General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NB3-11807 =
(NASA-C2-109455) CUNIC SECTUR AuA;I_SIS CF . |
LYBRLD CCNIROL SYSTs#S Ph.D. lhezezzs" -
(Massachusetts Inst. ci Tech.) ESCL 098 unclas
HWC A12/8I AVl G3/63 01023 - :

September, 1982 . UDS-TH-1242 T

) 3

L R ok Bt s

Reseorch Supperted By:
Grant NGL-22-009-124
General Electric Corporate -

Research and Development Center

3 - |
X

¢

CONIC SECTOR ANALYSIS OF HYBRID CONTROL SYSTEMS

/
Peter Murray Thompson B

Laboratory for Information and Decision Systen:s
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

ke S P N TP

e aa w_'m._{iLA__A A L P SN OPUNTS SR Pt S i S % T



September, 1982 LIDS-TH-1242

CONIC SECTOR ANALYSIS OF HYBRID CONTROL SYSTEMS
by

Peter Murray Thompson

This report is based on the unaltered thesis of Peter Murray Thompson,
submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at the Massachusetts Institute of Technology in

. August 1982. The research was conducted at the M.I.T. Laboratory for
Information and Decision Systems, with support provided in part by the

NASA Ames and Langley Research Centers under Grant NGL-22-009-124 ard
the General Electric Corporate Research and Development Center.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139



CONIC SECTOR ANALYSIS OF HYBRID CONTROL SYSTEMS
by
Peter Murray Thompson

B.S.E.E., University of Virginia
(1977)

B.S. Applied Math, University of Virginia
(1977)

S.M., Massachusetts Institute of Technology
(1979)

E.E., Massachusetts Institute of Technology
(1980)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOCY

August 1982

(:) Massachusetts Institute of Technology 1982

Signature of Author
Department of Electrical Engineering
and Computer Science, August 13, 1982

4
Certified by.......... Y B g U ceseeencns e
‘ Gunter Stein
Thesis Co-Supervisor

Certified by..
Michael Athans
Thesis Co-Supervisor

Accepted Dy.......ciiiiiiiiiiiieiinans ceteae cereens et esseseseseesasatanenas
Arthur C. Smith
Chairman, Departmental Graduate Committee



e ol

CONIC SECTOR ANALYSIS OF HYBRID CONTROL SYSTEMS

by
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ABSTRACT

A hybrid control system contains an analog plant and a hybrid (or
sampled-data) compensator. In this thesis a new conic sector is determined
which is constructive and can be used to (1) determine closed loop stability,
(2) analyze robustness with respect to modelling uncertainties, (3) analyze
steady state response to commands, and (4) select the sample rate. The use
of conic sectors allows the designer to treat hybrid control systems as
though they were analog control systems. The center of the conic sector
can be used as a rigorous linear time invariant approximation of the hybrid
control system, and the radius places a bound on the errors of this
approximation. The hybrid feedback system can be multivariable, and the
sampler is assumea to be synchronous.

Algorithms to compute the conic sector are presented. Several ex-
amples demonstrate how the conic sector analysis techniques are applied.
Extensions to single loop multirate hybrid feedback systems are presented.
Further extensions are proposed for multiloop multirate hybrid feedback
system and for single rate systems with asynchroncus sampling.

Thesis Co-~Supervisor: Dr. Gunter Stein
Title: Adjunct Professor of Electrical Engineering
Thesis Co-Supervisor: Dr. Michael Athans

Title: Professor of Systems Science and Engineering
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1. INTRODUCTION
1.1 Motivation

Digital computers are commonly used to control analog systems.
Examples can be found across the spectrum of engineering disciplines -
chemical process control, automobile engine control, aerospace systems,
mass transit systems, electromechanical servomechanisms, and radar “racking
systems. Much of the technology has been pushed by the aerospace _industry
for use in aircraft, helicopters, missiles, and satellites. Digital
computers have gained wide acceptance because they are reliable, easily
reprogrammed, and not subject to drifts in parameter values. <Zontrol
algorithms can be implemented {such as gain scheduling) that are
difficult or impossible to implement using analog techniques. Of
primary concern to this thesis is the ability of digital computers to
mimic (over a certain frequency range) the behavior of analog compensators,
in spite of their "sampled-data™” nature.

The digital computer is embedded in a compensator that also contains
a prefilter, sampler, and hold. This collection of analog and digital
devices will be called a "hybrid compensator.” A feedback system that has an
analog plant controlled by a hybrid compensator is called a "hybrid
feedback system." A block diagram of a hybrid feedback system i. shown
in Figure 1.1. The multivariable analcg components are modelled as
Laplace transform matrices, and the multivariable digital computer is
modelled as a z-transform matrix.

Depending on where the feedback loop of Figure 1.1 is broken the
signal is either an analog signal (points 1 and 2) or a discrete

sequence {points 3 and 4). At the input and output of the plant the
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Figure 1.1; The hybrid feedback system.
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physical signals are analog. It is only internal to the hybrid com-
pensator that the physical signals are discrete sequences.

If the feedback loop is broken at points 1 or 2 then the transfor-
mation from these points to the output can be modelled by a continuous time
linear time varying (CTLTV) operator. This operator is difficult to
use for analysis techniques because it cannot be represented as a
transfer function.

A major simplificatior occurs if the feedback loop is broken at
points 3 or 4. Here the hybrid feedback system can be modelled by a
discrete time linear shift iavariant (DTLSI) operator, which in turn
can be represented by a z-transform.

The use of z-transforms has led to the development of most of the
analysis and design techniques in use today for hybrid feedback systems,
It must be recognized, however, that these techniques can only be
applied to points 3 and 4 in Figure 1.1. Whenever z-transform techniques
are used the inherent (often unstated) assumption is that good feedback
properties at points 3 and 4 (internal to the compensator) imply good
feedback properties at points 1 and 2 (where the compensator interfaces
with the real world). Whether or not this implication is valid depends
on the choice of prefilter, sample rate, and the nature of the hold
device. Numerous ad-hoc ways to make these choices have been developed
concurrently with the z-transform technigues in the sampled-data control
literature.

The difficult and important problem of analyzing a hybrid feedback
gsystem at points 1 and 2 of Figure 1.1 is the primary motivation of this

thesis:
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* Develop analysis techniques for hybrid feedback systems that
can be applied, and used constructively, where the signals
are analog.

The analysis techniques are divided into three categories:

) closed loop stability

. robustness with respect to plant uncertaintiesl
steady state response to commands:

They should apply to multivariable as well as single input single
output (SISO) hybrid feedback systems.

The major difficulty with the analysis at points 1 and 2 of
Figure 1.1 is that the differential equations that describe the hybrid
feedback system at these points are time varying. One way to lessen
this difficulty is to approximate the CTLTV system with a continuous
time linear time invariant (CTLTI) system. Hence the second motivation:

Develop rigcrous CTLTI approximations of the hybrid feedback
system.

The key word here is "rigorous". An approximation is rigorous if it
applies to all possible inputs and disturbances. It is well known that
for low frequency inputsa hybrid feedback system can be approximated by
a CTLTI system. This approximation is not rigorous, however, unless
it can be shown to be valid (in some sense) for all possible inputs.
The research motivated by the above requires a branch of system
theory that is general enough to be used for CTLTV systems and is able
to make use of CTLTI approximations. Such a branch of system theory
does exist ([5) to [9]). It was developed to analyze stability and
robustness properties of nonlinear time varying feedback systems.
One of the techniques is to represent a nonlinear time varying

device by a conic sector. A conic sector has a center and a radius.

1A feedback system is robust with respect to plant uncertainties if it

remains stable for all perturbations in a defined set of the plant.
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The center is an approximation of the device, and the radius isva
rigorous bound on the errors of this approximation (i.e. a bound that
is valid for all possible input-output pairs);

These very general conic sector techniques were Vnown to exist,
The conjecture was made (by Gunter Stein) that they are useful for the
analysis of hybrid feedback systems. Hence the third motivation:

Determine whether or not conic sector techniques are useful
for the analysis of hybkrid feedback systems, and if so,
develop these techniques and demonstrate their usefulness.
The full generality of these nonlinear conic sector techniques is not
needed because the hybrid feedback system is linear. The center of the

conic sector can be used as the CTLTI approximation of the CTLTV parts

of the hybrid feedback system.
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1.2 Literature Survey .

The background material for this thesis can be grouped into three i

cal.egories: lconventional analysis of digital or sampled-data control

systems, 2) conic sector analysis of nonlinear time varying feedback systems,
and 3) conic sector analysis of hybrid feedback systems. There are many
references in the first category, few in the second, and fewer in the

third. The third category is the subject of this thesis.

The conventional analysis of digital control systems uses zetransform
theory. The hybrid feedback system of Figure 1.1 is broken at points
3 and 4, and z~-transforms are used to analyze stability, robustness, and
performance, No attempt is made here to survey the extensive literature
on digital control. Much of this literature has descended from journale
into textbooks and is taught at the undergraduate level. A represen-
tative member of this set of textbooks (the one used the mwst for this
research) is the text by Pranklin and Powell [4]. The frequency domain
(z-transform) techniques presented in {4]) can be generalized to the
multivariable case by the use of singular value techniques, just as
has been done for analog systems [1, 2, 3].

The stability of nonlinear time varying systems is a classic problem
in system theory. Our interest in this problem dates back to the land-
mark papers of Zames [5, 6]. He showed how conic sectors can be used to
give sufficient conditions for closed loop stability of nonlinear time

. 1
varying systems.

1The landmark papers by Zames are very readable, but for further reference
see the textbook by Desoer and Vidyasagar [8}.
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The starting point for Zames' work is the Small Gain Theorxem,

which states that a system is closed loop stable if the loop gain

(appropriately defined) is less than one. Systems that satisfy this

condition are of limited practical use because good command following, i
disturbance rejection, and insensitivity to modelling errors requires a
loop gain much greater than one (most often at low frequencies). A
generalization which makes the Small Gain Theorem more useful is made

possible by the Loop Transformation Theorem, which states that a system

(call it System 1) can be transformed to another system (call it System
2) in such a way that :he stability of System 2 implies the stability
of System 1, Zames [5] was able to‘show that if System 1 satisfies
conic sector conditions then it can be transformed to another system
(System 2) which is stable by the Small Gain Theorem, thereby implying
stability of the original system (System 1).

Some important generalizations of Zames' work are due to Safonov
[7]. He generalized conic sectors so that the centers and radii can
be operators (instead of constant multipliers). In this thesis conic
sectors with centers and radii that are CTLTI operators are extensively
used.

Safonov [7] goes much further in his generalizations. He defines
the feedback system of Figure 1.2 that has two "relations" K and G.l
The closed loop system is stable if K and —GI (the inverse relation)
are "topologically separated." Conic sectors are one way to show this

topological separation. The closed loop system is stable if a conic

1A "relation" is any subset of a cross product space X x ¥, where X and

Y are extended normed linear spaces. %
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Figure 1.2: The feedback system defined by Safonov (7]
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sector can be found that K is strictly inside of and -GI is outside of.

Conic sector stability theory and Liapunov stability theory are
similar in that they are very general results which cannot easily be
applied to specific problemsl. The usefulness of Liapunov stability
theory depends on the determination of a specific Liapunov function.
Similarly, the usefulness of conic sector techniques depends on the
determination of a specific conic sector that is valid for the feedback
system of interest. No general guidelines exist that help the engineer
in his search for the "right" Liapunov function or conic sector.

The conjecture (or hope) of Stein was that a useful conic sector
could be found for hybrid feedvack systems; The first conic sector was
found by Kostovetsky [17, 18], who was one of Stein's S.M, students at
MIT. Kostovetsky concentrated on a particular type of hybrid compen-
sator, which he discovered and named the “optimal hybrid approximation."2
The center of the conic sector is the CTLTI compensator that the hybrid
compensator is closest to, and the radius is a nondynamic operator
(i.e. a constant multiplier). Both the analog and hybrid compensator
must be open loop stable. Kostovetsky demonstrated by an example that this
conic sector gives conservative sufficient conditions for closed loop
stability. Because this conic sector applies to only a very particular
type of hybrid compensator it is not a "useful" conic sector.

A second conic sector was found by Stein [18], which is a

1The similarity is no accident. Both conic sector and Liapunov stability
theory are special cases of the general results of Safonov [7]. For a
description of Liapunov stability theory see Willems [29],

2The "optimal hybrid approximation" is the hybrid compensator that is
optimally closest toa CTLTI compensator. "Optimal" is defined as mini-
mizing the mean square difference of the outputs of the CTLTI and hybrid
compensators when the input is white noise. The optimal hybrid approx-
imation turns out not to be practical because the prefilter, computer,
and hold all contain copies of the CTLTI compensator.



generalization of the first conic sector and 2xists for any stable
hybrid compensator. Any stable center can be used (poor choices result
in large radii), and the radius is again a nondynamic operator.

This second conic sector also proved not to be useful. The problem is
that the radius is a nondynamic operator, and any such radius results
in conservative sufficient conditions for closed loop stability. Hybrid
compensators behave like CTLTI compensators for low frequency inputs but
not for high frequency inputs. A nondynamic radius cannot distinguish
between low and high frequency inputs. Because it must be valid for all
inputs it will too large for low frequency inputs, which in turn results
in conservative sufficient conditions for closed loop stability,

Thus began the author's search for a conic sector with a dynamic
radius (i.e. a radius that is an CTLTI operator). The search lasted
for the better part of a year, and ended with the results presented in

this thesis. Preliminary versions of these result have been presented

in [18] and [30].
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1.3 Contribu?toqg_of Thesis

Thi- thesis brings together two disjoint areas of control theory -

conventional analysis of digital or sampled-data feedback systems, and

conic sector analysis of nonlinear time varying feedback systems. The

objective is to determine if conic sectors are useful for the analysis

of hybrid feedback systems.1 The conclusion is yes, with some restric-

tions, they are useful.

The major results are:

The new

Proof of the existence of a new conic sector which contains
a stable hybrid operator.

A modification of this new conic sector to create a conic
sector that the inverse of a hybrid operator (stable or
unstable) is outside of.

Development of analysis techniques based on these new conic
sectors. Those pertaining to robustness form a unified

approach to the analysis of robustness properties of hybrid
feedback systems,

Development of algorithms to compute the center and radius of
the new conic sectors,

Demonstration that the new conic sector analysis techniqries
are useful for the analysis of practical hybrid feedback
systems, including the selection of the sampling rate,

Extension of the conic sector reﬁults to single loop multirate
hybrid (SLMRH) feedback systems.

conic sectors are more useful than previous versions (17, 18]

because the radii of the new conic sectors are CTLTI operators and there~

fore can be represented by Fourier transforms, thus avoiding the inherent

1The hybrid feedback system may be SISO or multivariable and has

a single

hybrid compensator with a synchronous sampler.

2The SLMRH feedback system considered in this thesis (Chapter 6) is SISO
and has two hybrid compensators in the same loop. The samplers are
synchronized and have sampled rates that form an integer ratio.
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conservativeness of conic sectors with radii that are congtant
multipliers.

The results of this thesis are of interest to both control theoret-
icians and practitioners. The theoreticians will probably be interested
in the abstract properties of conic sectors (reviewsd here), the exis-
tence of specific conic sectors for hybrid operators, the method of proving
their validity, the gain of the hybrid cvperator, the signals that achieve
the gain, the restrictions on the use of conic sectors, and so on. Care
has been taken _> rigorously develop the mathematical background. The
new results are stated as theorems and proved.

Control practitioners are probably more interested in the new analysis
techniques - what they do, when they can be used, how they are imple-
mented, whether or not they are conservative, and whether or not they
offer anything that can't already be done some other way. This thesis
addresses each of these issues. The following results are highlighted
u1s being of particular interest to practitioners: (1) the ability to
rigorously approximate a hybrid feedback system by an analog feedback
system, (2) robustness analysis technigques for single and multiiesie
hybrid feedback systems that make direct use of the analog perturbation
of the nominal plant (Theorem 3.7), and (3) the use of the conic sector
radius to help select the sample rate. Both theoreticians and practitioners
should be interested in the numerical examples, which complement and help

to explain the theoretical results.
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1.4 Summary of Thesis

The material in this thesis is organized as follows:
Chapter 2; Preliminary mathematics
Chapter 3: New conic sectors for hybrid compensators

Chapter 4; Algorithms to compute the radius of the new conic
sectors

Chapter 5: Examples of the use of conic sector analysis techniques

Chapter 6: Multirate sampling issues

Chapter 7: Summary and extensions
Each of these chapters is now summari:ed.

Chapter 2 The mathematical review begins in Section 2,2 with
analysis techniques for multivariable CTLTI feedback systems, The
use of the loop transfer function and singular values is stressed. Plant
uncertainties are modelled as additive or multiplicative perturbations
that are bounded in magnitude. The relationship between multiplicative
perturbations, phase margins, and gain margins is discussed. The goal
(not fully realized) of conic sectors analysis techniques is to emulate
these powerful multivariable techniques recently Jevelcped for CTLTI
feedback systems.

The emphasis of Section 2.3 is on the conventional analysis of
hybrié feedback systems. The structure of the hybrid compensator is
described, and it is shown that the CTLTV input-output transformation
can be modelled by time and frequency domain methods. The z~transform
analysis techniques are presented for multivariable systems using sinqu-
lar values. Discretizing analog perturbations of the nominal plant is
discussed.

The difficult transition is then made to conic sector analysis

techniques for general (i.e. nonlinear time varying) feedback systems.
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The level of presentation in Section 2.4 is more mathematically precise.
Definitions are given for relations, operators, gain, stability, and
conic sectors, The sufficient conditions for closed loop stability are
fully devnloped. Preliminary work by Stein [18) on using conic sectors
to analyze gommand response is presented.

As a breather before moving on to the new results, in Section 2.5
it is shown how conic sectors are applied to maltivariable CTLTI feedback
systems. Results due to Safonov [9] are presented that prove the exis-
tence of conic sectors for analog plants which have bounded additive or
multiplicative perturbations.

Chapter 3 The major theoretical result of this thesis is the
proof of existence of a new conic sector which contains a stable hybrid
operator.l The moxi" Jdifficult step of this proof is a frequency domain
ineyuality (Lemma 3.A) which makes use of Lebesque Dominated Convurgencez
and the Cauchy-Schwartz inequality. Theorem 3.2 is modified to show
(1) :he existence of a conic sector that contains the loop transfer
operator and (2) the existence of a conic sector that the inverse hybrid
operator is outside of (Theorem 3.6).

Chapter 3 contains 8 tiicorems, which form the basis for the
following conic sector analysis techniques:

* An upperbound on the gain of a hybrid operator. For SISO
hybrid operators the upperbound equals the gain (Theorem 3.1)

* Sufficient conditions for closed loop stability (Theorem 3.3)

A —

lThe hybrid compensator is modelled mathematically as & hyw. id operator.

zshankar Sastxy and Marcel F, Coderch pointed out the need to check the
conditions of Lebesque Dominated Convergence and helped to do so,

A i a0

i LY it
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* sufficient conditions for robust closed loop stability, i.e.
closed loop stability for all perturbations in a defined
set of the nominal plant (Thecrems 3.4, 3.5, and 3.7)

* An upperbound for the steady state error of a hybrid feedback
system (Theorem 3.8)

A distinction is made as to whether the hybrid operator is inside
of or ou*tside of a conic sector. The inside conic sector techniques
(Theorems 3.1 to 3.5) have the major restriction that the hybrid
operator must be oper. loop stable. The outside conic sector techniques
(Theofem 3.6 and 3.7) are less restrictive because .they only require
that the -hybrid feedback system is closed loop stable (which can be

determined by z-transform techniques).

when the hybrid operator is placed inside of a conic sector then
Theorems 3.4 and 3.5 form a unified approach to the analysis of robustness,
Both the hybrid compensator and the actual plant are approximated by
CTLTI operators (centers of conic sectors), and the respective errors
of these approximations are modelled by bounded perturbations (radii
of conic sectors). The point of view taken is that a hybrid compensator
is supposed to mimic a CTLTI compensator. The ex:ent to which it does
not is a sour : of error. By comparing the sizes of the radii as a
function of frequency the errors due to the use of a hybrid compensator
can be compared to the errors due to uncertainties of the plant (unmodelled
higher order dynamics, time delays, and so on).

Chapter 4 Conic sectors would not be useful if it was not possible

. 1 e
“0 compute the radius. The most difficult parts of computing the radius

1 . .
Computing the center is no problem because any center’ can be used,
although some centers are better than others,
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are the summing of infinite and double infinite series of Fourier
transforms (each term shifted in frequency). Three ways to compute

the radius are

* sum a finite number of terms of single infinite series (the
double infinite series can be broken down into several single
infinit= series).

* Sum a finite number of terms of the double infinite series.

* Find an exact analytical solution to the single infinite series.

These approaches are discussed and compared. Bounds are placed on the
remainders of the truncated infinite series. Several cases where exact
analytical solutions can be found are presented. In the examples the
second approach is used,

Chapter 5 The conic sector analysis techniques are demonstrated
in the examples of Chapter 5. They are shown to work well for SISO
hybrid feedback systems but to be conservative for multivariable hybrid
feedback systems. More work is needed to remove this conservativeness.

Section 5.2 contains an extensive example of a SISO hybrid feedback
system. A lead-lag compensator is designed for a stable 2nd order plant
using classical control techniques, and then the analog compensator is

discretized to form the digital computer part of the hybrid compensator.

Each of the 8 theorems of Chapter 3 are used to analyze the hybrid feedback

system. In addition, the size of the radius (as a function of frequency)
is used as a measure to

¢ select sample rates

¢ compare discretization techniques

* compare different types of errors (due to the use of a hybrid
compensator and due to time delays in the plant)

o Rl T TR R T RN

[
ek s TRt e
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A control problem with an integral compensator is presented in
Section 5.3, The hybrid operator cannot be placed inside of a conic sector,
but the inverse hybrid operator can be placed outside of a conic sector,
which is then used to analyze robustness.

Section 5.4 contains a SISO and multivariable version of a hybrid
feedback system for controlling motion in the pitch axis of a high
performance aircraft. The analog compensators are designed using linear
quadratic Guassian (LQG) techniques, and then the analog compensators
are discretized to form hybrid compensators. The conic sector analysis
techniques must be slightly modified when the loop transfer operator
is placed inside of a conic sector to account for the fact that the
plant is open loop unstable. The multivariable hybrid operator is
pPlaced outside of a cone, which is shown to result in a conservative
robustness margin,

Chapter 6 extends the conic sector results of Chapter 3 to the
single loop multirate hybrid (SLMRH) feedback system of Figure 6.1.
These extensions are useful for a limited class of feedback systems,
and should be considered preliminary results for the more general and
more important problem of analyzing multiloop multirate hybrid feedback
systems.

The new conic sectors are based on a frequency domain description
of the input-output transformation of the cascaded hybrid compensators.
The key observation is that the frequency domain description (6.3) has
a similar structure to the description (2.51) of a single rate hybrid
compensator operating at the slower of the sample rates. The etails
are presented in Section 6.2, An example is presented in Section 6.3.

Chapter 7 -ontains a sum.ary and suggestions for future research.
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In the summary the entire thesis is described as revolving around the
major result of Theorem 3.2. The suggested topics for future research
are:

* Removal of open loop stability restriction

* Generalization of conic sector techniques to sector techniques

*« Less conservative miltivariable robustness margins

* Synthesis techniques

* Multirate sampling issues

* Asynchronous sampling is sues

s Finite wordlength issues.
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2. MATHEMATICAL PRELIMINARIES

2.1 Introduction
The background material for this thesis is reviewed in this chapter.
The starting point is in Section 2.2, where a set of results are presented
about multivariable analog linear time invariant (LTI) feedback systems.
The emphasis is on analysis techniques to determine closed loop stability,
command response, and robu:itness with respect to modelling uncertainties.
The results presented in Section 2.3 are from the conventional
analysis of multivariable hybrid feedback systems. The components of the
hybrid compensator are described, and then it is shown how to use
z-tranforms to determine closed loop stability, command response, and
robustness.
A much more general feedback theory is presented in Section 2.4.
The components cf the feedback system are modelled as "operators” and
"relations." Closed loop stability, command response, and robustness
are analyzed with "conic sectors." These analysis techniques are
general enough to apply to both analog and hybrid feedback systems.
Section 2.5 reviews how conic sectors are used to ahalyze analog feed-
back systems. The contribution of this thesis is to use conic sectors to

analyze hybrid feedback systems, which is done in Chapter 3.

The general feedback theory is presented in a rigorous fashion.
Starting from a set of definitions, the major results are presented in
a series of lemmas. When it is felt to be necessary the proofs are
included in the appendix to Chapter 2. An attempt is made to keep the
presentation at the minimum required level of generality. This is

consistent with the main thrust of this thesis, which is to apply a



ORIGINAL PAGE IS
OF POOR QUALITY

-32~
general fe -dbag:k theory to a specific problem.

The reader is assumed to be familiar with Laplace and z-transform
theory, state space techniques, and single-~input single-outpat (ST8$0)
analog and digital control. The use of the loop transfer function and
the return difference eguation for the analysis of feedback systems is
stressed. Students of control theory will probably have had exposure
to these subjects by the end of their undergraduate curriculum.

The reader is assumed to be less familiar with the use of singular
values for the analysis of multivariable control systems, and even less
familiar with general feedback theory. Some exposure to the theory of
Hilbert Spaces will be helpful for an understanding of the general
feedback theory.

There are numerous well-written journal articles and textbooks that
can be used for further reference. The use of singular values for the
analysis and design of multivariable analog feedback systems is explained
in (1, 2, 3]. The analysis and design of SISO digital feedback systema
is explained in {4]. Conic sector analysis of general feedback systems
is explained in [S] to (9].

2.1.1 Notation

R, ¢°, ™™, ¢™® -+ finite dimensional real and complex Euclidean
spaces

L."” = n-dimensional gpace of square integrable functions
L." = extended LG space
L_ = space of infinite dimensional vectors

R, = real numbers > o
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Ae C™™ = matrix (underlined capital Roman letters)

a, ae ¢" = vector (underlined small Roman and Greek letters)
a, ae C" = scalar (small Roman and Greek letters)

A€ ng x f;e = relation or operator (capital script letters)
a € L." = function (small Romanletters underlined by a tilda)

~ 2e

A= matrix inverse

QT, gT = matrix and vector transpose
H H . < a2

A, a = matrix and vector Hermitian (complex conjugate transpose)
I

A” = inverse of relation or operator

||§ ”E = Euclidean vector norm

ll§ ” = matrix norm, induced by Euclidean vector norms
|| a ”L = L2 function norm

T2
llfllT = truncated function norm

||A||L = operator norm, induced by functions norms
2

omin [A] = minimum singular value of A
o) [A] = maximum singular value of A
max - -

Associated with each LTI operator A (or with each a € L2:):
A(s) = Laplace transform
A(jw) = vaplace transform evaluated at s = jw

A(t) = inverse Laplace transform, impulse response

A(nT) = sampled version of A(t)

A(z) = z-transform of A(nT)
1 2n
. - — - 3 — =
A* (s) - i A (s-3 T k) A(z) 8T
z=e
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The following notational abbreviations are used:

F = P - ~jmﬁk) (subscript k gometimes replaced by n)
. J

I(s) = L (*)

k k==

L -
L(,=1 (*)
n#k Nz =0

n¥k
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2.2 Analysis of Analog Feedback Systems

2.2.1 The Analog Feedback System

The analog feedback system is shown in Pigure 2.1. The plant and
compensator are multivariable LTI systems with Laplace transform matrices
G(s) and K(s). The output y(s) and the error e(s) are related to the

command input r(s) by

y(s) = GK (I + GR) T £(s) (2.1)

e(s) = (I+6KT £(s) (2.2)

Analysis techniques repeatedly use the loop transfer function and
the return difference equation, this due to the fact that closed loop
properties can be determined by how signals propagate around the loop.
For multivariable systems the loop transfer function differs depending
on where the loop is broken. Natural places are where signals enter
the loop, such as points (1) and (2) of Figure 2.1. Most of the atten-
tion in this thesis is focussed on point (1), where the loop transfer

function is
?1(3) = G(s) K(s) (2.3)

and the return difference equation is I + Il(s).

2.2.2 Plant Uncertainty

The Laplace transform matrix G(s) is a mathematical model of a
real system. The model will always be inexact, for many reasons
including:

* inaccurately measured or slowly time-varying parameters

* unknown or purposely neglected high frequency dynamics (such as
bending modes of mechanical systems)
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K(s) —5t—
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Compensator

G(s)

!(s)

Plant

Figure 2.1:

The analog feedback system
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* neglected time delays (far away right half plane zeros)

* changes in the operating point about which a nonlinear model
is linearized

The actual plant is assumed to be g(s), which is related to G(s) by

the additive perturbation
G(s) = G(s) + E_(s) (2.4)

It is assumed that Q(s) and G(s) have the same number of unstable poles,
which will definitely occur if §a(s) is stable and may occur if Ea(s)

is unstable,

The only other information known about ga(s) is the following

constraint on its magnitude:
< 2,
Gmax [ga(jm)] la(m) for all w (2.5)

The symbol "Gmaxlga(jm)]" indicates the maximum singular value of
Ea(jw), as defined and discussed in the next subsection. Uncertainties

that are bounded in magnitude, such as §a(jw), are called "unstructured"

uncertainties.

