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FIGURES

Small-scale wing shear facility.

Schemitic diagram of the flammability comparison test apparatus
(FCTA

Calibration Results for the FCTA Supplied by tha FAA: airspeed
vs. supply pressure.

Calibration Results for the FCTA Supplied by the FAA: fuel mass
flow vs. speed control setting.

Nozzle spray facility for fuel atomization measurement (view
facing forward).

Noz

zle spray facility for fuel atomization measurement (side
view).

Turbine flowmeter calibrations for modified fuel: (a) 1/2 inch
gauge; (b) 1 inch gauge.

Imaging data paths; formation of initial images may be
accomplished with photographic processing (left) or analogue
electronic devices (right).

Image digitization paths; either a microdensitometer (left) or a
video digitizer (right) is used.

Image processing paths; IBM 370/158 or PDP 11/34 computers may be
used with VICAR or Mini-VICAR software packages.

Laser illumination configurations (a) forward scatter; (b) sheet
illumination.

Optical configuration for laser sheet illumination,

Photographic configuration for nozzle spray imaging.
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Mosaic construction of nozzle spray images.

Jet A fuel spray images resolved digitally with a 2000 x 2000
pixel array.

Portion of the Jet A fuel spray corresponding to 1 cm? on the
negative, 512 x 512 pixel array, 20 pm microdensitometer aperture
and spacing.

Portion of the Jet A fuel spray corresponding to 0.26 cm? on the
negative 512 x 512 pixel array, 20 pm microdensitometer aperture
with 10 m spacing (50% oversampling).

Portion of the Jet A fuel spray corresponding to 0.26

cm? on the negative 512 x 512 pixel array, 10 pm microdensitometer
aperture and 10 um spacing

(no oversampling),

Portion of the Jet A fuel spray corresponding to 6.6 mm2 on the
negative, 512 x 512 pixel array, 10 um microdensitometer aperture
and 5 m spacing (50% oversampling).

Portion of the Jet A fuel spray corresjonding to 6.6 mmZ on the
negative, 512 x 512 pixel array, 5 um microdensitometer aperture
and 5um spacing (no oversampling).

Portion of the Jet A fuel spray corresponding to 2.4 mm2 on the
negative, 512 x512 pixel array, 5 m microdensitometer
aperture, 3 m spacing (40% oversampling).

Three subimages composing the Jet A sea level takeoff spray image
window 2 cm axially from the nozzle., Stretching has been
performed individually to optimize resolution within each subimage
(a) first third, (b) second third (c) final third.

Window configuration for fuel spray image processing.

Three subimages composing the Jet A sea level takeoff spray image
window, 2 cm axially from the nozzle., A single stretching
technique has been applied uniformly to all subimages to allow
visual mosaicing., (a) first third (b) second third, (c) final
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Threshold derived outline; image DN cutoff 22,
Threshold derived outline; image DN cutoff 18.

Filtered outline image; DN cutoff 18, 3 x 3 filter, center triple
weighted,

Filtered outline image. DN cutoff 18, 3 x 3 filter, center double
weighted.

Filtered outline image. DN cutoff 18, 3 x 3 filter, center single
weighted (uniform weighting).

Droplet collection apparatus.

Photograph of droplet impression on coated glass slide (see fig.
44 for scale).

Photograph of rule used to scale impression photos (smallest
division spacing is 10 pm).

Results of slide impaction and imaging measurement of fuel spray
droplets.

Matrix of wing shear operating conditions. o 0.30% FM-9,
.25% FM-9;  .20% FM-9; --- nominal matrix.

Wing shear combustijon temperature vs. downstream distance for
0.30% FM-9., Distance is normalized by exit dimension of
contraction section. Letters F, M, P refer to fail, marginal,
and pass (see text for details of pass/fail criterion).

Wing shear combustion temperature vs. downstream distance for
0.25% FM-9.

Wing shear combustion temperatures vs. downstream distance for
0.20% FM-9.
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44,
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Average rates of change of temperatures with downstream distance
as a functior of airspeed, Solid symbols denote fails (a) 0.30%
FM-9, (b) 0.25% FM~9 (c) 0.20% FM-9 (see text for discussion of
pass/fail critverion),

Combus*ion terperatures for 0.30% FM-9 vs. peak airspeed
measured with FCTA, Thermocouple located 25 cm downstream from
torch (x/D = 10).

