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Chapter 1
INTRODUCTION

1.1 Motivation

A problem of considerable and increasing importance within the
field of composite materials is the fracture of laminated composite
structures. The anisotropy of the material greatly complicates even the
simplist of problems. An example of a complicated problem is the edge
replica of Fig. (1.1); it demonstrates the crack types present on the
free edge of a [+302/-302]S tensile coupon. From Fig. (1.1) it is
apparent that a crack can start out in a transverse mode and turn into a
delamination within its growing length. Complexities such as this
require in-depth fracture mechanics models which not only predict at
what load a crack will extend but also the direction of crack exten-
sion. This study was undertaken in an attempt to develop a model with
the capability of describing the characteristics of crack growth in

composites.

1.2 Literature Review

Smith [1] has discussed limitations of some of the current analyti-
cal models for predicting crack growth characteristics in composite
materials. Likewise, most of the previous finite element models either
involve complex computational procedures or suffer from serious limita-
tions. Some models distinguish between fiber and matrix [2, 3], others

use hybrid or singular finite elements [4, 5], and still others assume a
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direction of crack growth [6]. Finite element analyses which require a
distinction between the fiber and matrix materials are impractical for
most real life situations since the number of degrees of freedom
required in such an analysis could easily exceed the capacity of most
computers currently available. While the use of singular or hybrid
finite elements may give a good representation of the stresses, strains
and displacements near a crack tip, they generally require more computa-
tion time and they are not well suited to explaining large scale crack
growth characteristics. Experimental results [7, 8] have shown that the
direction of crack extension can change significantly during crack
growth in a laminated composite material. These results 1imit analyses
which assume a direction of crack growth to specialized cases or to
small increments of crack growth.

There are many different finite element models that do not require
specialized elements. Two such models are the failed element approach
of Adams [3], and the modified crack closure approach of Rybicki and
Kannien [9]. The failed element approach assumes that when an element
in an area of high stress exhausts its strain energy capacity, it
fails. From this, it is assumed that a "crack" has formed and has the
dimensions of the failed element. This approach has two implications,
the most important of which is that a finite amount of material is
removed from the system, which in an actual material is not the case.
The other is that the crack is not likely to close up on itself in
subsequent loading because of its exaggerated width. The modified crack

closure technique is based on the crack closure integral and can be used




within the framework of a linear elastic analysis with a relatively

coarse mesh. In the modified crack closure technique, the crack closure
integral is evaluated directly from the nodal forces and displacements
required to close a virtual crack of extension, Aa. The modified crack
closure technique also has the advantage of obtaining mode-I, mode-I11I,
and mode-III results in a single analysis.

Few fracture theories predict the direction of crack extension [2],
as well as the external load Tevel which causes crack extension. Hashin
[10] suggested that a failure criterion could be constructed which would
include the plane on which failure would occur. Some of the many frac-
ture/failure criteria which have been used to predict fracture/failure
of composite materials include the Sih strain energy density criterion
[2], the Tsai-Wu failure criterion [11], the Whitney-Nuismer point
stress criterion [12], and the Hashin failure criterion [10]. Of the
criteria listed, only the strain energy density criterion [2] and the
point stress criterion [12] are readily capable of predicting the direc-
tion of crack extension. However, without modification, their use is

limited to special cases.

1.3 Purpose of the Present Study

The purpose of this study was to develop a finite element model
capable of predicting crack growth characteristics in composite materi-
als. It was desired to develop a model which not only could determine
what applied load level would cause crack extension but one which could

also determine the direction of crack extension,.




1.4 Basic Assumptions

Unless otherwise stated, the model developed was based on the
following assumptions:
(i) Linear elastic, homogeneous isotropic or
homogenous orthotropic fibrous composites
(ii) small displacement theory
(iii) a crack extends from one end only - one crack at
a time
(iv) no variation of geometry in one of the coordinate
directions (i.e., plane stress, plane strain and

generalized plane strain problems).

1.5 Description of the Finite Element Model

The finite element model developed uses a two dimensional mesh of
four node, linear, isoparametric elements. The model has the capabili-
ties of obtaining either plane strain, plane stress or generalized plane
strain solutions. (Refer to Appendix A for a description of the finite
element method as it applies to this study.) The material models avail-
able include isotropic, orthotropic and laminated orthotropic, (off-
axis), materials. (See Appendix B for an explanation of the constitu-
tive relations for fhe respective material models.)

The approach taken to the solution of the crack problem was to
separate the analysis into two main parts. In the first part of the
solution the direction of crack growth was determined and in the second

part the load level which would cause crack extension was determined.




The crack growth direction was determined through the use of sev-
eral fracture/failure theories. The theories considered include a
modified version of the Griffith criterion [13], the Sih strain energy
density criterion [2], the Tsai-Wu failure criterion [11], and modified
versions of the Whitney and Nuismer point stress theory [12], and Hashin
failure criteria [10]. The failure criteria are described in Chapter 2
and the results are compared with theory and experiment in Chapter 3.

The determination of the load level which would cause crack exten-
sion was made through the use of the modified crack closure method
[97. The modified crack closure method, as it applied to this study, is
presented in Chapter 2.

The main reasons behind the choice of this solution approach was
that it could be used with a linear elastic analysis, that it could be
used with a relatively coarse mesh and that it required a minimum of

computer time.

1.6 Problems Considered

The problems considered in this study were:
(i) A mode-I crack in an infinite isotropic plate with remote
loading of o, Fig. (1.2a), was considered as a test of
the crack closure technique.
(ii) Mixed mode cracks in infinite plates of isotropic materials,
Fig. (1.2b), were analyzed as a test of the crack growth

direction, -60, for various angles of crack inclination, B.
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(iii)

(iv)

0ff-axis, unidirectional, orthotropic tensile specimens,

Fig. (1.3a), were analyzed for the direction of crack

extension in fibrous composites and the results were compared

with available experimental results.

Transverse cracks were intrpduced on the free edge of a
laminated composite tension specimen, Fig. (1.3b), and the
predicted crack paths were compared against available

experimental results.
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Chapter 2
THEORETICAL BACKGROUND

2.1 Criterion for Crack Extension

2.1.1 Energy Release Rate Concept

In the Griffith theory of classical fracture mechanics [13], it is
assumed that strain energy is released when a crack surface is created
in a stressed body. The rate of energy release when a crack extends
stably in a body is known as the critical energy release rate, GC. The
critical energy release rate, Gc’ can be determined experimentally by a
procedure which allows for stable, slow crack extension, (see Ref. [17]
for isotropic materials and [6] for composites).

For structures, such as a composite laminate, an existing crack may
or may not grow under a given state of stress. To determine whether or
not an existing crack will extend, it is necessary to calculate the
available energy release rate, G(a), associated with a crack of length
a. If the available energy release rate, G(a), is equal to the critical
energy release rate, G. the crack will grow in a stable fashion. If the
available energy release rate, G(a), is greater than the critical energy
release rate, GC, the crack grows unstably and if the available energy
release rate, G(a), is less than the critical energy release rate, G,
the crack does not extend. Similarly, the external load which first
causes the available energy release rate, G(a), to reach the critical

energy release rate value, Gc’ is the critical load and loads greater

10
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than the critical load level result in unstable growth while loads less
than the critical load level do not extend the crack.

Mathematically, the energy release rate, G(a), for a given crack of
initial length, a, is defined as the difference in the total strain
energy of the structure, AU, before and after a small crack extension,

Aa, is introduced, that is,

6(a) = jav0 T2

2.1.2 Modified Crack Closure Approach

Irwin [14] contended that if a crack extends by a small
amount, A4a, the energy released in the process is equal to the work
required to close the crack back to its original length. This statement

in equation form is

6a) = 1M L ?a 3o au d (2.2)
= 5a>0 2ha A ge Ol da .

where o is the surface traction vector and AG the displacement vector
required to close the crack back to its original length.

The modified crack closure technique of Rybicki and Kannien [9]
enables the direct evaluation of the crack closure integral (2.2) and
thus the energy release rate through the use of a finite element
model. The finite element model starts with the presence of an initial
crack of length, a, Fig. (2.1a), with tip at node K. The finite element

solution determines the displacement components, Gk’ (where Gk =>(uk,
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Vs wk) of the crack tip node K. An incremental crack extension 8a is
introduced by replacing the crack tip node K with two separate nodes K'
and K'' as shown in Fig. (2.1b). With this new crack geometry taken
into account, the finite element solution for the nodal displacements
Jk' and Jk" are found for nodes K' and K'', respectively, under the
same load. The crack extension is then closed by applying equal and
opposite forces at nodes K' and K'' such that their common displacements
match the displacements found earlier for node K, Fig. (2.1c). These

nodal forces can be described by

+
Fk => (ka’ Fyk’ sz) (2.3)
The energy release rate is then given by [9],
G(a) = [ka(uk'—uk")+Fyk(vk-vk")+sz(wk'—wk")]/ZAa (2.4)

By resolving the forces and displacements into a "crack coordinate
system," Fig. (2.2), the respective fracture mode contributions to the

total energy release rate can be determined. That is,
= - 3 ' LR P t_y V¢ A .
GI(a) {[szcos¢ Fyks1n¢][cos¢(wk W ) s1n¢(vk v )1} 7284 (2.5a)

GII(a) = {[Fykcos¢+szsin¢][cos¢(vk'-vk")+sin¢(wk'-wk")]}/2Aa (2.5b)

GIII(a) = {ka(uk'-uk")}/ZAa (2.5¢)
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where Gy, GII and Gppp are the mode-I, mode-I1 and mode-III contribu-

tions to the total energy release rate, G, respectively, i.e.,
G(a) = 6y(a) + Gyy(a) + Gyry(a) (2.5d)

2.1.3 Finite Element Considerations in Computing the Energy
Release Rate

As previously mentioned, the energy release rate requires the
evaluation of the nodal forces and displacements necessary to close a
crack of extended length, a + Aa, back to its original length, a. The
needed displacements are directly obtained from finite element solutions
of the initial and extended crack states, Fig. (2.la) and (2.1b),
respectively. However, the calculation of the required forces are not
as obvious. Rybicki and Kanninen [9] computed the forces by placing a
very stiff "spring" between nodes K' and K'', then computed the force
components in the "spring." This procedure can lead to unnecessary
approximation errors. An alternative approach will now be presented.
Consider three separate states. State No. 1 represents the loaded
initial state, Fig. (2.1a), where node K displaces (u,,vy,w ). The

finite element equations (Appendix A) for State No. 1 can be written as,
§. 1 = .
[k, 3{s,} = {F}} (2.6a)

where [Ky] is the global stiffness matrix, {61} is the global displace-

ment vector and {Fl} is the global force vector for State No. 1. Simi-
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larly, State No. 2, Fig. (2.1b), represents the loaded extended state

which can be expressed by,

[k,1{s,} = {F,} (2.6b)

and State No. 3, Fig. (2.1c), represents the loaded separated state with
applied forces to hold nodes K' and K'' together - which may be written

as,
[k, 16,) = {F,) (2.6¢)