It is also possible to characterize plant uncertainty by the

multiplicative perturbation:
G(s) = G(s) IT + B (s)] (2.6)

It is assumed that §(s) and G(s) have the same number of open loop

unstable poles. The only other information known about gm(s) is

a [E (jw)) < £ (w) for all w (2.7)
max -m m

The two types of perturbations are related by

E (s) = G(s) E (s) (2.8)
-a
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and their bounds are related by
La(w) < Foax (G (jw)] lm(w) (2.9)

Whether the additive or multiplicative perturbation is used is often
a matter £ convenience, and results using one type of perturbation
can usually be expressed using the other. The additive perturbation
is more suited to conic sector analysis, whereas the multiplicative
perturbation is more natural to use for an analysis of phase and gain
margins,

Analysis techniques usually assume that the compensator Laplace
transform matrix K(s) is exactly known- the reason being that it would
be foolish to build an uncertain compensator. Nevertheless, if any
perturbations exist they can be combined with the plant perturbations
to create a perturbation of the loop transfer function. For example,

if the actual plant and compensator are
G(s) = G(s) + E_(s) (2.10)
K(s) = K{s) + E a(8) (2.11)

then the actual loop transfer function is

Tl(s) = §(s) K(s) = G(s) K(s) + E,__(s) (2.12)
- A 28l 2 ta

where

E, _(8) = G(s) E
a - -

E, xa's) + E (s) K(s) + E (s} E_ (s) (2.13)

Omax |Ega (390 € 0 o [G(jw)] Lka(m) + ta(w)'omaxlg(Jw)]

+ L4 (@ L () (2.14)
a ka

BT ——
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More sophisticated (less conservative) techniques f¢«.r combining pertur-
bations are given by Safonov [(10] and Doyle (11].

2,2.3 Singular Values

The singular values of a matrix A € C™™ are defined as:

o, m a0, @1t fori=1,...m (2.15)

The no*ation Xi(') indicates eigenvalue. Cf the many properties of
singular values, the cnes that used in this thesis are listed in Table
2.1, For further reference see [12].

Singular values are uced to determine the gain of a matrix. Suppose
the matrix A is multiplied by the vector x. The gain of A in the
direction x is the ratio of the Euclidean vector norms1 ||§§ l‘E""*“ B
The maximum gain is Umax(b)' which by property 2 of Table 1 is equal to
the induced vector nomrm |]§|L The minimum gain is cmin(b)' If a square

matrix A has ¢ . (R)
- min -

o then the matrix is singular and cannot be
inverted.
Sinqular values can be used to give a quantitative measure of the

"size" of a matrixz. The matrix A is "large"” if omin(A) >> 1, aad

1 The Euclidean vector norm is defined

n 1/2
e lly & [151 |xi|2]

where xi for i = 1,...,n are the elements of the vector X.

2 The number "1" is used for comparison because the return difference
equation has the form I + A. Important properties (ased for performance
analysis) are that Op;,. (I + A) = 0O in({_\) if omin(é) >> 1 and that

= i << .
qmax(g + A) 1if O ax (B) 1




(1)

(2)

(3;

(4)

(5)

(6)

(7

(8)

(9)

(10;

o @ lxll, < laell, <o llxl
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Gi is real and nonnegative, for i = 1,...,n (the oi's are ordered
from maximum to minimum, with o, = Umax and on = omin)
llax ||
o @ = lall= max  —E- - omax g
Hxll <o Mxll . Nxl =
llax ||
Opin @) = = min ~= B . nax | ax ”E
Ixli<e Hxll,  Hxll, =1

Xllg for all “ﬁ\lg <=

-1 . -1 .
(A + E) exists if A = exists and © (E) < 0o (A)
A = - max - min -

(Triangle inequality): nmax(é + E) < Omax(g) + Umax(g)

(Fant's Theorem [40]): Ui(g + E) < 01(5) + Omax(g) for i =1,...,n

(Properties 9 and 10 are consequences of Fan's Theorem)

0,(A) ~1 <o (A+7]) <0.(A) +1 for i=l,...,n

g . (A+E) >0 . ‘A) - o _ (E)
min'= =" - "min’- max -

Table 2.1:; Properties of singular values
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"small" if © (A) << 1.
max -
Singular values can be computed by stable and reliable algorithms
that are easily available well tested, and well documented [13].
Many of the analysis techniques for multivariable systems use
singular values. Readers unfamiliar with singular values should note

that for complex scalars:

[|all = omax(a) = Gmin(a) = |a| (2.16)

When working with SISO systems most of the singular value results can
be replace’ with absolute values.

2.2.4 Command Response

Specifications for control systems often include a constraint on
how well the output y(t) follows certain types of inputs r(t). Such
specifications can be stated as constraints on the singular values of the
loop transfer function. Specifications for disturbance rejection and
sensor noise attenuation can also be stated as constraints on singular

values. In this thesis, however, only the command response will be

analyzed.l

Consider the set of commands that have energy only in the fre-

quency range <w<w The response to these commands will be

1

Specifications for command response (which usually take the form of
high gain at low frequency) are the same as specifications for the
attenuation of disturbances that are added to the output. Therefore,
results for command response can be restated as results for disturbance
rejection bv replacing r(t) by r(t) - d(t). Specifications for sensor
noise attenuation must be treated differently (low gain at high
frequercy). For a good treatment of the various performance specifi-
cations see [1}.




~42-
ORIGINAL PAGE IS
OF POOR QUALITY

good if over this frequency range:@
y(jw) = r(jw)
<= e(jw) = o
. -1
<= [I+ GK(jw)] o [by (2.2)]
. -1
<= 0 (I +GR(GW] = << 1
<= o . [I+GK(jw)l > 1 (property 5, Table 2.1)

<= Opin [GK(jw)]1 >> 1 (property 2, Table 2.1) (2.17)

Hence, a specification for command response can be stated

Opin [SRGIWI] > plw) for w < @ <@ (2.18)

1

For example, if the command is the step function r(t) = a for t > o

then the steady state error is

e(t) = I + gl_((jo)]-1 a=b>b (2.19)

The relative error, expressed as a ratioc of vector norms, has the
upper bound
b
el

-1 1 !
< Opax (X +EK) 1 =516 plo)
lall, min = © 2=

(2.20)

where it is assumed that p(o) >> 1.
The command response specification must be satisfied not just for
the nominal plant, but also for every possible perturbation of the

nominal plant. This is guaranteed by i.creasing the lower bound of
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equation (2.18)1:

p(w)
1- [a(w)/omaxlg(:)m) ]

c n[§§(jw)] > (2.21)

mi

Therefore, if the additive perturbation.la(m)is 10% the size of

(o] [G(jw)] then command response specification must be increased by
max.-—

about 10%,
2.2.5 Stability

It is important to krow whether or not the closed loop system is
stable, This is relot:vely easy to check for analog feedback systems.
In fact some desig:' .ethods, such as the linear quadratic Gaussian
method [Athans, 14], yuarantee closed loop stability (under mild
assumptionr).

The closed loop system is stable if all of the closed loop poles
are in the left half plane (i.e. Re(si) < o for all closed loop poles
si). It is easiest to check this condition if a state space description
is known for G(s) K(s). 1In this case the closed loop poles are the
eigenvalues of the closed loop system matrix.

It is not always feasible to compute the closed loop poles. This
is the case when G(s) K(s) contains polynominals of very high order or
when they contain infinite dimensional terms such as the pure time
delay e-ST. For these cases a better way to check closed loop stability
is to use the multivariable Nyquist theorem. This is due to Rosenbrock
[15]. A nice statement of the theorem is given by Lehtomaki [3].

Basically, this is applied by plotting the imaginary versus the real

It is assumed thatf ( )< o [G(jw)] and that 0 . [GK(jw)] >> 1.
see [1]. a max = min ==
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part of -1 + detlI + GK(jw)] (as w varies) and counting the mumber of
encirclements of the -1 point.
2.2.6 Robustness

It is not enough just to know whether or not the closed loop system
is stable. If it is stable it must also be known how close it is to
becoming unstable. This is the subject of stability-robustness (often
referred to just as robustness). The closed loop system must be stable
for all possible perturbations of the nominal plant G(s), in other
words for all possible &(s) of equation (2.6). Sufficient conditions
for this to be true have been derived by Doyle, Stein, Lehtomaki, and
others [1, 2, 3].

The sufficient conditions for robust stability have two parts.
The first is that the nominal plant G(s) must result in closed loop
stability. This condition is called "nominal closed loop stability.”
The second condition can be expressed as a constraint on the maximum

singular value of the multiplicative perturbation:

_1_
Omax [§m§§ (I +6K) "(jw] <1 for all @

< o [E G0 <o (14 (@ (W] forallow (2.22)
Most people find the nominal closed loop stability condition to be entirely
reasonable and the singular value inequality to be somewhat less that in-
tuitive. The basic idea of the second condition is that it guarantees that
the return difference equation I+ éE(jw) remains invertible for all poss-
ible G's in the set defined by Enﬂ

There are a plethora of other ways to express the robustness

results. For example, if the additive perturbation is used, the
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singular value inequality changes to:

-1 .
Opax [E,K (I+GK) "(3w] <1 for all w

. -1 . ,
<= O [E,Gw] <o . [K“(jw) +G(jw] for all @ (2.23)

It is not always obvious which of the various results is best to use,
For a method to derive these results and for some guidance on which to

use see Lehtomaki [3].

2,2.7 Phase and Gain Margins

These terms have been handed down to us from classical control
theory and are used to characterize the uncertainty of SISO plants.

Let the nominal and actual SISO plants be related by
g(s) = g(s) e(s) (2.24)

To verify a phase margin specification let e(s) = ej¢. If the closed
loop system is stable for all §(s) such that |¢| < 45° then the closed
loop system has a phase margin of 45°. Similarly, to verify a gain
margin specification let e(s) = £. If the closed loop system is stable
for all g(s) such that tl <L < 12 then it has a gain margin of [ll, 12].
The gain margin is usually expressed in terms of decibels: [20 loglo(ll),
20 log, (£ )].

Phase and gain margins can be expressed as multiplicative per-

turbations, For SISO plants the multiplicative perturbation 1is

g(s) = g(s) [1 + e (s)] (2.25)

which is related to e(s) by

em(s) = efs) -1 (2.26)
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A phase margin specification of 45° corresponds to the following bound

on the multiplicative perturbation:

|em(jm)| < 1e3%%° 4] - L w = .77 (2.27)
Thus, if the closed loop system is nominally stable and if

1+ @0 TG0 ] > .77 for all o (2.28)

then the closed loop system has at least a 45° phase margin.

The correspondence can be turned around. Suppose that

ll + (gk)'l(jm)l > Lm(m) =0 for all w (2.29)

Then the closed loop system has the following guarantee81:

2
guaranteed phasc wzrgin = t arccoz (1 ~ Q%ﬂ

1 1 : (2.30)

guaranteed gain margin = IEIE ' 1o
These are guarantees - the actual margins may be better.

The phase and gain margins cannot be simultaneously achieved. They
indicate robustness with respect to pure phase or pure gain perturbations.
It is possible, however, to analyze robustness with respect to simultaneous
phase and gain changes {16]. Let e(s) = lej¢, aad then find regions in
the 20 loglo(l) x ¢ space where |£ej¢ -1| < a. These regions are plotted
in Figure 2.2. Suppose that o = .8. Then any combination of £ and ¢

inside of the ellipse marked a = .8 will not affect closed loop stability.

1 This is shown by finding ¢ such that |e3¢-1| < o and by finding £
such that |£-1]| < a.
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The guaranteed phase and gain margins lie on the boundary of the ellipse.
Phase and gain margins can be generalized to multivariable systems

[7, 3]. This is done by inserting the diagonal perturbation
£(5) = diag {ai(s)} (2.31)

In which case, if

-1
Oyn [T+ @07 (W) <a (2.32)

then the Ei's can simultaneogsly undergo phase and gain changes as
indicated in Figure 2.2.

The generalizations of phase and cain margins are sometimes subject
to misinterpretation. The danger lies in restricting attention to diagonal
perturbations. The closed loop system may be very robust with respect to
diagonal perturbations, but sensitive to off diagonal perturbations.
When this happens thena of (2.32) will be small, leading to conservative

guarantees for perturbations that are restricted to be diagonal.

Tt s Y B o e
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2,3 Conventional Analysis of Hyhrid Feedback Systems

2.3.1 The Hybrid Compensator

A hybrid compensator consists of a prefilter, ..mpler, digital
computer, and hold. A block diagram is shown in Figqure 2.3. The word
"hybrid" emphasgsizes that the compensator has both analog and digital
parts. Both the input and output are analog signals, so from an input-
output point of view the hybrid compensator is an analog device., In-
ternally the signals are represented by discrete sequences, so from
this poirt of view the hybrid compensator is a digital device.

It is the sampler that converts an analog signal into a digital
sequence, and it is the sampler that complicates the analysis of hybrid
feedback systems. Associated with the sampler are the signals gd(t) R
gd(nT). eq*(t), and their respective transforms gd(s), eq(z), and
gd*(s). We show below how they are related.

The input to the sampler is the analog signal gd(t). The sampler
ig periodic and outputs a sample every T seconds, so the output is the
discrete sequence gd(nT). Another way to represent the output is the

input multiplied by a train of impulses:

gd*(t) = ()8 (t-nT) (2.33)

ey
n

where 6(t) is an impulse at time t=0. The following identities are

well known, and are derived in [4]:

o
»
—
U
~
1l

. 2n
-jw T (2.34)

n), where ws =

o
A:\
“

s

(4]
»
o~
n
~
1}
(1]
o~
N
~

(2.35)
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The star operation may be considered a mathematical operation

independent of its above use with samplers. 1Its definition for Laplace

transform matrices is

A*(s) A

L

L A(s-jw n) (2.36)
n_ s

Two of the properties of the star operation are

gf(s-jwsn) = A*(s) for any integer n (2.37)

[A*(s) B(s)]* = A*(s) B*(s) (2.38)
Every z-transform matrix A(z) has agsociated with it on A*(s) defined by

A*(s) A A(2) (2.39)

sT
z=e

An A*(s) matrix defined by (2.39) obeys properties (2.37) and (2.38),
and can be used interchangeably with an A*(s) defined by (2.36). 1In
this thesis the star notation is preferred to the z-transform rotation
(e.g. Figure 2.3).

The first part of the hybrid compensator is the prefilter. It is
a linear time invariant (LTI) system which has the Laplace transform
matrix F(s). Its main purpose is to low pass filter the input and
reduce aliasing. If F e(jw) is nonzero for |w| > m/T then aliasing

will occur, as readily seen from (2.34).l

lAliasing occucs if I(Fe)*(jw)[ > {Fé(jw)l for 0 < &< w/T. Aliasing is

* undesirable phenomina for control systems. One of the effects of
a.irasing is that high frequency inputs are interpreted as low frequency
inputs, which is particularly true of high frequency noire.
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The digital computer is a linear shift annxiantl device with the - %
z-transform D(z). How the z-transform is derived is a synthesis prob- %
lem and is not the main concern of this thesis. The two basic approaches
are (1) to discretize an analog compensator and (2) to discretize the
plant and synthesize D(z) by a direct method.

In the examples of Cliapter 5 the Tustin with prewarping method
{4,p. 55] is used to discretize K(s). The z-transform for the computer

is set equal tc

D(z) = K{(s) - z-1 (2.40)
z+l
@y
where a = mlT
tan | 5~
Tustin with prewarping has the property that (respectively):
D(z) jwlT = K(s) (2.41)
z=l, e 8=0, jwl

The analog compensator is perfectly matched at s=0 and s=jwl.

The prewarped frequency w. should in some respect be a “gpecial”

1

frequency, such as the natural frequency of a pole or zero, the

frequency of maximum phase lag or lead, or the closed loop bandwidth.

—

lLtnear shift invariance is the discrete equivalent of linear time in-~
variance. It the input sequence is shifted an integer number of sample
periods then the output is the same except for being shifted the same
mber of sample periods. Only linear shift invariant operators have
z-transforms defined for them.
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Tustin with prewarping has cthe advantage of being easy to compute.

Suppose that K(s) has the state space realization

X = Ax + Bu
(2.42)
¥ = Cx + Du
Then the state space realization of D(2) is
x(n+l) = F x(n) + g_gd(n)
(2.43)
Ygfn) = Hx(n) + Ku.ln)
where
-1
F = (oI-A) (oI+A)
G = 2a(al-A) ° B
H=C (2.44)
K = C (aI-A) " B+D
“1

The hold device transforms a digital sequence into an analog signal.
The hold is modelled as a LTI svecem with the Laplace transform H(s).
The input to the 1»ld is a train of impulses gd*(t) with Laplac- *rans-
form gd*(s), and the output of the hold has the Laplace transform

H(s)gd'(s)



ORIGINAL PAGE fS
-54- OF POOR QUALITY

The most common type of hold is the zero-order-hold. Its impulse

response and Laplace transform (for the SISO case) are

1 0<t<T
h.t) = (2.45)
0 elsewhere
h(s) = % (1 - 5T (2.46)
A first order analog approximation of h(s) is
h_(s) = -—L— (2.47)
a s + 2/T .

Magnitude and phase Bode plots of h(jw) and ha(jw) are shown in Figure
2.4 (for T = .6283; ws = 10). Below -]44 We rad/sec the approximation
is very good.

2.3.2 The Hybrid QOperator

An operator transforms input signals (belonging to a set of al-
lowable input signals) to unique output signals.1 An operator is a
mathematical model, as opposed to a physical system. The hybrid
operator is a mathematical model of a hybrid compensa;or. It is given
the symbol K, and the transformation from an input signal e to an out-

put signal u is represented by

uo= Ke (2.48)

1 . P . . . .
A more precise definition is given in Section 2.4.

SR ”,‘
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The hybrid operator is a linear time varying (LTV) operator. The time -
variations are due to the sampler. The same input signal shifted in
time by a fraction of sample period results in a different sequence
of samples.

A time domain description of the hybrid operator is given by the

convolution

u(t) = rg(t,e)g(e)ae (2.49)

where K(t,0) is an impulse response matrix. It is periodic in the

LT Ty

sense that

K(t+Tn, 6+nT) = K(t,0) for any integer n (2.50)

The same input shifted by an integer number of sample periods results
in the same output shifted by the same integer number of sample periods.
It is this time domain description that was used by Kostovetsky
[17) (see also [18]) to investigate some properties of hybrid operators.

He was able to show that the gain of the hybrid operator is unbounded
as the prefilter approaches an impulse (F(s) + I). Also, he showed
how to select a prefilter, digital computer, and hold such that K(t,8)
is optimally close to a specified LTI impulse matrix K(t).

This thesis uses the fcllowing frequency domain description of the
hybrid operator. If the input signal has the Laplace transform e(s)

then the output signal has the Laplace transform .

u(s) = H(s) D*(s) [F(s) e(s)]* (2.51)
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This equation is crucial to the conic sector results of Chapter 3.
Note that (2.51)does not define a transfer function. Only LTI operators
can ke represented by transfer functions.

One of the properties of the hybrid compensator that distinguishes
it from LTI compensators is that the hybrid compensator spreads out the
power spectrum of the input. This property is due to the sampler, which
when viewed in the frequency domain shifts and adds the power spectrum
of the sampled signal. An example is shown in Figure 2.5. The plots are
magnitude versus frequency for signals at different points in the hybrid
compensator. The input signal is bandlimi.ed, but the output signal
has energy outside of this bandlimited region. A LTI compensator would
have energy only in the same bandlimited region as the input.

2.3.3 The Hybrid Feedback System

The hybrid compensator is one part of the hybrid feedback system
of Figure 2.6a. The plant G{s) is the same as in the analog feedback
system in Section 2.2.1 and Figure 2.1. As with the analog feedback
system, closed loop properties are determined by how signals pass
around the loop. The difference is that lcop transfer operators must
be used instead of loop transfer functions.

Consider the loop broken at point (1) ir Figure 2.6a. Inject the
input signal ®in and let e be the signal that returns after passing

~out

around the loep. Their Laplace transforms are related by

eyt (s) = G(s) H(s) D*(s) [E(s) e, ~(s)]* (2.52)

This transformation can be represented by the loop transfer operator
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Sout Tl €in (2.53)
but it is not possible to define a loop transfer function. The same
is true for the loop broken at point (2) in Figure 2.6a.

The conventional analysis of hybrid feedback systems avoids the
problems of dealing with LTV operators by analyzing the system at points
(3) and (4) of Figure 2.6a. Here the loop transfer operators T3 and T4
are linear shift invariant and can be represented by the z-transforms
23(2) and T,(z). This simplifies the analysis, but at the cost of only
examining the system at the sample times.

The conventional analysis proceeds by transforming the hybrid
feedback system to a discrete feedback system. An intermediate step
is shown in Figure 2.6b. The block diagram maniupulation used to derive
Figure 2.6b is to pass the prefilter and sampler backwards across the
sum. The prefilter and hold can be grouped with the plant to form the

discretized plant
G4*(s) = [E(s) G(s) H(s)]* (2.54)
which can also be represented by the z-transform Qd(z).
The discrete portion of Figure 2.6b is extracted to form the

digital feedback system of Figure 2.6c. The output Xd(z) and the

error gd(z) are related to the command input Ed(z) by

¥a(z) = Gy(2) D(2) (L + Gg(z)D(2)] ™" £ (2) (2.55)

eg(2) = IL+5,(2) D@1 £ (2) (2.56)
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It is possible to compute the analog output y(s) given a command

input r(s):

*

y(s) = G(s) H(s) D ¢(8) [E(s)x(s)]* (2.57) |

|
h D = D+ I+ Gy*(s) D*(s)] t 2.58 |
where D ,(s) = D*(s) [ Gg*(s) D*(s)] (2.58) |

The closed loop operator is a linear time varying operator with the
same structure as the hybrid operator defined by (2.51).

2.3.4 cCommand Response, Stability, and Robustness

The discrete loop transfer function and the discrete return dif-
ference equation can be used to analyze the command response, stability,
and robustness of the digital feedback system of Figure 2.6c. These
results are analogous to those for the analog f2edback system of
Figure 2.1. One of the differences is that the results in this sub-
section apply to discrete sequences ~ not to the analog signals - that
appear in the hybrid feedback system.

The command response is considered to he good if the discrete out-
put Zd(nT) tracks the discrete input Ed(nT) with small errer over some
frequency range. As seen from {2.56), this will be the case if the
return diffcreince equation (similarly the loop transfer function) is
large over the frequency range where the discrete input has significant

energy. A command response specification can be stated

(2.59) .

o [G4*(Jw) D*(Gw)] > plw) for w <w<uw

min
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The loop transfer function is periodic, and the specification should
only be given over a portion of the frequency range 0 to T/T rad/sec.

A discrete sequence Ed(nT) is said to have significant energy over some
frequency range if Ed(z) evaluated at z = ejwm has large magnitude for
w in the specified frequency range.

The digital closed loop system is stable if all of the digital
cloged loop poles have magnitude less than unity. The digital closed
loop poles can be founa by various frequency domain and gtate space
techniques ([4].

Another way to determine stability is to use the discrete version
of the multivariable Nyquist theorem. It will be stated here, using
the same notation as in [3)]. Let N(, f(s), C) denote the "number of
clockwise encirclements of the point Q by the locus f(s) as s traverses
the closed contour C in the complex plane in a clockwise sense" [3, p. 76].
Let the contour D be the unit circle, with small expansions to include
the open loop poles of gd(z)gﬁz) with unit magnitude (these are con-
sidered open loop stable). Let F le the number of open loop unstable
poles of gd(z)g(z). The multivariable Nyquist theorem states that the
discrete closed loop system is stable (has no poles wi.th magnitude > 1).

if and only if
N (-1, -1 + det [I + gd*(s)gf(s)], D) =-P (2.60)
An important point to note is that the hybrid feedback system is

stable if and only if the discrete feedback system is stable. Hence,

the two stability tests just mentioned are useful for the hybrid feed-

back system.
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The model of the plant is not exact, and closed loop stability
must be preserved for all possible perturbations of the plant. Robust-
ness results similar to those for analog systems can be derived. The
starting point is a z-transform description of the additive perturbation:

c";d(z) = G4lz) + Eg (2) (2.61)

—da

~

It is assumed that gd(z) and gd(z) have the same number of open loop

unstable poles, and that the magnitude of gda(z) is bounded by

g

Opax Ega* 301 < Ly W for O0<Lw<w (2.62)

The digital closed loop system is stable if it is nominally clogsed loop

stable and if

-1
* D* kP 5
O pax [§da D* (I + G4'D ) T(w)) <1 for O0<w<lw

, -1 .
= 0 [Eg G0 <o IDY(W) T+ G (W] for O0<wZlw

(2.63)
The singular value inequality need only be checked over the fundamental
frequency range.

A digital robustness analysis can also be performed using the

discrete mult. licative perturbation:

Gy (2) = Gy(2) L+ Eg (2)) (2.64)
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It is assumed that gd(z) and éd(z) have the same number of open loop

unstable poles, and it is assumed that

(Gw)) <L (W) for O0<w<w (2.65)

*
cmax [Edm “dm
The closed loop system is stable if the nominal system is closed loop

stable and if

-1 X
Cmax lgdm' gd* D* (£+§d* D*) "(jw)]l <1 for Oiwiws
(2.66)
- ; -1
< Cnax (Eg,* (W] <o, (L + (G4* DY) “(Jw)) for 0<w< w,

(2.67)

A digital robustness analysis starts with a discrete perturbation.
This is not a natural place to start, however, for a robustness analysis
of a hybrid system. It is the analog plant G(s) that is uncertain,
and its uncertainty is expressed by an analog perturbation. The analog
perturbation must be discretized in order to obtain a discrete pertur-
bation.

Consider when the actual plant is é(s) = G(s) + Ea(s)' The actual

digcretized plant is

_Z;,d-(s; = Gg*(s) + Ej *(s) (2.68)

* = V¥
where E, *(s) [E E, H(s)] (2.69)

The additive perturbation is discretized the same way ac tne analog plant.
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When multiplicative perturbations are used then t*e actual plant

is G(s) = G(s) (L + E_(s)] and its discretized version is
H(s)]* (2.70)

This cannot easily be expressed as a discrete multiplicative pertur-
bation except when E is a constant that commutes with g(s)l, in which

case

Ga*(s) = 34%(s) (L +

24 : ), where E, = Em (2.71)

§dm ~dm
The analog and discrete multiplicative perturbations are equal.

Congstant gdm's can be used to find guarenteed phase and gain margins
(se~ Subsection 2.2.7). By the argument of the above paragraph the phase
and gain margins of the digital system are also phase and gain margins
of the hybrid system.

Discretizing analcg perturbations is one way to analyze the ro-
bustness of closed loop hybrid control systems. This is not, however,
the approach that is persued in this thesis. Rather, the approach is
to approximate the hybrid operator by a LTI operator and then to use
analog techniques to analyze robustness (Theorems 3.4, 3.5, and 3.7).

The "analog techniques" are conic sector techniques. They are

now reviwed, using a precise mathematical format.

For SISO systems any constant E = e satisfies this condition. For
multivariable systems the easiegg example i< when both Em and H(s) are
diagonal matrices.
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2.4 Results from General Feedback Theory

The hybrid compensator is modelled with a LTV operator which is
called a nybrid operator. The analysis techniques described so far
make no direct use of this hybrid operator. In order to do so,
this thesis makes use of a feedback theorv that is more general than the
analog or digital feedback theory of the previous i.m sgsections. Components
of a feedback system are modelled with mathematical entities called
"relations." Hybrid compensators and the LTI plants are special cases
of relations, so analysis techniques for general feedback systems can
be applied to hybrid feedback systems.

The ¢dascription given here of the general feedback system follows
the work of Zames, Safonov, Athans, Desoer, and Vidyasagar [5] to [9].
The most general part of the description is contained in the subsections
on relations and conic sectors. The subsections on the feedback systems
ars less general because they assume that the feedback system is causal
and wel.l-posed.l Even with this restriction the components can be
nonlinear and time varying. It is not until specific conic sectors are
developed that further restrictions are needed.

2.4.1 Extended Normed Linear Spaces

The analog signals in a feedback system are members of an extended
normed linear space. A "linear space" is a basic concept of analysis.
Definitions and properties can be found in many textbooks [e.g. 19]. A
"normed linear space" is a linear spaze with a norm defined for it.

The ncrm introduces the c.ncepts of “size" and "distance". Elemente

A feedback system is causal if its output at time t is independent
of its input after time t. It is well-posed if feor every possible
input there exists an output.
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of a normed linear space must have finite norm. This restriction can .

be removed by extending the normed linear space. The rasult is called
an "extended normed linear space."