Reduced wing shear temperature vs. downstream distance for Jet A,
Reduced FCTA temperature vs, airspeed for 0,30% FM-9,

Reduced wing shear temperature vs. fuel massflow. Thermocouple
losated at x/d = 12,7. (a) Airspeed 61,5 m/s (b) Airspeed
3 m/s (c) airspeed 99.3 m/s.

Envelope of reduced temperatures vs. airspeed for wing shear

and FCTA, using 0.30% FM-S. Thermocouple locations were 10 mixing
tiibe diameters behind torch (FCTA) and 10.6 blower diameters
behind torch (wing shear).

Time deperident behavior of modified fuei at various shearing
rates, 23.9°C (from ref. 41),

Reduced temperature vs. shearing rates for various orifice
diameters. The critical shearing rate is shown by dashed line.
Open figures are mini wing shear data. Closed figures are FCTA
data.

Reduced temperature 10 diameters behind torch vs, jet Reynolds
number for 0.30% FM-9 with various orifice sizes., Open symbols: -
airspeed = 80 + 2 m/sec; solid symbols: airspeed = 96 + 1 m/sec.

Wing shear and FCTA temperature vs. polymer concentration for
various fuel flow rates, airspeeds, and batch numbers. Straight
lTine represents a power law relaticnship.

Comparison between thermocouple and radiometer measurements of
flammability vs. polymer concentration. The radijometer was
focused on the thermocouple and measured equivalent biack body
temperatures. Airspeed = 77 m s-h.
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Comparison between thermacouple and radiometric calorimeter,
measurements of flammability of 0,25% FM-9 with airspeed and fuel
flow rate. (a) Rate of change of temperature with distance,
replotted from figure 50; (b) radiant heat flux measured with
the calorimeter located 3.0 m off..axis opposite the torch.

Comparison between estimates of combustion efficiency bused on
reduced temperatures and reduced radiant flux for 0,25% FM-9,
(a) Reduced temperatures meatured at x/d = 12,7%, radiation
efficiency defined by eqn (6.1-5). (See text for discussion of
pass/fail criterion).

Summary of quality control test results. Batch numbers are
supplied by Imperial Chemical Industries, Ltd, Flammability
was measured with the FCTA wusing procedures summarized in
Appendix II.

Mini wing shear jet breakup photographic perspective. An inch
scale ruler is attached to the 1 inch orifice. The ignitor torch
flangs is visible at the extreme left.

Breakup of a Jet 9 by a counterflowing airstream; 1iquid
velocity 1.5 m s=°, air velocity 96 m s~".

Breakup 9f AMK by a counterf1owjng airstream; liquid veloicty
0.5 ms~", air veloicty 96 m s~",

Jet A fuel spray photographed under photo-strobe illumination of
~1 ms duration,

Jet A fuel spray photographed under pulsed laser sheet lighting of
~1 us duration.

Jet A fuel spray photographed under pulsed laser sheet 1ighting of
~25 ns duration.

Spray of undegraded AMK at cruise flow rate.
Spray of 84% degraded AMK at cruise flow rate.

Spray of 90% degraded AMK at cruise flow rate.
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Speay of 93% degraded AMK at cruise flow rate,
Atomization of 93% degraded AMk at ignition fuel flow rate.
Atomization of Jet A at ignition fuel flow rate,

Portion of the Jet A fuel spray image 5 cm downstream of the
nozzle cruise flow rate, after application of image processing.

Histogram of drop sizes for the Jet A, cruise fuel flow rate
spray, 5 cm downstream of the nozzle,

Appearance of liquid spray formed in the mini wing shear facility.
Downstream (right) of the nozzle is the oxyacetylene torch with
shroud used for fuel spray ignition.

Viewing window for mini wing shear drop size measurements. The
torch flame is visible below the 3 inch mark on the ruler,

Drops formed by breakup of & Jet A + 0.30% FM-9 in an airstream of
96 m s~1 velocity (fire test failed under these conditions).

Drops formed by break up of Jet A + 0,30% FM-9 in an airstream of
60 m s~ velocity (fire test passed under these conditions).

