is found, however, then its center can be used as an analog

(CTLTI) approximation of the hybrid compensator; and then the errors

due to the finite word length can be bounded by the radius and treated

as a perturbation of the nominal compensator.

Conic sector analysis techniques were developed for nonlinear
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systems, so the fact that the effects of finite word length are nonlinear

does not exclude the use of conic sectors. Difficulties will probably be

encountered when the conic sector inequality (2.81) is checked for all

possible input-output pairs. Also, difficulties may be encountered because

the definition of stability must be changed so that limit cycles are not

considered unstable.

Even it a conic is found it may not be useful due to conservativeness
(as was the case for the first two conic sectors developed for line&C time

varying hybrid operators). The particular problem with the assumption of

finite word length is that input signals of very small amplitude may fall

below the first truncation la_vel and produce zero output. Linear operators

used for none centers and radii cannot distinguish between small and large

amplitudes, and therefore the radius will treat large amplitude signals

at any frequency as though their output was zero.

i
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