Since the forces required to hold nodes K' and K'' together are con-

tained within the {F_ ]} vector it is necessary to compute {F3} . Since

3
the separated state with applied forces, State 3, Fig. (2.1c), is con-

strained to displace identical to that of the unseparated state, State
1, Fig. (2.1a), the displacement vector {61} is the same as {63} with
the exception of the additional degrees of freedom (i.e., u, v and w
displacements) for the new node created by separating the crack tip node

into two nodes. Now, if {6,'} is defined as being the {8} vector with

the additional degrees of freedom it follows that
6 = {68!

where the additional degrees of freedom are specified as being the same

as for the initial crack tip node of State 1 since State 3 requires that
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the displacements of the separated nodes match those of the unseparated
state, State 1. Note that the new node created by separating the crack
tip node was numbered as being the crack tip node number plus one and
all node numbers greater than the crack tip node were re-numbered as
being one plus the node numbers that they had in State 1. This re-
numbering procedure guarantees that the half bandwidth will not increase
by any more than 2 for plane stress or plane strain and by any more than
3 for generalized plane strain.

The undeformed mesh of the separated state, State 2, Fig. (2.1b) is
identical to that of State 3, Fig. (2.1c), and since the stiffness

matrices do not change for different loading conditions, it follows that

(k3] = [k,] (2.6e)

Substituting Eqns. (2.6d) and (2.6e) into (2.6c), the solution

for {F3} is found to be
[k, 38, '} = {F,} (2.7)

Hence, for a growing crack problem, the forces necessary to close the
current crack extension are found by simply multiplying the current
stiffness matrix by the, modified, previous displacement vector - with-
out the addition of extra steps or the introduction of unnecessary

approximation errors. Note that it is not necessary to store the entire

[ko] stiffness matrix. Since [ko] is a banded matrix, the only contri-
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butions to the force necessary to close the crack will come from the
elements containing the crack tip node K. Hence, the elemental contri-
butions to the force at node K can simply be summed up to give the total

force at node K.

2.2 Criteria for Predicting the Direction of Crack Extension

2.2.1 Modified Griffith Criterion

The Griffith or energy release rate criterion states that a crack
will extend when the available energy release rate, G(a), reaches or
exceeds the critical energy release rate, GC [13]. 1In a crack problem
where the crack extension direction is unknown the criterion should be
modified to state that crack extension will occur in the direction in
which the available enerqgy release rate, G(a), first reaches the criti-
cal energy release rate, Gc‘

If the critical energy release rate is assumed independent of
direction then the direction of crack extension can be taken as the
direction of maximum available energy release rate since this would be
the direction which would first reach or exceed the critical energy
release rate.

Two serious limitations of the modified Griffith criterion, as
defined above, are that the critical enerqy release rate may have a
dependence on the mode of fracture in isotropic problems and it also
depends on which direction, relative to the material principal coordi-
nates, the crack extends in fibrous materials. As an example of the

latter of the two limitations, consider two different mode-1 cracks
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extending in an anisotropic material. The first crack, Fié. (2.3a),
represents a mode-I crack growing parallel to the fibers and the second
crack, Fig. (2.3b), represents a mode-I crack growing perpendicular to
the fibers. Based on surface energy considerations [13], an approximate
relation for the mode-I critical energy release rate, Gic, for an iso-

tropic material is given by

G o = —S (2.8)

where oc is the critical applied stress required to cause crack exten-
sion and E is Young's modulus. Substituting the ultimate strength of a
composite material, (T300/5208 graphite-epoxy), in the transverse direc-
tion, YT’ and the modulus in the transverse direction, Ez, from Appendix
C, into Eqn. (2.8), gives an approximate value for Gic for extension
parallel to the fibers, Fig. (2.3a), that is,

n (YT)za
= —— = 8l.2a (2.9a)

®1c *
2
Similarly, for the crack growing perpendicular to the fibers, Fig.
(2.3b),
n(XT)za

= ——— = 7883a (2.9b)

Grc -
]

Hence, the critical energy release rate for the crack growing perpen-

dicular to the fibers is roughly two orders of magnitude greater than
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that of the crack growing parallel to the fibers.

Another disadvantage of the modified Griffith criterion is that it
requires an additional finite element solution for each possible direc-
tion that the crack can extend. Referring to Fig. (2.4), for the crack
defined by oab there are seven possible directions of crack extension,
from o to ¢, from o to d, from o to e, from o to f, from o to g, from o
to h and from o to i. In order to use the modified Griffith criterion,
seven independent finite element solutions would be required to compute
the seven possible enerqy release rates. This is obviously time consum-

ing and thus a costly procedure.

2.2.2 Sih Strain Energy Density Criterion

The strain energy density criterion [2, 15] is based on the local
value of strain enerqy density in the vicinity of a crack tip, which is
direction sensitive. Crack extension is postulated to occur in the
direction of minimum strain energy density when the strain enerqy
density factor, S, (to be defined), attains a critical value, Sc'

For a planar crack in an isotropic material under plane strain,
Fig. (2.5), the strain energy density in the vicinity of the crack

tip, %%, is given as, [15]

du

1 2 2 2
av = Trlaygkr2a ok fkpptagoktagskyyy)

+ non-singular terms (2.10)
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where ki, kII and kIII are the mode-I, mode-I11 and mode-111 stress

intensity factors, respectively,

ay, - .I%G[(3-4V-cos¢)(1+cos¢)] (2.11a)
ay, = Tog * 2sinelcose-(1-2v)] (2.11b)
Py T%§{4(1-v)(1-cos¢)+(1+cos¢)(3cos¢-1)] (2.11c)
253 = 78 (2.11d)

and G is the shear modulus of elasticity and v is Possion's ratio.
Eqn. (2.10) demonstrates that the strain energy density function

possesses a (1/r) singularity at the crack tip. Hence the expression
2 2 2
S = (a11k1+2a12kaII+a22kII+a33kIII)/n (2.12)

represents the intensity of the strain enerqy density field in the
vicinity of the crack tip. The fundamental hypotheses on crack growth
in the Sih theory are as follows:

(1) Crack initiation takes place in a direction determined by the
stationary value of the strain-energy density factor, i.e.,

==0, at ¢ = ¢ (2.13)
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(2) Crack extension occurs when the strain-energy density factor

reaches a critical value, j.e.,

S = S(k,, k

c r Kpp Kppp)e for e = ¢ (2.14)

Exact evaluation of the stresses and strains in the vicinity of the
crack tip with the current finite element model is not guaranteed since
there exists a geometric singularity at the crack tip which cannot be
accurately modeled with the linear-elastic analysis formulated herein.
Hence, it is not possible to use the Sih theory to determine when the
crack will extend. However, the Sih theory can be used to determine the
direction of crack propagation in isotropic materials.

From continuum mechanics [16] it is possible to write an alterna-
tive form of the strain energy density at a point in a stressed body,

i.e.,

du

1
V" 2(oxxexx+°yyeyy+°zzEzz+1yzsz+Txz (2.15)

Yy*T nyx_y)

Neglecting the non-singular terms in Eqn. (2.10) and substituting in the

expression for the strain energy density factor of Eqn. (2.12) gives,

du

d

(2.16)

< ln
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Combining Egns. (2.15) and (2.16), an alternative equation for the
strain energy density factor, S, is found to be:

Y, 4T, Y T (2.17)

r
S "?(°xx€xx+°yy€yy+ 922522 Ty2Vyz T xz Y xz nyxy)

There is one serious limitation to the use of the strain energy
density theory in the current study. This limitation is that the theory
does not account for the anisotropic strength characteristics of the
material. Since such properties must be accounted for in fibrous com-
posites, the Sih strain energy density theory is limited to isotropic
material applications. It should be noted that the strain energy
density theory has been used in the past to predict crack growth charac-
teristics in composite materials [2]. However, the success of such
studies resulted from assuming that the crack was situated entirely
within the isotropic matrix between fibers.

The procedure for implementing the strain enerqy density criterion
in the finite element model is briefly described as follows: First, the
possible directions of crack extension in the model are identified by
the element sides containing the crack tip node, (node-0 in Fig.

(2.4)). Second, the stresses and strains are calculated in the adjoin-

ing elements at the element corners, (points ¢ thru i in Fig. (2.4)).

Third, Eqn. (2.17) is used to calculate the strain energy density fac-
tor, S, at the respective points. Last, the crack is assumed to grow in

the direction in which S is a minimum.




2.2.3 Tsai-Wu Failure Criterion
Tsai and Wu [11] postulated that a failure surface in stress space

exists in the form:

F.s.+F

iS3 1.J.sis‘]. =1 i, J=1,...,6

where Fi and Fij are strength tensors of second and fourth order,

respectively, and Si represent a contracted form of the stress tensor

components in material principal coordinates. For an orthotropic lamina

under plane stress conditions, Eqn. (2.18) becomes:

1 1 1 1 1,2 1,2 1,2
O+ st (5 * )82~ Oex)s1- (v s 22 (20t
T c T c Tc Tec 512

+2F 1 (2.19)

12°11%22 °
where Xy and Yy represent the tensile strength of the material in the
fiber and transverse directions, respectively, X. and Y. represent the
compressive strengths, S;, represents the shear strength in the 1-2
plane and F12 is an interaction term which must be determined from a
biaxial strength test.

As a failure theory, the Tsai-Wu criterion has several advanta-
ges. These advantages include, (1) invariance under rotation of coordi-
nates, (2) transformation via known tensor transformation laws; and (3)
symmetry properties akin to those of the stiffnesses and compliances.

However, for use in this study, it has two serious limitations. The
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first is that it fails to account for differences in creating new frac-
ture surfaces at various angles to the material principal coordinates
and second is that it makes no distinction between tensile and compres-
sive failure which could cause the Tsai-Wu criterion to choose a com-
pressive direction of crack propagation.