Histogram of drop characteristic length observed at the mini wing
shear ignition source; Jet A + 0.30% Fm-9 fuel, 60 m s-1 airspeed.
(Fire supression test passed under these condititions,)

Histogram of drop characteristic length observed at the mini wing
shear ignition source; Jet A + 0.30% FM-9 fuel, 96 m s-1 airspeed
(fire supression test failed under these conditions).

Histogram of drop characteristic length observed at the_mini wing
shear ignition source; Jet A + 0.25% FM-9 fuel, 60 m s-! air speed
(Fire suppression test passed marginally under these conditions).

Histogram of drop characteristic length observed at the_mini wing
shear ignition source; Jet A + 0.20% FM-9 fuel, 60 m s-! airspeed
(fire suppression test failed under these conditions),
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Histogram of drop characteristic length observed at the FCTA
ignition source; Jet A + 0.25% FM-9 fuel, 6,1 atm accumulator
pressure (fire suppression test passed under these conditions).

Histogram of drop characteristic length observed at the FiTA
ignition source; Jet A + 0.20% FM-9 fuel, 6.1 atm augumulator
pressure (fire suppression test fajled under these conditicins).

Total number of droplets identified for each test, normalized
to the number identified in the test corresponding to failure of
the fire suppression test,

Fuel mass flow rate as a function of nozzile pressure drop;
primary jet,

Fuel mass flow rate as a function of nozzle pressure drop;
secondary jet,

Nondimensional analysis of nozzle calibration data.

Reduction of nozzle calibration data using derived viscosity
values,

Parameter space relevant to fuel jet similarity. The Deborah
number is referred to the fuel critical shear rate, yc.

Parameter space relevant to aerodynamic similarity of fuel
breakup and atomization. The Deborah number is referred to the
fuel critical shear rate, yc.

Comparison of pass-fail boundaries measured in JPL and FAA witig
shear experiments. JPL data, from figure 50; FAA data, from
ref, 5. Each set of curves denotes boundaries of marginal
regions.
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IT.  Summary
Results of an experimental and analytical investigation on the atomiza-

Lion and flammability of a modified aircraft gas turbine engine fuel (Jet A
with FM=9 polymer additive of Imperial Chemical Industries, Ltd.) are pre-
sented in this report. Both the ability of the fuel to resist ignition during
an aircraft crash with fuel spillage and to atomize in a turbojet engine com-
bustor nozzle have been investigated. Image processing techniques have been
developed to characterize the fuel sprays formed during simulations of air-
craft crashes and by engine fuel nozzies. Methods for automated measurement
of drop size and density in fuel sprays and flammability tests have been de-
veloped to study fuel spray ignition in aircraft crashes.

A steady state crash simulator, the mini wing shear device, was con-
structed for the flammability studies. The apparatus consists of a wing sec-
tion of 8 cm chord immersed in the potential core of a free air jet. Fuel may
be sprayed upwind through an orifice in the wing leading edge. Aerodynamic
shearing forces and the turbulence of the fuel jet then combine to disinte-
grate the jet and atomize the fuel. The fuel mist formed is convected down-
stream where it passes an ignition region formed by an oxyacetylene torch.
The temperature and heat released by the burning fuel are measured with ther-
mocouples, a radiometer and a caloripeter for a range of fuel and air mass
flow rate, fuel jet Reynolds number, antimisting polymer concentration, fuel
temperature and fuel supply line inner diameter. Results are compared with
those of larqer and smaller scale flammability test facilities to assess the
effects of physical scale and experimental consistency.

Analysis of the dynamics of jet breakup and atomization has lead to an
organization of scaling studies by four nondimensional variables: the hydro-

dynamic Deborah number of the fuel jet, DeL, the aerodynamic Deborah number
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Dep, the hydrodynamic Reynolds number of the fuel jet, Rep, and the Weber
number, We. It is shown that because of the diverse nature of the scaling
parameters, no small scale model can replicate all aspects of the full scale
event simultaneously. The net effect of increasing size is estimated to allow
extrapolation of the current results to the full scale case.

Jet and drop breakup were studied individually using photographic, image
processing and glass slide collection techniques in three facilities. A ver-
tical wind tunnel was used for studies of individual drop and laminar jet
breakup. Engine fuel nozzle atomization performance was measured using a
nozzle spray facility centered around a turbine aircraft engine (JT78-D) fuel
nozzle. Observations were made of the jet disintegration without ignition in
the mini wing shear facility.