In this thesis the only normed linear space that will Le extensively
used is LG, the space of square integrable n-dimensional functions.
Elements of LG are functions x: R+ R (from the set of real numbers : 5
> © to the set of n-dimensional vectors) that have finite norm. The

nom is defined

ne>

2 ]2
el o | a2 a 2.72
2 o i

LG has engineering significance as being the set of signals with finite

erergy. The square of the nomm, llglﬁ is proportional to the energy of
the signal x(t). ’

The extension of LG is the extended normed linear space Lzz.
Elements are functions x: R+ + R® that have fin’.e truncated norm |l§|i;

for all T € R+, where

1/2

T 2
=l & {J llser I ae (2.73)
[o]

Elements of LG are automatically in the extension L2: and have the
property that the limit as T + ® of I‘*“T = ||§‘lL2. Examples of
functions that are in Lzz but not LG are x(t} = t and x(t) = exp(t).
Examples of functions in neither space are x(t) = tan(t) and x(t) =

1/(1-t%).
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2.4.2 Relations, Qperators, Gain, and Stability

A relation H is any subset of the product space L2: x Lzﬁ. The

range and domain of H are defined by

Ra(H) A {!I‘f'Z’ € H for some

¥

€ LZZ} (2.74)

Do (H)

ne

{51‘5'2’ e H for some y € Lzz} (2.75)

(]

The inverse of the relation Hisa set with the elements x and y arranged
in the reverse order. This inverse relation always exists and is defined

by

I m n
Ho A {yx e L) x L2 l(g,g) e H} (2.76)
The composition product HK and the sum H + K are relations defined by

HK 8 {(x,2) € L." x L. | there e s a y € L.™ such that
= ~~ 2e 2e ~ 2e

(x,y) € K and (y,2) € H} (2.77)

n m n
H+ K Q {(f'Z) € LZe X L2e lf € L2e and Y=y, + Y, for some
y, € Ral) and y, € Ra (K)} (2.78)

An operator H is a relation which satisfies two conditions: 1)
n . n . . m
Do (H) =L2€, and ?° for each x € L2e there exists a unique y € L2e such
that (x,y) € H. The same notation is used for both relations and

operators. It is usualily not important to distinguish between them,

and when it is, it is usually apparent. For the thesis, it would not

have been necessary to define relations, except that the inverse of
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operators are not necessarily operators.

The relation H can be considered to be a transformation from the
input space Lzz to the output space L2:, in which case the notation
y = Hx indicates that (x,y) € H. This t;ansformation is somewhat
dangerous to use, however, because there may be none, one, or several
y's for which (x,y) € H. TIf H is an operator then the transformation

is well defined (it exists for every x € LZZ and is unique).

The gain (or norm) of therelation H is defined by

I
Kl & swp ——

8 _— (2.79)
2 =l

where the suprenum is taken over all nonzero x € o (H), all corres-
ponding Hx € Ra(H), and all T € R+. In other words, for all possible
input-output pairs and for all possible truncations. Note that the
rat+o is always finite, and only the suprenum can be infinite.

The relation H is defined to be L, -stable if 1] I|L2 < ®, in

which case there exists a constant k such that

ex ff < x =] (2.80)

for all x € Do(H), all corresponding Hf € Ra(H), and all T € R+. This
type of stability is usually called "bounded input bounded output”
stabiiicy.

It may not be immediately apparent why an extended spaces are
needed. The reason is that unstable : .ations cannot be defined on
the unextended product space LG x Lzm. A relation that is L2e-stab1e

maps LG into Lzm, but an unstable relation maps LG into L2:. There-

fore, to consistently define L?e-stable and unstable relations it is
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necessary to use extended normed linear spaces.

2.4.3 Conic Sectors

In this section the concept of conic sectors is defined and dis-
cussed. Necessary and sufficient conditions for relations to belong to
a conic sector are presented. The reason for using conic sectors will
become apparent later - when sufficient conditions for closed loop
stability are staced in terms of conic sectors.

Let H be a reiation, and let C and R be operators. If
. 2 z 2
iy -cxll. < liRxll, - € lxll (2.81)

for all (x,y) ¢ H, T e R+, and for some € > o then H is said to be
"strictly inside the conic sector with center C and radius R;* which
is eg:.valentl  stated "s*_ict’y inside cone ((,R)." If (2.81) 1is
true for some € > o then H is "inside cone (C,R)."

Now turn around the inequality sign. If
Ly -cxlls 2 fRell? +e llx 12 (2.82)
Py SLLE ~ ~ 't :

for all (f,x) € H,T € R+, and for same € >0 then H is "strictlv outside
cone (C,R)," and if (2.82) is true for some € > o then H is "outside
cone (C,R)."

The easiest visual example of conic sectors is obtained from
relations H which are memoryless nonlinear operators y = h(x). For
example, consider the function y = h(x) plotted in Figure 2.7.
function is bounded by lines with slopes c-r and c+r, which can be used

to show

ly = ex] < [rx] (2.83)
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This inequality implies (2.81) with €=0, and thereforeH is inside of
cone (C,R), where C and R are memoryless linear operators defined by
v =c¢cxXx and y = rx.

One way to interpret H being inside o€ a cone (C,R) is to think
of the center C as an approximation of H and to think of the radius R
as a bound on the errors due to this approximation. Presumably if the
approximation is to be of any use then R must in some sense be small.
At the very least it should be the case thai for a certain class of
inputs x € S that “Rf ”T << [ICfIlT.

Another way to interpret conic sectors is to think of them as a

1
bound on the energy of various signals. Consider the case  when for

all x € L2

ey xll, < llexll/ (2.84)
2 2

The L2 norm is a measure of energy, so this inequality states that the
energy of (H-C)g is less than or equal to the energy of Rf' Let

X € S be a set of signals that are in some way special. For example,
inputs that have > 99% of their energy below 10 Hz. Then the center
is a good approximation of H if the energy of (H—C)f is small for all
x € S. One possible way to be quantitative about the approximation is
to require for all x € S that Rf has < 1% of the energy of Cf.

Two lemmas are now presented that give n=2cessary and sufficient

conditions for an operator to be either inside or outside of a cone. The

The assumptions for this case are that H,C, and R are operators,
H-C is stable, R is stable, and H is inside cone (C,R).
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conic sector inequalities (2.81) and (2.82) are satisfied if and only if
certain composi:e operators have gain f_ 1. Safonov:l states the results
(9, p. 42Ci, which to him fall into the "it can be shown" category. Here
the attitude is not seo cavalier, and proofs are included in the Appendix
to Chapter 2.

Lemma 2,1 Let H, C, R, and RI be operatcrs such that H-C, R, and
RI are Lze—stable. Then the following are equivalent:

(a) H is strictly inside cone (C,R)

¥, 2
(b) “(H-C) R‘”L <1-¢ for some € > o @ (2.85)
2

Lemma 2,2 Let H, C, R, RI, and (T + CH)I be operators such that

I

R, R, and H(T + CH)I are Lze-stable. Then the following are equivalent

(a) -HI is outside cone (C,R)

() |IRH (T + CH)IHi <1 ®(2.86)
p

The radius R is a very special type of operator. 1In these two
lemmas, and everywhere else in this thesis, it is assumed that R ané RI
are Lze-stable operators. The assumption that they are operators is
enough to imply a one-to-one mapping between functions in the domain
and range nf R. The additional assumption that R and RI are LZe-stable
implies a one-to-one mapping between the finite norm parts of the
domain and range.

wWhat all of this means for LTI operators is that the Laplace

See alsc Zames (5] and Desoer and Vidyasagar (8].

et i s s i e
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transformmatrix R(s) is proper1 and have nc poles or zeros with real

parts > o, and in addition, R-l(s) is proper and has no poles or zeros

with real parts > o. Examples are r(s) = 1, r(s) = (s+l1)/(s + 10),

e AR DD

and r(s) = (1 - .5¢ %) /(1 - .9¢ 5T).

S—

One of the subtle interpretations of Lemma 2.2 is that being outside
of a cone is an inherently closed loop propertyz. If -HI is outside
of cone (C,R) then it is not useful to think of C as an approximation

of -HT. 1t is better to think of C as any operator that stabilizes

the feedback system

y = Hx
- - (2.87)
x =u-Cy

The assumption that (I + CH)I is an operator guarantees that the
feedback system is well-posed (see Willems {20]). The additional
assumption that H(I-i-CH)I is stable is another way of saying that the
feedback system of (2.87) is closed loop stable.

2.4.4 The General Feedback System and the Small Gain Theorem

The general feedback system is shown in Fi-jure 2.8. It will be

referred to as System 1. The equations that define System 1 and the

assumptions that the components satisfy are

u = Ke

g=71-Gu

r, e€l T uey n (2.88)
~ 2e Ze

G, K, and (1+GK)T are causal operators

1 R(s) is proper if Opax[R(®)] < ®, ie # poles = # zeros, ie R(jw) does
not roll-off or grow as @ *> «,

In contrast to outside conic sectors being closed loop properties,
inside conic sectors are inherently open loop properties.
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Any mathematical model that represents a physical system should be
well-posed and causal. The assumptions in (2.88) guarantee this. The
stability theory of Zames [5,6] and Safonev {7,9] does not require
well-posedness and causality. These assumptions are made here because
the extra level of generality is not needed to analyze hybrid control
systems.

The closed loop operators of Syst:m 1 are £ and U, where

E A {(r,e)l(r,e) € LZZ X Lzz and there exists u such that

(2.88) is satisfied} (2.89)
and where U is defined in a similar way. The closed loop system is
stable if E and U are LZe—stable. Hence, closed loop stability is proved
by showing that HE}[L and ||U HL are bounded.

The Small Gain T;Zorem is usé; to show that a certain clzss of
systems is closed loop stable. The proof differs little from those of
{5, Theorem 1] and [8, Theorem III.2.1].

Lemma 2.3 (The Small Gain Theorem) Consider System 1. If
ki, - llell, <1
L2 L2

then E and U are Lze-stable. [ ]
The Small Gain Theorem has a nice interpretaticn using the SISO

Nyquist Theorem. Assume GK is SISO, LTI, L e-stable, and that

2

HGK[!L = max |gk{30) ] <1 (2.90)
2 W

The sufficient condition of the Small Gain Theorem is satisfied and

therefore the closed loop system is stable. The Nyquist plot is inside

B T "
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the unit circle and cannot encircle the (-1, 0) point. Hence, by the
Nyquist Theorem the same conclusion is reached that the closed loop
system is stable.

Unfortunately, any system that satisfied (2.90) is of little
practicai use, because good command response (and other performance
specificat.ons) generally require that lgk(jm)| >> 1 over some frequency
range. The Small Gain Theorem would likewise be of little practical
use if it were not for the Loop Transformation Theorem, which is
discussed next.

2,4.5 sufficient Conditions for Closed Loop Stability

If the operators G and K of System 1 satisfy certain conic sector
conditions then the system is closed loop stable. This result is an
extension of the Small Gain Theorem.

The extension ir made possible by the Loop Transformation Theorem.

A system is transfcimed to another system in such 2 way that the stability

of the transformed system implies the stability of the original system. If

G and K satisfy certain conic sector conditions then by the Small Gain Thecrem
the transformed system is stable, and by the Loop Transformation Theory

the original system is stable.

This approach is due to Zames [5, 6]. His results are less general
because. the cone center and radius are constant multipliers. The
generalization presented here, which allows the center and radius to
be operators, is due to Safonov [7). He goes even further in his
generalizations, and the main results presented in this preliminary

chapter (Lemmas 2.5, 2.6, and 2.7) are special cases of (7, Theorem 2.1].
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The transformations of System 1 are shown in Figure 2.9a. After
a few block diagram manipulations the result in System 2 of Figure 2.9b.

The defining equations and the assumptions for System 2 are:

4 =Ky e+ Cx \
& =Rr-6,u
> (2.91)
O m
Iyl w8l

Gz, K2, and (I + GZKZ)I are causal operators /

The transformations from System 1 are described algebraically by:

K, = (K-C) R'
2
I
G, = RG (1 +CG)
(2.92)
u, = (I +C6) u
e, = Re
The closed loop operators E2 and U2 respectively relate r to e, and 4,

Lemma 2.4 (Loop Transformation Theorem)

(a} r, u, and e are solutions of System 1 if and only if r, u2,

and e, are solutions of System 2.

2
(b) Furthermore if (I + CG)I and R! are LZe-stable then the
stability of System 2 implies the stability of System 1. s

The proof of part (a) differs 'ittle from those of [5, Theorem 21]

and [8, Theorem III.6.3]. Part (b) follows after a few steps from (2.92).
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Figure 2.9b: System 2
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Lemma 2.5 (Sufficient Conditions for Closed Loop Stapility, K
Inside of a Cone). Consider System 1. Let C and R be operators such
that (I + CG)I, G(I + CG)I, K~C, R, and RI are L2e-stab1e. Then
System 1 is closed loop staple if

(i) K is strictly inside cone (C,R)

(11) -6' is outside cone (C,R) e

The proof is now sketched out. If the conic sector conditions
{i) and (ii) are true then (by Lemmas 2.1 and 2.2) it follows that

ik, ”L . “GZHL < 1-¢ for some € > o (2.93)
2 2
By the sSmall Gain Theorem (Lemma 2.3) it follows that System 2 is closed
loop stable, and by the Lonp Transformation Theorem (Lemma 2.4) it
follows that System 1 is closed loop stable.

The major restriction of Lemma 2.5 is that K-C must be Lze—stable.
Whatever is placed inside of the conic sector must be bounded by a stable
radius.

Lemma 2.5 is a robustness as well as a stabiliiy result. The
closed loop system will be stable not just for a particular K and G but
for any K that satisfies (i) and any G that satisfies (ii).

Condition (i) of Lemma 2.5 staces that the compensator ¥ is inside
of a cone. Sometimes it is more convenient to think of the plant G as
being inside of a ccne. Sufficient conditions for closed loop stability
can also be derived when this is the case. A different transformation
of System 1 is required, as shown in Fiqures 2.10a and 2.10b; and a
different version of the Loop .ransformation ‘fheorem 1s reguired, so

that stability of System 3 in Figure 2,10b implies the stability of

s Ry
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x

Figure 2.10a: Alternate transformation of system 1

-~

Ki=RK(T*CK)'  G5:(G-C)R"

Figure 2.10b: System 3
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System 1. The final result is shown below.

Lemma 2.6 (Sufficient Conditions for Closed Loop Stability, -kt
Outside of a Cone). Consider System 1. Let C and R be operators such
that (I + CK)I, K( + CK)I, G-C, R, and RI are LZE—stable. Then System
2 is closed loop stable if

(i) -KI is outside cone (C,R)

1ii) G is strictly inside cone (C,R) s

The major restriction of Lemma 2.6 is that G-C must be L2e~stable.
Just as is the case for Lemma 2.5, Leima 2.6 is a robustness as well as
a stability result.

Same of the references for t. » eneral feedback theory set up a
version of System 1 that has symmetric inputs, thereby avoiding separate
derivations for inside and outside conic sector conditions for closed
loop stability, Symmetric inputs are not usual for hybrid control
systems, however, and therefore for this thesis it was decided to include
the two derivations.

One more set of sufficient conditions for closed loop stability
is included. Tl.e difference here is that the loop transfer operator
T1 = GK is placed inside of a cone. The general feedback system can
still be considered to have two elements - one is Tl and the other is I.

Lemma 2.7 (Sufficient conditions for closed loop stability. Tl
inside of a cone). Consider Systerm 1. Let C and R be operators such
that (T + C)I, Tl - C, R, and RI are Lze—snable. System 1 is closed
loop stable if

(i) T, is strictly inside cone (C,R)

1

i ra+ol) [ <1
2
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If condition (ii) is true then -l is outside of cone (C,R). The

major restriction of Lemma 2,7 is that Tl - C must be Lze—stable.

2.4.6 Conic Sector Analysis of Command Response

Conic sectors can be used to analyze the response to signals that
enter the feedback loop. The only signal that enters the general feed-
back system of Figure 2.8 is the command input r, which enters just before
the prefilter.

In this thesis we will be interested in the steady state response to
commands that belong to a set of command signals SC L2:. In particular,
we will be interested in the steady state response of low frequency
sinusoidal inputs. Transient errors (overshoot, risetime, settling time,
etc.) are not analyzed in this thesis.

The error signal is
I \
e = (I+6K)" ¢ (2.94)

and the steady state command response specification is

lell .

o lzll

<3 forallrcs$ (2.95)

The constant "q" is called the "quality measure". By ietting the transient
time T approach infinity the transient errors become insignificant, and
terefore the quality measure is a measure of the steady state error. It
is in general difficult to compute the quality measure. As will be shown,
conic sectors can be used to find an upperbound for q.

There are two approaches. The first is to place the loop transfer

operator GK inside of a cone, and the second is to place the closed loop
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operator (I + GK)I inside of a cone. The first approach is due to Stein
[18]1, and the second approach is new,

Placing GK Inside of a Cone

Assume that the operators GK and C are LZeestable, and assume that

GK is inside of the cone (C, Rl)’ Expand the error equation (2.94) as

follows:

(]
I

(1 + 6T r

f

T+C+06K- O«

T+0T g+ ek-0 a+0hlx

aroM1-us@-0a+0hte-0a+0Y)
(2.96)
Take the truncated norm of each side of (2.96), and then use singular

value and conic sector inequalities to obtain

ha+ ol
el < lla+alel + 2— llrRya@+ 0t el
1 - || R (T + O,
2
for all r € 12: and all T € R, (2.97)

1Stein {18] -efines the quality measure by

el .

<q forallr €S and for all T & R,

This quality measure is valid for transient as well as steady state errors.
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An upperbound for the quality measure is

q< q, 1+ i; rl) for allr e$ (2.98)
where
I+ of «ll,
q, < lim ——————— for all re S
TN
_ _ I
mt=1- [[R (T+0 HL2
(2.99)
st = |1+ C)I”L
2
IR rs0® £l
ra < lim = for all r € §
o el

The constant "qo‘ is the "nominal gquality measure," which is obtained
when the operator GK is replaced by C. The constant (1 + i;-rl) is the
amount by which q, must be raised to obtain an upperbound for g. If the
set S is sinewaves with frequencies less then @, and if C and Rl are

LTI operators, then the consta'ts in (2.99) ave

1

g = max O (I +C)  (Gw)]
(o] 0<W< max
o]
r* =1 - max O [R1 (I + C)“1 (jw) ]
w T (2.100)
s* = max 0 [+ C)-1 (jo) )
o max
r = max g R, (1+0)7% ]
19 1 :

c o<m<wo max
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Two restrictions to the use of (2.98) are (1) that GK must be open
loop stable and (2) that the cone around GK must meet the sufficient
conditions for closed loop stability.1 In addition to these res*rictions
there is also the problem that (2.98) may give a conservative upperbound
for q. By "conservative" it is meant that the upperbound for q is higher
than it neeés to be. If the cone around GK is not very tight, then m* will
be small and r will be large - both of which lead to conservativeness.

Two more sources of conservativenrss are that both m* and s* use operator
norms, and hence must be t ue for all input signals and not just r €S

Despite the problems mentioned above, equation (2,98) is a natural
generalization of LTI results —‘specifically (2.21) and {1, equation (19)].
It is a first attempt at using conic sectors to analyze command response
(as opposed to the more common uses of conic sectors to analyze closed
loop stability and robustness). One advantage of working with GK instead
of (T + GK)I is that the perturbations of G and K are easier _o separate.
For example, a multiplicative perturbation of G is also a multiplicative

perturbation of GK, but not of (I + GK)I.

Placing (I + GK)I Inside of a Cone

I
Assume that the operators (I + GK)I and (I + C)" are Lze-stable,

I . 2
and assume that (T + GK)I is inside of the cone [(I + C)7, sz. Expand

1 I
It must be true that | Rl(l + C) IIL < 1, which is the sufficient
2

condition for closed loop stability given in Lemma 2.7. If this in-~
equality is not satisfied then m* < o,

2the operator C is an approximation of GK. The open lcop stability
assumptions of C and GK are replaced by the less restrictive assumptions
of closed loop stability.
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the error equation (2.94) by.adding and then subtracting (I + C)I s

-~

e= (1 + GK)I r

=a+0frrra+e0t - 30l (2.101)

An upperbound for the guality measure is

q < q (1 + r2) for all r € S (2.102)
where
Il a+ofll,
q, < = for all r € S (2.103)
I

| dea® -+ 0t £l
r,q < lim ' = for all r € S (2.104)
el

As before, the constant q. is the nominal quality measure. The constant
(1 + r2) is the amount that q, must be raised to obtain an upperbound tor
qg.

s I
One way to compute the constant r_ is to construct a cone [(I + C)7,

2
R2] that contains (I + GK)I. It foilows that

r
r.q for all re L2e and all T € R+ (2.105)

°<-———""‘-"
=l

Equation (2.105) may result in a conservative (i.e. large) estimate for r_g

2°0

because (1) the conic sector does not take advantage of the restricted
set ¥ € S and (2) the conic sector must be valid for all possible trunca-

tions of the input signal.

~ —“-——
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An alternate form of (2.104) is

ltek (1+60f- ca+ol

r.q < lim for allr eSS
2707w =l -
Ut
(2.106)
which is derived from (2.104) by use of the identity
I 1
(I +A) =1-A( +A) (2.107)

This alternate form is easicr to use for hybrid operators. It is
interesting to note that conic sectors that contain (I + GK)I and
GK (I + GK)I have the same radius.

In this subsection two different approaches have been discussed for
using conic sectors to analyze the steady state response to commands.
Either the loop transfer operator GK or the closed loop operator (I + GK)I

can be placed inside of a cone.
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2.5 Conic Sector Analysis of Analog Feedback Systems

The general feedback theory is just that - general. It is only

when specific assumptions are made about the feedback system that the

results from the general feedback theory can be applied.

F4

IRE G

In this section the conic sector analysis techniques are applied
(for better or for worse) to the analog feedback system of Section 2.2,
The feedback system is briefly described, sufficient conditions for
LTI operators to be inside or outside of a cone are presented, and then
sufficient conditions for robust closed loop stability are presented.
The conic sector analysis techniques are not as general as the analysis
techniques of Section 2.2. The distinction is that conic sectors cannot
be used for unstable perturbations of the analog plant.
The compensator and nominal plant are modelled, respectively, by
K and G. The uncertainty of the nominal plant is modelled by the

additive perturbation Ea’ where

-~

G=0G+ Ea (2.108)

and where Ea is a Lze—stable LTI operator. The only other information
known about Ea is a bound on the magnitude of its Fourier transform

matrix:

O ax [§a(jm)] < £a(w) for all o (2.109)

The uncerteinty of the mominal plant can also be modelled by the

multiplicative perturbation Em, where

G =G(I + E ) (2.110)

o [E (jw)] < £ (w) for all G (2.111)
max -m m
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and where E. = GE_ is L -stable.1
a m 2e

Three Lemmas are now presented: Lemma 2.8 gives sufficient condi-
tions for G to be strictly inside of a cone, Lemma 2.9 gives sufficient
conditions for -KI to be outside of a cone, and Lemma 2.1C combines
the previous two and gives sufficient conditions for robust closed loop

'y 2
stability.

Lemma 2.8 Let G, G, R, and RI be LTI operators such that G-G, R,

and RI are Lze-stable. G is strictly inside cone (G , R) if

1

> — G - G(3 L1112
Gmin (R(jw)] 173 omax (G (3w) c_;(;co)] (2.112)
T (1-€)
o
for all w and some € > o
Lemma 2.9 Let K, G, R, and R! be LTI operators such that
K(1 + GK)I, R, and RI are Lze-stable. »-KI is outside cone (G,R) if
6 IRK (I + KT (jw)) <1 for all 8(2.1123)

max

Lemma 2.10 Consider the analog feedback system containing the LTI
P I
operators K, G, and G. Let R and R be Lze—stable LIT operators. The
closed loop system is stable for all possible ('s if there exists an

R(jw) such that

1'I‘he requirement that F is Lp,-stable means that the exact number and
the exact location of {nstable poles of G(s) must be known. The less
restrictive requirement in Section 2.2 is that G(s) and G(s) must have

the same number of une .able poles, which means that only the exact
number of unstable poles must be known.

Lemmas 2.8, 2.9, and 2.10 (for analog systems) correspond, respectively,
to Theorems 3.2, 3.6, and 3.7 (for hybrid systems). Lemmas 2.8 and 2.9
are due to cafonov [9, Lemmas A4 and A2]. He gives recessary and
sufficient conditions to be conic. Only the sufficient conditions are

presented here, to facilitate caaparison with the results for hybrid
systems,



~-92-

(1) K(J + 60t is L, -stable

(1) o [RK (I + 60 (3] <1 for all u (2,114)
(#i1) o . (RG] > L ()  for all w 8 (2.115)

The proof for Lemma 2,10 can be quickly sketched out. Conditions
(1) and (ii) guarantee that KT is outside of cone (6 , R). Condition
(iii) guarantees that G is strictly inside cone (G , R). Hence, by
Lemma 2,6, the analog system is closed loop stable.

The first step in applying conic sectors to analog feedback systems
is to construct a cone (G, R) such that all possible é's are strictly

inside of it, By Lemma 2.8, this is true if

1’———
172

o . ([ROw >

2 (w) (2.119)
min a

(1-€

for all w and some € > o

The € term is a nuisance., It suffices to repace (2.115) with the strict

inequalitys

o . [RGHwW) > £ (w) uniformly in w (2.117)
min - a

If the uncertainty is modelled by a multiplicative perturbation then

(2.117) is replaced by

O in (RU®] > L @+ o (G(3w)] uniformly in (2.118)

Note that the additive perturbation Ea cannot in general be used
as the radius of the cone, A radius must have the property that both
it and its inverse are LZe—stable. This is not assumed about Ea - only
that Ea ts stable, The problem is that Ea(jm) may roli off, whereas

R{jw) must eventually flatten out (or became periodic). This distinction
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is not cf practical importance, howevar, because the radius can be

arbitrarily close to bound la(m) out to arbitrarily high frequencies.
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Appendix to Chapter 2

This apperdix containg proof of Lemmas 2.1 and 2.2,

Proof of Lemma 2.1 Here i” is shown that H is strictly inside of

cone (C, R) if and only if the operator (H - () 2T has gain < 1 - € for

some € > o, The operators are defined on the cross product spaces:

n m
H, CC L2e x L2e

RC "22 x L2: (2.a.1)

I n m
(H-C)p™ C L2e x Lz.3

Each step in the proof is equivalent. Explanations are enclosed in

parenthesis.
His strictly inside cone (C,R) (2.A.2)
2 2 2
> Iy - cxll? < IRal? -¢ 152 2

for all (x,y) € H, all = € R+, and some € > o

(definition of strictly inside)

w> -0 %12 < fexliZ- e I xll2 (2.3.4)

for all x € ng, all T e R*, and some € > o

(because H, C, and R are operators with the same

dcmains)

wo | H-ORTENZ < JlE 12 - € NIRY | 2 (2.3.5)

for all £ € 12:, and T € R*, and some € > ©

-~

where £ 4 Rx

-~

(because R and RI are operators)
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<oty “ (H—C)RI E“: < Hg ”1_2 (1-¢Y)
for all § € 12:, all T € R+, and some €* > o

where €* = a2€ and

a < —=1 for all || Il T ¥ o
(0 < ® because RI is Lze—stable)

- I H-crr'e]|?
<=> |[(H-C)R ”2 A -up <1-¢

el

suprenum taken over all § € L?: with
NEll2 #o0 and all T € R
T +

1
(only possible if H-C and R are Lze-stable)

This complete the proof.

(2.a.6)

(2.A.7)
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Propf of Lemma 2.2 Here it is shown that -HI is outside of a cone
if and only if the operator RH(I + CH)I has gain < 1. The operators are

defined on the following cross product spaces:

I

-4 CcL™x "

2e 2e

R CLz‘;‘ x Lz';‘ (2.2.8)

I n m
RH(I + CH) CLzexL

-~

Note that the center and radius differ from those of Lemma 2.1. Each

step in the following is equivalent:

--HI is outside cone (C,R) (2.A.9)

2 2
for all (y,x) € -HI and all T € R+

(by definition)

< || @+ o xliZ > |Rug |2 2.A.11)
for all x € LG and all T € R
(because H is an operator)

< g2l rasem® gl (2.A.12)

f.orallEGLn

§ 2e and all T € R+

(because (I + CH) and (T + ('H)I are operators)
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o Il RHer + cn® gl 2
<>  f|RHT + CH ]I = sup —— <1
el

suprenum taken over all £ € LZZ with || € ll: ¥ o
and all 1 € R+.
(only possible if R and H(I + CH)T are L, -stable)

This completes the proof.

(2.A.13)
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3. CONIC SECTORS FOR HYBRID OPERATORS

3.1 1Introduction

The major theoretical results of this thesis are presented in this
chapter. It is here that the conic sector analysis techniques developed
for gencral feedback systems are applied to hybrid feedback systems.
The results are condensed into eight theorems, which are now briefly
described:

Theorem 3.1: An upper bound for the gain of the hybrid operator.

Theorem 3.2: Sufficient conditions for a hybrid operator to be
inside of a cone.

Theorem 3.3: Sufficient conditions for closed loop stability
when the hybrid operator is inside of a cone.

Theorem 3.4: First approach to sufficient conditions for robust
closed loop stability when the hybrid operator is
inside of a cene.