The Tsai-Wu criterion was incorporéted into the finite element
model by assuming that the crack would extend in the direction where the
value of the Tsai-Wu polynomial reached a maximum. Referring to Fig.
(2.4), the stresses, oij’ are calculated at some fixed distance, o>
away from the crack tip at the various locations dictated by the element
sides incorporating the crack tip node, (points ¢ thru i in Fig,

(2.4)). Next, the values of the Tsai-Wu polynomial were computed at
these points through the use of Eqn. (2.19), (for the case of orthotro-
pic plane stress). Last, the crack was assumed to extend in the direc-
tion for which the Tsai-Wu polynomial reached a maximum.

The choice of ro is arbitrary within certain limitations. These
limitations are that ro should be greater than zero and less than the

longest possible path that the crack extension could take and not extend

through more than one element. Referring to Fig. (2.4), if the possible
path of crack extension were as shown from node o to c, 0 to d, o to e,
otof, otog, otohorotoi, then ro would be 1imited to that of
the segment from o to g since that is the direction of longest possible
single element crack extension. Note that it would be impractical to
use a distance greater than og since this would require using stresses

from an element outside those adjacent to the crack tip.
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2.2.4 Modified Point Stress and Hashin Criteria

The criteria for predicting the crack growth direction considered
up to this point, in their present form, are all unsatisfactory for
anisotropic materials. As pointed out in Sections 2.2.1-3, they all
fail to account for differences in the work required to create a new
area of crack surface at different directions in an anisotropic mate-
rial. Since it is imperative that this distinction be accounted for in
this study, two new criteria are proposed. The first criterion consid-
ered is a modification of the point stress criterion of Whitney and

Nuismer [12], and the second is a modification of the Hashin criterion

[10].

2.2.4.1 Modified Point Stress Criterion

The point stress criterion of Whitney and Nuismer [12] assumes that
failure of a notched laminate occurs when the Tocal stress at a certain
distance, ro, from the notch tip reaches the strength of the unnotched
laminate.

The modified point stress criterion of this study assumes that a
crack will grow in the direction of the maximum ratio of normal stress
to strength at a certain distance, ro, from the tip of an existing
crack. Note that this is equivalent to assuming that a crack will grow
perpendicular to the plane of maximum tensile stress in an isotropic
material. Referring to Fig. (2.6), the normal stress, o¢¢(r,¢), is
calculated at some fixed distance, r_, away from the crack tip. The

0
stress, o¢¢(ro,¢), is then divided by the tensile strength of the mate-
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(¢), (to be defined), normal to the direction of crack exten-

rial, T
* 94
sion. This ratio, R(ro,¢), is then used to predict the direction of
crack extension by assuming that the crack will extend in the direction
for which R(r0,¢) reaches a maximum. Ouantitatively, the ratio is

defined as:

°¢¢(ro,¢)
T¢¢(¢)

R(ro,¢) = (2.20)
The value of ro used in this criterion is subject to the same
1imitations as the value of To in the Tsai-Wu criteria, Section 2.2.3.
That is, o should be greater than zero and less than or equal to the
longest path of possible crack extension while not extending through

more than one finite element.

2.2.4.2 Strength, T, , Along a Given Plane in Anisotropic Materials

¢¢
The strength, T¢¢(¢), normal to a given direction, is taken as the
normal stress required to fail an infinitesimal element of anisotropic
material along a given plane. In the finite element solution the finite
element sides dictate the directions of possible crack extension.
T¢¢ was taken in this form to account for differences in the energy
required to create new crack surfaces at arbitrary angles with the
material principal coordinate system. Such a definition is necessary in
the proposed model to permit selection of the proper direction of crack

growth., Further, as shown by Herakovich [7], for example, failure of

individual lamina in a laminate can occur along planes which are neither
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parallel to nor perpendicular to the fibers. It appears to be most
difficult if not impossible to experimentally verify a relation

for T¢¢(¢) by testing unidirectional laminates since only one direction
of crack extension would be present for a given laminate. However,
three obvious conditions must be met by such an expression. The condi-
tions are:

1. For an isotropic material, the strength, T  (¢), should be constant

1
and equal to the ultimate strength of the material, o, independent

of ¢.

2. For a crack extending parallel to the fibers in a unidirectional
composite, T¢¢(¢) should be equal to the transverse tensile
strength of the material, Yy.

3. For a crack extending perpendicular to the fibers, T¢¢(¢) should be
equal to the tensile strength of the material in the fiber direc-
tion, Xy.

For a unidirectional laminate under plane stress, as shown in Fig.
(2.7), a simple relationship for T¢¢(¢) can be postulated. Removing an
infinitesimal element at (ro,¢), Fig. (2.8a), and defining the angle B
as the difference between the fiber angle, 6, and the assumed crack
extension angle, 6, that is

B=6-¢ (2.21)

It is then possible to isolate yet another infinitesimal element, Fig.

(2.8b), which gives the orientation of the crack extension relative to
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the material principal directions. Then, assuming that the strength,

T¢¢(¢), is balanced by only the transverse and longitudinal strength of
the material Yy and X7, respectively, the relation for T¢¢(¢) is
obtained by summing forces in the ¢ direction as,

T . (¢) =X sinZB +Y c0528 (plane stress) (2.22)

0% T T P :

Testing Eqn. (2.22) against the three conditions,

Isotropic ma;er1a]: ;T = YT = cu

T¢¢ = 0,5in"8 + 0,cos’B =0 (2.23a)

Fracture parallel to fibers: B8 = 0°

Too = XpsinZ(0°) + Yrcos2(0°) = Yq (2.23b)

Fracture perpendicular to fibers: 8 = 9Q°

Too = Xpsin?(90°) + Yrcos?(90°) = X; (2.23c)

The three conditions specified herein are satisfied. Hence, in princi-
ple, the expression is acceptable. A plot of T¢¢ vs. ¢ for plane stress
is shown in Fig. (2.9) for various values of & for T300/5208 graphite-

epoxy, (properties from Appendix C), The maximums in Fig. (2.9) repre-

sent the combinations of angles for which a crack grows perpendicular to

fibers and the minimums represent crack growth parallel to fibers.
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For a transverse crack extending through a laminate, Fig. (2.10), a
similar relationship can be derived. Removing the lTamina at the crack
tip and rotating it about the z' axis into material principal coordi-

nates, Fig. (2.11a), gives the geometry necessary to compute the

] ] ]
strengths Txx(e)’ Tyy(e) and T__(6) in the x', y', and z' directions,

respectively.. Removing an infinitesimal element, oab, from Fig.

(2.11a), applying the normal strengths XT’ YT and Txx’ in the 1', 2' and

x' directions, respectively, Fig. (2.11b), and summing forces in the x'-

direction gives the relation for Txx(e) as,

N A T
Tox(8) = Yysin'8' + Xocos™® (2.24a)

Similarly, removing element, ocd, from Fig. (2.11a), applying

vy Fig. (2.11c), then summing forces in the y'-

strengths XT’ Yis and T
direction yields
T' (8) = X.sinze + Y'cosze (2.24b)
yy T T "
Since the z' and 3' axis in the lamina coordinate system are the same as

in the laminate coordinate system,

T,,(8) = 1 (2.24¢)

The strength, T¢¢(¢), normal to a free edge crack extension, Fig.

(2.12a), is found by removing an infinitesimal element, Fig. (2.12b),
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applying the respective strengths and summing forces in the ¢ direction

which gives

' . 2 2
Tog(®) = Tyysin'e + T,,cos7¢ (2.25)

Substituting Eqns. (2.24a), (2.24b) and (2.24c) into Eqn. (2.25) yields

that
T¢¢(¢) = (XTsinza +YTcosze )sin2¢ + ZTcosz¢ (2.26)

Testing Eqn. (2.26) against the three conditions,

Is?trop1c material: XT = YT = ZT =09,
T, = (ousin26+oucosze)sin2¢ + oucosz¢ =0

" (2.27a)

u

Fracture parallel to fibers: 6 =0°, ¢ = 90°

oo = (Xrsin2(0°)4Y.c0s2(0°))sin2(90°) + Z,c0s2(90°) = Y7 (2.27b)

Too = g

Fracture perpendicular to fibers: 6 = 90°, ¢ = 90°

= :02(90°V4Y. cac2({90°Y)ein2(90° ' ne2(a0°) < y .
T¢¢ = (Xysin (90 )+YTcos (90°))sinc(90°) + Z;c0s (90°) Xy

(2.27¢)

Again, the three conditions are satisfied so, in principle, the relation

¢ vs. ¢ for free edge crack extension is

is acceptable. A plot of T
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shown in Fig. (2.13) for various values of fiber orientation, 6 , for

T300/5208 graphite-epoxy, (properties from Appendix C). As in the plane

stress case, the values of ¢, (for 6 = 90°), for which T¢¢ is a maximum

represents crack extension perpendicular to fibers while a minimum

T¢¢ represents crack extension parallel to fibers. The constant

] ]
T¢¢ for 8 = 0° represents matrix mode failure independent of ¢, Last,

[}
the curve for 6 = 45° has minimums at T;¢ = YT’ which represents matrix
]
mode failure and the maximums never reach XT since some combination of
fibers and matrix, thru the width, is always involved for the free edge

cracks considered, Fig. (2.10).

2.2.4.3 Modified Hashin Criterion
The Hashin failure criterion [10] assumes that failure of a trans-
versely isotropic material will occur in a tensile fiber

mode, o . > 0, when:

11

1
—(9y,
12

2+01§) =1 (2.28)

where X_ is the tensile failure stress in the fiber direction and 512 is

I
the axial failure shear stress. The Hashin criterion also assumes

failure to occur in a tensile matrix mode, 022 + 033 > 0, when:

1 2 1,2 1,2 2.,
5 (955+933)" + —5(053-0,5,944) +'g?‘(°12*°13) =1 (2.29)

YT 523 12
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where Y. and S, are the transverse tensile and shear strength of the

T 23
material, respectively. For the case of plane stress in the 1-2 plane,

the criterion for fiber mode tensile failure becomes:

o 2 o 2
(yl—l) + ('gg) =1 (2.30)
T 12
and for matrix mode tensile failure:
o 2 o] 2
22 12
) + (g;;) =1 (2.31)

where Sy, is the shear strength of the material in the 1-2 plane.

The Hashin criterion does account for distinct differences in fiber and
matrix mode failure. However, it does not account for an arbitrary
combination of matrix and fiber mode failure. (In the actual failure of
composite laminates this feature is necessary since as Herakovich [7],
for example, has shown failure can occur on a plane which is neither
parallel to nor perpendicular to the fibers.)