As part of these investigations an image processing data path has been
established including pulsed ruby laser sheet illumination of sprays, high
resolution photographic film recording, microdensitometer image digitization
of 4 micron resolution, magnetic tape storage and processing with the JPL IBM
370/158 computer. Algorithms have also been developed incorporating low pass
filtering and automatic intensity thresholding which are capable of measuring
drop perimeter, area, and number density. Results of spray analyses using
this new technique are reported. The need is described for development of
more efficient algorithms for adequate characterization of sprays with large
spatial variations of properties over distances several orders of magnitude
larger than the average drop diameter.

Scaling studies of fuel atomization indicate that small scale experiments
such as the mini wing shear yield only an upper bound to the antimisting
behavior of a candidate fuel/additive system. Finer atomization of a larger

proportion of ejected fuel is expected in a full scale aircraft crash. In
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terms of reduced temperature, results of the mini wing shear tests and the
Federal Aviation Administration (FAA)-developed Flammability Comparison Test
Apparatus (FCTA) are found to be similar. As expected from the scaling
arguments they are found to indicate greater fire suppression capability than
that seen in larger scale facilities (i.e. the FAA full scale wing shear
experiment).

At the highest air velocities and fuel mass flow rates, combustion
efficiency increased with fuel/air ratio indicating that combustion is vapor
limited (1ean burning regime). Entrainment of ambient air which increases
fuel vapor diluticn and heat transfer are both augmented in the open jet
models compared with the dynamics of an actual crash. This hinders prediction
of actual crash flammability from open jet test results of any scale.

Radiometric calorimetry, while nat as precise as thermocouple measure-
ment, does allow resolution of a fire suppression performance pass/fail
boundary. These results are, however, particularly sensitive to the presence
of radiating surfaces.

Drop size measurements indicate a general correlation of decreasing drop
size with increasing combustion efficiency. In general, drop size information
must be coupled with spray density data to fully characterize mist flam-
mability within a given flowfield. These additional data may also be ex-
tractued from photographic images using digital processing techniques.

A sensitive measure of polymer degradation level has been suggested. [t
is based upon the effective viscosity of the liquid during flow through a

nozzle,
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III. Introduction

Because turbojet engine fuel is difficult to ignite without first being
atomized, it is possible to suppress post-crash fires by engineering a fuel
resistant to atomization. Investigations of the atomization and flammability
of an antimisting fuel have been undertaken and the results of one year's ef-
forts are reported here. The fluid dynamic processes leading to atomization
and the combined fluid mechanics, thermodynamics, chemical kinetics, and heat
transfer problems posed by analysis of fuel spray combustion may only be
treated comprehensively for the most elementary atomization/combustion situ-
ations. In contrast, the dynamics of an actual airplane crash with fuel spil-
lage, atomization by pressure and airblast mechanisms, and ignition of fuel by
various neat sources is richly compiex. Every aircraft crash is unique with
respect to such parameters as fuel, air and runway temperature, aircraft crash
velocity and local windspeed, fuel tank rupture geometry, fuel dump rates, and
existence of potential ignition sources. Compared to the laboratory environ-
ment, significant scales are very large in a crash. Ruptures of several
meters diameter with dump rates of hundreds of kilograms of fuel per second
have occurred. Airspeeds must be considered up to the maximum impact surviv-
able crash speed, approximately 85 m s-1,

Given the large number of possibie events and the wide range of para-
meters which may exist, adoption of a fuel for crash fire safety must be pre-
ceeded by a program of testing and analysis to determine fuel performance both
during the crash and in operation as a turbojet engine fuel. The significance
of variables describing the crash environment needs to be examined experi-
mentally to determine individual effects on ignition and flame propagation.
Modeling and scaling of the crash dynamics must be accomplished to allow de-

velopment of a laboratory scale experimental apparatus which yields results



readily related to actual crash situations.

A steady state model of fuel ejection, atomization and ignition during an
aircraft crash has been employed to study the effects of fuel flow rate, jet
Reynolds number, temperature, pre-shearing and antimisting polymer concentra-
tion, as well as airspeed on the fuel flammability. Primary measurement of
flammability has been with thermocouple temperature sensing downstream of the
ignition source. Temperature variations with axial location are mapped as a
means of discerning cases of polymer success and failure to suppress signifi-
cant fuel ignition. Calorimeter and pyrometer measurements are also made to
gain additional information on the flame temperature. Scale effects are
treated through comparison of results from these tests with those from larger
and smaller scale tests already in use.