Theorem 3.5: Second approach to sufficient conditions for robust
closed loop stability when the hybrid operator is

inside of a cone.

Theorem 3.6: Sufficient conditions for a hybrid operator to be
outside of a cone.

Theorem 3.7: Sufficient conditions for robust closed loop sta-
bility when the hybrid operator is outside of a cone.

Theorem 3.8: Use of the closed loop hybrid operator to analyze
command response.

The theorems about closed loop stability and command response
(3.3, 3.4, 3.5, 3.7, and 3.8) all begin with the statement: "Consider
the hybrid feedback system." This refers to the hybrid feedback system
of Section 2.3, which is a special case of System 1 of Section 2.4.

For the hybrid feedback system:
+ The compensator is mbdelled with the casual hybrid operator K,

which relates the Laplace transforms of its input and output
by u(s) = H(s) D*(s) [E(s)e(s)]*.
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. The nominal and actual plants are modelled by the causual LTI
operators G and G, which are related by either the additive
perturbation Ea or the multiplicative perturbation Em, as
described by equations (2.108) to (2.111).

. Associated with the hybrid feedback system are the LTI operators
C, R, and RI; which form the center and radius of various conic
sectors. It is a'ways assumed that R and Rl are L,.-stable. This,
and any other assumptions of open loop or nominal closed loop
stability, are explicitly stated in the Theorems.

« The hybrid feedback system is assumed to be well-posed and causal,
in other words it is assumed that (I+GK)I is a casual operator.
For Theorems 3.3, 3.4, and 3.5 it is also assumed that (I+CG)I is a
casual operator.

A distinction is made between "closed loop stability"” (Theorem 3,3)
and "robust closed loop stability" (Theorems 3.4, 3.5, and 3.7). The
former applies only to the nominal plant G, and the latter to all pos-
sible plants G. A distinction is also made as to whether the hybrid
operator is inside of a cone (Theorems 3.2 to 3.5) or outside of a cone
(Theorems 3.6 and 3.7). When the hybrid operator is inside of a cone,
then the center C can be viewed as a LTI approrimation of K. On the
other hand, when the hybrid operator is outside of a cone, the center

C can be viewed as an approximation of the plant, and is usually set

equal to the nominal plant G.
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3.2 The Gain of the Hybrid Operatox

One of the properties of an operator is its gain [see (2.79)1].
It is the maximum ratio of outpyt norm to input norm. An u}perbound
for the gain of the hybrid operator K is presented iu Theorem 3.1.
when K is SISO then an input signal can be constructed which achieves
the upperbound, hence the upperbound actually is the gain.

Theorem 3.1 Let K be a stable hybrid operator.

ra) An upperbound for the gain of K is

max 1 2 1/2 2'1/2
K0, < oepe 2 45 [ N3] " neeit « {2 e 02 (3.1
2 —=TT k n

(b) Furthermore, if K is SISO then (3.1) is true with equality.®

The proof is presented in the Appendix to Chapter 3. 1Included in
the proof of part (b) is a signal which achieves the upperbound. At
the end of the proof a conjecture is made about the actual gain in the
multivariable case.

After some thought (possibly after considerable thought), Theorem
3.1 should be as intuitively reasonable as the corresponding result for

a LTI operator H, which is

||H||,_2 = m:x |8 (G} (3.2)

The input signal that achieves the maximum gain for LT operatcrs is a
sinewave at the frequency Wy that maximizes (3.2). The corresponding
input signal for hybrid operators is an infinite series of sinewaves.
The fundamental frequency is the W that maximizes (3.1), and the other

frequencies are shifted away from w, by integer multiples of ws.
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The gain of the hybrid compensator depends on how fast the pre-
filter rolls off. Consider when the impulse response of the SISO pre-
filter appsroaches an impulse, i.e. when f(jw) + 1. The infinite sum
X "fnll2 approaches infinit&, which j-applies that the gain of the hybrid
gperator approaches infinicy. Spurious inputs such as noise will be
greatly amplified. Hence, Theorem 3.1 can be used to justify the need
for adequate prefiltering. This duplicates a result of Kostovetsky ([17].

The gain also depends on how fast the hold rolls off. In fact, the
hold is treated exactly the same way as the prefilter. This results in
the intuitively pleasing symmetry of equation (3.1). This symmetry is
important when the hybrid compensator is included in a feedback system,
in which case it is not obvious which parts of the loop should be in-

cluded in the prefilter and which parts should be included in the hold.
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3.3 A Cone that Contains the Hybrid Operator

3.3.1 Existence

For any stable hybrid opersitor K there e:ists a cone (C,R) such
that K is strictly inside of the cone. This result is presented in
Theorem 3.2.

Theorem 3.2 Let K be a stable hybrid operator, let C be any LTI
Lze-stable operator, and let R and R pe LTI L2e-stab1e operators.

(a) K is strictly inside cone (C,R) if

1/2

. 1
Onin [5(](0)]3_—‘—1ﬁ rl(w)—rz(w)+r3(w)] (3.3)
: (1-€)
for all w and some € > 0
i 2 2 2
where r) (w) = -E'[E ||§kl| ] * |[o*f|© - [Z ||§nl| ] (3.4)
T k n
rw =+ I |8 p*rl2 (3.5)
2 2 H D*F,] y
T k
r ) = I||%npF Il (3.6)
3 T D - & w
(b) Furthermore, the optimal center
G(s) = T H(s) D*(s) E(s) (3.7)
minimizes the lower bound for omin [R(3w)]. L

The proof of this result is in the Appendix to Chapter 3. A few
remarks are now made to highlight the theorem. A conic sector exists

for any stable hybrid operator. The stability requirement is the major
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limitation of this theorem, in fact it is the major limitation of all
the inside conic sector results. Unstable hybrid operators (which in-
cludes hybrid operators with digital integrators) cannot be bounded by
finite radii.

The conic sector is not unique ~ and not always useful. The choice
of center determines to a large extent how useful the conic sector is.
The center should be a good approximation of the low frequency behavior
of the hybrid operator.

Usually, but not always, the optimal center (3.7) is a good choice.
It has the distinct advantage of minimizing the radius. Also, since
this choice makes r3(w) = 0, there is one less term to compute. The
optimal center is an infinite dimensional LTI operator. If a low order
rational polynominal center is desired then use

-~

Cls) = Z H (s) K(s) F(s) (3.8)

-

where E@(c) ‘s an approximation of a zero-order-hold, such as (2.47). If

the objective is to compare different discretization techniques then use

C(s) =

Hir

H(s) K(s) F(s) (3.9)

The magnitude of the radius will rise or fall depending on how well D*(s)
approximates K(s) at low frequencies.
An alternate equation for the radius uses a double summation:

R(jw)| > ————1175

T (1-¢)

o [r4 (w) +r3(w)] 1/2 (3.10)

min l

e
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where

r (w) = J? L I
T k n#k

||, o |2 (3.11)

and wher. r3(w) is given by (3.6). For S150 systems r4(w)=r1(m)-r2(m),
and for multivariable systems r4(w)§rl(m)-r2(m). Whether to use (3.3)
or (3.10) to compute +the radius is primarily a computational issue,

as discussed in Sectiom 4.3.

Theorem 3.2 only gives a lower bound for the radius. It is always
best to choose R(jw) so that it actually equals the lower bound, because
this choice gives the least conservative stability and robustness re-
sults. If R(jw) is multivariable then all of its singular values should
be set equal to the lower bound. This is done by making R(jw) a diagonal
matrix with equal diagonal entries.

An important point to make about the radius is that it is computable.
In the examples of Chapter 5 the radius is computed for many different
values of w and then plotted on a magnitude Bode plot. The radius is
periodic with period ws, and need only be computed over the frequency
range 0 to ws/2.

The radius R(jw) corresponds to an additive perturbation, whereas
the quantity g}jw)gfl(jw) corresponds to a multiplicative perturbation.
The quantity R gfl(jw) is called the "multiplicative radius." It con-
tains information about the size of the radiuvs relative to the center,
which is usually more important than the absolute size of the radius.
The center C(jw) is a good approximation of the hybrid operator K over
the trequency range where omax[B Qfl(jm)] << 1.

If the hybrid operator is SISO and if the optimal center is used

for the cone then the multiplicative radius is independent of the
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computer transform d*(s). in this case the multiplicative radius de-
pends oriy on the prefilter and hold. All of the closed loop stability,
robustness, and performance results do depend (of course) on the com-
puter z-transform.

The last comment is that Theorem 3.1 is a special case of Theorem 3.2.
If the clioice of center is g(s)=g, then rz(w) = r3(w), which means that

-rz(w) + r3(w) = 0. What remains of (3.3) can be used in place of (3.1)

of Theorem 3.1.

3.3.2 Closed Loop Stability

The hybrid operator K is one part of a hybrid feedback system.
Sufficient conditions for closed loop stability are now presented.

Theorem 3.3 Consider the hybrid feedback system (see Section 3.1).
assume K, C, R, and RY are Lze-stable. The hybrid feedback system is
closed loop stable if a € and R exist such that

(i) K is strictly inside cone (C,R)

(i) GUI+CO)T is L, -stable

RG(I+CG T(Jw| <1 for all w ® (3.12)

(iii) o [_ G
The proof can be quickly sketched out. 1If condition (i) is true
then K is strictly inside cone (C,R). Such a cone always exists (by
Theorem 3.2), because it is assumed that K is Lze—stable. I1f conditions
{ii) and (iii) are true then -GI is outside of the same cone iby Lemma
2.8). The fact that K is strictly inside and -G! is outside of the same
cone implies that the hybrid system is closed loop stable (by Lemma 2.5).
Theorem 3.3 is applied by first constructing a C(jw) and R(jw) such
that condition (i) is true, and then by using C(jw) and R(jw) to check

conditions (ii) and (iii). The major restriction ot this thecrem is

that the hybrid operator must be open loop stable. This guarantees
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the existence of a C(jw) and R(jw) such that condition (i) is true.
If the hybrid operator is not open loop stable then Theorem 3.3 cannot
be used to determine closed loop stability.

Condition (ii) is a check for nominal closed loop stability. The
nominal system is an analog LTI system, and therefore standard techniques
can be used to determine closed loop stability (see Subsection 2.2.5).

The singular value inequality (3.12) can be graphically checked on
a magnitude Bode plot. This is done in the examples of Chapter 5. The

inequality (3.12) is implied by either of the following:l

O ax [E(jw)] . omaxlg-(l-+ g_g)'l(jm)] <1 for all w (3.13)

-1, -1,
O [g_g (]w)] <o l; + (C Q) (Jw)l for all w  (3.14)

It is (3.13) that is used in the examples. The problem with (3.14) is
that it cannot be used if C(jw) = 0 for some w. This happens whenever
the hold H(jw) is a zero-order-hold and the center that is chosen in-
cludes H(jw). The only way that (3.14) can be used is if the center
includes an approximation to H(jw), such as ga(jw) of (2.47).

3.3.3 Robust Closed Loop Stability

One of the problems with Theorem 3.3 is that plant uncertainties
are not explicitly included in the sufficient conditions for closed
loop stability. The closed system should be stable not just for the

nominal plant G but for all possible plants G in a defined set.

lNote the similarity of (3.13) and (3.14) to the robustness conditions
(2.23) and (2.22) for analog feedback systems.
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Two robustness results are now derived. The first result uses
the fact that conditions (ii) and (iii) are true for a set of linear
operators, of which G is one element. This set will contain all pos-
sible é’s if the condition of Theorem 3.4 is satisfied.

Theorem 3.4 Consider the hybrid feedback system. Assume that all
of the assumptions and conditions of Theorem 3.3 are satisfied. The

hybrid feedback system is closed loop stable for all possible G's if

Opinll + § €W - 0 (R G(3w)]
Onax [ C(hv)]l + omlg G(jw))

I.m(m) < for all w @ (3.15)

The proof of Theorem 3.4 is included in the Appendix to Chapter 3.
Theorem 3.4 is set up to be used when the uncertainty of the nominal
plant G is characterized by a multiplicative perturbation. The hybrid
operator K is inside of the cone (C,R), and if the conditions of Theorem 3.3
are satisfied then -G! is outside of this cone. If in addition the
condition of Theorem 3.4 is satisfied then all possible -61'5 are out-
side of this cone.

The next robustness result uses a different approach. The ver-
turbation of the nominal plant is used to increase tnha size of the
radiuc (the radius of the cone that the hybrid operator is inside of).
This 1s accomplished by grouping (I + gm), the multiplicative pertur-
bation, with the hold.1

Theorem 3.5 Consicder the hvbrid feedback system. Assume *hat

K, G, Em' C, R, and R! are sz-stable. Choose the center

1$imilar results are possible by grouping the multiplicative pertur-
bation with the prefilter.
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Cls) = 3 H(s) D*(s) E(s) (3.16)

(a) The composite operation (I+Em)K is strictly inside cone

(C,R) if

1

—— r(w)-r(w)+r(m)‘
(1-5)1/2 [ 5 6 7

172

Omin ‘E‘j“”] 2 (3.17)

for ail w and some € > O

where

1 2 2 2

) T[zu»fzmk) gy ] « Jlod| ~[z||grj| 2] (3.18)
T k n
1 2 2

re(w) = ;2— i(l L. ||}_1k D* gkn (3.19)
1 2

0 = 5 L" -l o e || (3.20)

(b} .he hybrid system is closed loop stable for all pcsszible
G's if
(1) (1+Em)K is strictly inside cone (C,R)
(i) G(I + €O is L, -stable

-1,
(148) o [g_g (1+C g (3w)] <1 forallw @ (3.21)

The proof of Theorem 3.5 is a composition of the proofs of Theorems
3.2 and 3.3. The proof of part (a) differs from the proof of Theorem
3.2 only in that H(s) is repiaced by (1 + E )H(s), and the following

inequality is inserted in the appropriate place in the proof:
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el < Jlkze) || - lrGw ||

(o + Negt) - N

(1 + Lm) s |laGGw || (3.22)

A

i A

The proof of (b) differs from the proof of Theorem 3.3 only in that K
is replaced by (1+Em)K. The hybrid operator (I+Em)K is strictly inside
of cone (C,R) if condition (bi) is true, and -GI is outside of the same
cone if conditions (bii} and (biii) are true. Hence, the closed loop
system is stable for all possible G's in the set defined by Em.

An alternate expression for the radius (3.17) uses a double sum-

mation:
o [R(jw)] > —i [r @ + (w)]l/2 (3.23)
minj|— - 1/2 8 7 v
(1-€)
for all w and some € > O
where
1 2 .2

ro(w) = r . -r.(w = = LI (L+£ )° | HD*E |

8 5 6 2y o mk B D,

and where r7(w) is defined by (3.20)

Constant values of ﬂm(w) are useful for phase and gain margin

analysis (see Subsection 2.2.™ Suppose

Km(w) = for all w (3.25)
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Then the various components of the radii of Theorems 3.3 and 3.5 are

related by

W = W
IS(.D = Il

W = (w2 ¢
r6 w = r2 w)

2 (3.26)

r.,(m) = Q rz(“’)
rs(w) = {1l+a) r4(m)

The significance of (3.26) is that the same computations for Theorem
3.3 suffice for Theorem 3.5.

It is possible to systematically find the maximum value of a such
that the robustness coadition (3.21) is satisfied. Let lm(w) = o and
substitute parts of (3.26) into (3.21) to obtain:

2 2 2]1/2

[(l+a) 2r4 +a'ry g(l+cg)-l <1 forallw (3.27)

Change the inequality to an equality, and manipulate (3.27) to obtain
2 ~ ~
o +ha+c = 0 (3.28)

where S and E are functions of Tayr Xy Co and g. If the stability con-
dition (3.12) is true (i.e. if (3.21) is true when a=0) then ¢ < 0

and (3.28) has one negative and one positive real root. Let the posi-
tive real root be al(w), which is a function of w. The maximum value

of a that satisfies (3.21) is
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a = min al(w) {3.29)

Note that al(w) is minimized over w

As just shown, Theorem 3.5, equations (3.28) and (3.29), can be
used to find a guaranteed phase and gain margin. Minimizing over v
the positive real root of the quadratic equation (3.28) is not diffi-~
cult, but it is nevertheless easier to use Theorem 3.4, equation (3.15),
to find a guaranteed phase and gain margin. As will be seen later,
Tueorem 3.7, equation (3.40) can also be used to find a guaranteed phase

and gain margin. In general, Theorems 3.4, 3.5, and 3.7 will give

different margins.
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3.4 A Cone that Contains the Loop Transfer Jperator

The entire loop transfer operator can be placed inside of a cone.l

This will usually result in less conservative sufficient conditions for
closed loop stability and robustness. The size of the radius depends
on the anount of aliasing of both the prefilter and the hold. In-
cluding the plant with the compensator will usually help because the
rolloff of the plant reduces the amount of aliasing of the prefilter
and/or the hold.

There are some pitfalls, however, the most important of which is
where to include the plant. There are three choices:

Case 1: with the hold

Case 2: with the prefilter

Case 3: with a combination of the hold and prefilter
The three cases are illustrated in Figure 3.1.

Case 1 corresponds to breaking the feedback loop before the pre-
filter. The loop transfer operator at this point can be used to analyze
the response to signals injected there (such as r).

Case 2 corresponds to breaking the loop before the plant. The
loop transfer operator at this point can be used to analyze the response
to signals injected at this point.

Case 3 does not correspond to breaking the loop at any physical
point. Both the prefilter and the hold are replaced by (F G 5)1/2

Case 3 is the best to use to analyze closed loop stability and robustness.2

lWhatever is placed inside of a cone must be open loop stable. If the
plant is open loop unstable it can be split into a stable part and a
unit magnitude unstable part, and then the stable part can be included
in the cone. See Section 5.4 for an example.

2Nowhere does the square root actually have to be computed, because
leew™ ) ?=llegul.
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e y
Case 1: Plant included with the hold

Case 2: Plant included with the prefilter

Case 3: Plant included with a combination of the hold and prefilter

Figure 3.1: Threc cases of including the plant with the hybrid
compensator.
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Theorems 3.1 to 3.5 are used when the hybrid operator is inside
of a cone. With appropriate modifications these theorems can also be
used when the loop transfer operatcr is inside of a cone. Tie modifica-
tions are described in the following paragraph.

In each of the theorems the hybrid operator K is replaced by the
appropriate loop transfer 7. Depending on where the plant is included:

Case 1: Replace H by G H

Case 2: Replace F by F G

Case 3: Replace H and F by (F G H) 1/2
In Theorem 3.3 replace G by I, and the three conditions for closed loop
stability become

(i) T is strictly inside cone (C,R)

(i) (140" is L, -stable

(iii) O ax [3_(;@)-1@(»)] <1 forallw (3.30)
In Theorem 3.4 replace the condition for robust closed loop stability

by

Opin [+ GO - 0 [R(W)]

o [CGW] + o [RGW]

lm(m) < (3.31)

In Theorem 3.5 replace G by I and replace the three conditions for robust
closed loop stability by

(i) (I+Em)T is strictly inside cone (C,R)

(i) (40T is L, -stable

(1i1) 9 lg(l}g)_l(jw)] <1 for all w (3.32)
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The significance of case 3 is that for SISO systems the radius is
smaller (for each w) than the radii for caces 1 and 2. Hence, case 3
gives the least conservative sufficient conditions for closed loop
stability and robustness. The Cauchy-Schwartz inequality is used to
show this.

The equation for the radius in Theorem 3.3 isl
r@ = |r.@ - ro( +r (m)ll/z (3.33)
1l 2 3
For SISO systems rz(w) and r3(w) do not change for the three cases.

Therefore, whatever differences exist in r{(w) are due to differences in

rl(jm).2 The equations for rl(w) are:

1§ 2 2 2
Case 1: rl(w) = = L ’gkhkl ]‘ ’d*l * [Z Ifnl ] )
T Lk n
case 22 . = [z |n|? . |a*|? ):lf 12l ) .3
ase 2: r, w = > hk g (3.34)
T 1k
1| 2 2
Case 3: r (w) = ;5 {i Ifkgkhk'] . ld*' J

By the Cauchy-Schwartz inequality:

%Nithout loss of generalty the £ term has been ignored.

2 . .
For multivariable systems both rz(w) and r3(w) differ for the three
cases, because matrices do not commute.



GINAL PACE 'S
-116- g‘:‘ POOR QUALlTY

A

Lf‘; Ifkg,‘h,‘l]2 [;f lgkhklzl- :z lf,,Iz]

S (3.35)

g’ < [z g7 - [z 1]

Therefore rl(w) for case 3 is less (for each w) then rl(w) for the other
cases. It follows that r(w) for case 3 is less (for each w) then r(w)
for cases 1 and 2.

Without further information about h(s) and f(s) it is rot possible
to tell which of the radii for cases 1 and 2 is smaller. Some indica-
tion of which radii is smaller can be gleaned by comparing the relative
magnitudes of — Zlhklz and L If lz, but the best way is just to graphically

T n
campare the radii. 1In general, neither will be smaller for all w.
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3.5 A Cone that the Inverse Hybrid Operator is Outside of

3.5.1 Existence
Just as there exists a conic sector that K is inside of, there
also exists a conic sector that -KI is outside of. This result is
presented in Theorem 3.6. It is proved in the Appendix to Chapter 3.
Theorem 3.6 Let K be a hybrid operator, let C be any LTI operator
such that K(I+CK)I is Lze—stable, and let R and RY be LTI Lze-stable

operators. kI is outside cone (C,R) if

1

o [g(jm)] < —=—  for all w (3.36)

max r_rg(w)
1 2 2 2

where r (W) = —2[2 Il ] L1 [z: | eIl ] (3.37)

T Lk n

D*,(s) = D*(s) |I + (FCH(s)1* D*(s)| ™" ®  (3.38)

D D*(s) |L+ [ECH(*D

The outside conic sector conditions do not require open loop sta-
bility of the hybrid compensator. This removes the major restriction
of the inside conic sector conditions. Taking its place is a require-
ment that K(I+CK)I is LZe-stable. The composite operator K(I+CK)I is a
hybrid operator (see the proof). It is stable if all of the poles of
ch(z) have magnitude < 1 (see Subsection 2.3.4).

3.5.2 Robust Closed Loop Stability

Sufficient conditions are presented for the hybrid feedback system

-~

to be closed loop stable for all possible plants G. The robustness re-

sult follows much more naturally than in Subsection 3.3.3. He:e the
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hybrid operator -KI is outside of a cone and the plant operator G is
ingide of a cone. This is more natural because the nominal plant G
and its additive or multiplicative perturbation can be used to place

G inside of a cone.

Theorem 3.7 Consider the hybrid feedback system. Assume R and RI

are L2e-stab1e. The hybrid feedback system is closed loop stable for all

possible G's if an R{jw) exists such that

(i) K466 7T is L, -stable
(ii) -KI is outside cone (G,R)

(iii) o . [RGw]>£ (w)  for all w. ® (3.39)

The proof is sketched out here. If condition (i) is true then a
R(jw) can be constructed such that condition (ii) is true (by Theorem
3.6). If condition (iii) is true then é is strictly inside of cone
(G,R). Hence, the hybrid system is closed loop stable for all possible
é's (by Lemma 2.6).

If the uncertainty of the nominal plant G is modelled by a multi-
plicative perturbation then (3.39) has the alteraate form:

Km(w) < Opin [ROWI/0

ax [G(iw)]  for all w (3.40)

if Lm(w) = @ then the maximum value of a such that (3.40) is true can

be used to find guarenteed phase and gain margins.

it oy i
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3.6 CGoimand Response of Hybrid Feedback Systems

Conic sectors can be used to analyze the steady state command
response of a hybrid feedback system. The objective is to find an upper-
bound for the quality measure "q", which is defined by equation (<.95) of
Subsection 2.4.6. Either the léop transfer operator GK or the closed
loop operator (I*-GK)I can be placed inside of a cone.

The first approach uses Theorem 3.2 or Theorem 3.5 to place the
loop transfer operator GK inside of a cone.1 The loop is broken where
the command signal enters the loop, which is just before the prefilter,
and the plant is grouped with the hold (case 1 of Section 3.4). The cone
is placed around either GK (if the nominal plant is used) or éK (if the

perturbed plant is used). The center ard radius are used via (2.98) and
(2.99) to compute an upperbound for q.

The second approach to computing an upperbound for q is to place
the closed loop operator GK(T + GK)I inside of a cone. The center of the
cone is C(71 + C)I, where (C is a LTI approximation of GK.Z The closed
loop operator GK(I + (_;K)I has the same structure as a hybrid operator.
The input-output transformation of GK(7 + Gn]:is given by (2.57), which

is repeated here:

y(s) = G(s) H(s) D* ,(s) [E(s) r(s)]* (3.41)
where

D* ,(s) = D*(s) (I + G.* D*(s)] " (3.42)
- Cz - - -Q -

1
Theorems 3.2 and 3.5 must be modified as discussed in Section 3.4.

This is equivalent to placing (I + GK)I inside of a cone with center
(I + )1, see (2.106) and (2.107).
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G,*(8) = [HGF(s)]* (3.43)

Theorem 3.2 (appropriately modified) can be used to construct a cone that
contains GK(T + GK)I. The radius of this cone can then be uged, via
(2.105), to compute an upperbound for q.

Significant improvements can be made to the second approach by
taking advantage of the fact that the command signals are restricted to

asetSC Lz:' Rather than meet the conic sector inequality

I I
ek + e’ - e+ oMl < Rell

for all rcl f andt € R (3.44)
~ - 2e +

it is only necessgary that

ekt + 6k - ca1 + ey hie]l IRzl
lim ~— < lm —
T =1l we |zl
for all r € § (3.45)
By virtue of the fact that § C L2: it follows that
IR ]l IRzl
lim —=T < lim —2 T for anl res (3.48)
e el " e Izl

A particular set SaC L2: is now defined:

Sa = {sinewaves with frequency < F'f} (3.47)

S ——
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An important property of signals in this set is that they do not cause
any aliasing when they are sampled.

The following theorem can be used to analyze the steady state res-
ponse to commands that are members of Sa. The proof of Theorem 3.8 is in
the Appendix to Chapter 3.

Theorem 3.8 Consider the hybrid feedback system. Assume that

GK(I + GK)I and C(I + C')I are LZe-stable. Then

[GK(T + 6K)" - C(T + O Tixll, IRyl
lim - < lim ———
- el - el
for all r € Sa (3.48)
if
. 1/2
0 [RGO) 2 [r, @ + 1, (@)] 72 for lu] < % (3.49)
where
' 2
T1ol®) - 2 ko ey # o El
@ =NicuDp3 Fo - cx+ o) isml? ® (3.50)
@ =il GRD G FGw - cd+o 3 :

Theorem 3.8 can be used to find an upperbound for the quality measure
g. lLet the set of command signals be sinewaves with frequency less than

@, (which is a subset cf Sa)' Then it follows that

q < a, (1 + r3) (3.51)
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where

-1
q, = max O ((x +C) "(Jw)) (3.52)

= max O {53(jw)] (3.53)

o<w<w
- -0

This completes the section on using conic sectors to analyze the
stesdy state response of the hybrid feedback system to command signals.
The suggested approaches are (1) use Theorem 3.2 to construct a cone
that contains GK, (2) use Theorem 3.2 to construct a cone that contains
GK(1 + GK)I, and (3) use Theorem 3.8 to construct a cone that contains
GK(I + GK)I but is only valid for command signals r € Sa. In the example
of Subsection 5.2.11 the third approach is shown to give the least

conservative (lowest) upperbound for the quality measure q.
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Appendix to Chapter 3

This appendix contains proofs for Theorems 3.1, 3.2, 3.4, 3.6,

and 3.8, The proofs of the romaining thoorems of Chapter 3 are

sketched out in the text.
This appendix begins by stating and proving a lemma which is an g
intermediate stoep used in the proofs «f Theorems 3.1, 3.2, and 3.6.
The lemma is a frequency domain inequality that is used for signals
that are inputs of hybrid compensators. The proof uses the Cauchy- %
Schwartz ineavality (19, p. 30] and Lebesque Dominated Convergence
[21, p. 44}.
Lemma 3.A Let 5“(5) be Laplace transform matrices for all inte-
gerg n, and let e(s) be the Laplace transform of ot LR' Furthormore
(to assure Lebesque Dominated Convergence) assume for ((ﬂ{ suf-

ficiontly large that
3
) Hl(ﬂ(jm) I < === for some a,B > 0 (3.a.1)
n

Then

ARy .
"l” J ”}. };‘(im)f‘_(i(l‘- llL\Sl\)”;; dw :

e
! v e . &)

T

lg(hn)H; o @ (3LALD)
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Proof of Lemma 3.A The proof is a long series of equalities and

inequalities. Justification for each step is included in parenthesis.