Hashin [10] proposed that a similar criterion for the failure of
composite materials could be developed to include the plane on which
failure occurred, ¢o’ Fig. (2.14). Such a criterion would predict

failure when some function g(oij, ¢) satisfied the condition:

g(oij’ $) =1 (2.32)




Figure 2.14 Composite Laminate With Modified
Hashin Parameters
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and that failure would occur on a plane defined by, L for which (2.32)
was first satisfied under monotonically increasing load.

The modified Hashin criterion of this study assumes that a given
crack in a composite material will extend in the direction, L in which
the left side of Eqn. (2.32) reaches a maximum when evaluated at some
fixed distance, Fo from the crack tip. (Note: "o is subject to the
same limitations as in Sections 2.2.3 and 2.2.4.1).

The development of the modified Hashin criterion as used in this
study is based on developing an expression for Eqn. (2.32). As in the
case of the point stress criterion, it appears impossible to test such
an expression experimentally. However, two obvious conditions should be
met by such a criterion, they are:

1) For a crack extend%ng parallel to the fibers, the criteria should
give back the Hashin criterion for tensile matrix mode failure,

Eqn. (2.31).

2) For a crack extending perpendicular to the fibers, the criteria
should give back the Hashin criterion for tensile fiber mode fail-

ure, Eqn. (2.30).

Proceeding along the same 1ine as Hashin [10], if the failure criterion
is taken as,

o 2 o 2
r

where T¢¢ and Tr¢ are the normal and shear strengths and 0¢¢ and °r¢ are

the normal and shear stresses, respectively, on the plane of crack
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extension, Fig. (2.14), then the direction of crack extension is given
by the value of ¢ for which the left side of Eqn. (2.33) reaches a
is greater than zero. (A o© less than

¢¢ $¢
zero would represent crack closure.) For the case of plane stress of a

maximum, provided that o

unidirectional composite laminate, Fig. (2.7), the normal strength,
T¢¢(¢), was derived in Section 2.2.4.2 and is given by Eqn. (2.22). If

the shear strength, Tr (¢), is simply taken as being 812, that is

¢

Tr¢ = 512 (plane stress) (2.34)
Then the failure criterion is complete. Testing the criteria of Egn.
(2.33) against the two conditions specified herein,
(i) Fracture perpendicular to fibers: ¢ = 90 + 6, equilibrium of an

element, Fig. (2.15a) gives

. 2 2 .
4o = oyys1n ¢ +0,.C05¢ - 2Tyzs1n¢cos¢ (2.35a)

g = cos¢sing (o } + ryz(cosz¢—sin2¢) (2.35b)

2z7%y

substituting ¢ = 90 + 8,

Q
i

o = oyysin2(90+e)+ozzcosz(90+9)-ZTstin(90+e)cos(90+6)

2 . 2 .
oyycos e+ozzs1n e+21yzs1necosﬁ (2.35c)
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= ¢c0s(90+6)sin(90+6) (o

)+Tyz[c052(90+6)-sin2(90+e)]

-0
27" yy

-sin6cos8 (o + ryz[sinze-cosze] (2.35d)

27%yy)

but, from Fig. (2.15b);

2 . 2
91 = 9,,€0S 6+ozzs1n 6+21

vy ,Sinécosé (2.35e)

y

-{-sindcosd (o ) + Tyz[sinze-cosze]} (2.35f)

92 22 %y

comparing Eqns. (2.35e) and (2.35f) with (2.35c) and (2.35d), respec-

tively,

o, =0 (2.359)
and

= -0 (2.35h)
Also, for fracture perpendicular to the fibers, Eqn. (2.22) reduces to
that of Eqn. (2.23c). Substituting Eqns. (2.23c), (2.34), (2.35g) and
(2.35h) into Egn. (2.33) yields,

() + (&5 =1 (2.35i)

which is precisely the Hashin criterion for tensile fiber mode failure,

Eqn. (2.30).
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(i1) Fracture parallel to fibers: ¢ = 6 Substituting, ¢ =6, into

Eqns. (2.35a) and (2.35b) gives that:

. 2 2 .
- - 2.363
o¢¢ oyys1n 6+ozzcos ;] 21y251n6c056 ( )

and

cosbsind (o

o ryz(cosze-sinze) (2.36b)

ré zz'oyy) +

but from Fig. (2.15c):

. 2 2 .
Tp0 oyys1n 6 + 0,,cos 0 - Zryzs1necose (2.36¢)

and

Oy = cosBsiné (o

2, .2
zz'cyy) + ryz(cos 8-sin 0) (2.36d)

Comparing Eqns. (2.36¢) and (2.36d) with (2.36a) and (2.36b), respec-

tively,

0¢¢ =91 (2.36¢e)

and

°r¢ =995 (2.36f)
Also, for fracture parallel to the fibers, Eqn. (2.22) reduces to that
of Eqn. (2.23b). Substituting Eqns. (2.23b), (2.34), (2.36e) and

(2.36f) into Eqn. (2.33) yields,

2 o] 2
22) f (el =1 (2.36g)

(v
i 12




which is precisely the Hashin criterion for tensile matrix mode failure,

Eqn. (2.31). Since the relation developed gives back the Hashin cri-
teria for tensile fiber mode and tensile matrix mode failure it is in

principle acceptable.

2.2.4.4 Finite Element Considerations in Implementing the Modified
Point Stress and Hashin Criteria
The steps in the implementation of the modified point stress and
Hashin criteria are similar to those in implementing the Sih and Tsai-Wu
criteria. Briefly:
(i) Determine the elements containing the crack tip node. This gives
the possible directions of crack extension.
(ii) Find the minimum element side length. This gives Foe
(iii) Compute the stresses along the element sides, which define the
possible directions of crack extension, at ro.
(iv) Use Egn. (2.20) for the point stress criterion or Eqn. (2.33) for
the Hashin criterion and assume crack extension in the direction
which makes (2.20), for point stress, or (2.33), for the Hashin

criterion, a maximum.




Chapter 3
RESULTS

3.1 Isotropic Cases

3.1.1 Mode-I Crack in an Infinite Plate

The classical problem of a mode-I érack in an infinite plate, Fig.
(1.2a), was run as a test of the energy release rate formulation.
Results for two different finite element meshes, one being much finer
than the other, were generated for comparison. The computed energy
release rates were converted to stress intensity factors for ease of
comparison with theory.

The boundary condition for the fine mesh, a 306 element x 338 node
mesh, Fig. (N.1) considered a full crack model assumed specified dis-

placement loading. Referring to Fig. (3.1a), the boundary conditions

were:
at y = 0: v(y = 0,z) = =§ (3.1a)
at y =L: v(y=1L1,2z) =6 (3.1b)
at z = 0,2B: traction free (3.1c)

The input parameters; a, 6§, L, B, A and B were taken as,

1)
n

0.5'', da = 0.,2a, L = 40a, B = 10a
L/2, & = .002a, 8 = 90° (3.2)

b=
n
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The problem Qas treated as a case of plane strain, constitutive equation
given by Eqn. (B.18), with material properties listed in Appendix C.
The crack was assumed to be a virtual crack, i.e., having a width equal
to zero.

The coarse mesh, a 68 element x 82 node mesh, Fig. (D.2), assumed
symmetry about the midplane and also used specified displacement load-

ing. Referring to Fig. (3.1b), the boundary conditions were:

at y = 0: v(y = 0,z) = -6 (3.3a)
aty =L: v(y=1L,z) =8 (3.3b)
at z = 0: Traction free (3.3d)
at z =8: w(y, z=8)=0 (3.3d)

The input parameters were taken the same as for the fine mesh, Eqn.
(3.2).
The theoretical stress intensity factor, Ky, for a mode-I crack in

an infinite plate, Fig. (3.1), is given by [17] as,
Ky = E(na)l/2 (3.4)

and the relation between the mode-I stress intensity factor, K;, and the

mode-I energy release rate, Gy, for plane strain is given by [17] as,

- ( 2)”2 (3.5)
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where E is Young's modulus and v is Possion's ratio. Since the theore-
tical stress intensity factor, Eqn. (3.4), is computed using the remote
stress, o, the applied displacement, &, must be converted to an equiva-

lent stress. From Eqn. (B.18) this relation is given by

Ee
g = 6 = .
where
26
Eyy =T (3.7)

The finite element results for the two meshes considered are pre-
sented in Table (3.1). The stresses, o, were computed using Eqns. (3.6)
and (3.7). The comparisons of the predicted stress intensity factors
with the theoretical stress intensity factors is shown in Table (3.2).
The results indicated pure mode-I crack extension, i.e., -60 = 0° in
Fig. (3.1a), as expected. Note that theoretical values for two differ-
ent initial crack lengths, a, are shown. The first crack length repre-
sents the actual, initial, crack length and the second represents the
actual, initial, crack length plus the crack extension. The two crack
lengths were considered to demonstrate the error incurred in using a
finite crack extension. That is, the theoretical energy release rate,
Egqn. (2.1), is based on an infinitesimal crack extension, i.e., limit
da + 0, whereas the finite element model introduces a finite crack
extension, Aa. The results of Table (3.2) indicated that the fine mesh

gave better results than the coarse mesh and that using the crack length
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plus the extension in the theoretical stress intensity factor compared

better with the finite element results.

3.1.2 Mixed Mode Fracture of an Infinite Isotropic Plate

The problem of a mixed mode crack in an infinite isotropic plate,
Fig. (1.2b), was run as a test of the crack growth direction. Results
were compared with the results predicted by the Sih strain energy
density theory [2]. The mesh used consisted of 306 elements and 338
nodes, Fig. (E.1l).

The boundary conditions used were identical to those of the fine
mesh for the mode-I crack in an infinite plate, i.e., Eqns. (3.1la),
(3.1b) and (3.1c). Referring to Fig. (3.1a), the input parameters;

a, 6§, L, B, and A were taken as,

0.50"" _ _
= Sing L = 40a, B = 10a
§ = 0.,001'", A=L/2 (3.8)

while the crack inclination angle, B, was varied from 30 to 90 degrees.
While simple relations for the mode-1 stress intensity factor, KI,
and the mode-II stress intensity factor, Ky, exist for the mixed mode
problem of Fig. (1.2b), reference [17] points out that there is no known
relation between the energy release rates and stress intensity factors
for such a problem. Hence, discussion of the results for the mixed-mode
crack problem of Fig., (1.2b) will be limited to the crack extension

direction.
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The theoretical crack extension direction, 60, was computed from
the Sih strain energy density theory [18], by solving for 60 from Eqn.