Because the fuel drop size distribution and density are key factors in
fuel mist ignition, a new tool has been developed to measure these quantities.
This tool is based on digital image processing techniques originally developed
at JPL in support of lunar and planetary exploration. Significant progress is
reported in the development cf this technique and preliminary results are re-
ported in support of flammability data.

Digital image processing of moving sprays involves selection of suitable
llumination and imaging arrangements. These have been assembled during the
course of the work. Imaging and analysis of drops as small as 10 pm diameter
in an overall spray several centimeters in extent with large spatial varia-
tions in drop size population places severe requirements on imaging and ana-
lysis techniques. Preliminary image enhancement and drop resolution algo-
rithms including stretching, thresholding, gradient edge detection and spatial
filtering have been investigated and implemented.

To determine whether antimisting fuel will perform properly as a turbojet



engine fuel, image processing techniques are also applied to analysis of en-
gine fuel nozzle sprays. The effect of the polymer additive on spray cone
angle and drop size distribution has been quantified using both this and the
more classical techniques of direct measurement from film images and drop col-

lection on coated glass slides.



IV, FACILITIES AND INSTRUMENTATION
4.1 Facilities

Two small scale versions of the FAA wing shear facility, described by
Salmon® were used to study the atomization and flammability of the modified
fuel. A laboratory scale spray Flammability Comparison Test Apparatus (here-
after referred to as the FCTA) was supplied to us by the FAA/Technical Center
and was used to study the effect of scale on flammability and for quality con-
trol testing. A fuel nozzle from a Pratt & Whitney JT8-D engine was used to

study the polymer degradation necessary to produce a combustible spray.

4,1.1 Wing Shear Facilities

A wing shear apparatus provideé a steady state simulation of a fuel
spill during an airplane crash. The fuel spill is simulated by a stream of
fuel ejected from the Teading edge of a small airfoil that impinges against an
airstream produced by an open jet wind tunnel. The heat sources present in an
airplane crash are simulated by an oxyacetylene torch.

The wing shear apparatus is shown in figure 1. The blower is powered by
a 50 hp motor and has outlet dimensions of 38.1 cm by 31.4 cm. The flow
passes through a stilling section, a contraction section, and a 17.8 cm square
test section with viewing ports of heat treated glass. The stilling and test
sections are designed to control the freestream turbulence. This capability
will be useful for later studies of flame propagation and heat transfer from
various ignition sources. For the purposes of the present study, the appara-
tus was operated without damping screens or turbulence-generating grids. The
maximum airspeed was 105 m/sec.

Orifices of various sizes were used in order to vary the fuel shearing
rate independently of the massflow, High shearing rates were provided by four

different orifices located in the leading edge of a symmetrical airfoil with a
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Figure 1 - Small-scale wing shear facility.




2.5 cm thickness and a 10.4 cm chord. Three of these orifices were circular
and had diameters of 0,25 cm, 0.34 cm, and 0.79 cm, The fourth orifice was
0.5 cm square, High mass flow rates (up to 0.9 Kg/s) were provided by using a
I inch pipe elbow with a 2.2 cm inside diameter in place of the wing (see
figure 97). The elbow was the same size as the fuel lines and was used for
most of the wing shear measurements reported here., Fuel flow rates were con-

trolled by pressurization of the fuel tank,

4,1,2 Flammability Comparison Test Apparatus (FCTA)

The FCTA, shown schematically in fiqure 2, is described in detail by
Eklund and Neese ! and by Ferrara?. Briefly, air is released from a pressure
vessel through a sonic orifice into a straight tube, where it atomizes a small
jet of fuel, The spray issues through a conical diffuser into ambient air and
is ignited by a butane torch., The fuel is delivered by a singlie stroke dis-
placement pump, and issues through an upstream facing elbow with an inside
diameter of 0.52 cm. The inside diameter of the straight mixing tube is 2.66
cn, The air massflow is controlled by varying the air pressure and the fuel
massflow is controlled by a constant speed actuator that regulates the fuel
pump. Once the air pressure and speed control are set by the operator, the
operation of the apparatus is controlled by an automatic sequencing switch,
The airspeed vs. tank pressure calibration is plotted in figure 3, Air-
speeds were measured with a pitot tube, and they exhibit good agreement with
hot film measurements reported by Eklund and Neesel. The speed control cali-
bration is shown in figure 4, Fuel massflow was measured by collecting and

weighing the fuel.