1 . 2
5 r lli K, Gw)e Gu-dun|| 2 @

I

1l . L 2
> r [i ”g(ﬁ(;;m)g(Jm-Jmsn)“El dw {(3.A.3)
=00

(because II_B_*P_IE A “9_“5 + "R“E)

1 . o 2
= on r[ﬁ"En(Jw)" " g(]w-Jmsn)”E] dw (3.A.4)

(because ||A bl| g 2 lall - ”2”3)

«©
- zL-n I & llx, Gw ||2] L’i neliw-ju k) | 2] aw  (3.A.5)

(By the Cauchy-Schwartz inequality. Let a_ = “l_(n(jm) ||2
S 2

and b = ||le(jw-ju_n)||; . For each w, a_and b_ are non-

negative real numbers. Let a and b be £, vectors (of

infinite length) containing the an's and bn's. The

Cauchy-Schwartz inequality states that

T
la’p| = flall g« Hellg).
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1 . 2 o 2
"E‘ﬁi r[i“ﬁn(nw) I ] + JleGu-juga iz aw (3.2.6)
-0

(move sum over k outside integral, which is valid

bv Lebesque Dominated Convergence).

1 [ o 7Y ITUCY R
- = if \in_lgn(gwwsk) Il ] e(iw) || dw (3.A.7)

(for each k change the variable of integration

to &=m-wsk).

1 [ 2 <42 -
= > J [}z‘; illgﬂ(jwﬂwsm Il } * |le(a®) HE dw (3.A.8)

(move sum over k back inside the integral).

This completes the proof.
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Proof of Theorem 3.1 The objective is to show that equation (3.1)

is an upperbound for the gain of a hybrid operator. The proof essentially
boils down to an application of the frequency domain inequality of
Lemma 3.A., Some extra work is required, however, both before and
after this lemma can be applied. The operator gain is defined in the
time domain using truncated norms [see (2.79)]. A truncated function
is defined so that L2 function norms can be used in place of the trun-
cated norms. L2 function norms are needed so that Parseval’s Theorem
can be used to switch from the time to the frequency domain. While

in the frequency domain Lemma 3.A is applied. Parseval's Theorem is
then used to switch back to the time domain, and finally the truncated
function is used to switch back to truncated norms.

The truncated function is defined by

gt(t)é (3.A.9)

The proof uses the notation:

k Gl BGwD G FGu-jumn) (3.A.10)

and the following:

I L Ik, Gomsw ) || DrlgoeE I (3.A.11)
kn kn
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2 2
<22 [l l2t 1 -l ] (3.2.12)
n

2 2 2
- [z e - [zne?] (3..13
k n

The last step, (3.A.13), is possible because I “Eﬂ“z is periodic with

n
period wg .

The main part of the proof is now presented. Fo. all e € L2e and

all T e R :
||Kg_||i = HKETHi (because K is causal) (3.A.14)
< HKeT”f (norm increases as T + «) (3.A.15)
o2
<0
= J I (Ke) (t) Hf: dt (by definition) (3.A.16)
1 [T 2 ,
= o J 1 (KET) (Jw) “E dw (Parseral's Theorem)
(3.A.17)
S 2
= 5 f Ik Guwe, Gu-jun) |7 dw (3..18)

n

-0

[where g_(_n is defined by (3.A.10)]
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00 B
<k [ [i Ellg, -39 1] lleg oo )2 a0 (3.5.19)
(by Lemma 3.A) ,i‘
1 ® 1
2 2 . 2
N I [ R EYE PN ST
‘o T Lk n
(3.A.20)
[by (3.A.13)]
<9’ = r lle o I aw (3.A.21)
=00
‘ 1/2 1/2
where g = "X %[2 ||§*|lz] * llo*l} - [Z l|£n||2] %
0 w<—-t k n
==
(3.A.22)
(restricted frequency range used because
the bracketed term is periodic with period
W and is symmetric about w=0)
= g° Ilgr”i (Parseval's theorem) (3.A.23)
2
= g° |lell? le (£) = 0 for t > T (3.A.24)
By definition of the gain of an operator:
llKell
HK“L = sup ~ 1 < g (3.A.25)
2 lell,

This completes the proof of part (a).
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Part (b) of Theore: 3.1 is proved by showing that the following

input (for the SISO case) achieves the upperbound:

e(t) = i Ianl * cos [(wo-wsn)t + Arg (a ) (3.A.26)
— A% (4 3 .
where a, a*( on) b 3| Jw, + stn)
w, = frequency the maximizes (3.A.22)

The norm of this function, expressed as a limit, is:

. 1/2 1/2
lim 1 2 X . . 2
e S VRS RPN R CTETRT EN LTt ]
n n
(3.2.27)
The output of the hybrid compensator is
1
u(t) = ;r-i lbk| cos [(wo-wsk)t + Axg(b,) (3.A.28)

L 2]
where b, = h(on-stk) [ﬁ Ianl

and the norm of this output signal is

. 1/2
lim 1 1] s 2 . 2
o Tl = T[i In (3w -3w k)| ] [E |a_| ] (3.2.29)
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The gain for this input signal is

1 Nl

o " = g (3.A.30)
llell .

This completes the proof.

Remark The input (3.A.26) and the output (3.A.28) have sinewaves
at the same frequencies. The an's in (3.A.26) are chosen s0 that the
Cauchy-Schwartz inequality is met with equality {see (3.A.5)].

Conjecture (Multivariable version of Theorem 3.1, part (b)).

The gain of the multivariable hybrid operator is

ki, = ™% L0z zin p*r | (3.A.31)
Y2 o<t ?lkn *  °




-131-

Proof of Theorem 3.2 The objective is to show that the hybrid

operator K is strictly inside cone (C,R). This proof is similar to the
proof of Theorem 3.1, and again essentially boils down to an applica-
tion of Lemma 3.A. Parseval's Theorem is used to pass between the time
and frequency domain, and the following truncated input is used to

pass between the truncated norm and the L2 function norm:

(Re) (t)

1]
| v
~

gq(t) = (3.A.32)

[=]
(24
A

T

The input is truncated only after it is convolved with the radius.

Rather than show thatll(K-C)gILt < “RSIL » the main part of the proof
shows thatII(K-C)RIgT||L < “SrilL . Yet another complicatiny factor

is that the € term must 2be manipulzated to show strict inequality. This
is possible because R is Lze—stable. The middle part of this proof
[steps (3.A.45) to (3.A.50), which includes the application of Lemma 3.A]
is the only part that differs significantly from [9, Theorem A.4].

It is convenient to introduce the notation

s

H(s) D*(s) F(s) - C(s) n=0

§h(s)é (3.A.33)

=1

H(s) D*(s) E(s-jwsn) n#0

which is used to express the Laplace transform of (K-C)e as

u(s) - C(sle(s) = L K (s)e(s-jw_n) (3.A.34)
n
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Midway through the proof the following inequality is used:

L I ||k, (Jw-ju k) 1?=1c¢ ¢ llgﬂ(jm-jmsk) N2+ ¢ l| X, (Gu=3uw k) Il
kn k

k n¥o
(3.A.35)
1 2
= 3 |lgorr |l
X n 2 B “n+k
1 2
-t = |l p*E
. o K D*E,
+I |28 o E -l (3.A.36)

A

ol? - [2llg 2] - 0 ¢ my
n

1[ 2
—-znun]-
Tzk—k

(3.A.37)
= rl(w) - rz(w) + r3(:.o) (3.A.38)
= r{w) (3.A.39)
Part (a) is now proved. For all e € Lz‘3 and all T ¢ R+:
2 I 2 I .
lk-Crells = | (K-C)R"Re||.  (because R™ exists) (3.A.40)

Il (K-C)RIETH: (because R is causal) (3.A.41)

Il (K-C)RIe ”2 (norm increases as T*®) (3.A.42)
el

A
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I 2
(K-C)R"e_(t) g at

(by definition of the L2 norm, the integral

exists because K,C, and Rt are L2e-stab1e)

00

S———y

llk-C)RE ST(j“”llg dw (Parseval's)

-00

-1 . 2
rll:“;i_cng e, G0l d  (by (3.2.33))

Lo v}

L. 2 -1 . 2
LZ( illﬁn(aw-wsk) I ] R e (G |l5 aw

(by Lemma 3.A)

éb—ﬁ

f r(w) »

E—lsr(jw) Hé dw [by (3.A.39))

I r@ IR G 12 e lle Go |2 aw

Y
e, (3w “E dw

J'r r(w) * o;jn (R(3w)] °

I (1-g)

e (0 |2 aw [by (3.3)]

(3.A.43)

(3.A.44)

(3.A.45)

(3.A.46)

(3.A.47)

(3.A.48)

(3.a4.49)

(3.A.50)
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2
= (1-€) “‘Er"L2 (3.A.51)
= (1-€) |le_]|? (3.A.52)

~TYT

2
= (1-€) ||Rg3||T (3.a.53)
< lIRell, - eflell? (3.A.54)

where €' = € ||R]|,
2

It has been shown that K is strictly inside cone (C,R). This completes
the proof of part (a).

The objective of the proof of part (b) is to show that the optimal
C(s) of (3.7) minimizes the lower bound of Onin (R(Jw)]. Note that
C(jw) enters only in ry(w); and that r,(w), r,(w), and r,(w) are all
nonnegative real numbers. If the optimal center is used _hen r3(w) =0,
which minimizes rl(w) - rz(w) + r3(w) . This completes the proof of

Theorem 3.2.
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Proof of Theorem 3.4 This theorem gives sufficient conditions for

robust closed loop stability when the hybrid operator is inside of a
conic sector. The objective of the proof is to show that conditions
(ii) and (iii) of Theorem 3.3 are true for all possible é's.

The first part of this proof uses the LTI robustness result (2.22).
Conditions (ii) of Theorem 3.3 is that G(I+CG)T is LZe-stable for all
possible G's. The assumption is made that G(I+CG)I is L2e-stab1e. It

follows from (2.22) that é(I+Cé)I is L e—stable for all possible 6'9 if

2

for all w (3.A.55)

This inequality is implied by (3.15) of Theorem 3.4, Hence, if (3.15)
is true then condition (ii) of Theorem 3.3 is true for all possible G's.
The second part of the proof uses the following string of in-

equalities:

g [RG(L+CG) 71 < O ax R Gl/o (I +CG) (3.A.56)

< Opax RGN (A+L)/0 . (I +CG]

n

(3.A.57)

(by the triangle inequality)
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S O RS u+‘cn)/{°nin (1+c6l -0 . [CG lm}
(3.A.58)

(by property 10 of Table 2.1)
< 1 (if (3.15) is true) (3.A.59)

Hence, if (3.15) is true then conditions (iii) of Theorem 3.4 is true

for all pcssible G. This completes the proof.
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Proof of Theorem 3.6 The objective is to show that -kI is outside
of cone (C,R). This will be true (by Lemma 2.2) if and only if
IRk (14¢K) 2| | S 1. The proof of Theorem 3.6 ias basically an applica-
tion of Lema23.A to show that the composite operator has gain < 1.

Condition (i) of Theorem 3.6 assumes that the following feedbuack

system is closed iuni stable:

e = e;-Cu
u = Ke (3.A.60)

A block diagram of this feedback systeml is shown in Figure 3.A.l. The

closed loop operator is RK (1+CK) T,

Given the Laplace transform 2_3(8) of the input, the Laplace trangs-

form of the output is

Uy(s) = R(s) H(s) Dee(s) %ﬁg‘_(s-jwsn)_e_a(s-jwsn) (3.A.61)

An alternate expression for (3.A.61) is obtained by defining

K (2% 5 B(s) H(s) C¥p(s) E(s-ju_n) for all n (3.A.62)

The subscript "3" is used to be consistent with Figure 2.10b of
Subsection 2.4.5.

s o R

st ol e g

Ut e o
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¢

Figure 3.A.1l: Feedback system used in proof of
Theorem 3.6.
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and then by substituting (3.A.62) into (3.A.61) to obtain

u,(s) =§ K, (s)e(s-jw_n) (3.A.63)

The closed loop system has the same structure as a hybrid compensator,

except that D*(s) is replaced by its closed loop counterpart D*c(s).

Define the truncated input

(3.A.64)

The main part of the proof now follows. For all e € L2e and all T € R+:

||R!<(I+CK)I(3HT || RK (T+CK) IgTHTZ (3.A.65)

| A

[IRK(1+0K) Te_ || (3.A.66)
2

L[ . - 2 :
= o I I 2k Gue Gu-jum|ls dw  (3.a.67)

n
—00

| A

” - 2 2
3 [ignyw-wsm“] e Gurfig s

(3.A.68)

(by Lemma 3.A)
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® 1 2 2 2 2 . 2
2w J ;‘5[&”5” y ”Ek" ]' ”2&” . [i”}‘_‘n” ] Hg,r(Jw)”Edw

(3.2.69)
(R, = R because R is periodic)
= L ” 2 . Y 3 2
= J IRI® - rgtw « lle, Goy I (3.A.70)
[rg(w) defined in (3.37)]
1 (7 o2 .
< J lle, (3w IIEdw by ( .39] (3.A.71)
= lle N} (3.A.72)
2
= llell2 (3.5.73)

It has been shown that the operator RK(1+CK)I has gain < 1, and there-

fore that -K' is outside of cone (C,R). This completes the proof.
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Proof of Theorem 3.8 The objective is to show that the inequality

(3.48) is satisfied for all r € Sa' The property of signals r € Sa that
is exploited in this proof is that these signals are not aliased when
they are sampled. This iack of aliasing eliminates the need to shift and
add the prefilter g(jm).

The following is valid as Tt and for all r € ga:

ek + 6T - ¢ + C)Ilglli

2
= ek + 60t - ca +ohiell, (3.A.74)
T2

1 (7 1. -1 yj2
Toam J_m“G‘l“?cz Fofn ~ €I+ 0 sllEdw (3.1.75)

m
1 ; j(2k+l)$

27 il —— E
(2k-1)g (3.A.76)
T/T
1 * 1 -1
= & J_WT leWBPep T & Fnexfnoc - ST+ & r, I
(3.3.77)
n/T
l *
T om J [k;é Il eyDep %21”2
~/T

* ] -1 2
+|leHD, Fr - C(X+ 0 _rllE]dw (3.A.78)

(because there is no aliasing)

n/T
1 * ] 2
$ o f [ e pop 7 Ell

* ] -1p2 : :
+ |l GHD_p 7 F - C(I + 0O ]H{ ”; dw

(3.2.79)




/T
1l
5;’J ”B

2
IR 5xll
3s L2

1A

2
r|l¢ aw
app 3 g

fl

2
IR, x)i2

This completes the proof.
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(by (3.49)]

(3.2.80)

(3.A.81)

(3.a.82)
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4. NUMERICAL CONSIDERATIONS FOR THE COMPUTATION OF THE CONE RADIUS

4.1 Introduction

The previous chapter contains many different cones that the hybrid
operator is either inside of or outside of. For each of these cones the
radius must be computed. 1In this chapter it is shown how to campute
the different radii.

Equations for the radius are given in Theorems 3.2, 3.5, and 3.6.
The equations contain several parts that are combined in straightforward
ways. What is not straightfoward is that each of the parts contain

infinite series that must be summed. The infinite series take the form

s(w) = ;:( lla, (4.1)

=L
r, () = z i I 3 [ || 2 (4.2)

The "A" matrix is either the prefilter, the hold, or any of several
different combinations of the prefilter, hold, and plant. Equation
(4.2) has appeared earlier as equation (3.1l).

The computational results of this chapter are grouped into three

sections. In Section 4.2 the infinite sum (4.1) is approximated by summing

a finite number of terms. Sufficient conditions are given for the
remainder tc be bounded. 1In Sectioa 4.3 the double infinite sum (4.2)
is approximated by summing a finite number of terms. Analysis of the
double infinite sum is aided by splitting it into several single in-
finite sums. The double infinite sum is finite if the single in-
finite sums are finite. In Section 4.4 analytical solutions for
s(w) of (4.1) are presented. Analytical solutions have been found

when A(s) = af(s) is single input single output (SISO). The major
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results of this chapter are summerized in three theorems:

Theorem 4.1: Upperbound for the remainder of the truncated
infinite series for s(w).

Theorem 4.2: Analytical solution for s(w) when a(s) has a state
space realization.

Theorem 4.3: Analytical solution for s(w) when a (s8) = h(s) a(s),
where h(s) is a zero-order-hold and a(s) has a state
space realization.

It is helpful to understand some of the qualitative behavior of the
infinite series for s(w). The sum is even[i.e. s(w) = s(-w)] and periodic
with period ms[i.-e. s(w) = s(w-kms) for any interger k]. Because of
these two facts it is only necessary to compute s(w) for points between
0 and ms/2 = T/T (the foldover frequency). If 1_\(j(u) is small above the

/2

foldover frequency then the aliasing is insignificant and S((l))l will
be approximately equal to || A(jw) “ for Iml < m/T.

An example will help to clarify this qualitative behavior. Consider
the first order lag

1
s +1

a(s) = (4.3)

A magnitude Bode plot of a(jw) is shown in Figure 4.1. The same Bode

/2

plot contains several different plots of s((u)1 , each for a different

sample interval T.
The break point of a(jw) is at w = 1. If1l << w then s(m)l/2 =
la(jw)| for o <w<g a)s/2. On the other hand, if w, << 1 then s(w) =

1/2
(T/2) / for all w. At high frequencies (mr << @) it is always true

that ]a(jm)| << s(w)l/z, because |a(jw)| rolls off and s((»)l/2 is

periodic.
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Figure 4.1: Comparison of la(jm)l and s((.o)1
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4.2 Truncating an Infinite Series

One way to compute s8(W) is to sum a finite number of terms of the
infinite series (4.1). Whether or not this is feasible depends on the
behavior of the remainder.

In this section sufficient conditions are presented for the re-
mainder to be bounded. One example of these sufficient conditions is
that the remainder is bounded if A(jw) has an one pole rolloff. These
sufficient conditions show that the remainder approaches zero as
the number of terms of the truncated series increases. This information
can be used to determine where to truncate the infinite series so that
the remainder is less than a specified amount.

Some new notation is needed. Let the truncated series and its

remainder be defined by

N
2
sg@ & T la, |l (4.4)

rN(w) Q s(w) - sN(m) (4.5)

Two assumptions are made about A(jw). It is assumed that above

some frequency mo that ” :(jw)ll lies below a straight line asymptote:
faGw ]l < bw for w > w (4.6)

o \P
where b(w) -(-f) (4.7

This assumption is illustrated in Figure 4.2. On a log-log scale the
straight line asymptote has a slope of -p. If p = 1 then A(iw) is said

to have at leastan one pole rolloff.
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Figure 4.2: Assumption that ” A(jw) ” lies below a straight
line asymptote
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The second assumption about A(jw) is that
I A(jw) <= for all (4.8)

If this agssumption ig true then the boundedness of rN(m) implies the

boundedness of s(w).

The main result of this section is now pregented. The proof is in

the Appendix to Chapter 4.
Theorem 4.1 Consider the Laplace transform matrix A(s).

(a) If (4.6) is true for p > % then

2p 2p-1
w < (=2 ) (i (4.9)
rN - 2p-1 ms N=-1 ¢

w

[¢]
foro<w<msandN> —-—

(b) Furthermore, if (4.8) is true then

s(w) < g for all w and some g < ® ® (4.10)
The upperbound on ry (w) is only valid over the fundamental frequency
range. Only at the cost of considerable notation can the result be
extended to other frequency ranges (see the remark in the Appendix to Chapter
4).

The lower bound on N, which is one of the conditions of (4.9), assures

that all of the terms of the remainder are bounded by b(w) of (4.7).

When A(jw) has an one-pole rolloff then (4.6) is true for p = 1.
The upperbound on the remainder is given by

mo ’ 1
r (w) <2§— —— (4.11)

1 . . :
The remainder is (approximately) proportional to N’ which is characteristic
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of an incredibly slow rate of conver:gence.1 Each extra decimal point of
accuracy requires 10 times as many terms in sN«D).

Theorem 4.1 can be used to determine the value of N such that the
upperbound of rN(w) is less than a specified amount.2 If this is im-
portant then it should be recognized that the upperbound (4.9) can be
tightened, and may result in a value of N larger than necessary.

The best use of Theorem 4.1 is to help understand the qualitative
behavior of the remainder (such as when it is bounded and, if bounded,

what is its rate of convergence).

1Slow compared to exponential convergence.

2
2For example, if p = 1 then N > (2/¢) (mo/ws) gquarantees that rN(w) <€
for o < w <« @y
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4.3 Truncating a Double Infinite Series

The double infinite series (4.2) can be decomposed into several

single infinitu series:

1 2
r, () = T—?' E Il l}kt_)'g‘nu (4.12)
1 2 1 2
=-= L I D*t -= 1 D*F. (4.13)
Lrlnen,I® oL e
1 2 2 2 1 2
sl e 0% for % fz le %] - 5 = I goee, |l
2k Tk 2 - NE, 2y A
(4.14)

The inequality in (4.14) can be replaced by an equality if the matrices

are replaced by scalars.

The double infinite series (4.12) is finite for each w if I "!Lkllz,
k

”Dtllz, and I Hgnllz are all finite for each w. Each term of (4.12)
n

is nonnegative, .- ‘4.12) is lower bounded by zero. The subtriaction

in (4.14) cannot result in a negative number.

A truncated version of (4.12) is defined:1

row =% § I fuow > (4.15)
4N TZ k==N n=-N ~k= =n
n¥k

The ramainder r, (W) - r

4 N (w) can be analyzed by using the remainders

4
of the single infinite series of (4.14). Thiis analysis is cumbersome
and will not be attempted here. The endpoint of this analysis is

clear - if H(jw) and F(jw) both have at least a one pole rolloff then

lEquation {4.15) with N = 20 was used in the examples of Chapter 5.

B

L e e
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the remainder r, (w) - ¢ n (w) is bounded and approaches zero as N + ®,

4

Truncating the double infinite series is often prefereable to trun-
cating the various single infinite series of (4.14). For multivariable
systems the double infinite series has the distinct advantage of being
less than or equal to (4.14).

The double infinite series has another advantage in that it avoids

a common numerical problem. The double infinite series [which sums to

TZ

For some values of W this term may be orders of magnitude larger than

r, (w)] is converted to (4.14) by adding and substracting L l‘§k9'§n'i%
k

b s

X, (®). This introduces numerical problems when finite precision

arithmetic is used, because (4.14) involves the substraction of two

large numbers, which results in a loss of accuracy. An example of this

g pﬂ,,,mw.&

loss of accuracy is shown in Subsection 5.2.6.

vt DG
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4.2 Analytic Solutions

In some cases an analytic solution can he found for s(w) of (4.1).
The Laplace transform matrix A(a) must be a scalar, in other words
A(s) = a(s).

Squation (4.19) is used to find analytic solutions for s(w). This

equation is now derived. Let b(s) be a Laplace transform, b(t) the

inverse Laplace transform, and b(z) the z-transform of the samples b(kT)l.

It is well known [4, pp. 77-80] that

. |
i bk T * b(z) zaeij (4.16)

Define

¥ | b(s) = a(-s) a(s) (4.17)

and then it follows that

b(jw) = a(-jw) a(jw) = |ati) |2 (4.18)

- 2 _ - me
s(w) = E lakl = E b =T b(z)l " (4.19)

T
=e

Whether or not (4.19) is useful depends on how easy it is to derive
an expression for b{z). Given an expression for a(s) the way to find
b(z) is to respectively find a(-s), b(s), b(t), b(nT), and then b(z).
This procedure will be followed for the following cases:

1) Zero-order-hold

2) First order lag

3) Cascaded zero-order-hold and first order lag
4) a(s) given by a state space representation

1Any region of convergence (ROC) can be used. If the ROC gf b(s) is
8, < Re(s) < s o

1 then the corresponding ROC of b(z) is e®0" < |z} < 51T,




-153-

5) af(s) given by a state space representation cascaded with a
zero-order-hold.

The last two cases are sufficiently general to present them as theorems.
Case 1 If the hold device is a zero-order-hold then al(s) = h(s)
has the following Laplace transform:l

l_e-sT
al(s) i (4.20)

It is straightforward but tedious to compute bl(s) = al(-s) al(s) and
then to compute the inverse Laplace transform to obtain bl(t). A
shortcut is to recognize that the inverse Laplace transform of al(-s)
is al(—t), and that bl(t) = al(t) * al(-t). This convolution is shown
in Figure 4.3. There is only one nonzero sample of bl(t), which is

bl(o) = T. The z-transform cf bl(nT) is

bl(z) =T (4.21)

Therefore the analytical solution for s(w) is

12 2

s = I |a =T (4.22)
n 1n

which is a remarkable simplification!
Case 2 If the prefilter is a first order lag then az(s) = f{s)

has the following Laplace transform:

a
o]

aZ(S) = ;r:j:;; (4.23)

Unlike the previcus case there is no shortcut around the page or two

of mathematical tedium which results in the desired expression

1The subscripts "1" through "5" are used to distinguish the a's and

b's of the five cases.
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Figure 4.3: Zero-order-hcld
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a
_ _o az
bz(Z) e (4.24)

z2 - Bz +1

where

o = exp (-aoT) -exp (aoT)

™
"

exp (-ra T) +exp (a T)
o e}

Case 3 Part of the radius calculation has the hold and prefilter
in the same infinite smm[e.g.rz(m) of Theorem 3.2]. 1In this case a
zero-order-hold is cascaded with a first order lag:

l_e-sT ao
a3(s) = . p—y ao (4.24)

Again the intermediate steps are left to the reader. The final result

is

2
by (z) = 1 alz-1l) | o (4.25)

Zao Zz-Bz + 1

The ¢ and £ are the same as for the case 2. The denominators of b2(z)
and b3(z) are the szme.

Example Consider a SISO hybrid compensator with a first order
lag and a zero-order-hold. The digital computer z-transform is arbit-
rary. The results of the first three cases of this section can be used
to place this hybrid compensator inside of a cone.

Choose the optimal center of the cone:

c(s) = h{s)d*(s) f(s) (4.26)

-3 j-

From Theorem 3.2 the radius r(s) must satisfy the inequality:

[rGe) | > (r)w - rz(m)ll/z (4.27)
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After a few substitutions it follows that

- 2 _1
r, @ - rw = la(z)] ﬂbl(z) b,(z) - T b3(z)} L Jor (4.28)

Case 4 1If a4(s) has a state space realization then an analytical
solution can be found for s(w). This case is useful when the prefilter
is more complicated than the first order lag of case 2.

Let the state space realization of a4(s) be

k = ax + bu|

y = cx ‘ (4.29)
The Laplace transform of (4.29) is

as) =c(sT-m b (4.30)
and the Lap!:ce transform of ai(-s) is

ai(—s) = -QT (sl + QT)-I ST (4.31)
which has the state space realization

%= - Ax+ sTu'

;- -l_aT ) ‘ (4.32)

The cascade of the two systems (4.29) and (4.32) has the Laplace

T
transform b4(s) = a4(—s) a4(s). The state space realization of b4(s) is1

g ) 35 * gu’ (4.33)
y = & |

xThe transpace aT(-s) is used so that A has the form of a Hamiltonian
matrix.



-157- ORIGINAL PAGE 1S
OF POOR QUALITY

where
A e 9 A [é]
A= b =
-¢'c " 2
(4.34)
c=lo ng
The causal impulse response of b4(s) is
b4(t) = § eht b for t > o (4.35)
and the z-transform b, (z) of the samples b4(nT) is
[+
b = I -n
4(z) nzo b4(nT) z (4.36)
-1
= h (2I - F) g (4.37)
where
F = exp (éT)
g=Fb (4.38)
h=gc

The result just derived is presented as a Theorem.
Theorem 4.2 1If a4(s) has the state space realization (4.29) then

2

s{w) = E |a4n| =T+ b4(z) zzeij (4.39)

where b4(z) is given by (4.37) and (4.38). e

Case 5 1In this case as(s) is a zero-order-hold cascaded with a4(s)
of the previous case. This case is a generalization of case 3. It is
useful when a prefilter that is more complicated then first order lag

is cascaded witn a zero-order-hold. This case is also useful when

the plant is cascaded with a zero-order-hold.
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State space realizations of a4(s), az(—s). and b4(z) are given in
the previous case. Let hi(s) be a zero-order-hold and let
bl(s) = h(-s) h(s) (4.40)
bs(s) = b4(s) bl(s) (4.41)

The impulse response bs(t) is a convolution of b4(t) [the causal impulse
response of (4.35)] and bl(t) [the non-causal impulse response in Figure
4.3). Sample bs(t) and compute the z-transform of these samples. The

result is
bo(z) = ho(2I - F) 0 g, + k (4.42)
52 = 15122 = Ig) g T Xg :

where

F_ = exp (gT)

T
gg = J exp (§T) §T art

o
T ~ ~
+ Eo[ exp (AT) b (T-1) dt (4.43)
(o]
~
25 =c
~ T -~
ko = ¢ J exp (AT) b(T-T) 4t
(o]

One more step is needed to avoid the integrations of (4.43). The

trick is to use the augmented matrix.