(3.9), below:
2(1-v)sin(e -28) - {ZSin[Z(SO-B)]} - sin26 = 0 (3.9)

Finite element results were generated for various crack inclination
angles, B8, through the use of the modified Griffith criterion, Section
2.2.1, the Sih strain energy density theory, Section 2.2.2, and the
modi fied point stress and Hashin criterion, Section 2.2.4. A plot of
the theoretical and finite element crack extension direction, 90, as a
function of the crack inclination angle, B, is shown in Fig. (3.2).

The results for the modified Griffith criterion were generated by
evaluating the value of the crack closure integral, through the use of
Eqn. (2.4), for all possible paths of crack extension present, e.g., see
Fig. (2.4), and assuming that crack extension would occur in the direc-
tion of a maximum energy release rate. The results consistently predic-
ted crack extension in a direction in which the mode-I energy release
rate, Gy(a), made up 99% or more of the total energy release rate.

The results for the Sih strain energy density criterion were evalu-
ated using Eqns. (2.13) and (2.17). The strain energy density factor
was considered as the sum of two components [18], one due to a change in
volume, Sv’ and one due to a change in shape, Sd,

S=S, +S (3.10)

d
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The results always predicted crack extension in a direction in

which Sv >> S This conforms with the concept [18] that fracture

d.
occurs along a plane where SV > Sd.

The modified point stress cases were evaluated using Eqns. (2.20)

and (2.22) with

X. =Y =0 (3.11)

The crack was assumed to extend in the direction for which, R(¢), Egn.
(2.20) was a maximum,
The results for the modified Hashin criterion were generated

through the use of Egn. (2.33), with

T =T =0 (3.12)

Crack extension was assumed to occur in the direction which maximized
the left hand side of Eqn. (2.33).

A1l of the tested theories gave identical results, as indicated in
Fig. (3.2). The small differences between the theoretical and finite
element predicted values was attributed to there being only a finite
number of crack extension paths available in the finite element model
compared to an infinite number in the analytical Sih theory. However,
the finite element model always predicted crack extension along the
closest available crack extension path to that of the theoretical crack

extension direction.
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3.2 O0ff-Axis, Unidirectional Composite Tension Specimens.

A tension test of a unidirectional coupon with a small crack pre-
sent, Fig. (1.3a), was simulated as a test of the crack extension direc-
tion. The mesh used consisted of 306 elements and 338 node points, Fig.
(D.1). Referring to Fig. (3.la) and (2.7), the boundary conditions were

chosen to simulate the grips of a tension test machine and are given by:

at y = 0: v(y = 0,2z) = -8, w(ly = 0,2z) =0 (3.13a)
aty =2L: viy=1L,z) =6, wly =L,z) =0 (3.13b)
at z = 0,2B: traction free (3.13c)

The dimensions were chosen to be similar to a typical tensile coupon,

(Reference [19] suggests L > 30B be used.), and were taken as,

B = 0.25'" (3.14a)
L/2B = 15 (3.14b)

The applied displacement load was chosen to be,
§ = 0.001'" = =ser(in) (3.14¢)
- 3750 d
The initial half-crack length was chosen as,

0.005 in
a = “Sing (3.14d)
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and the other parameters, the fiber direction, 6, the crack inclination
angle, B, and the crack position, A, were varied to simulate various
conditions. The problem was treated as being a case of orthotropic
plane stress with the constitutive relation being that of Eqn. (B.13).
The material system chosen was T300/5208 graphite-epoxy, properties
listed in Appendix C. The crack was assumed to be a virtual crack,

i.e., having zero initial width.

3.2.1 Comparison of the Crack-Extension Direction Theories for a 30°
Lamina

The theories for predicting the crack extension direction, i.e.,
the modified Griffith theory, Section (2.2.1), the Sih strain energy
density theory, Section (2.2.2), the Tsai-Wu theory, Section (2.2.3),
the modified point stress theory, Section (2.2.4), and the modified
Hashin theory, Section (2.2.4), were compared against the expected crack
extension path for a 30°, off-axis, unidirectional tensile specimen with
a crack orientated along the z axis, i.e., 8 = 90° in Fig. (3.1a).

The predicted crack extension path for the modified Griffith theory
is shown in Fig. (3.3a), the Sih strain energy density criterion in Fig.
(3.3b), the Tsai-Wu theory in Fig. (3.3c), the modified point stress
theory in Fig. (3.3d) and the modified Hashin theory in Fig. (3.3e).

The experimentally observed direction is shown in Fig. (3.3f). Experi-
mental results for graphite-epoxy [6, 7 and 8], Boron-aluminum [20], and
graphite polyimide [21], unidirectional composites all indicated that

failure of unnotched specimens and fracture of notched specimens




64

nMm-les] 9o

A

9jeulwe ‘jeuoi}dalipiufn

v (12°02'8°2‘9) Iejuawyiedx3 4 ulyseH PoIJIPOW "9

A

37

\

Ajisuaqg ABiaug uieals q

A

.oom V 104 suoisuai}x3y }oeud jejusawiiadxy puy poldipaid ¢©°¢ ainbiy

§§911S JUIOd POIJIPOWN P

A< (034
0
be
I
Yit}}14D PeI}IPON ‘B
Ae—
0%
006N




65

occurred along planes parallel to the fibers. Fig. (3.3a) thru (3.3e)
indicate that the modified point stress and the modified Hashin theories
were the only theories that predicted the correct crack extension path.

The reason that the modified Griffith, the strain energy density
and the Tsai-Wu theories predicted incorrect crack extension paths was
because none of these theories account for the differences in the energy
required to create crack extension surfaces at arbitrary angles to the
fibers.

Since the modified point stress and Hashin criteria were the only
criteria to yield accurate results, further case studies were limited to

these two criteria.

3.3.2 Variation of the Modified Point Stress and Hashin Functions for a

30° Lamina.

The modified point stress function, R(r0,¢), was given by Eqn.

(2.20) as

(o
= ¢

where o¢¢ was taken as the normal stress and T¢¢, defined by Egn.

(2.22), the strength normal to a plane of possible crack extension. The
modified Hashin function can be defined as H(ro,¢), where from Eqn.
(2.33),

o . 2

o,, 2
Hrg\0) = (22) + (1) (3.16)

T Tro
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where o was the shear stress and Tr the shear strength, Eqn. (2.34),

re ¢
on the plane of possible crack extension.
Finite element predictions of R(ro,¢) and H(r0,¢) were computed as
a function of ¢ for three different values of Fy for the 30° lamina of
Section 3.2.1. (The finite element mesh, the boundary conditions and
the crack geometry were identical to those of the problem considered in
Section 3.2.1). The values for the R(r0,¢) function were normalized to
their maximum values and plotted in Fig. (3.4) for three different
normalized values of roe The ro values were normalized with respect to
max ma x

where
fo * ro

mesh used, (e.g., see Section 2.2.4.4). The values for the H(ro,¢)

was the limiting value of ro for the finite element

function of the modified Hashin theory were also normalized to their
maximum value and were plotted in Fig. (3.5) for the same three norma-
1ized L values.

The results of Fig. (3.4) and (3.5) achieve maximum values at ¢ =

X values. Since the criteria both

210° for all of the various r_/r'®
assume crack extension in the direction where R(ro,¢) or H(ro,¢) reach a
maximum, both criteria choose the expected value of ¢ = 210°, (e.g., see

Section 3.2.1). Figure (3.4) and (3.5) also indicate that the trends

ma X

remain unchanged though the values differ slightly for the three ro/ro

values. This indicates that the prediction of the crack extension
direction is fairly insensitive to the value chosen for ro. Note that
in the case of the modified point stress theory, Fig. (3.4), the maximum
value of R/Ry,y increased with increasing distance from the crack tip.

This trend was just the opposite of what was expected since the stresses
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are actually singular at the crack tip, i.e., at Fo = 0. The reason for

X approaches unity, the stresses are

this discrepency is that as ro/r'ga
computed nearer the element corners which introduces numerical errors in
the stress computation. This stands as a good example of why such
criteria are limited to the prediction of crack extension direction and
not the load which would cause crack extension. The values for the
normalized modified point stress ratio, Fig. (3.4) and the normalized
modified Hashin ratio, Fig. (3.5), for 0° < ¢ < = 180° were not shown
because of numerical difficulties in the computation of the stresses in
this regime. However, the modified point stress results seemed to
indicate a slight increase in R(r0,¢) for 0° < ¢ < 30° and some negative
values between ¢ = 30° and ¢ = 180°. Similarly for the modified Hashin
ratio, Fig. (3.5), the values for0° < ¢ < 180° seemed to indicate slight
increases in H(ro,¢) around ¢ = 30° and ¢ = 120° with some negative
values for c¢¢ between ¢ = 30° and ¢ = 180°. Comparison of the modified
point stress ratio, R(r0,¢), Eqn. (3.15), and the modified Hashin
ratio, H(ro,¢), Eqn. (3.16), reveal that
o 2
H(rg»8) = [R(r,.0)7% + (+72) (3.17)
rée

Hence, the differences in Fig. (3.4) and (3.5) represent the effects of

squaring the point stress ratio, R(r0,¢), plus the shear effect of

including the square of the shear ratio, °r¢/Tr¢’
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3.2.3 Crack Extension in Unidirectional Laminates |

The modified point stress and the modified Hashin criteria were
used to predict the crack extension direction and the modified crack
closure technique was used to predict the energy release rate for
several different unidirectional laminates. The reason the study of
crack extension in unidirectional laminates was limited to the modified
point stress and Hashin criteria was because they were the only criteria
which accounted for differences in the energy required to create new
fracture surfaces at arbitrary angles to the material principal system--
as demonstrated for a 30° lamina in section 3.2.1. The mesh, boundary
conditions and material system were identical to those explained at the
beginning of section 3.2. A virtual crack, i.e., one having zero ini-
tial width, was assumed. The orientation of the crack was assumed to
be 8 = 90° and A = L/2, Fig. (3.1a).

The results are shown in Table (3.3) where 6 is the material prin-
ciple coordinate system orientation, ¢O the orientation of the plane of
crack extension, G is the total energy release rate, Eqn. (2.4), and the
% mode-I and % mode-1I values represent the mode-I and mode-II contri-
butions to the total energy release rate, G. The expected crack exten-
sion directions were based on experimental results for graphite-epoxy
[6, 7], Boron-aluminum [20], and graphite polyimide [21] composites.