4.1.3. Nozzle Spray Facility

Observations of fuel atomization by an aircraf*t engine nozzle were
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carried out using the Nozzle Spray Facility. Figure 5 shows the facility. A
Pratt and Whitney JT8-D engine fuel nozzle, 1, is mounted onto a polymethyl-
methacrylate (plexiglas) housing, 2. The housing is an open-ended box which
provides protection from stray fuel droplets during observation and shields
the spray from the influence of local air motion. The housing dimensions were
chosen to allow observation with a 1ine of sight normal to the spray center-
line up to 40 cm downstream of the nozzle. No spray capturing devices were
employed as part of the housing. Droplet recirculation is minimized by al-
lowing t e spray to exhaust into the combustion test area which is provided
with coflowing ventilating air, and floor drains and separators for waste col-
lection, For improved viewing the housing is fitted with an optical grade
glass window, 3.

The Pratt and Whitney Bill-of-Material nozzle is a duplex type that is
provided with two separate fuel supply systems. Fuel is pressurized by high
pressure nitrogen from 135 atm tanks, 4, 5. Pressure regulators, 6, 7, main-
tain the chosen nitrogen pressure applied to the fuel reservoirs, 8, 9, which
are 160 atm stainless steel tanks of 111 capacity. Before reaching the
nozzle, the fuel passes through solenoid-controlled pneumatic valves, 10, 11,
which are operated either by locally mounted, 12, or remotely mounted
switches, The remote switches are situated in an adjoining room for safety
when pulsed laser illumination is being used. Pneumatic actuato:~ pressure is
supplied from another 135 atm tank, 13, and reguiator, 14. Air supply for the
nozzle nut is provided by another 135 atm nitrogen tank, 15, and regulator,
16. The use of nitrogen instead of air was felt fo enhance tiue safety of the
test with no effect on nozzle performance. The nitrogen for the nozzle nut is
supplied to a canister, 17, which surrounds the rear of the nozzle. The én-

tire apparatus is mounted on a frame, 19, constructed of steel angles with

10
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rubber wheels so that it may be moved into the combustion test facility during

operation., Figure 6 shows the nozzle spray apparatus in place for operation,

4.2 Instrumentation

Blower airspeed was measured with a pitot tube and fuel flowrates were
measured with calibrated turbine flowmeters. Flammability was measured with
chromel vs. aluamel thermocouples, a radiometer, and a calorimeter,

Data acquisition during the wing shear flammability tests was automated.
Voltages from the thermocouples, pitot tube system, and flowmeter were digi-
tized, low pass filtered, and converted to physical units,

When partial degradation of the polymer was required, the modified fuel
was processed elther in an industrial food blender (Waring commercial 1 gal-
lon) or an ultrasonic laboratory system (Ultrasonics Ltd, Rapidis 300). The
degree of degradation was measured by the standard ICI cup test and the stan-
dard tilter test, which are both described by Yavrroutan4,

The turbine flowmeters consist of a turbine whose anqular frequency 1is a
function of volume flow rate and viscosity. A magnetic pick-off senses the
spin rate of the rotor. If the working liquid is Newtonian, there is a range
ot rotational frequencies that vary linearly with volume flowrate and are in-
dependent of the liquid viscosity. In the case of the modified fuel, however,
the fiowmeter must be calibrated for each specific polymer concentraction,
Figure 7 is a family of calibrations for a 1/2-inch and a 1-inch flowmeter,
and for FM-9 polymer concentrations of 0.20%, 0.25% and 0.30% by weight., The
quantity K is defined by the expression:

f
K+ oy (4.2.1)
M
where t is the turbine frequency and M is the massflow of the modified fuel,

Over the linear range of operations K is constant. The tanh profiles are

12
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convenient functional forms that seem to fit the calibration data, but they
have no other physical significance. For some reason the repeatibility of
the 0.20% FM-9 calibration was poor and so there is large scatter in the date

at that concentration.