I 2n

A b 0
0 0 0 I 1
P > <>
2n 1 1
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The dir :nsiong of each of the sub-matrices are indicated, where n is the

order of a4(s). As shown by Van Loan [22], the matrix exponential has the form:

-1 4 4
T) =
exp (CT) 0 f2 9, (4.45)
0 o f,
where
A
Fy = exe @D
f2 =1 :
f3 =1
r >
g9, = [ exp (A1) b 4t (4.46)
Jo '
g, =T
T )
h = J exp (AT) b(T-1) dt
o /

Hence, by substituting (4.46) into (4.43)

fs =L,
= - A
95 g9, * (Fl Y bl
) (4.47)
hy = ¢
ko = ¢chy

The result just derived for case 5 is summarized in the following

theorem.
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Theorem 4.3 Let as(s) = h(s) a4(s), where h(s) is a zero-order-hold

and a4(s) has the state space realization (4.29%). Then

2 .
s@ = I ]ag |®=Tb(2) g (4.48)

where bs(z) is given by (4.42) and (4.47). e

This completes the section on analytical solutions of (4.1). The
Fourier transform matrix A(jw) must be a scalar A(jw)=a(jw). The matrix
exponential is used for the analytical solutions of Theorems 4.2 and 4.3.
The a(jw) of Theorem 4.2 is represented by a state space description, and
the a(jw) of Theorem 4.3 is represented by a state space description

cascaded with a zero-crder-hold.
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Appendix to Chapter 4

This appendix contains the following proof:

Proof of Theorem 4.1 The objective of part (a) is to show the

validity of (4.9), which is an upperbound for the remainder rN(m) of the

truncated series (4.4). An upperbound is found for each term of the

i, sl e

infinite series for rN(w), and then an upper bound is found for the sum

of the infinite series of upperbounds.

An intermediate step in the proof is to find an upperbound for

li i118

2p
- 1
N k=N (k) (4.A.1)

This series is known to convergel if and only if p > L An upper bound

2 .
is
tad 2p 2p-1
1 1 1
r < J (—) dx = (————) (———) (4.A.2)
N N-1 \X 2p-1J \N-1
This inequality is illustrated in Figure 4.A.1. The sum ¥ _ is the area

N

of the rectangular boxes, which is less than the area under the curve.
The main part of the proof now follows. For o <w< ms and
N > (wo/ms):
- (N+1) ©

r @ = I Hg(jw-jwsk)!l2 + I

| A(-50+i0 K || 2 (4.3.3)
k=- k=N+1 s

(by definition)

An analytical solution is known for the case
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® 2 ® 2
I aderse x|l + & |l AC-jurie x) ||
k=N+1 S kaN+1 s

(In the first series replace k by -k. 1In
the second series use the identity
lagall = ll ac-3alh .

T [blwke k)2 + bl-wre k)2
k=N+1 s s

PA

(for all k both m+wsk and -m+wsk are > wo).

oo w 2 (V] 2
£ o + o
k=N+1 w*msk -m*msk

[substitute (4.7) for b(w)]

© w 2P

T -9
k=te1 |9s (kD)

A
N

(This step removes the dependence on .
Hence, the convergence is uniform for
o< wc< ms)

i
N
/—\
E—:' €
0 (o]
N
[3°]
o]
>
™8
2
——
bl Ll
s
N
jgo]

1A

2p

S(%) [\ [V
O.)S ZP"]. -1

) 1

.:fp>—2-, (4.A.2))

This completes the proof of part (a).

(4.A.4)

(4.2.5)

(4.a.5)

(4.2.7)

(4.A.8)

(4.A.9)

Part (b) is true if sN(m) is finite for all w, which is in turn

true if H A(w)ll is bounded for all w. This completes the proof.

i e g, e
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f(x) =(—1;) *

n R 1112p
'Nz.gn(ik) SNf-'m f(x)dx

N-t N N4+t N2

Figure 4.A.1: An upperbound for an infinite series
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Remark The upperbound for rN(w) is only valid for @ in the funda-
mental frequency range o < 4 < m.. This is a consequence of the fact
that sN(w) and rN(m) are noE'perindic. The finite sum sN(m) is centered
around the fundamental frequency range. To extend the upperbound to other
frequ ‘ncy ranges then s“(m) must be defined to be centered around the
other frequency ranges.

There is no need to go through this trouble, because s(w) is
periodic. Compute sN(m) over the fundamental frequency range and then

shift it as needed by multiples of w_.
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5, ANALYSIS OF HYBRID SYSTEMS AND NUMERICAL EXAMPLES

5.1 Introduction

The examples in this chapter show how conic sectors can be used to
analyze hybrid feedback systems. In the first example the plant is a
SISO open loop stable system. An analog lead-lag compensator is designed
by classical control techniques. The analog compensator is discretized,
a prefilter and hold are chosen, and then the resulting hybrid system
is analyzed by conventional z-transform tecbniques. The first new
technique is the use of Theorem 3.1 to compute the gain of the hybrid
operator. Theorems 3.2 to 3,7 are then used to analyze closed loop
stability and robustness. The analysis techniques based on these
theorems are grcuped according to whether the hybrid operator is
inside of a cone, tte loop transfer operator is inside of a cone, or
the hybrid operator is outside of a cone. The example continues with
three more uses of conic sectors - selecting the sample rate, comparison
of discretization techniques, and rokustness with respect to extra
delay. The example then shows how conic sectors can be nsed to
analyze command regvonse.

The second example is no* as extensive as the first, The plant
is SISO and open loop stable, and the hybrid compensator is a discretized
version of an analog integrator. In attempt is made to place the hybrid
compensator inside of a conic sector, but the attempt fails because the
radius is not finite. The example then goes on to show that Theorems
3.6 and 3.7 (for which the —KI is outside of a cone) can be used to
analyze the robustness of this integral <ontrol problem.

In the third example the plant is a linearized model of motion
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in the pitch axis of a high performance aircraft. Both SISO and multie
variable analog compencators are designed using Linear Quadratic
Guassian (1QG) methodology, and then the analog compensators are dis-
cretized to form hybrid compensators. For the SISO hybrid feecback
system the compensator is open loop stable and the plant is unstable.
The hybrid operator can be placed inside of a conic sector but the

loop transfer operator cannot be. The example shows how to proceed by
placing a stable version of the loop transfer operator inside of a conic
sector. For the multivariable version of this example, Theorems 3.6
and 3.7 are used to analyze robustness. The margins are shown to be
conservative.

Before starting with the examples the difference between the
nominal and actual feedback systems shuild be made clear, The nomi-
feedback system differs depending on how the conic sectors are apgp.ied.
The actual feedback system is the same (of course) no matter how the
conic sectors ara applied,

I1f the hybrid operator (or loop transfer operator) is inside of
a cone then the nominal feedback system is an analog LTI feedback
system. The center of the cone is part of this nominal feedback system,
Perturbations of the nominal feedback system have two causes: (1) due
to the use of a hybrid as opposed to an analog compensator, and (2) due
to the actual plant being different from the nominal plcnt. The
robustness results (Theorems 3.4 and 3.5) assume that the nominal
feedback system is closed loup stable (as determined by analog
techniques) and then give sufficient conditions for all perturba-

tions in a defined set to preserve closed loop stability.
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On the cther hand, if the hybrid operator is outside cf a cone then
the nomina' feedback system is a hxb;id feedback system, Perturbations
are due to the actual plant being different from the nominal plent,

The robustness result (Theorem 3.7) assumes that the nominal feedback i

system is closed loop stable (as determined by digital techniques)

and then gives sufficient conditions for all perturbations in a defined

set to be closed loop stable.

E3
=

i
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5.2 Lead-lag Compensato::

5.2.1 Classical Control vesign

This example begins as a standard classical control problem. The
open loop plant has the following transfer function:

150

9(s) = 1531} (s43)

(5.1)

The plant is single-input-single-~output, 2nd order, and open loop stable.
There is no particular system that g(s) is supposed to represent (this
is an academic example), but such a transfer function is typical of

some kinds of rotating mechanical systems,

The objective of the classical control design is to find a com-
pensator k(s) that meets the following specifications:

(1) steady state error < 2% to a step input (dc ga’- > 50)

(ii) phase margin > 45°

(iii) maximize crossover frequency, but not above the uncompensated
value.

The dc gain of g(s) is 50, so no extra cain is needed to meet the
steady state error requirement. Phase lead is needed around crossover
to meet the phase margin specification. A lead compensator provides the
phase lead, but cannot be used because it would raise the crossover fre-
quency and violate the third specification. So phase lag is added beiow
crossover, followed by phase lead around crossover.

Having decided on the type of compensator (phase lag followed by
phase lead) there are numerous systematic and unsystematic ways to
select the parameters. This is fairly easily done using a Bode plot.
The details don't concern us, only the final result:

(s¢3) 2

k(s) = (s+.4) (s+22.5)

(5.2)
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The magnitude and phase Bode plots of g(s) and gk(s) are shown in
Figure 5.1. The closed loop system is stable, with poles at s = -11.7,
-3.0, and -6.1 * 1.2j. The bandwidth is 7 rad/sec (down from the
uncompensated bandwidth of 12 rad/sec), and the phase margin is GO°,
The phase margin specification has been exceeded by 15°, which is some-
what conservative, but is in anticipation of the unavoidable phase lag

due to the hybrid implementation.

5.2.2 Hybrid Implementation

The analog compensator is converted to a hybrid compensator. The

different parts of the hybrid compensator are:

f(s) = 2500 (poles at s = -35% 3%53)

s + 70s + 2500

T = .031416 sec (foldover = %—= 100 rad/sec)
(s - -B0498 (z-.90993) ° (5.3
T (2-.98750) (z-.47744)
l-e-ST
his) = — (zero-order-hold)

The sample rate is chosen so that the foldover frequency is about 14
times the bandwidth (100 versus 7 rad/sec).

The prefilter is a an order Butterworth filter with a break
point at 50 rad/sec. It contributes 11° of phase lag at 7 rad/sec
and has a magnitude of .24 at 100 rad/sec.

The z-transform d(z) is a discretized version of k(s). The Tustin
with prewarping method was used (see Subsection 2.3.1). The prewarped

frequency is chesen to be Ci 3 rad/sec, which is the natural frequency

of the zeros at s = ~3.
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A zero-order-hold is used to convert the d‘qital sequence at the !

output of the computer to an an~log signal, The zero-order-hold is a
standard choice for contrcl system design, and in this example it
contributes 6° of phase lag at 7 rad/sec,

This completes the choice of the hybrid compensator. There are ]
many different ways to choose the hybrid compensator, but it is not the
intent of this thesis to recommend one way over another. Rather, the

intent is tec provide tools to analyze a particular choice of a hybrid

compensator.

5.2.3 Digital Analysis

Before going on to the conic sector analysis techniques we do a
quick digital analysis. The hold and prefilter are groupecd. with the

plant and the combination is discretizedl:
2 {th(s)g(s)f(s)} = g, (2)

_ 0094 (z + 6.059) (z + .609) (z + ,066)
(z - .969) (z - .210) [(z - .145)% + (.3)%]

(5.4)

This combined with the computer z-transform [d(z) of (5.3)] gives the

discrete loop transfe- function:

t3(z) = gd(z) d(z) (5.5)

~ e

jwT, . .
Its discrete Nyquist plot (t3(z) evaluated for z = el ') is shown in
Figure 5.2. The number of clockwise encirclements (zero) of the 1
point equals the number of open loop unstable poies, so the digital

closed loop =ystem is stable. Closed loop stability can also be

The script z indicates the z-transform of the samples of the inverse
Laplace transform, see [4, Sections 3.4 and 6.2],
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determined from the location of the digital closed loop poles, which all
have magnitude < 1: z = .910, .873, .812% ,204j, and .109% .271j.

From the discrete Nyquist plot of Figure 5.2 it is seen that the
digital closed loop system has a phase margin of 46° and a gain margin
of 10dB. This implies that the hybrid closed loop system has these
same phase and gain margins (see Subsection 2.3 .4k Therefore, the hybrid

closed loop system meets the phase margin specification of > 45°.

5.2.4 Gain of the Hybrid Operator

The first result of Chapter 3 (Theorem 3.1) is an upper bound on
the gain of the hybrid operator. For SISO hybrid operators (as in
this example) the upper bound actually is the gain.

The gain of the analoy compensator is

max k(3w | = |kG300] = 1 (5.6)

and the gain of the hybrid operatcr is

1/2 1/2
Hkll = max 20z in 2] < lar] - [z lg]? = 1.004
L2 ‘ T2 K k n''n
o<z,
., e ey e “am—  — (5_7)
=0 =1 =1 = 1.004

The maximum for the hyorid operator occurs at w = o. The hold term

is =1 at w = o (actually for all @), and the computer term is =1

at w = o (z

1). The extra gain is due to aliasing of the prefilter,
which, in this example, does not amount to much.

Different prefilters that cutoffi less sharply or cutoff at higher
frzquencies will result in a hybrid compensator with a larger gain.
For example, if f(s) = 50/(s+50) then |lK HL = 1.094, and if f(s) =

2

100/ (s+100) then ||K HL = 1.309. As the gain gets higher the
2
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compensator is more sensitive to noise, Thus, the higher gains are an
indication of inadequate prefiltering.

5.2.5 Hybrid Operator Inside of Cone

Theorem 3.2 can be used to construct a conic sector that contains
the hybrid operator. The choice of center is arbitrary. Here we

choose the center that rinimizes the radius:

c(s) = £ h(s) da(e5T) £(s) (5.8)

= Lol

The loop transfer function of the nominal feedback system is cg(s).
At low frequencies c(s) should be a good approximation of k(s).
This is checked with the magnitude and phase Bode plots of Figure 5.3.
The magnitudes are close (within 1 dB) below 30 rad/sec, at which
point the extra rolloff due to the prefilter and hold causes c(s) to
diverge from k(s). The phase difference shows up at lower frequencies -
the phases are close (within 5°) below 2 rad/sec. At 7 rad/sec the
phase lead is reduced from 28° to 12° (which was anticipated). Above
100 rad/sec the phase of c(s) rapidly swings over the entire 360° range.
The equation used to compute the radius is

20 20 172

I
x=220 n=k20 |n a*f K for o < w < (5.9)
n¢k k n - -

313

which is a truncated version of (3.11). Because the optimal center is
used, the ra(w) term of (3.6) is equal to zero. A plot of the radius
is shown in Figure 5.2a. The radius is periodic with period ws = 200
rad/sec,

More important than the magnitude of the radius is the relative
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magnitude of the center and radius. In Figqure 5.4b the magnitude of

¢ ‘'r is plotted. This is called the "multiplicative radius."” When it

is <<1 then the center can be considered a good approximation of the

hybrid compensator.1

When the multiplicative radius is near unity or greater then tne
center is a poor approximation of hybrid compensator. Over this frequency
range the analog loop transfer function cg(jw)should be rolled off (have
magnitude < 1) in order to meet the stability and robustness requirements
of Theorems 3.3 to 3.5. 1In this example (cg(jw)l < .1 over the fre-
quency range where ]c-lr(jm)] > 1, which should be considered "good".
Stability

Theorem 3.3 gives sufficient conditions for the hybrid feedback
system to be closed loop stable. The three conditions of Theorem 3.3
will now be checked.

Condition (i) is that the hyLrid operator K is strictly inside
cone (C,R). The center and radius were constructed so that this is true.
Condition (ii) is that the nominal system (with the loop transfer function
cg) is closed loop stable. This is verified by the Nyquist diagram of

2
Figure 5.5a. The third and last condition is that

lrg (1 + c)™! Gw ] <1 for all w (5.15)

For erxample, the center is a good approximation when fc-lr(jm)l < .1,
which is true in Figure 5.4t for o < & rad/sec,.

The number of open loop unstable poles is zero. The nw.wer of clock-
wise encirclements of the -1 point is zero. Since these two numbers
are equal, the analog system is closed loop stable.
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This is verified in Figure 5.5b. Hence, the hybrid system is closed
loop stakle. Of course, we already know this from the earlier digital
analysis.

Robustness ~ First Attempt

Beyond mere stability is robustness, Theorem 3.4 gives sufficient
conditions for an entire set of plants to be clased loop stable, 1In
this example the plant uncertainty is characterized as a phase uncertainty
at the crossover frequency as high as 45°. The first step in applying
Theorem 3.4 is to model this uncertainty as a multiplicative perturbation.

As explained in Subsection 2.2.7, a multiplicative perturbation of
!_m(m) =qa=.77 (5.16)

covers phase uncertainties up to #45° (at all frequencies).

Tne robustness condition of Theorem 3.4 is graphically checked in

Figure 5.6. It is seen that

14 1
=< 'ﬁ'- > .57 for all (5.17)

This corresponds to a phase uncertainty at all frequencies ot 33%, so
based on Theorem 3.4 we cannot guarantee that the plrase margin specifi-
cation o€ 45? is actually satisfied. Because Theorem 3.4 giver only
sufficient conditions, we know that the phase margin is > 33°, but we
do not have enough information to say whether or not the actuul phase
margin is - 45°.

Robustness - Second Attempt

Theorem 2.5 can be used to analyze robustness. The procedure

is to (1) choose a multiplicative perturbation, (2) use part fa) of
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Theorem 3.5 to conscruct a cone around (T + Em) K, and (3) use part (b)
of Theorem 3.5 to check if -G' is outside of this cone. If part (b) of
Theorem 3.5 checks out then the closed loop system is stable for all
plants defined by G = G (I + E).

In this example the multiplicative perturbation has already been
chosen (@ = .77). The center of the cone around (I + Em)K is given by
5.8)and is the same as the center of the cone around K. The radius of
the cone around (T + Em)K is computed via (3.23) and is plotted in Figure
5.7a. It is compared with the radius of the cone aroundK (@ = o).

The nominal plant will be outside of the cone that contains (I + Em)K
lrg (1 +co)™ G| <1 for all @ (5.18)

This inequality is checked in Figure 5.7b, and it is not satisfied. 1If
a is backed down to & = .72 then the inequality is satisfied. Therefore,
we can say the guaranteed phase margin is 42°, which doesn‘'t quite make
it to 45°, but is less conservative than the 33° of Theorem 3.4.

5.2.6 Loop Transfer Operator Inside of Cone

The entire loop transfer operator can be placed irside of a cone.
As discussed in Section 3.3, there are three ways that the plant can be
included with the compensator:

Case 1l: with the hold {(replace h with gh)

Case 2: with the prefil .er (replace f with fq)

Case 3: w.th a combination of the hold and prefilter. (replace
poth h and f with (£gh)1/2)

For each of the three cases Theorem 3.2 will be used to construct a
cone. After this is done, Theorem 3.3 will be used to see which of the

three cases meet the sufficient conditions for closed loop stability.
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A robustness analysis using Theorems 3.4 and 3.5 is then performed for

case 3.

For each case the center of the cone is
c(s) = gls) T h(s) a*(s) £(s) (5.19)

The loop transfer function for the nominal feedback system is c(s). 1In
Figure 5.8 the magnitude and phase Bode plots of c(s) and gk(s) are
compared. The center is a yood aporoximation over the same frequency
ranges as in Figure 5.3.

The radii for each of the three cases are shown in Figure 5.9a. As
expected, the radius for case 3 is the smallest for eact w. At low
frequencies the radii are significantly different, with the radius for
case 1 (plant with hold) being the largest.

The significunt differences came as a surprise, and further analysis
was conducted to explain the differences. The detailed calculation for
the radii at w = .01 (the leftmost points in Figure 5.9a) are shown in
Table 5.1. The infinite series that are part of the equation for the
radius were truncated at #100 terms. A large number of significant
digits are needed in Table 5.1 because accuracy is lost when two large

numbers are substracted (for case 3,r = r. - Y where r = .001 and both

1

- 1
rl and r2 are < 2500).

An indication that the radius for case 1 (plant with hold) is

larger than the radius for :case 2 (plant with prefilter) is given by the

1 . - .
This probiem with loss of accuracy does not occur when the double

infinite sum, r, of (3.11), is used to compute the radiuc The double
infinite sum does not contain the large term (r_, = 2500) wi. ch is
added and then subtracted to convert the double sum to several single
sums.
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Case 1
. 1 2 2. 1/2
r<3.01)=|a1-(— ST I PR PITES B
TZ k hk k n n 2
= .99970 ([2499.72229] [1.00844497] - [2499.722234])1/2
= 4.29
Case 2
. _ . [l 2] . 2] __\1/2
£(3.01) = 4| ([T2 : In,| ] [rzl lg .| ] r2)
1/2
= .99970 {[1] [2499.722254] - [2499.722234)
= .00454
Case 3
. - s (I T 2 _ _\1/2
r(j.o1) = |q| ([T r lhkgkfk!] rz)
~ 2 1/2
= .99970 ([49.997222284579] - [2499.722233745])
= .00156
where
1 2
27 2 L LN

Table 5.1; Calculations for r(jw) at w = .01
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comparison;

2 1 2
L lfnl = 1,008 >1 = 2 z Ihkl for w = .01 (5.20)

The apparently small difference of .008 is amplified by a multiplication
of 2500, which is approximately the difference (.008 x 2500 = 4) between
the two radii at w = .0l.

The intuitive reason for including the plant with the compensator
is that the extra rolloff of the plant will reduce aliasing and thereby
make the radius smaller. The comparison (5.20) indicates that including
the extra rolloff with the prefilter is better than including it with
hold. The theoretical analysis of Section 3.4 indicates that it is
even better to replace the prefilter and hold with (hgf)l/z.

Moving on now to Figure 5.9b, the multiplicative radii (c-lr) are
compared. Despite large differences at low frequencies, they cross
unity at about the same frequency (w = 80 rad/sec). All three are < .1
over the bandwidth of the analog loop transfer function (w < 7 rad/sec).

Theorem 3.3 is used to check sufficient conditions for the hybrid
system to be closed loop stable. The Nyquist plot of c(jw) is shown in
Figure 5.10a. The Nyquist plot indicates (for each of the three cases)
that the nominal analog system is closed locp stable.

It is in the application of the stability test

|r(14c) G | <1 for all @ (5.21)

that the most significant differences in the three cas2s show up. As
shown in Figure 5.10b, cases 2 and 3 meet the sufficient conditions

but case 1 does not. Only one of the cases has to meet the sufficient
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conditions in order to guarantee clcsed loop stability. It comes as
some relief to know that case 3 will always be the least conservative,
An analysis of robustness is performed just for case 3. Figure

5.11 shows that

{
el =~ 1rl 5 94 for all w (5.22)

lel + ||

This is the single condition of Theorem 3.4 (appropriately modified for
case 3). The bound on the multiplicative perturbation is lm(w) =a = ,74,
which corresponds to a guaranteed phase margin of 43°,

Theorem 3.5 can also be used to compute a guaranteed phase margin.

A cone is constructed around (I + Em)T, The largest o such that
-1
lr(1+e) ™| <1 for all (5.23)

is found to be a = .75, which corresponds to a guaranteed phase margi.
of 44°, This is very close to the specification of 45°.

5.2.7 Hybrid Operator Outside of Cone

According to Theorem 3.6, a cone can be constructed such that —KI
is outside of the cone if the hybrid operator K I + GK)I is Lze-stable.
From the digital analysis of Subsection 5.2.3 we know that this stability
requirament is satisfied.

The c.:nter of the cone is the nominal plant g(s). The radius is
computed via (3.36) of Theorem 3.6. Rather than show a plot of the
radius, a plot of the multiplicative radius lg-lr(jm)l is shown in
Figure 5.12. The multiplicative radius is more useful for graplical
tests of robustness maryins. 1In this example the plot is almost identi-
cal to the plot of Figure 5.11. To two significant digits the minima

are the same (a = ,74)

S AU MM Pl |
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From Theorem 3.7 we know that the minimum of lg’lr(jw)‘ cen be used
to guarantee that the hybrid closed loop system is robust with respect to
a multiplicative perturbation of the form lm(m) =0 = ,74. This corres-
ponds to a guaranteed phase margin of 43¢,

1n this lead-lag example there have been 5 separate tests for ro-
bustness. They are compared in Table 5.2. The actual phase margin (from
the digital analysis) is 46°. The guaranteed phase margins of tests 2

through 5 are not significantly different. Only test 1 is conservative.

Table 5.2
Comparison ¢i Guaranteed Phase Margins
Guaranteed
Test Theorem a phase margin
1 Compensator inside ~one 3.4 57 33¢
2 " " 3.5 .72 42°
3 Loop operator inside cone 3.4 .74 43°
4 " " 3.5 .75 44°
5 Compensator outside cone 3.7 .74 4

The major advantage of the outside conic sector analycis is that
it can pe used with open loop unstable compensators and plants. This
advantage is not needed in this example.

5.2.8 Eelecting the Sample Rate

The loop transfer operator can be placed inside of a cone (see
Subsection 5.2.6). The idea now explored is that the multiplicative
radius of this cone car be used to systematically select the sample rate.

The centei is a good approximation of the loop transfer operator
over the frequency range where the multiplicative radius has magnitude
<< 1. By varying the sample rate, this frequency range can be adjusted
to correspond to the buandwidth of the analog system (i.e., adjust T so

that [c-lr(jm)\ <<1 for w such that [gk(jw)' > 1).
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This procedure €or s=2ilocting the sample rate is demonstrated for
the lead-lag exampl.:. =x".1 of the components of the hybrid compensator
must change &s the sample rate is varied, The compunents are selected
so that the sample rate is the only variable:

Prefilter: 2nd order Butterworth with break frequency = %%

Computer: Tustin prewarped version of k(s), with G, = 3

Hold: Zero-order-hold.

For each of five sample rates a cone is constructed around the
loop transfer operator.l The multiplicative radii are shown in Figure
5.13a, and compared with the center of the cone when T = .031416.

All bu’ one of the multiplicative radii are < .1 over the bandwidth
of the analog system (W < 7 rad/sec). The conclusion based on Figure
5.132 is that alli but the lowest sample rate (T = .31416) is acceptable.
Further tests should be conducted, however, because the fact that
Ic-lrl << 1 over the analog bandwidth is not by itself a guarzntee of
closed loop stability or adequate robustness margins.

Tne magnitude ot the multiplicative radius can be compared with the
magnitude of other multiplicative uncertainties. This comparison can
also be used to help select the sample rate. The idea is to select the
sample rate so that lc—lr(jm)l < llm(w)l over the bandwidth of tne ana-
log system. Lowering the sample rate (increasing T) will cause the
errors due to sampling to dominate the other uncertainties, which is

undesirable. On the other hand, increasing the sample rate (lowering T)

1 The five sample rates are (T = .31416, .062832, .031416,.062832, and
.0031416), which correspond to foldover frequencies of (7/T = 10, 50,
100, 500, and 1000). T.e case 3 loop }ransfer operator is used
[prefilter and hold replaced by (tqh)1 2,
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will not result in any benefit, because the other errors (Zm) are not

affected and will dominate the errors due to sampling.

For example, suppose the following delay exists in the feedback loop:

§(s) = ob(s) (5.24)

where £(s) = e-STd, T; = .05 seconds

The delay can be modelled as the multiplicative perturbation:

g(s) = gll + £ (s)] (5.25)

e'-STd -1, Td = .05 seconds

where lm(s) =
In Figure 5.13b the magnitude of £m (w) is compared with the multiplicative
radius when T = .031416. The magnitude of Zm(w) dominates for w < 100
rad/sec. The conclusion is that there is nothing to gain by increasing

the sample rate (lowering T).

5.2.9 Comparison of Discretization Techniques

Another use of the multiplicative radius is to compare discretiza-
tion techniques. Tustin with prewarping was used in this lead-lag
example to transform k(s) into d(z), but this is only one of many

techniques. The following discretization techniques are compared:

Tustin with prewarping: (see Subsection 2.3.1)

Forward rectangle rule: d{z) = k(s)

s=(z-1) /T

Backward rectangle rule: d(z) = k(s)

s=(2-1)/(2T)

Pole~zero mapping [4, p. 61]:

PiT
23
If z; is a zero of k(s) then e is a zero of d(z)

If Py is a pole of k(s) then is a pole of d(z)

If o is a zero of k(s) then -1 is a zero of d(z)

Choose constant so that k(s) = d(z)i
2=1

$=0
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The standard by which they are compared is the magnitude of the
multiplicative radius. Each of the loop transfer operators (case 3) are
placed in cones. 1In order to make a comparison the center of the cone

is chosen to be the same for each of the discretization techniques:

3 |-

c(s) = = h(s) k(s) f(s) (5.26)

Note that c(s) is not the optimal center. The center and the different
multiplicative radii are shown in Figure 5.14,

The multiplicative radius is smallest when the Tustin with prewarping
technique is used, following by the pole-zero, backward rectangle, and
forward rectangle techniques. BAll of the techniques, however, should
be considered "good enough" for this example, because all of the multi-
plicative radii have magnitudes < .1 over the bandwidth of the system
{(w < 7 rad/sec).

There is a great deal of freedom in how to discretize k(s). This
example demonstrates that to a large extent it does not matter what
discretization technique is used.

5.2.10 Extra Delay

Suppose an extra delay exists in the feedback loop. The delay can
be modelled as a multiplicative perturbation of the plant, and then any
of the robustness results (Theorems 3.4, 3.5, and 3,7) can be used to
determine if the closed loop system is robust with respect to this
multiplicative perturbation.

The delay may be a computational delay, in which case it will be a
fraction of a sample period. On the other hand, the delay may be
characteristic of the plant, such as a transport delay for mechanical

systems. In this example the delay is chosen to be Td = .05 seconds.
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It is between one and two sample periods, to emphasize that there is no
need for the delay to be an integer number of sample periods.