The results of these experiments all indicated that failure of unnotched

specimens and fracture of notched specimens occurred along planes par-

allel to the fibers and that ¢0 was always greater than 180° except in

the case of 8 = 0°, where extension could occur in either a ¢o = 0°
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or ¢o= 180° direction. The results of Table (3.3) indicate that both
the modified point stress and Hashin criteria choose the correct path of
crack extension in all of the cases considered. The fact that both
criteria also choose dual values of ¢o = 0°, 180° for the © = 0° speci-
mens was also promising since this is what would be expected. While no
direct comparison of the computed energy release rates could be made,
the computed values were similar to and in the same range as experimen-
tal values obtained by Wang and Crossman [6] for double side notched
graphite-epoxy specimens. The % mode-I and the % mode-II values were
also compared with the results of Wang and Crossman [6] and were found

to exhibit the same trends and range of results.

3.2.4 Effects of Crack Orientation on the Fracture Characteristics of
Unidirectional Laminates
The finite element model was used to predict the fracture charac-

teristics of a 30°, unidirectional laminate. The cases considered were:

1. Influence of crack position, referring to Fig. (3.1a), a crack near
the grip of the tensile machine was simulated by specifying
that £ = 0.1 with g = 90°.

2. Influence of specimen aspect ratio, referring to Fig. (3.la), a
short specimen was modeled having length L/2B = 2 with B = 90°,

3. Influence of crack orientation, referring to Fig. (3.1a), specimens

with 8 = 30°, B = 60°, and B = 90° were considered.
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A1l of the cases assumed that a virtual crack existed and used the same
mesh, boundary conditions, loading, material and geometry, unless stated
otherwise above, as described at the beginning of section 3.2.

The results of case 1, Table (3.4), indicated that the crack direc-
tion for the crack near the grip, A/L = 0.1, extended in the same direc-
tion, ¢o’ as did the center cracked specimen, A/L = 0.5, while the
energy release rates, G, and the % mode-I and % mode-II contributions to
the total energy release rate differed by 10-20%.

The case 2 results, Table (3.5), indicated that the crack extension
direction, ¢o, was insensitive to the specimen aspect ratio and that the
resulting energy release rates differed by about 20%. However, the type
of fracture that occurred was the opposite for the two cases. That is,
the long specimen, L/2B = 15, fractured in a mainly mode-I fashion while
the short specimen, L/2B = 2, fractured in a mainly mode-II fashion.
This trend is not surprising since Nemeth, et al. [19] have shown that a
completely different stress state exists in short specimens, i.e., L/2B
= 5, as compared to long specimens, i.e., L/2B = 15,

The results of case 3, Table (3.6) predicted the same crack exten-
sion directions, ¢0, and similar energy release rates and fracture modes
for the three crack inclination angles, 8, considered. These results
are consistent with the experimental results of [6], [7], [20], and [21]
which indicate that fracture of unidirectional laminates always occurs

on planes parallel to the fibers,
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3.3 Free Edge Crack Growth in Laminated Composite Tensile Specimens

Cracks located at the free edge of laminated tension specimens,
Fig. (2.10), were considered. The crack extension paths and the result-
ing enerqgy release rate vs. crack length curves were considered.

The solution procedure consisted of obtaining a generalized plane
strain solution of the front face, i.e., the y-z plane, under an applied
load of € X then, using the results of the front face solution as
applied loads, obtain a fracture mechanics solution to the free edge,
i.e., the y'-z' plane, via subsequent generalized plane strain solu-
tions. (The generalized plane strain formulation is described in Appen-
dix A.)

The generalized plane strain solution of the front face was
obtained using a 132 element by 150 node finite element mesh, Fig.
(D.3). Referring to Fig. (2.10) and Eqn. (A.4), the boundary conditions

and geometry used were:

B =0.,25'", H=0,02"", ex = 0.001 (3.18a)
at y =0, U(y = 0,z) =V(y =0,z) =0 (3.18b)
at y = B, traction free (3.18¢)
at z =0, W(y,z=0)=0 (3.18d)
at z = H, traction free (3.18e)

where quarter symmetry was assumed.

Since the generalized plane strain solution assumes stresses and

strains to be independent of the out of plane coordinate, the study of
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the free edge crack growth problem can be modeled exactly only when
there is no variation of these quantities in both the x and x' direc-
tions. Since the x-direction is the out of plane direction, Fig.
(3.6a), for the front face problem and the x'-direction is the out of
plane direction, Fig. (3.6b), for the free edge problem, the study is
Timited to cases which exhibit x and x' independence. The only lami-
nates which exhibit this quality are unidirectional laminates because of
the absence of edge effects. However, if the thru the thickness varia-
bles of the free edge problem, Fig. (3.6b), are assumed constant and
equal to the values at the free edge of the front face problem, i.e., at
y = B in Fig. (3.6a), then the corresponding free edge boundary condi-

tions become Fig. (2.10), (3.6a), (3.6b),

at y' =0, W'(y' =0,2') =Wy =8,2) (3.19a)
Vi(y' = 0,2') = -[U(y = B,z) + € s(x = )] (3.198)
at y' = b, W'(y' = 2C,z') = W(y = B,z) (3.19c)
Vi{y' = 2¢,2") = -[U(y = B,2) + e ~-(x = -C)] (3.19d)

where 2C is the free edge modeled length.

at z' =0, W' (y'.z2'=10)=0 (3.19)

at z' = H, traction free (3.19f)
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with:
U'(y',z') = 0 (3.19q)
1 1
exx = Exx(z') = -gVly = B,2) (3.19h)
and:
6, =6, - 90° (3.191)

Several laminate configurations were considered as candidates for the
analysis of free edge crack growth. Tests were preformed to find which
laminate configurations could best be modeled as generalized plane
strain problems on both the front face and the free edge. The tests
consisted of first obtaining the front face solution then applying the
corresponding boundary conditions, Eqns. (3.19a-i), to an uncracked free
edge model. The results of the tests were analyzed to determine which
laminates gave the best correspondence between the stresses and strains
at the free edge as well as approximated independence of the displace-
ments in the x and x' directions, Fig. (2.10), for the front face and
free edge problems. The results indicated that both angle-ply and
cross-ply lamingte configurations gave a reasonable correspondence of
free edge stresses and strains. However, only the cross-ply config-
urations approximated independence of both x and x', Fig. (2.10), under
the applied load. Hence, the analysis of free edge crack growth in this
study was limited to cross-ply laminates.

Experimental results [6, 22] indicate that laminates which contain

90° plys along with other plys where 8 # 90° can exhibit transverse
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crack growth in the 90° plys and delaminations between the 90° and 6 #
90° plys. As an example of the quasi-three dimensional capabilities of
the finite element model the nature of crack growth in a [902/02]5,
T300/5208, graphite-epoxy tensile specimen was considered. Referring to
Fig. (3.7), both transverse crack growth and delamination crack growth
were considered and the results of the two analysis were compared. The
method of analysis consisted of testing two cases. Case 1 was to trace
the crack growth of an initial transverse crack and case 2 was to trace
the crack growth of an initial delamination. Both cases used the boun-
dary conditions of Eqns. (3.19a-c). The transverse crack case used the
crack geometry of Fig. (3.1b) and the delamination case used the crack
geometry of Fig. (3.8). Both cases were modeled as the free edge of an

8-ply tensile specimen with
B = 0.25in, H = 0.0lin, C = 24, a = 0.77H
and an applied normal strain of, Fig. (2.10),

e = 0,001 (3.21)
XX
The modified point stress criterion, Section 2.2.4.1, was used to pre-
dict the direction of crack extension and the modified crack closure
method was used to compute the energy release rates.

The resulting crack growth sequence for the initial transverse

crack, case 1, is presented in Fig. (3.9). The case 1 results indicated
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that the transverse crack extended through the 90° plys down to the 0°
plys when it turned into a delamination. Note that this does not neces-
sarily indicate that a transverse crack will turn into a delamination
but just that, if the transverse crack was the only crack present and if
it was to continue to extend that it would extend as a delamination
before extending through the 6 = 0° plys. The plot of the corresponding
energy release rate vs. crack length is shown in Fig. (3.10). Point A
represents the initial crack length and point B represents the point at
which the transverse crack turned into a delamination. The critical
energy release rate for such a crack, is given by Wang and Crossman [6]

for a mode-1 transverse crack in graphite-epoxy as

= 0.910=10s (3.22)
in

B1c
Since the available energy release rate curve, Fig. (3.10), was less
than 0.6 124%95 for the entire crack extension sequence, the crack would
not have elgended at the applied load level of €ex = 0.001. However, if
the load were increased the G vs. a curve would have translated up,
retaining the exact same shape,[6], C-D in Fig. (3.10) for example, and
would have predicted crack growth until the crack Tength was such that
the available energy release fell below the critical energy release
rate. Regardless of applied load, however, the shape of the G vs. a
curve, Fig. (3.10), indicates that G is decreasing with increasing a.

Hence, there exists a certain range of € values for which the trans-

verse crack would grow then arrest when G falls below Ge. This trend is
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supported by many experimental results of [6, 22], for example, which
show that transverse cracks will grow through the 90° plys, arrest and
form other transverse cracks at regular spacings.

The results for the initial delamination crack, case 2, indicated
that the initial delamination would immediately turn into a transverse
mode. In comparing the point stress ratios of the initial delamination
crack with the initial transverse crack at the point it turned into a
delamination, it was found that the point stress ratio was roughly two
times larger for the delamination turning into a transverse crack than
for the transverse crack turning into a delamination. This indicates
that if both a delamination and a transverse crack were present in a
given specimen, the delamination would turn and grow into a transverse
crack before the initial transverse crack would extend. This trend is
supported by the experimental results of Harris and Orringer [22], which

indicate that transverse cracks can branch off from delaminations.




Chapter 4
CONCLUSIONS

The present investigation has been concerned with predicting the
direction of crack extension as well as the load to cause extension in
composite materials. The results of the present study indicate that
failure criteria can be used to predict the direction of crack extension
and that an energy release rate approach, implemented through the use of
a modified crack closure integral, can be used to determine when a crack
extends and if crack arrest will occur. The finite element models
presented herein were formulated for two-dimensional and quasi three-
dimensional analysis. However, the procedures and methods developed can
be applied to full three-dimensional analyses as well.