4,2,1 Flammability Measurement

The emphasis of the flammability measurements in the past has been to
determine whether or not the modified fuel provides fire protection under a
given set of circumstances. Because there is usually some combustion taking
place, this amounts to establishing a "pass/fail" criterion for the maximum
amount of combustion that can be tolerated., The criterion is subjective and is
often related to whether fuel adhering to physical boundaries such as (wetted)
walls and ground catches fire, Because the present study is concered with
identifying scaling parameters, reliable quantitative measurements are neces-
sary. The most popular tools for measuring flammability have been photo-
graphy, radiometers and temperature probes.

Photography was used by Salmon® to determine pass/fail in connection with
the wing shear facility at the FAA Technical Center. Because the combustion
is unsteady, the growth of a single fireball can be measured by following it
through successive frames of a high speed cinema. Salmon found that fireball

growth rates greater than 6 m/sec, were considered to be in the "fail" region.

Photography has the great advantage of being a remote measurement. It is
probably the only suitable technique for measuring flammability during a crash
test, for example. The main disadvantage of frame-by-frame analysis is that
it is time consuming, even if it is done with a video digitizing system. Al-
so, the fireball growth is artificially limited by the boundaries of the air
jet mixing region. It should probably not be considered related to the flame

propagation speed but rather a measure related to the amount of fuel burned.
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Radiometers measure thermal radiation. Two types of radiometers poten-
tially useful to flammability studies are infrared imaging systems and radio-
metric calorimeters, The imaging systems frame a small area of the flame and
a radiometer then measures the equivalent black body temperature of that area.
By scanning the flame, it is possible to measure temperature distributions.
Radiometric calorimeters measure the radiant heat flux onto an isothermal sur-
face of known emissivity. Unlike the infrared imaging systems, calorimeters
are omnidirectional and the measured heat flux decreases with increasing dis-
tance from the source. In principle the total radiation could be measured by
integrating the output voltages from an array of calorimeters located in the
thermal far field of the flame. Radiometry, like photography, has the advan-
tage of being a remote measuring technique, albeit without the spatial infor-
mation available in a photograph. The main disadvantage of radiometers is
that they are sensitive only to radiation. Because the emission spectra from
gases are discrete, the effective emissivity is a function of both temperature
and local gas composition. For this reason black body temperatures measured
by the imaging systems are unreliable except as figures of merit. Radicmetric
calorimeters, since they measure the heating of a calibrated surface, are more
quantitative. However, their usefulness is generally confined to cases where
there is considerable combustion. In any case, the emissivity of solid sur-
faces is much higher than that of gases. Consequently, radiometers are sensi-
tive to radiation from walls and surfaces.

Temperature probes provide a relatively continuous combustion measure-
ment. If there is no liquid phase present they measure local gas tempera-
tures. If there is significant wetting of the probe, evaporative cooling will
lower the probe temperature. Even in that case temperature probes can provide

a reasonably sensitive fiqure of merit. For these reasons they are useful in
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cases where the amount of combustion is small. The main disadvantage of tem-
perature probes is that they provide local measurements., This means that
probe arrays must be used in order to obtain spatial information., Also, at
very high temperatures, radiation losses introduce errors,

Because temperature seems to be the most direct measurement of combustion
extent, temperature probes were used for the primary flammability measure-
ments. The other techniques have important advantages, and some may prove
most useful in the long run. Consequently, a secondary goal of the investiga-
tion has been to relate the various techniques. The temperature probes used
are chromel-alumel thermocouples, with exposed junctions 0.76 mm in diameter.
The time constant is 1.7 sec at an airspeed of 20 m/s. The convective heat
transfer to the junction considered as a sphere is described by King's Law of
Cooling:

e = A+ B [Prl/3gpl/2] (4.2-2)
Where b = heat flux into junction;

A

i
1]

thermal conductivity of air (= 0.024 W/m K);

T

local temperature;
Tp = volume average temperature of probe junction;

d = diameter of the probe junction (= 0.76 mm).