Theorems 3.6 and 3.7 will be used to analyze robustness. The basic
idea is to construct a cone such that the hybrid operator is outside of
the cone, and then to show that all perturbations of the plant in a defined
set are inside of this cone. The delay is modelled as a multiplicative
perturbation, as shown in equations (5.24) and (5.25). The robustness
analysis consists of checking the three conditions of Theorem 3.7.

Condition (i) is that K(I+GK)I is Lze-stable. This is true because
the discrete closed loop system is stahle; as shown in Subsection 5.2.3.

Condition (ii) is that Kt is outside cone (G,R). The existence ot
such a cone is guaranteed by the fact that condition (i) is truve. The
radius is computed as shown in Theorem 3.6. The multiplicative version
of this radius, !g-lr(jw)‘ , is plotted in Figure 5.15.

Condition (iii) is that
Lm(m) < Ig"lr(jm)] for all @ (5.27)

This is shown to be true in Figure 5.15. Hence, all perturbations of
the plant in a defined set are inside of cone (G,R).

All three conditions of Theorem 3.7 are satisfied. Hence, the
hybrid system is robust with respect to an extra delay of T, = .05

d

seconds.
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5.2.11 Analysis of Command Response

Conic sectors can be used to analyze the steady state response to
commands, as discussed in Subsection 2.4,6 and Section 5.6. The res-

ponse to commands is good if the following error signal is small:

e=(1+60°z (5.28)

-~

Conic sectors are used to find an upperbound for g, the quality measure

defined by
11
I Sl
lim ———— < q for allr €S (5.29)
o Tzl

This inequality only has to be satisfied for input signals in the set
sSC L2e' an’ by letting the truncation time tend to infinity the tran-
sient errors in the command response become insignificant,

Three attempts are made to find an upperbound for q:

(1) Theorem 3.2 is used to construct a cone that contains GK,
and then (2.98) to (2.100) are used to compute the
upperbound for q.

(2) Theorem 3.2 is used to construct a cone that contains

( 1+6GK)I, and then (2.102) and (2.105) are used to compute
the upperbound for q.

(3) Theorem 3.8 and equations (3.51) to (3.53) are used to compute
the upperbound for q.

The first attempt fails due to restrictions on its use. The second
attempt is conservative, and the third attempt works well.

The first step for all three attempts is to define a nominal analog
feedback system and then to compute the nominal quality measure 9y- In

all of the attempts let the nominal loop transfer function be

c(s) = 2 g(s) h(s) a*(s) £(s) (5.30)
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and let the set of cammand signals be

S = {sinewaves with frequency < .l rad/sec} (5.31)

The nominal quality measure is

q = max |(1-0-c)_1

o omax | ()| = .02 (5.32)

The magnitude Bode plot of (l+c)-1 is shown in Figure 5.16a.

Earlier in this example1 Theorem 3.2 was used to construct a cone
that contains the loop transfer operator GK. The center and radius of
this cone can be used via (2.98) to (2.100) to find an upperbound for the
quality measure g. One of the restrictions of this first attempt is
that the sufficient conditions for closed loop stability given by Theorem
3.3 must be satisfied. As shown in Figure 5.10b the sufficient condi-
tions are not satisfied, and therefore the first attempt at finding an
upperbound for q fails.

The second attempt uses Theorem 3.2 to construct a cone that con-
tiins the closed loop operator (1+GK)I. The center is (1+c)-1,
where c(s) is given by (5.30). Both the center and radius are shown

in Figure 5.16a. Equations (2.102) and (2.105) are now used to upper-

bound the quality measure:

= max = .
r,a, = <ha%, |r(jm)| .09 (5.33)

q < q (1+r)) = .11 (5.34)

This upperbound is significantly more than the nominal quality measure

of q, = .02.

1Case 1 of Subsection 5.2.6. The center and radius are shown in Figures 5.8
and 5.9.
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The second attempt at finding an upperbound for q is conservative
because the radius computed by Theorem 3.2 does not take into account
(1) the restricted set of input signals and (2) the truncation time of
(5.29) which tends to infinity. Addressing the second point, the radius
computed by Theorem 3.2 is valid for any truncation time [see (2.81)],
and therefore the upperbound for q which uses (2.105) is likewise valid
for any truncation time. One interpretation of this congervative

upperbound is that it is conservative for gpeady state errors because

it must also be valid for trangient errors.

The third attempt at finding an upperbound for q makes use of
Theorem 3.8, which explicitly takes into account the restricted set of
input signals and the truncation time that tends to infinity. The
radius computed by (3.49) of Theorem 3.8 is shown in Figure 5.16b. The

upperbound for q is found by equations (3.51) to (3.53):

r,q

= max |r(Jw)| = 5 x 1078 (5.35)
O o¢ux.l

q< qo(l + ra) = ,02 (5.36)

The increase from the nominal value of q, = .02 is insignificant!

The use of conic sectors to analyze command response is new with
[1€] and this thesis, and we must be careful not to make hasty genera-
lizations about the very tight upperbound for the quality measure just
demonstrated. Nevertheless the following statement appears to be
justified - the nominal analog feedback system gives a very good
approximation of the quality measure of a hybrid feedback system.

Three attempts were made to analyze command response. A straight-
forward use of the same conic sector used to analyze stability and

robustness (Theorem 3.2) was shown to give a conservative upperbound
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for the quality measure. Refinements of this conic sector (Theorem 3.8)

significantly decrease the upperbound, and indicate that the nominal

quality measure is a good approximation of the actual guality measure.

This analysis of command response completes this extensive lead-lag
compensator example.

B e+
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5.3 1Integral Control Example

The next example demonstrates that the outside conic sector results
can be used to analyze control gystems with integrators in the forward
loop. These types of control systems are used to achieve zero steady

state error to constant inputs.

In this simple example the SISO plant is

1
g(s) = ool (5.37)

and the compensator is
1
k(s) = P

The analog system has closed loop poles at s = .5 * j.87. The bandwidth
is w = .8 rad/sec, and the phase margin is 52°,

The following hyhrid implementation of k(s) is used:

f(s) = —325 (2nd order Butterworth, break frequency = 5 \

s +78+25 rad/sec)

T = ,31416 (foldover frequency = % = 10 rad/sec)

> (5.39)
d(z) = .1579 i;% (Tustin prewarped about w, = .8 xrad/zec)
1-o~5T
h(s) = — (zero-order-hold) /

At the crossover frequency (®w = .8 rad/sec) the prefilter contributes
13° of phase lag and the hold contributes 7° of phase lag, s0 we expect
the phase margin nf the discrete closed locp system (i.e. the actual
phase margin of the hybrid closed loop system) to drop from 52° to about
32°,

Due to the digital integrator there does not exist a conic sector

with a finite radius that containg the loop transfer operitor. The
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.
calculations for the radius® are performed to demonstrate this fact,

The optimal center of the conic sector is chosen:

c(s) = = g{s) h(s) d*(gy) f(s) (5.40)

3

The radius is plottad in Fiqure 5.17a. The problem with the radius is
immediately apparent - it has peaks of infinite height at frequencies
that are multiples of 2m/T.

A consequence of the infinite peaks is that the sufficient conditions
for closed loop stability given by Theorem 3.3 cannot be met. This does
not necessarily mean that the closed loop system is unstable, it may
simply mean that the sufficient conditions are "infinitely" conservative.
Condition (iii) of Theorem 3.3 (for the loop transfer operator inside of
the cone) is that |r(1+c)—1(jw)| < 1 for all w. Due to the infinite
peaks of r(jw), this condition cannot be met.

The optimal center and the multiplicative radius are plotted in
Figure 5.17b. The multiplicative radius, c-lr, is independent of the
computer z-transform d(z). Hence, cﬁlr does not have the problem with
the infi.ite peaks. From Figure 5.17b we see that ic-lrl << lcl over
the bandwidth of the analog system (uw < .8 rad/sec).

There are no open lcop stability restrictions for the outside conic
sector results of Theorems 3.6 and 3.7. The discrete closed loop system

is stable, as demonstrated by the discrete Nyquist plot of Figure 5.18a.

) .
Therefore z cone can be constructed such that -K° is cutside of the core. The

. . C . . . -1, . .
center is gq(jw), and the multiplicative radius 1s$q r(]m)f, wherce r(juw) is

computed via equation (3.36). The multiplicative radius, g-lr, is shown

l-:ase 3 is used, which means that the prefilter and hold are each re-
placed by (fgh)1/2,
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in Figure 5.18b. Its minimum value is a = .53, which corresponds to a
guaranteed phase margin of 31°, and which is only 1° less than the
actual phase margin of 32°.

Ip this short example it has been demonst.ated for integral control
problems that (1) there does not exist a conic sector with a finite radius
that contains the loop transfer operator, (2) Thevrem 3.3 cannot be used

to determine closed loop stability, and (3) Theorems 3.6 and 3.7 can

be used to determine guaranteed robustness margins.
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5.4 High Performance Aircraft

The next example contains both a SISO arnd a 2-input 2-output control
system design for the pitch axis of a highly maneuverable aircraft. This
aircraft has served as a test bed for multivariable design techniques
{23, 24, 25, 26]. The analog compensators used in this example are
designed using linear quadratic Guassian (LQG) methods, and are similar
to the designs that appear in [26]1. This example goes one step further
and analyzes a hybrid implementation of these control laws.

The designs are based on a linearized model of motion in the
vertical plane. The flight condition is Mach .9 at an altitude of
25,000 feet. A 4-state, 2-input, 2-output state space model is given

in Table 5.3. The states and inputs are:

x = v | = forward velocity
a angle-of-attack
pitch rate

q
[_ 6-] pitch attitude

u = 6e1 = elevator/elevon
canard
%2 ]

The model leaves out hydraulic actuators with time constants of 70 rad/
sec, The uncertainties in the model (data link time delays and bending
modes) are such that the control loop should be rolled off before 10
rad/sec [26].

5.4.1 LQG Design of SISO Analog Compensator

In the first design the elevator/elevon input is used to command

the pitch attitude. The transfer function of the open loop plant is

-77.81 (s+.0232) (s+1.962)

g(s) = (5.41)

(s+.2576) (s+5.676) [(s—.6895)2 + (.2484)2]
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-.02257  -36.62  +18.9 -32.09051
A= .00009 -1.90 .9831 ~.0073
.01233 11,72 -2.6320 0
L 0 0 1 0o _|
~.9821 -.76260
B = -.4144 -.00496
-77.81 22.4
| 0 0 -
0 1 0 0
C =
: 0 0 0 1

Table 5.3 State space model of highly maneuverable
aircraft
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Due to its deliberate relaxed static stability design, the plant is open
loop unstable, with a pole pair at .6895 % j.2484.

The Bode plot of g(s) is shown in Figur: 5.19. The bandwidth of
g(s) is acceptable., Lut the magnitude Bode p.ot of g(s) has v+o unde-
sirable features - low gain for w < .1l rad/sec and a resonant peak around
w = .5 rad/sec. The claim of LQG design methodology is that a k(s) can
be found that (1) "shapes the loop" to eliminate the undesirable features,
(2) guarantees closed loop stab.lity, and (3) provides adequate robust-
ness margins.

The number of variations of LQG methods is somewhat greater than
the number of people who know what the abbreviation "LQG" stands for.
Here we step through a particular LQG design method and provide the
reader with enough information so that the design can be duplicated.
The steps are [35]:

(1) Choose h to shape the magnitude Bode plot of gjsljg)-lg,

(2) Choose p to obtain desired bandwidth of Ec (SE;Q)-lb.

(3) Solve LQ Riccati equation to obtain EC.

(4) Choose process and measurement noise covariance matrices by
the robustness recovery procedure [27].

(5) Solve Kalman filter Riccati equation to obtain Ef.

(6) Use LQ and Kalman filter optimal gains to form analog
compensator.

For the linear quadratic (LQ) regulator problem the open loop plant
is

X = Ax + bu)

(5.
y = cx ‘ 5.42)

In this example the plant is controllable and observable. The LQ
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regulator cost function is
® T
3= j (x h'hx + pulw)dt (5.43)
o

The input that minimizes the cost function is

u= -k x (5.44)
“c-
where
= 1 bTK (5.45)

and where K > o is the unique soluticn of the algebraic Riccati equation

o=AK+Ka+hh-

Kbb' K (5.46)

O |+

For the Kalman filter problem the process and measurement noise
enter the state space system as shown below:
%= ax+butyb)

(5.47)
y=cx+8 ‘

The noise sources have zero mean and intensities

E[E(t)E(s)] = S(t-3) l
(5.48)

E[6(t)B(s)] = ué(t-s)‘

The Kalman filter gains are
1 T ,

Ef = ﬁ'g § {5.49)
where I > o is the unique solution of

o=l +Ia 4y -} Icel (5.50)

After solving the LO regulator and Kalman filter problems the LOG
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compensator is formed by

X = (a - QSC - Ef9)§k + Efe

(5.51)

u sk

The first step of the design procedure is to choose h to shape the
magnitude Bode plot of Q(s;-&)-lg. Let us look ahead a bit and explain
why we want to do this. The LQ loop transfer function is gc(s;-g)'lg,
and for w such that IEC(ij'Q)-Iél >> 1 the following approximation is

valid:1
. -1 . -1
ll_cc(Jm} - A) "b] = a| h(jwI-a) "b] for some a (5.52)

The ultimate objective is to shape the magnitude Bode plot of kg(s).
If the robustness recovery procedure is used then for some finite region

of w:

kg (@) = gc(jm;-z_;)'lzg (5.53)

Therefore, the reason that we want to shape lh(ng-@)-lpl is that the
magnitude of the loop transfer function lkg(jm)l will approximate this
shape.

The poles of E(sz-e)-lg are the eigenvalues of A. If the zeros are
at s = -.2 and ~-2.5 then Ig(jw;-g)—lgl has a shape that corrects for
the undesirable features of the shape of lg(jm)l . An h that places
zeros at & = ~.2 and ~2.5 can be computed by the method of Harvey and

Stein [28]:

1The constant "o" is used for scaling. It is the shape, not the
magnitude, of h(sI-A) ~b that is important.
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9

3 _9.061x10° -1.254x10 “} (5.54)

-5 -
h = {9.3x10 ~ 1.481x10
The bandwidth of Ec(s;—a)—lp depends on the choice of the control
weight p. A choice of
-3
p=1.6 x 10 (5.55)

results in a bandwidth of 7 rad/sec.

The Kalman filter is designed by the robustness recovery procedure

[27). Choose
Y=0b (5.56)

and adjust U to select the frequency range over which kg(s) approximates

-1
Ec(sz-é) b. For this example use
-7
u=3.4x10 (5.57)

For the choices given above of Q, 0s Y and U the LOG compensator

has the transfer function

-11,750 (s+.195) (s+1.395) (s+6.305)
(s+.02319)(s+l.962)[(s+261.8)2 + (261.8)2]

k(s) = (5.58)

The Bode plot of kg(s) is shown in Ficure 5.19, The bandwidth is
7 rad/sec, the phase margin is 64°, and the gain margin is [-14.5dB,
37.8 dB]. The closed loop system is, of course, stable.

5.4.2 Conic Sector Analysis of SISO Design

The analog compensator is converted to a hybrid compensator. This

is done in a way similar to the earlier examples in this chapter:
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f(s) = (2nd order Butterworth,

2500
s + 70s + 2500 break frequency = 50 red/sec) \

T = .02 (foldover frequency =

e ]

= 157 rad/sec)

ey = -6.233 (2-.99611) (z-.97244) (z-.88119) (z+1)
(z-.99954) (z-.96145) [ (z+.63763)° + (.26229)°]

I
—_—

(5.59)

(Tustinized version of k(s), prewarped frequency =
7 rad/sec)

h(s)

(zero-order-hold)

The sample rate is 50 samples per second, which is typical for flight

computers in fighter aircraft.

Closed Loop Stability by Theorem 3.3

Conic sector techniques will now be used to determine if the
hybrid closed loop system is stable. A stable version of the loop
transfer operator will be placed inside of a cone and then the sufficient
conditions for closed loop stability given by Theorem 3.3 will be checked.

The hybrid operator is open loop stable, but the plant is not. The
loop transfer operator is therefore unstable, and it is not possible to
place an unstable operator inside of a cone. This problem is circumvented
by separating the plant into a stable part multiplied by an allpass
network. The stable part is created by mapping the unstable poles to
their mirror images about the jw-axis. The allpass network has unit

magnitude for all w:

gis) = gs(s) gap(s) (5.60)
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where

C Lis + .6895)° + (.2484)°%)

g__ (s)

(5.61)
ap

[(s - .6895)% + (.2484)°)

The hybrid operator and the stable part of the plant are placed
inside of a cone. The optimal center of the cone is used:

1

c(s) = T 9

hd*f(s) (5.62)

1/2 .
The hold and prefilter are each replaced by (hqsf) / , and the radius

of the cone is computed by

20 20 172
N § .
r(30) = |25 ng_wl(hgsf)k (hg £ ) | fax (50 | (5.63)
n¥k

The radius is shown in Figure 5.20a. The conter and the multiplicative

radius are in Figure 5.20b.

The sufficient conditions for closed loop stability given by Theorem
3.3 are now checked. Condition (i) is that the hybrid operator and the
stable part of the plant are strictly inside cone (C,R). This cone has
just been constructed. Condition (ii) is that the analog system with the
loop transfer operator cgap(s) is closed loop stable. This is verified

by the Nyquist diagram of cgap(s) shown in Fiqure 5.21a.l Condition (iil)

is that

-1 . .
Irqap (1 + cgap) ()w)l < 1 for all w (5.64)

This condition is verified in Figqure 5.21b. Since all three conditions
of (the appropriately modified) Theorem 3.3 are satisfied, the hybrid

system is closed loop stable.

lThe number of open loop unstable poles = 2, which equals the number
of counter-clockwise encirclements of the -1 point.
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Robust C'osed Loop Stability by Theorem 3.5

The actual plant is g(s) = g(s) [1 + e (s)]. Assume that the
multiplicative perturbation is bounded by the constant |em(jm)l <a
for all w. Theorenm 3.5 can be used to find the maximum value of @ such
that g(s) meets the sufficient conditions for closed loop stability.
The maximum value is @ = .36, which corresponds to a guaranteed phase
margin of 21°,

Robust Closed Loop Stability by Theorem 3.7

If the discrete closed loop system is stable then a cone can be

constructed such that -KI is outside of the cone. The condition of
discrete closed loop stability is verified by the discrete Nyquist

diagram of d*gd*(s) plotted in Figure 5.22a.

The center of the cone is g(s), and the radius is computed by (3.36)
of Thecrem 3.6. The multiplicative radius lg‘lr(jw)l is plotted in
Figure 5.22b. By Theorem 3.7 the closed loop system is stable for
§(s) = gls) [1+e ()] if |e ()| < Lo lr (5w |.

If the multiplicative perturbation is constrained to be constant
for all w then its magnitude must be less than the minimum value of
lg-lr(jm)L which is @ = .68. This value of 0 corresponds to a guaranteed
phase margin of 40°, which is less conservative than the 21° obtained by
Theorem 3.5. The actual phase margin is 46° (obtained from the discrete

Nyquist diagram of Figure 5.22a).

This completes the SISO version of the high performance aircraft

example. The analog compensator was designed using 1LQG methods and then
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converted to a hybrid compensator. A stable version of the loop transfer
operator was created by multiplying the unstable plant by an all-pass
network. Theorems 3.2, 3.3, 3.5, 3.6, and 3.7 were used in various ways
to analyze closed loop stability and robustness properties.

5.4.3 LOG Design of Multivariable Analog Compensator

The high performance aircraft used in this example has multiple
control surfaces (see [2,26]) that allow independent control of attitude
and flight path motion. In the pitch axis the basic objective of the
multivariable design is to achieve independent control of pitch attitude
and angle-of-attack with approximately equivalent speeds of response.
This objective is met in the analog design described in [26].

The analog design uses LQG techniques. The plant G(s) of Table 5.2
is augmented to ga(s) = i-g(s) = ga(sz-éa)—l §a by appending integrators
to the outputs (pitch attitude ang angle-of-attack). The Kalman filter

noise covariance matrices are

r = s_ (i}
- —a - —
(5.65)
N _ I
where

.962 -.274
Y =

~.274 -.962 (5.66)

L = diag [1.8 .0077]
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The V and § matrices are, respectively, the right singular vectors and
the singular values of ga(jwo) for w, = 10'5. They multiply the §a
matrix in (5.65) so that the singular values of ga(sz-éa)—l [ are
approximately equal at wo = 10'5.

The LQ regulator weighting matrices Q and R are chosen so that the
loop transfer function gag(s) approximates the Kalman filter loop trans-

fer function ga(sz—ga)-l K. over a finite frequency range:

£

! (5.67)
_6‘

The Kalman filter and I regulator problems are solved and used to
form the LQG compensator K(s). The analog closed loop system is guaran-
teed to be closed loop stable. The singular values of ga(jw) and §a§(jw)
are shown in Figure 5.23a, and the "shape" of the loop transfer function
§a§(jw) is used to analyze various performance measures (command response,
bandwidth, disturbance rejection, and so on, see [ 1]). The singular
values of I + (gag)-l(jw) are shown in Figure 5.23b and are used to
analyze robustness with respect to perturbations inserted at the output
of the plant [i.e. when ga(jw) is replaced by (I + §m)§a(jw)]. In

Figure 5.23b it is shown that

O inll * (gai_()_l(jw)] > a=.54  for all w (5.68)

m
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which indicates that the analog closed loop system will remain stable
for phase uncertainties up to *31°, at any frequency, simultaneously in
any output channel (see Subsection 2.2.7).

5.4.4 Conic Sector Analysis of Multivariable Design

The multivariable analog compensator is %-5(5). The integrators
that were appended to the outputs of the plant are included with K(s).
The analog compensator i-g(s) is now converted to a hybrid compensator.
The prefilters and holds are chosen to be the same in their respective

input and output channels:

2500

E(s) = -—2-——————— L
s +70s+2500 -
T = ,02 seconds
(5.69)
D(z) = tustinized version of §-§(s),

prewarped about 7 rad/sec

-sT
H(s) = (E:S——-—) « I

S

In this subsection closed loop stability and robustness margins will
be determined. The conic sector analysis techniques of Theorems 3.6 and
3.7 will be shown to give conservative robustness margins.

The discrete version of the multivariable Nyquist criterion is used
to determine the closed ioop stability of the hybrid feedback system.

The discretized plant is gd*(jw) = [FGH(jw)]*, and the discrete loop
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transfer function is gd'g'(jm). The Nyquist plot of -1 + det [I +
§d*9*(jw)] is shown in Figures 5.24a and 5.24b. The first figure (which
is not to scale) shows the Nyquist plot as the frequency variable w is
varied from - %-to % . The number of counterclockwise encirclements of
-1 point is 2, which is equal to the number of open loop unstable poles
of gd(z)g(z).1 Therefore, the hybrid system is closed loop stable.

An exploded view of the Nyquist plot is shown in Figure 5.24b.
The nearness to the -1 point is a good robustness margin for SISO sys-

tems, but not for multivariable systems. Much better is the singular value

plot of Figure 5.25a,2 where it is shown that
-1,.
t 3L > =
OpinlI + (G4*D*) ~(iw)) a = .48 for all (5.70)

Figure 5.25a is used to analyze robustness with respect to multiplicative
perturbations inserted in the feedback loop just before the digital
computer, where the physical signal is a discrete sequence. If the
multiplicative perturbation is a constant diagonal matrix then it can

be moved in the feedback loop to just after the analog plant. The lower
bound a = .48 indicates that the hybrid closed loop system will remain
closed loop stable for phase uncertainties up to *28°, at anv frequency,

simultaneously in any output channel.

1The two integrators in D(z) account for the encirclement between W = 0
s hut
and w = 0

2Singular values are better than determinants for indicating the nearness
to singularity of the return difference matrix I + gd*g*(jw).
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The conic sector analysis techniques of Theorems 3.6 and 3.7 will
now be used to analyze robustness. Theorem 3.6 is used to construct a
cone such that -K! is outside of the cone. The center of the cone is
the nominal plant G, and the radius is the R computed by (3.36). The
multiplicative radius is r(jm)/omax[g(jw)] and is shown in Figure 5.25b.

According to Theorem 3.7, the hybrid system will remain closed loop

stable for a multiplicative perturbation of the nominal plant if

« —xlw 1 .71
Zm(w) 5 C G0 for all w {5.71)
max <
Unfortunately, this is a conservative result. In Figure 5.25b it is

shown that
Km(m) < a= .002 for all w (5.72)

which corresponds to a guaranteed multivariable phase margin of < 1°,
More research is needed to remove this conservatism. Some irdi-~

cation of why this conservatism occurs is given by the following manipu-

lation of the corresponding robustness result for multivariable analog

systems:

LW < o, (I+ 6K TGEw) for all (5.73)
m min = ==

-1 -1,.
<= Km(w) < O ax [GK (I + GK) ~(jw)] for all w (5.74)

& 2w < o YeGwl o ®a+ e tEwl  for all w
m max - max - -

(5.75)
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If (5.75) is used instead of (5.73) then the analog robustness test will
have approximately the same degree of conservatism as the result of
Theorem 3.7. The problem occurs in (5.75) because the matrix product
is split up, which is conservative when the minimum and maximum singular
values of G(jw) are far apart.1
This completes the multivariable conic sector example. A multi-
variable analog compensator was transformed into a hybrid compensator.
The resulting hybrid feedback system was analyzed with the use of the
discrete loop transfer function gdg(z), and then was analyzed with the
use of the conic sectors of Theorems 3.6 and 3.7. The conic sectors
resulted in a conservative robustness margin, which occured because the

multiplicative radius is conservative (small) when Gmin [g(jw)] <<

O ay [GGHW)].

-1 .
1Note that 1 = om‘x(gg ) f-omax(g)/omin(g)' which is congervative when

Omin(g) << omax(g)'
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6. MULTIRATE SAMPLING

6.1 Introduction

The hybrid feedback systems considered up until now have had one
synchronous sampler. These are the most common types of hybrid feed-
back systems; however, there exist many applications where the hybrid
feedback system contains more than one synchronous sampler, each operating
at a different rate. These are called "multirate sampled-data systems".

Multirate sampling may occur because the measurements are discrete
(e.g. radar tracking, sun sensors for dual spin satellites, or image pro-
cessing algorithms for robot manipulators) and the digital computer used
to implement the control law is separate and operates at a different sample
rate. Multirate sampling may also be used if the plant has different time
scales, in which case multirate sampling can be used to significantly de-
crease the required computer capacity, i.e. "slow" control loops are
sampled at a slower rate as compared to "fast" ones.

A feedback system with two hybrid compensators in the same loop is
shown in Figure 6.1. This is called a sin,ie loop multirate nybrid (SLMRH)
feedback system. rhe feedback loop is used for stability augmentation and
contains a hybrid compcnsator (modelled by the hybrid operator Kz) with a
sampling period of mT seconds (where m is an integer > 1). The hybrid
compensator in the forward loop (modelled by Kl) has the smaller sampling
period of T seconds, which allows the output to respond faster to commands
than to the feedback. The plant has the nominal model g(s) and the multi-

plicative perturbation em(s), assumed bounded by Iem(jw)] < Eﬂ(m\ far all w.

All of the components in Figure 6.1 are r.nole input single ouloput (SISO).
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Ccnventional analysis techniques for single rate hybrid feedback
systems have been extended to the multirate case. A survey with ex-
tensive references is by Walton [31). A tutorial treatment of these
techniques is Ly Konar and Mahesh [32). The basic idea is to transform
the multirate hybrid feedback system into an equivalent single rate
hybrid feedback system and then apply standard z-transform techniques.
The only multirate technique used in this chapter is called the "fre-
qguency decomposition"” method [33, 34). Using this method, the SLMRH
feedback system in Figuie 6.1 is broken at some point where the physical
signal is a discrete sequence, and then a z-transform is derived for the
linear shift invariant loop transfer operator.

Conic sector analysis techniques also can be extended from single
rate to multirate hybrid feedback systems. 1In this chapter they are e.i-
tended to the relatively simple SLMRH feedback systems. Further ex-
tensions to the much more difficult multiple loop cas~ will not be
attempted here.l The material in this chapter is simply a first step
that demonstrates that further extensions of the conic sector analysas
techniaues are possible to more complicated multirate systems.

Conic sectors can be used for multirate hybrid feedback systens
(either single or multiple loop) just as they can be used for single
rate hybrid feedback systems and analog feedback systems - to analyze
closed loop stability, command response, performance, disturbance re-

jection, and robustness with respect to plant uncertainties. If the

Multiple loop muitirate hyprid feedback systems are more common than
the single loop case because different time scales of the plant
naturally break down into multiple loops.
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multirate hybrid operator is placed inside of a conic sector, then the
center can be used as & rigorous continuous time linear time invariant
(CTLTI) approximation.

Conic sector analysis techniques are potentially more important for
multirate than for single rate hybrid feedback systems. The feedback
loop is oroken where the physical signal is analog and complexities due
to different sampling rates are subsumed by the use of conic sectors.
Techniques tc analyze robustness do not currently exist, whereas conic
sector techniques are inherently robustness techniques {(as discussed
in Subsection 2.4.5). The z-transform techniques used to convert multi-
rate to single rate systems have the problem of increased dimensionality
(proportional to the integer multiple of the sample rates). The conic
sector techniques do not suffer from this increased dimensionality.