It was found that criteria for predicting the direction of crack
extension should account for differences in the energy required to
create crack surfaces at arbitrary angles to the material principal
system. The Griffith criterion, the Tsai-Wu failure criterion and the
Sih strain energy density theory all were unsatisfactory in this regard;
but the modified point stress and Hashin criteria provided good predic-
tions for crack growth direction. It was also found that since the
procedure developed herein assumes that crack extension will occur along
the element sides adjacent to the crack tip node, an incorrect direction
of extension can be chosen if no element sides coincide with the actual
direction of extension. However, the model always chooses the closest

direction available to the actual direction of extension. This problem

88 <:;~ ] :Z,
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can easily be overcome by first finding an approximate direction of

extension using a coarse mesh then refining the mesh in the area of the

direction chosen by the coarse mesh.
The present investigation has also shown that future research is
warranted in the following areas:

1. The extension of the current work into a full three-dimensional
model. A full three-dimensional model should be formulated to
account for the three-dimensional crack growth characteristics of
many laminates.

2. Experimental work in the area of critical energy release rates.
Experimental work should be performed to determine the effect on the
critical energy release rate of cracks extending at arbitrary angles
to the material principal system so that the load to cause failure

can be accurately defined.
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APPENDIX A

Linear Elastic Finite Element Relationships

The finite element used is shown in Fig. (A.1). The element is a
four node, general quadralateral, isoparametric element. The element
uses linear interpolation as described by Segerlind [23]. The details
of the finite element concept are also given in reference [23]. The
technique involves mapping a distorted shape in the Cartesian (y,z)
Coordinate System into a square in the Local {&,n) Coordinate System
where € and n range from -1 to +1. The relationship between the global

Cartesian and the local coordinates is

1,4

-
|
|
=
<
-
[}

1,4 (A.1)

~N
t

= lel + N222 + N3Z3 + N4Z4 = N'iz'i i

where the Ni(E, n) are the interpolation functions for the four node
points and Y;,Z; are the Cartesian coordinates of the nodes. The inter-

polation functions are given by

Ny = 7(1-E)(1-n), Ny = 2(14€)(1-n)
Ny = {146)(1+n), N, = 3(1-£)(1+n) (A.2)

For an isoparametric element, the same interpolation functions are used

for the assumed displacements as for the geometry. Hence, for plane

93




94

ChiziioL DAZE LW

. L}
oS rais Foux s

OF PGOR QUALITY

Figure A.1 Global And Local Coordinate System -
4 Node , Isoparametric Element"




95

stress or plane strain, where there exists two unknown degrees of free-

dom per node, the interpolation becomes

1,4

0
=z
<
-

1}

viy,z) = Nyvy

w(y,z) = N;w i=1,4 (A.3)

For generalized plane strain, where there are three degrees of freedom

per node, the interpolation is given by

U(X,)’,Z) = U(y,z) + €xx°x = N'Iu'l + EXX.X i=1,4
v(x,y,2) = V(y,2z) = Njvy i=1,4 (A.4)
w(x,y,z) = W(y,z) = Nyw; i=1,4

where u, v and w are the x, y and z displacements, respectively. Uss V4
and w; are the unknown values at the ith node and are functions of y and
z only, and € x is the total strain in the x direction, which is assumed
to be constant and either known or unknown.

The strain-displacement relationships are derived based on the
small strain - small displacement theory. For the three dimensional

(generalized plane strain) case, these relationships may be written as
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r B 9
©xx ETd 0 0
€ 0 3 0
yy 3y . .
EZZ 0 0 a—z- u
1y . o 2 28 v A.5
yz| ° 3z 3y v (A.5)
9 d
xz 7 0 3 "
9 9
Lny 3y I 0

And for plane strain or plane stress these relationships become

yy dy ,

p EZZ | = 0 -a—z— \'J (A.G)
Y L ¥

Lyz | 3z 3

Substituting (A.4) into (A.5), for generalized plane strain,

g _1 _ W
r h 9
€xx X 0 0 € xx
9
€ 0 —— 0 0
yy dy )
eZZ 0 0 E ) 0 !
< g 3 9
Y| = 0 37 3y| [IMIINlINgIINgMa} + f 0} (A7)
ye 3 o 2 0
sz 9z
9 9
— = 0
W v owm [0
where

I is the 3 x 3 identity matrix

{q} is the 12 x 1 vector of nodal displacements

given by




where

re b .a_.._ 0
yy oy 5

1 ezzL N 0 3z
Y 3 o
yz 3z a9y
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(A.8)

[;N1|;N2|;N3|;N4]{a} (A.9)

T is the 2 x 2 identity matrix

{q} is the 8 x 1 vector of nodal displacements given by
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[ V1
W
V2
W2
{a} - v3 (A.10)
w3

vq

L.w4a

The [B] matrix (strain-displacement relationships) for generalized plane

strain can be defined as

{e} = [B]{q} + 0 (A.11)
(6x1) (6x12)(12x1) 0

where by comparing (A.11) and (A.7), for generalized plane strain,
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q
[ 2 0 0
3
w7 0
3
0 0 35
3 3
[B] = 0 37 ay| [INIINy[IN3]IN,] (A.12)
3 0 2
9z X
33
|3y 3x -

For plane strain or plane stress, the [B] matrix can be written as

{e} = [B1{q} (A.13)
(3x1) (3x8)(8x1)

Comparing (A.13) and (A.9), for plane stress or plane strain,

3
sy 0
3
[B] = 0 37 [IN1|1N2l1N3|IN4] (A.14)
3 3
3z 3y

Recall from (A.2) that the N; are functions of the local coordinates

€ and n, In order to determine the elements of the [B] matrix a rela-
tionship between the derivatives in the global (y,z) and the local

(&, n) coordinate systems is needed. This relationship is given by the

Jacobian matrix [J] of the transformation where
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aN, (3N
Jy 14
1 =01 4t (i=1, 2,3, 4) (A.15a)
N, N,
%2 | 3 |
and y
oy 9z
38 TT
vl - (A.15b)
3y 3z
an  9n
Substituting (A.1) into (A.15)
- - r-:)'1 Zl

oN aN aN oN
T TR T 1 Y2 72

[J] = (A.16)
aN1 3N2 aN3 BN4
W I % Y3 %3
B T lYa 24

The stress-strain relationships are derived in Appendix B. For

general purposes they can be written as

{o} = [D){e} (A.17)

For generalized plane strain, {o} and {€} are 6 x 1 vectors, and are
given in Appendix B by Eqns. (B.9) and (B.10), respectively.
For generalized plane strain, the [D] matrix takes on the values of

the [C] matrix as given by Eqn. (B.8). For plane stress or plane
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strain {o} and {€} are the 3 x 1 vectors given by Eqns. (B.14) and
(B.15), respectively. For orthotropic plane stress the [D] matrix takes
on the value of the 3 x 3 [(] matrix of Eqn. (B.13), while for isotropic
plane strain the [D] matrix becomes the 3 x 3 [C] matrix of Eqn. (B.18).
The total potential energy, m, of a given finite element is the sum
of the strain energy, U, and the work of external loads, W. The strain

energy, U, of the element is

U= 3 [ {oHe}dv (A.18)
v

W= -{q}{F}T (A.19)

where {F} is applied mechanical load, (traction), vector.

Hence, the total potential energy of the element is given by
mT=U+ W (A.20)

Substitution into (A.20) in terms of the matricies and vectors described
herein and minimizing with respect to the unknowns yields the finite

element equations

[k1{a} = {F} (A.21)
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where [K] is the elemental stiffness matrix given by

T
[x] = £ [B]1 [DI[BId¥ (A.22)
when mapped into the &,n coordinate system
dv = |J|dEdn (A.23)

where |J| is the determinate of the Jacobian matrix. The limits of

integration are -1 to +1 in both & and n. Hence, Eqn. (A.22) becomes
1 1 T 1 1
[K1= J [ [BI'[DI(B)jd|dedn = [ [ G(E,n)dEdn (A.24)
-1 -1 -1 -1

In order to evaluate the stiffness matrix, [K], a numerical integration

is necessary. Using a 2 x 2 Gauss rule Eqn. (A.24) can be evaluated as

2 2
(K] = 121 jfl HiHjG(ai,bj) (A.25)
where G(£,n) = [B] [DI[B]|J| (A.26)

(ai’bj) are the coordinates of the four Gauss points given by

(A.27)

o g
!
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and (Hi’Hj) are the corresponding weight functions given by

Hy 1,1

. A.28
Hj = 1,1 ( )

The elemental matricies are then assembled into a global system of
equations, the prescribed boundary conditions are imposed and the system
of equations is solved for the unknown displacements. (This procedure
is explained in most finite element books [23].)

The strains can be found at any £,n location within an element
through the use of Eqn. (A.7) for generalized plane strain and through
Eqn. (A.9) for plane stress or plane strain. The strains can be conver-
ted to stresses by using the stress strain relation of Eqn. (A.17) where
[D] takes on the values of the appropriate constitutive relation (Appen-

dix B).
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APPENDIX B
CONSTITUTIVE RELATIONS
The constitutive relation for an orthotropic material in the prin-

cipal material directions, Fig. (B.l), is given by Jones [24] as

{o}, = [cHe}y (B.1)
where
—Cu Cip C13 0 0 0 ]
Chp Cp)3 0 0 0O
[cl = C33 0 0 0 (B.2)
Cag 0 O
(symmetric) Cgg O
" Cé6
(o1 ]
%22
33
fo}, = Jrps| (8.3)
"13
2]
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For a 6 rotation about the 3, (z), axis, Fig. (B.1), the consti-

tutive relation becomes

{o} = [CI{e} (B.7)
where

P
C;; €5, C3 0 0 C
Coyp C23 0 0 C

{1 = C33 0 0 C36

(Symmetric) Cqq C45 0

(B.8)

Cee 0

{o} = T (8.9)

{e} = Yy (B.10)
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Ifm=-cos ® and n = sin 8 then the components of the [C] matrix are

given by

- 4 2 2 4
Cig =mCyy + 2mn (C12+2C66) +n Cyy
= 2 2 4 4

C12 =mn (C11+C22'4C66) + (m +n )C12
- 2 2

Cy3 =mCyz3 + nCyy

- 2 2

C16 = mn{m (Cll-C12-2C66) +n (C12-C22+2C66)]
= _ 4 2 2 4
Crp = n'Cyy + 2m'n (C12+2C66) +m C22
- 2 2

C23 =n C13 +m C23
. 2 2

Cop = mn[n (Cll-C12-2666)+m (C12-C22+2C66)] (B.11)
C33 = C35

C36 = mn(Cy3-Cyq)

€, =m2C,, + n’C

44 =M Y44 T N Lgg

Cag = mn{Cyg-Cyy)

.. =n2c,, +miC

65 - N Lgq ¥ M Lgg

2 2 2 2,2

(]
N
(=)}

i

For an orthotropic material under a state of plane stress with
a 9 rotation about the 3, (x) axis, Fig. (B.2), Jones [24] gives the

constitutive relation as

{o} = [0]{¢]} (B.12)
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[Ql = 012 622 625 (8'13)

{c} = Jo 1t (B.14)

{e} = € (B.15)

and the Oij terms of Eqn. (B.13) are given in terms of the Cij terms of

Eqn. (B.11) by

13733 (B.16)

For an isotropic material under plane strain, Frederick and Chang

[16] 1ists the constitutive relation as

{o} = [€1{e} (8.17)
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where

0 (8.18)

1-2v
Z(T)

Lo} - 2t (8.19)

le} - 1522 1 (8.20)

and

= v(oyy+o ) (8.21)

[o
ZZ 2z




APPENDIX C
MATERIAL PROPERTIES
The material properties for graphite-epoxy T300/5208 are given by Nagar-

kar and Herakovich [25] as

Elastic Moduli

Eyp = 19.2 x 108 psi, E,, = 1.56 x 106 pgi, E33 = 1.56 x 106 psi
Shear Moduli
Gy3 = 0.487 x 108 psi, G5 = 0.820 x 106 psi, G;, = 0.820 x 106 psi
Possion's Ratios
Vo3 = 0.490, v .= 0.238, v, =0.238
Strength Parameters
Xp = 219.5 x 103 psi, Y; = 6.35 x 103 psi, Z; = 6.35 x 103 psi
Xe = -246.0 x 10° psi, Yo = -23.85 x 10 psi, Z = -23.85 x 10 psi

12.6 x 103 psi

12.6 x 103 psi, S5

523 = 9.8 x 103 psi, 513

The material properties for the isotropic problems considered were

chosen to be
E =30 x 106 psi, v =0.20, o =50x 10%psi

where 9, is the ultimate strength of the material.
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FINITE ELEMENT MESHES
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APPENDIX E
ON THE RELATIONSHIP BETWEEN FREE-EDGE STRESSES AND
THE DIRECTION OF CRACK EXTENSION IN ANGLE-PLY LAMINATES

It was originally thought that the free-edge stress state could be
used to predetermine the direction of crack extension.

Herakovich [7, 8], for example, has demonstrated that the crack
types present on the free-edge of tension specimens seem to exhibit
distinct crack growth patterns direction of extension for different
angle-ply laminates. To account for this effect it was thought that the
orientation of the principal stress plane on the free edge would follow
along the same path as the crack plane when traced through the laminate
thickness. To test this premise, the orientation of the crack
plane, ¢p’ through the laminate thickness was compared with the through
the thickness variation of the principal stress plane. A generalized
plane strain solution of the front face, Fig. (3.6a), was obtained using
the same geometry, loading and boundary conditions as given in Section
3.3. Only the stresses in the plane of the free edge were considered,
i.e., S’ %27 and T in Fig. (2.10). It was assumed that the thermal
curing stresses were balanced by the hygroscopic stresses in the lami-
nate so that only mechanical loading be considered. The material con-
sidered and experimental crack plane orientation was that of Herakovich
[7] (the material was the same T300/5208 graphite-epoxy of this report--

with properties listed in Appendix C). The orientation of the principal
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plane, ¢p, was calculated through
2t
b = 270° - gtan” [—XE—] (E.1)
XX 2z

The results for four laminate configurations are presented in Figq.
(E.la-d). The multi-valued angles, ¢p’ at z/H = 0.5 represent the
effect of a crack turning into a delamination at that point. Fig.
(E.la-d) indicate that only in the [90,/0,]s case did the theory agree
with the experiment. Hence, it was concluded that the direction of
crack extension could not be predicted through the crack free stress

state but that an actual crack must be introduced.
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APPENDIX F

COMPOSITE LAMINATE FRACTURE MECHANICS (CLFM2D)
INPUT DATA SEQUENCE

Cards 1 & 2: title cards (20A4)
Column Contents

1-80 ITITLE (I,J) Title

Card 3: Control card (11IS)

Column Contents

1-5 NPROB Problem type (1 = generalized plane
strain, 2 = skewed plane stress,
3 = orthotropic plane stress, 4 = iso-

tropic plane strain)

6-10 NEM Number of elements in mesh
11-15 NODS Number of nodes in mesh
16-20  NANG Number of different angles - must be

> 1
21-25  NSDF Number of specified degrees of freedom
26-30  NSBF Number of specified forces (tractions)
31-35  NEXX Number of different Eyx - must be > 1.
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36-40  NFX Fracture mechanics key
NFX = 0, no fracture analysis

NFX # 0, fracture mechanics problem

41-45  NPLOT Plot key
NPLOT = 0, no plot
NPLOT = 1, undeformed plot only
NPLOT = 2, deformed plot only
NPLOT = 3, both deformed and

undeformed plots
46-50 NT1 Dump file for displacements
NT1 = 0, no dump
NT1 # O, dumps displacements to
unit NT1
51-55 NT2 Dump file for strains, stresses and
strain energies
NT2 = 0, no dump
NT2 # O, dumps to unit NT2
56-60  NCHECK NData check option (NCHECK # 0 - data

check only)

Card 4: Scale factors (2D10.5)

Column Contents

1-10 SCAY Y-scale factor

11-20 SCAZ Z-scale factor




Card 5:
1-5
6-10

11-15

16-20
21-25

26-30

Printer control card (6I5)

Contents

KEY (1) Key for printing element data
KEY (2) Key for printing nodal data
KEY (3) Key for printing specified displacement

data
KEY (4) Key for printing specified force data
KEY (5) Key for printing nodal displacements
KEY (6) Key for printing strains, stresses and

strain energies

Note: If KEY (I) # 0, print

Card 6:
Column
1-10
11-20
21-30

31-40

Card 7:
1-10
11-20
21-30
31-40

Plotter scale factors (4D10.5) - skip if NPLOT = O

Contents
PVSCL Plot Y-scale factor
PZSCL Plot Z-scale factor
VMAX Maximum Y-displacement
WMAX Maximum Z-displacement

Material property card 1 (6D10.5)

Contents
PROP (1) Eyy
PROP (2) Ep
PROP (3) E33

PROP (4) Go3




11-20
21-30
31-40
41-50
51-60

Card 9:

Column

1-10
11-20

PROP (5)
PROP (6)

G2

Material property card 2 (6D10.5)

PROP (7)
PROP (8)
PROP (9)
PROP (10)
PROP (11)
PROP (11)

Angles (8D10.5)

ANG (1)
ANG (2)

ANG (NANG)

Contents

V13
12
11
22
33

Contents
Angle No. 1 (in degrees)

Angle No. 2 (in degrees)

Angle No. "NANG" (in degrees)




Card 10:

Column

1-5

6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-85
46-50
51-55
56-60
61-65
66-70
71-75

NOD (I,1)
NOD (I,2)
NOD (I,3)
NOD (I,4)
IANG(I)
IEPS (I,1)
IEPS (1,2)
IEPS (I,3)
IEPS (I,4)
ISTRS (I,1)
ISTRS (I,2)
ISTRS (1,3)
ISTRS (I,4)
ISTRS (I,5)
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Contents

Blank (can put in element numbers)

Element data (5x, 14I5) repeat "NEM" times

Node No. 1 of element I1

Node No. 2 of element I1

Node No. 3 of element I1

Node No. 4 of element Il

Angle number of element 12

€ yx number at

€yx number at

€ vx number at

€yx Number at
Stress output
Stress output
Stress output
Stress output

Stress output

local node 13
local node 23
local node 33
local node 43
location 14

location 2%

location
location

location 54

1. Refer to Fig. (F.1) for node numbering sequence.

2.
3.
4.

Refer to Fig. (F.2) for angle orientation.

€ x numbers correspond to those of Card 16.

Stress output locations shown in Fig. (F.1).
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Card 11: Nodal data (5x,2D10.5) - repeat "NODS" times.

Column Contents
1-5 Blank (can put in node numbers)
6-15  Y(I) Y coordinate of node I

16-25  Z(1) Z coordinate of node I

Card 12: Specified displacement data (115,010.5) - repeat "NSDF" times

and skip if NSDF = 0.

Column Contents

1-5 ND Node number

6-10 IDR Direction (1 = x, 2 =y, 3 = z)
11-20  UBDF(I) Specified displacement value

Card 13: Specified force data (215, D10.5) - repeat "NSBF" times
and skip if NSBF = 0.

Column Contents

1-5 ND Node number

6-10 IDR Direction (1 = x, 2 =y, and 3 = z)
11-20  UVSF(I) Specified force value

Card 15: Temperature data (1010.5)

Column Contents
1-10  TEMP Temperature change
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Card 16: Normal (x-direction) strain data (8D10.5)

Column Contents
1-10  EPSX(1) € x value No. 1
11-20 EPSX(2) € x value No. 2
EPSX(NEXX) € x value No. "NEXX"

*if NFX = 0, end of data

Card 17: Fracture control card (615,2010.,5)

Column Contents
1-5 NODE Initial crack tip node numberl
6-10  NODE1 Secondary node No. 11
11-15 NODE2 Secondary node No. 21
16-20  NSE Number of stop elements (must be > 1)
21-25  NSN Number of skip nodes (must be > 1)
26-30  NCRT Fracture criteria
NCRT = 1 Griffith
NCRT = 2 Sih-strain energy density
NCRT = 3 3-D point stress
NCRT = 4 2-D point stress
31-40 ANOT Initial crack length
41-50 TMAX Maximum run time (CPU-seconds)

1. Refer to Fig. (F.3) for crack nodes description.
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Card 18: Stop element datal (1615)

Column Contents
1-5 NSTOP (1) Stop element No. 1
6-10 NSTOP (2) Stop element No. 2
NSTOP (NSE) Stop element No. "NSE"

Card 19: Skip node data’ (1615)

Column Contents
1-5  NSKIP (1) Skip No. 1
6-10  NSKIP (2) Skip node No. 2
NSKIP (NSN) Skip node No. "NSN"

1. Stop elements terminate the solution when they are reached -
used to prevent tear through.

2. Skip nodes are used to eliminate the designated nodes as
crack growth possibilities - used to prevent tear through

and the crack from growing back on itself.
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Card 20: Strength properties (3D10.5)

Column Contents
1-10  STRENG (1) X1

11-20  STRENG (2) Y

21-30  STRENG (3) Zr