In Section 6.2 the SIMRH feedback system‘is described and frequency
domain input-output transformations for the multirate hybrid operators
are presented. Theorems 3.1 to 3.7 for single rate hybrid feedback
systems are extended to SLMRH feedback systems. These extensions are
presented in the multiple-part Theorems 6.1 and 6.Z. The new conic
sector analysis techniques can be used to analyze stability and robust-
ness, but tl:e techniques for analyzing command response (as in Subsection
2.4.6 and Section 3.5) have not yet been extended. 1In Section 6.3 a
multirate version of the lead-lag compensator example of Section 5.2
is presented.

6.2 Conic Sectors for Multirate Hybrid Operators

Conic sector analysis techniques are used by first dividing a

feedback loop into two subsystems, and second by constructing a cone
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such that it contains one of the subsystems and the other subsystem is
outside of it. There are numerous ways to divide up the SLMRH feedback
system of Figure 6.1. In this chapter the feedback loop is broken at
points 1 and 2 (at the input and output of the plant). The two sub-
systems are (1) the multirate hybrid operator Kle and (2) the actual
plant é. A conic sector is derived in Subsection 6.2.) that contains

Kle, and in Subsection 6.2.2 that —(KlKZ)I is outside of.

6.2.1 Existence of a Cone that Contains K1K2

The multirate hybrid operator Kle is shown in Figure 6.2. The
analysis that follows assumes that the slower sampler is firstl. The
existence of a conic sector that contains K1K2 follows from the de-
scription of the input-output transformation from Y to u. The assump-
tion is made that the two samplers are in synchronism, i.e. every mth
sample the two samplers coincide.?

The transformation from y to Y, is described by3

— . jumT, 1 oo 2T s 2W
y,(Jw) = h,(Jw)d, (e ) o7 ]Z( £,(3w-3 - kyy(Jw-3 —= k) (6.1)

1A similar analysis can be performed if the faster sampler is first.

21f the samplers are not in synchronism then an extra delay term must

be inserted between h2(s) and fl(s)' Thi% does not invalidate what
~T3s
follows. Simply replace hz(s) by hz(s)e

3To avoid confusion petween sample times of T and mT seconds the star
notation (see Subsection 2.3.1}, the symbol “ws;'and the subscripts
indicating frequerncy shifts are not used. The notation dz(ejme)

indicates dz(z) evaluated at z = ermT.
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Similarly, the transformation from Y, to u is described by
(o) = b, Gud, 7

1 . 27 2w
iy ey 20 sy 2w
) = ; fl(]w 15 n)yz(]m 3T n) (6.2)

Substitute (6.1) into (6.2) and change the variable of summation to

obtain

L . jumr, 1 oo.2m . o.2m
u(jw) = &, (jw)d, (e ) = i £, 0w-3 o Ky (w-j — k) (6.3)
where
o . jwP, 1 oL 2T oL2m
&1 (3w = h; (Jwd, () T i £, (Gw-j - nhh, (Jw-3 <= n) (6.4)

The multirate hybrid operator described by (6.3) has the same structure
as the single rate hybrid operator described by (2.51), except that the
hold hz(jw) is replaced by €l(jw). It is precisely this similarity in
structure that allows the conic sector results to be extended from the
single to the multirate case.l

The following five part theorem is an extension of Theorems 3.1
to 3.4.

Theorem 6.1 Let KlKZ be the multirate hybrid operator of Figure
6.2. Assume that KlK2 is LZe-stable. Let C be any LTI LZe-stable

operator, and let R and R be LTI Lze-stable operators.

The same structure i:- found if the higher rate sampler is first. The
conjecture is made that the same structure will be found if the sample
rates form a ratio that can be expressed as a rational number.
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(a) Kle is strictly inside cone (C,R) if

lrGw)| > —3— [r, @ + r 172 (6.5)
- (1~e)l/2 4 3
for all w and some € > 0
where

1 jumT, |2 Y| .. 27 2
r,(w = }d (e )‘ . [Z L ‘5 (jw-j — k}f_(jw-3 =3 n) ]
4 (mm)z 2 X n#k 1 mT 2 mT }

(6.6)

1 Lo 2T jumT S R
r, ) i‘ﬁ £, 6u-3 2 0a, ™ e, Gu-i L 0-cliw-i 2 x)l 2

(6.7)
(b) The optimal center
Y smT
c(s) = _— El(s)dz(e )fé(s) (6.8)
minimizes the lower bound for |r (jw)].
(¢} The gain of the multirate hybrid operator is
1/2 .
max 1 .. 27 2
|]K1K2||L = s\ Zlgl(Jw-J —m;r'-k)‘ ] . dz(ejm) .
2 owi= (LT Xk

1/2
2] } (6.9)

[ L. 2
ilfz(;)w-] T n)
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(d) The SIMRH feedback system of Figure 6.1 is closed loop stable

for G = G (i.e. for the nominal plant with no perturbation) if

a C and R exist such that

(i) K1K2 is strictly inside cone (C,R)
(ii) G(1+CGFI is LZe-stable (i.e. the nominal analog system
is closed loop stable)

(iii) |rg(+cg) Tw ! <1 for all (6.10)

(e) The SIMRH feedback system is closed loop stable for all pos-
sible é's if in addition to the three conditions of part (d)

the following condition is true:

l+eg Gu) | - |rgGw) |
bntd < legGw) | + [rgGw) [

for all w. ® (6.11)

The proof of Theorem 6.1 is similar to the proofs of Theorems 3.1
to 3.4. The following steps prove part (a) of Theorem 6.1 by showing
that the conic sector inequality (2.81) is satisfied for all input-
output pairs defined by Kle.

(1) Define truncated function to convert from truncated to L2
function norm.

(2) Use Parseval's theorem to convert from time to frequency
domain.

(3) Use frequency domain inequality of Lemma 3.A.

(4) Use Parseval's theorem again to convert from frequency to
time domain.

(5) Convert from L2 to truncated function norm.
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Part (b) is proved by showing that the optimal center (6.8) makes r3(w)=0
and therefore minimizes r4(w) + r3(w) of (6.5). The proof of part (c)
uses the center c¢(s)=0 to find an upperbound for the gain of Kle and
then constructs an input signal that achieves the upperbound. Part (d)
is an application of Lemma 2.5 to show closed loop stability. Conditions
(ii) and (iii) of part (d) guarantee that -G! is outside cone (C,R).

If inequality (6.11) of part (e) is satisfied then all possible —GI'S

are outside cone (C,R).

If Theorem 6.1 is used to analyze a SLMRH feedback system then the
nominal feedback system is analog and has the loop transfer function
c(s)g(s). Stability and robustness properties of the SLMRH feedback
system depend on the stability of the nominal feedback system. The
radius of the conic-sector is treated as an additive perturbation of
c(s).

To reiterate, Theorem 6.1 has the following five parts:

(a) sufficient conditions for the existence of a cone that con-

tains Kle

(b) an optimal center for the cone

{c) the gain of KlK2

(d) sufficient conditions for closed loop stability

(e) sufficient conditions for robust closed loop stability

The analysis techniques laid out in Theorem 6.1 represent a new approach

to the analysis of multirate hybrid feedback systems.

6.2.2 Existence of a Cone such that -(K1K2)I is Outside of the Cone

The alternative to constructing a cone that contains Kle is to

construct a cone such that -(Kle)I is outside of the cone. The best
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choice for the center of this cone is G, the nominal plant. It follows
from Lemma 2.2 that -(KlKZ)I is outside of cone (G,R) if an R can be
found such that ||R K1K2(I+G KIKZ)IllL < 1. The only restriction is
that the multirate hybrid operator Klzl(I+G K1K2)I must be L2e-stable.

The multirate hybrid feedback system that has the closed loop
operator R K1K2(1+G KlKZ)I is shown in Figure 6.3a. By breaking the
loop at point 1 and manipulating the block diagram the equivalent feed-
back system shown in Figure 6.3b is obtained. The feedback loop is
digital and operates at the slower sample period of mT seconds. The
multirate hybrid operator K1K2(1+G KIKZ)I is L2e-stab1e if this digital
feedback loop is stable.

It is possible to obtain the z-transform ¢f the loop transfer func-
tion of Figure 6.3b by the frequency decomposition method, see [31] to
[34). Define the z-transform of the discretized plant as gd(z). The
loop transfer function is dz(z)gd(z), and stability is checked by the

j Lm'
e’ T

discrete Nyquist criterion, which uses a plot of dz(eJ )gd( )

i
from w = 0 to - rad/sec.
It is not necessary to go to the considerable trouble of finding

the z-transform gd(z). It is computationally easier to obtain gd(z),

jwmT

evaluated at z=e , by summing truncated versions of the following

infinite series:
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Figure 6.3a: Multirate hybrid feedback system with the
closed loop operator R K1K2(1+G Kle)I
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Figure 6.3b: Transformed version of 6.3a
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JumT 2

1 . . AL .. 2%
94(e ) = _—— i &2(Jw-3 — k)fl(Jw°J — k)hz(Jw-] - k) (6.12)

where

jwT

. 1 . . 2T , . 2m .. 2T
€2(Jw) =[;r2‘ fz(Jw-J T n)g(jw-j T n)hl(Jw-J 5 n) dl(e )

{6.13)

Before constructing a cone that -(Kle)I is outside of, an input-
output description of the multirate operator K1K2(1+G Kle)I must be

found. Using Figure 6.36b and equation (6.4), (6.12), and (6.13) we

obtain

. . jwmT, 1 . AL .. 27

- ) = L - == 6.14
u(jw) Ql(Jw a K(e ) i fz(Jm g k)y3(jw s s k) )
where

dcz(ejme) - d2(1+gdd2)'l (39T, (6.15)
Equation (6.14) has the same form as the single rate hybrid com-
pensator of (2.51), which makes possible the following extensicn of
Theorems 3.6 and 3.7:
Theorem 6.2 Let KlKZ be the multirate hybrid operator of Figure
6.2, let G be any LTI operator such that K1K2(1+G Kle)I is Lze-stable,
and let R and RY be LTI Lze-stable operators.

(a) -(Kle)I is nutside cone (G,R) if
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lrGw | < —2—  for all w (6.16)
VI, (W
where
1 L. 2m 2 jumT, |2
ro(w) = [ L]E, (Gw-3j = %) | ] + ld_,te ) | .
2 @n? Lk 1 mT ct
L. 2 2
[ilfz(Jw'J E% n) | ] (6.17)

(b) The multirate hybrid feedback system of Figure 5.1 is closed

loop stable for all possible é‘s if an r(jw) exists such that
(1) KK, (146 K K))" is L, -stable
(ii) -(Kle)I is outside cone (G,R)

(i) £ @ < g7 'r(w)| for all w. ® (6.18)

If -(Kle)I is placed outside of a cone, then the nominal feedback
system is the SLMRH feedback system with the nominal plant G. The
stability of the nominal feedback system must be checked, which is done
by constructing an equivalent single rate hybrid feedback system. It
is not necessary to explicitly find a z-transform description of the
single rate system. Instead, stability can be checked with the use of
equations (6.12) and (6.13).

The center of the cone that -(Kle)I is outside of is the nominal
plant G. Part (a) of Theorem 6.2 gives a radius for this cone. Part
(b) is a robustness result which gives sufficient conditions for all
possible perturbations of the niminal plant to praserve closed loop

stability.
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6.3 Multirate Example

This example is a continuation of the lead-lag compensator example of
Section 5.2. A second hybrid compensator, operating with twice the sample
period, is added in the feedback loop. Theorem 6.1 is used to construct
a cone that contains the multirate hybrid operator Kl K2 and to determine
closed loop stability. Theorem 6.2 is then used to construct a cone such
that _(KlKZ)I is outside of the cone and to determine a robustness margin,

This multirate example will appear to be similar to the single rate
example of Section 5.2.1 Though somewhat repetitious, this highlights the
fact that conic sector analysis techniques are just as useful for multirate
as for single rate hybrid feedback systems.

The SIMRH Feedback System

A block diagram of the SLMRH feedback system is shown in Figure 6.1,

The transfer function of the nominal plant G is

150

9(s) = Ty (s43)

(6.19)

and the hybrid compensator K1 (in the forward loop) is a hybrid implemen-

tation of the analog compensator

(s+3)°
(s+.4) (s+22.5)

k(s) = (6.20)

The prefilter, sample period (T = .031416 szeconds), digital computer
z-transform, and the hold are given in equation (£.3).

The components of the hybrid compensator K2 (in the feedback loop) are

1Specifically, Subsections 5.2.5 and 5.2.7
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shown below:

62
fz(B) .z (2nd order But.terworth with break at
s +358+625 25 rad/sec)

2T = .062832 seconds (m = 2, %- 50 rad/sec)

1.2z
2+.2

dz(z) = (digital lead compensator) (6.21)

l-e-ZST

hz(s) = (zero-order-hold)

In the single rate example a continuous estimate of the output signal
was available. Here the estimate is undated every 2T seconds and held
constant between updates. The prefilter fz(s) smooths the signal (prevents
aliasing). The digital computer serves the purpose of adding phase lead
around the crossover frequency to partially compensate for the phase lag

1

due to the prefilter and hold.

A Cone that Contains K1K2

The feedback loop is broken before and after the analog plant, where
the physical signals are analog, and thc multirate hybrid operator K1K2
transforms the output signal b4 to the input signal u.

Part (a) of Theorem 6.1 is used to construct a cone that contains

K1K2 . The optimal center is chosen:

_ 1 smT
c(s) = — El(s) d,(e”") f,(s) (6,22)

Atw= 7 rad/sec the prefilter f_(s) decreases the phase by 23°, tne hcid
h_(s) decrease: the phase by 133, and the computer 4_(z) increases the
pﬁase by 4°, The phase margin of the single rate system of Sertion 5,2
is 46*, here we expect it to be about 46-23-1344 = 14® (it turns out to
be 11°).
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where El(s) is defined by (6.1). In Figure 6.4 the magnitude and vhase
Bode plots of =g (jw) and kg(jw) are compared. The magnitude of cqg(iy)

drops off sharply at about 20 rad/sec and has the expected extra phasc

lag at the crossover frequency of 7 rad/sec (phase margin = 14°).

The radius is computed by (6.5)l and is shown in Figure 6,%a, The
multiplicative radius c_lr(jm) is shown in Figure 6.5b and i. compared to
cg(jw). Over the bandwidth of the nominal analog system (w < 7 rad/sec)
the multiplicative radius is <.12.

Clesed loop stability is determined by the three conditions of part
(d) of Theorem 6.1. Condition (i) is that K1K2 is strictly inside cone
(C,R) . which is true by the way that the cone was constructed, Condition
(ii) is that the nominal analog system is closed loop stable, which is
verifieC Ly the Nyquist plot of cg(jw) in Figure 6.6a. Condition (iii) is

that

-1
lsg(1 + c@)  (jw)| < 1 for all @ (€.23)

which is verified in Figure 6.6b. All thre: conditions are true, hence the
SIMRH feedback system is closed lcop stable.

T, .
A Cone such that —(KlKﬁi is Outside of the Cone

The nominal feedback system differs depending on how the cone is applied,

When K1K2 is inside of a cone then the nominal feecucack system is analcg.

, I .
In this part of the exarple -(KIK?) is outside of a cone, and the

Because the optimal center was chosen r_(jw) = o, The infinite sum for
£ (jp) was truncated at +30 terms, and tge double infinite sum for r4(jm)
was truncated at +20 terms.
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nominal feedback system is the SIMRH feedback system with the naminal
plant G, TIts stability is verified by the discrete Nyquist plot of 4,9 4(2)
shown in Pigure 6.7a.1 From this plot we obtain the discrete phase margin
of 11°,

Part (a) of Theorem 6.2 is used to construct the cone. The center
is the nominal plant G, the radius is computed by (6.16), and the multipli-
cative radius q—lr(jm) is shown in Figure 6.7b. According to part (b) of

Theorem 6.2, the SIMRH feedback system remains stable for any g = g(1 + em)

if
2w < g7 rGGo)|  for all w (6.24)

and if Lm(w) is constrained to be constant then

lm(w) <o = .19 for all w (6.25)

This constant corresponds to a phase uncdertainty up to 11° at any frequency
(see Subsection 2.2.7).

This completes the multirate example. The conic sector analysis techni-
ques of Theorem 6.1 and 6.2 have been used to determine closed loop stability
and a robustness margin. These conic sector techniques are applied just as
were the corresponding techniques developed in Chapter 3 for single rate

. 2
hybrid feedback systems.

lOf course we already knew the SLMRH feedback system is closed loop stable
form part {(d) of Theorem 6.1.

2The second hybrid compensator has not affected closed loop stability, but has
significantly decreased the robustness margins. A step response will exhibit
large overshoot. This design is probably not acceptable, but can probably
be corrected by adjusting dl(z) and/or dz(ET—fo obtain more phase lead

around the crossover frequency.
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7. SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Summary

The major result of this thesis (Theorem 3.2) is the determination
of a new conic sector which contains a stable hybrid operator. Every-

thing else in this thesis leads up to, proves, modifies, constructs,

demonstrates, and extends this basic result.

The mathematical preliminaries of Chapter 2 lead up to Theorem 3.2.
Sections 2.2 and 2.3 contain a review of multivariable (singular value)
analysis techniques for analog (CTLTI) and digital (DTLSI) feedback
systems. A hybrid system with a single synchronous sampler is defined
and its properties are discussed. In Section 2.4 a precise mathematical
framework is set up for a conic sector analysis of nonlinear time varying
feedback systems. 1In this general framework, conic sectors are used to
analyze closed loop stability, robustness properties, and steady state
response to commands. The conic sector analysis techniques are not useful
unless a specific conic sector can be found for the feedback system of
interest. 1In Section 2.5 specific conic sectors are determined (due to
Safonov [7,9]) for analog (CTLTI) feedback systems and then used to
analyze closed loop stability and robustness properties.

Theorem 3.2 gives sufficient conditions for the existence of a new
conic sector vhich is specifically for use in analyzing hybrid feedback
systems. Part of Chapter 3 is used to prove this basic result. The
most important part of this proof is Lemma 3.A, which is a frequency
domain inequality that applies to all possible input-output pairs of
signals of the hybrid operator.

The remainder of Chapter 3 (there are a total of 8 theorems) is

used to modify Theorem 3.2. The entire loop transfer operator (not just
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the hybrid operator) can be pluced inside of a conic sector, but what-
ever is inside of a conic sector must be open loop stable. Theorem 3.2
is modified to remove this open loop stability restriction, so that the
inverse of any hybrid operator (stable or unstable) can be placed outside
of a conic sector (Theorem 3.6). The conic sectors of Theorems 3,2 and
3.6 are used for analysis techniques for hybrid feedback systems (just

as for the general feedback system of Section 2.4) to analyze closed

loop stability, robustness with respect to modelling uncertainties,

and steady state response to command inputs,

The algorithms and numerical results presented in Chapter 4 are
used to constfuct the new conic sectors. The center is arbitrary,
though some are better than others, and there is not any difficulty in
computing it. The radius, however, can be difficult to compute, and
various ways to do so are presented and discussed,

The examples in Chapter 5 demonstrate the usefulness of the new
conic sector analysis techniques. 1In addition to the analysis techniques
mentioned above, the conic sectors are used to select the sample rate
and compare discretization techniques. In the one multivariable example,
the robustness results are shown to be conservative.

The material in Chapter 6 extends the conic sector results of
Chapter 3 to single loop multirate hybrid (SIMRH) feedback systems.

This is done by combining the two hybrid operators with different sample
rates into a multirate hybrid operator which has an input-output trans-
formation with a structure similar to a single rate hybrid operator with
the slower of the two sample rates, Once this similar structure is
established then Theorems 3.1 to 3.7 are extended and then demonstrated

by an example.
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The mathematical development leading up to and proving the major”™
result (Theorem 3.2) is highlighted as being of interest to control
thereoticians. The rigorous justification for treating hybrid feedback
systems as analog feedback systems, and the specific analysis techniques
based on Theorem 3.2 and its modifications are highlighted as being of

interest to control practitioners,
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®.2 Suggestions for Further Research

The idea of using conic sectors to analyze hybrid feedback systems
originated with Gunter Stein and is ncw about 3 years old. This thesis
has developed this idea to the point where it can now be said that conic
sector analysis techniques are constructive and useful for hybrid ccntrol
systems. Time and further developments are needed, however, if these
conic sector analysis techniques are to become generally accepted.

Removal of Open Loop Stability Restriction The major restriction

to the use of conic sectors that contain hybrid operators is that the
hybrid operator must be open loop stable. This restriction prevents the
use of some of the conic sector analysis techniques for important control
systems such as those with integral control action. While it is possible
to eliminate this open loop stability restriction by placing the inverse
of the hybrid operator outside of a conic sector,1 it is still desirable
to be able to place both open loop stable and unstable hybrid operators
inside of conic sectors. The advantages of having the hybrid operator
inside of a conic sector are (1) the center of the conic sector can be
used as an analog (CTLTI) approximation of the hybrid operator, and

(2) the nominal feedback system is analog (and therefore one of the
sufficient conditions for hybrid closed loop stability is that the
nominal analog system is closed loop stable).

It is not clear how (or even if) this open loop stability restriction

lThis alternative is significant and leads to the important robustness
analysis technique of Theorem 3.7. The assumption of open loop stability
of the hybrid operator is replaced by an assumption that the nominal
hybrid feedback system (with the nominal plant) is closed loop stable.

.
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can be removed, This restriction can be traced back to the Small Gain
Theorem (see Subsection 2.4.4), which gives sufficient conditions for
closed loop stability, but requires that the relations that define the
feedback system be open loop stable,

One suggestion for removing the open loop stability restriction is
to define the conic sector using the gap metric [36, Section 4.2, and 37].
The basic idea behind the use of the gap metric is that there is some
exact information which must be known about an unstable system before it
can be stabilized. For analog (CTLTI) systems this exact information is
the number of open loop unstable s-plane poles. For hybrid systems this
exact information may be (it still remains to be shown) the number of
unstable s-plane poles (of the analog components) plus the number of
unstable z-plane poles (of the digital components).

Generalization of Conic Sector Technigues to Sector Techniques. A

conic sector is a special case of a sector (see Safonov [{7]). It should
be possible to develop analysis techniques for hybrid systems based on
the use of sectors. If an operator (of any type) is placed inside of a
conic sector then the radius of the conic sector is .analogous to an
additive perturbation. Sectors, on the other hand, can be set up so
that parts of the sector are analogous to addition, multiplication,
subtraction, and division perturbations (see Lehtomaki [38, p. 86]).
Sectors can be used to analyze combination operators. If Gl and G2

L . . .1
are inside of sectors then it is possible to find sectors that contain

I .
- G . These types of operations are needed to
Gl+62' G1 G2, Gle, and G1 5

1l , L. < q. ~
Conic sectors can be used for addition, subtraction, and multiplication,
but the results are conservative.
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analyze complicated feedback systems wich multiple loops (such as multi-
rate multiloop hybrid feedback systems). References for combining sectors
are by Safonov [7, 10].

Less Conservative Multivariable Robustness Results. The conic

sector analysis techniques developed in Chapter 3 are valid for bo'h
§ISO and multivariable hybrid feedback systems, but have been shown by
example to be conservative for multivariable systems.1 This problem
with conservatism must be corrected. It may be just a matter of breaking
the feedback loop at a different point in order to analyze robustness,
but the details remain to be worked out.

Even for SISO gystems the conic sector analysis techniques are
sepsitive to where the feedback loop is broken (see Section 5.2). This
property is counter-intuitive (at least it is counter to our intuition!)
and needs to be better understood.

Synthesis Techniques The emphasis of this thesis has been on the

development of analysis techniques. What the community of control
system designers really need, however, are synthesis techniques.
Therefore, the development of conic sector synthesis techniques is an ill-
defined but necessary extension of this thesis.

In some sense the onic sector analysis techniques developed in
this thesis can be considered synthesis techniques. They cam be used
to compare alternative designs for hybrid compenstators, and they can be
used as part of an iterative design process (at each step of the

iteration "engineering judgement" must be used to make changes in the

1
In particular, the multivariable robustness technique of Theorem 3.7

is conservative if the singular values of the nominal plant are far
apart (see Subsection 5.4.4).
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design) . In the examples it was shown how the gain of the hybrid
operator can be used to help select the prefilter, and it was shown how
the magnitude of the multiplicative radius as a function of frequency
can be used to select the sample rate.

Ultimately, what conic sectors have to offer is a rigorous justifi-
cation for keeping the design of hybrid compensator in the analog domain.
The point of view is that the hybrid compensator is supposed to mimic an
analog compensator, and the extent to which it does not is a source of
error (i.e. a perturbation of the nominal analog comepnsator) which is
treated just as a perturbation of the nominal analog plant. Specific
algorithms for transorming an analog compensator into a prefilter,
sampler, digital computer, and hold should have the goal of keeping
the perturbation of the nominal analoy compensator small relative to
the perturbations of the nominal analog plant.

Multirate Sampling Issues Chapter 6 is a preliminary extension

of conic sector analysis techniques to multirate hybrid feedback systems.
More work needs to be done in this area, specifically (1) extend the
results of Chapter 6 to multiloop and multirate hybrid feedback systems
and (2) relax the assumption that the sample rates form an integer ratio.
In Chapter 6 two single rate hybrid operators Kl ard Kz were
combined to form a multirate hybrid operatoxr Kle, and then a conic
se~tor was constructed that contains Kle . A different approach that
should be tried is to place the single rate h/brid onerainrs Kl and K2
into their own respective conic sectors, and then to combine the centers

and radii to form a conic sector of the multirate hybrid operator. To
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do so in a nonconservative way may require the use of sectors as opposed

to conic sectors.

Asynchronous Sampling Issues ©One of the assumptior s made throughout

this thesis is that the single rate hybrid compensator contains a synchronous
sampler. This assumption is not valid if the sample periods are
variable, random, or dependent on the dynamics of the plant. These

types of asynchronous samplers are rarely used, so there is little need

to develop conic sector analysis techniques to handle them. It is just

as well, because we do not have any suggestions for how to do so. The
input-output transformation must be defined, and then the conic sector
inequality (2.81) must be shown to be valid for all possible input-

output pairs of signals. Unfortunately, there are no systematic ways

to determine conic sectors.

More common then asynchronous sampling is synchronous that skewed
sampling, which occurs when the computational delay is a fraction of a
sample period. This thesis has not explicitly addressed the issue of
skewed sampling, but the conic sectors of Chapters 3 and 6 can be
modified to account for skew by changing the hold transfer function from
h(s) to h(s)e-T S. This is easier, for instance, then using modified
z-transforms for digital control systems.

Asynchronous sampling may ocur in multirate hybrid feedback systems,
especially if the clocks that control the sample intervals are not
synchronized. Typical behavior is that the sample times slowly drift
with respect to each other. The z-transform techniques developed for

multirate systems are difficult to apply to this problem. Conic sectors

‘or sectors) offer the following approach: each hybrid compensator is
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placed in its own conic sector, and then the conic sectors are combined
to form a conic sector of the composite operator. By treating each
hytrid compensator separately it should not matter whether or not they
are synchronized.

Finite Wordlength Issues If the effects of finite word length of

the digital computer are included in the model of the hybrid compensator
then the model is a nonlinear time varying operator. In this thesis
the effects of finite word length are assumed to be neglicable, thereby
allowing the model to be a linear time varying operator. With the 16
and 32 bit microprocessors currently availakle it is indeed very safe
to assume that the effects of finite word length are nzglicable.
Nevertheless, this is a problem that has received a lot of attention
in the digital control literature (see [4, Chapter 7] and [39]). The
practical effects of finite word length are (1) truncaticn errors in
computing, (2) truncatioun errors in stored parameter values, and (3)
limit cycles in the feedback loop.

A motivation for further reserach is to determine if conic sectors
are useful for the analysis of hybrid feedback systems when the finite
word length of the digital computer is taken into account. As mentioned
for asynchronous sampling there are not any systematic ways to determine
conic sectors, so we cannot offer any specific guidance. If such a conic
sector is fourid, however, then i%s center can be used as an analog
(CTLTI) approximation of the hybrid compensator; and then the errors
due to the finite word length can be bounded by the radius and treated
as a perturbation of the nominal compensator.

Conic sector analysis techniques were developed for nonlinear
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systems, so the fact that the effects of finite word length are nonlinear
does not exclude the use of conic sectors. Difficulties will probably be
encountered when the conic sector inequality (2.81) is checked for all
possible input-output pairs. Also, difficulties may be encountered because
the definition of stability must be changed so that limit cycles are not
considered unstable.

Even it a conic is found it may not be useful due to conservativeness
(as was the case for the first two conic sectors developed for lineaxr time
varying hybrid operators). The particular problem with the assumption of
finite woré length is that input signals of very small amplitude may fall
below the first truncation level and produce zero output. Linear operators
used for cone centers and radii cannot distinguish between small ard large
amplitudes, and therefore the radius will treat large amplitude signals

at any frequency as though their output was zero.
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