Pr = Prandtl number of air ( = 0.71)

R = Ud/v = Reynolds number

U = Tocal airspeed

v = kinematic viscosity of air (= 0.15 em? /s)
A,B = empirical constants

(For purposes of this calculation, the properties of the mixture of air, fuel

and combustion products have been identified with those of air).
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The heat flux into the junction is (ignoring conduction to the leads):
Q0= Mc TP (4.2.3)

where:

=1
]

mass of probe junction (=0.0020 g)

(9]
]

specific heat of junction (=0.486 J/g)
For large Reynolds number, the probe response is described by combining
eqns. (4.2-4) and (4.2-3):
Tp + K UTp = K UT
Bnd®/2ppl/S
where Kz mmmm v 0.119 B(ms)'/2 (4.2.4)
Cv
The probe response is calculated by solving eqn. (4.2-4) for a step change
in temperature. Thus:
Tp=T1[ 1-e -KUJ (4.2-5)
At U = 100 m/s, the time constant, T = 0.76 sec. The time constant depends on
d3/2, so the response can be improved by reducing the size of the probe. The
smallest practical junction diameter is about 0.03 mn. At U = 60 m/s the time
constant would be 8 ms. The smallest scale that could be resolved would be
about 50cm. Consequently, the only practical combustion measurements possible
with these probes are time average temperatures.

For evaluation purposes, some radiometer measurements were taken simul-
taneously with the temperature measurements. An infrared imaging system and a
calorimeter were each evaluated. The imaging system used a Casegrainian lens
to focus an element of surface area onto a heat sensor. Signal to noise was
enhanced by chopping the optical path and usirg synchronous detection. The
radiometer was located 3.5 m laterally from the blower centerline, and the
field of view at that distance was approximately 3 cm wide (angle of view was

0.5°). The calorimeter measured the heat flux through a surface of known

18



emissivity, The heating was measured with a water cooled, sensitive thermo-
pile. The active surface was 2.54 c¢cm in diameter, the response was approxi-

mately 250 ms and the range was 57 kw/m2.
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V.  IMAGING AND IMAGE PROCESSING

5.1 Introduction

In both post-crash fire protection and engine fuel combustion applica-
tions, the ability of antimisting kerosene to suppress formation of small
droplets is the basis for its performance differences from neat jet fuel.

Drop sizes and their distribution are key factors in the determination of fuel
spray combustion performance®. For this reason, a detailed investigation of
the atomization performance of these fuels has found an important role in this

study.

5.1.1 Methods of Drop Size Measurement.

Over the past 50 years, a large variety of experimental techniques has
been devised to measure drop sizes in liquid sprays. These methods are sum-
marized in comprehensive review papers of B.J. Azzapardi/, A.R. Jones8, .. C.G.
McCreath and J.M. Beer9, and A. Burkholz10, the last of which treats mechani-
cal sizing methods in a more up to date manner. The large number of tech-
niques described in the Tliterature may be organized by their general approach,
each of which carries with it certain advantages and drawbacks., Technique de-
velopment specific to a particular spray geometry or application has resulted
in the proliferation of measurements techniques., Following Azzopardi/ the
methods may be grouped as: Photographic; Impact; Thermal; LClectrical; Opti-
cal; Time of Residence; and "Indirect via Velocity". More recent work of
Skifstadll would add another category, blending aspects of Photographic and
Optical approaches.

To choose an existing method or to design a new one, the specific needs
of this analysis were addressed. Because of the non-Newtonian nature of AMK
and the irregular breakup which may result when fuel is ejected from moving

aircraft into stagnant air during a crash, no drop size distribution function
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could be chosen a priori. Thus accurate measurement of drop population over
the size range of 10 to 1000 um, the size range most significant to spray com-
bustion behaviorl?, was desired. This requirement eliminates most time of
residence methods such as laser anemometry which operates most successfully on
larger droplets (> 100 um).

Optical methods were eliminated for a variety of reasons despite their
wide acceptance in the field of fuel nozzle development. Scattering behavior
occurs in different modes as droplet size changes relative to the scattered
beam wavelength, This limits the dynamic range obtained by many of the me-
thods. As the polymer additive may affect fuel optical qualities such as in-
dex of refraction and opacity, additional data and perhaps more sophisticated
scattering data not currently available would have been necessary to incor-
porate scattering and obscuration methods. The cloudiness somet imes apparent
in AMK may sharply influence scattering measurements. Because earlier exper-
ience with polymer fuel additives indicated the atomized drops were slow to
relax to a spherical shape 13, methods which assume spherical droplets, as$
many scattering techniques do, were considered inadequate.

Frozen wax methods are unsuitable because of the need to investigate
specific liquids whereas these methods investigate the breakup of a substitute
material (melted wax) which would not have similar rheological properties.

Impact methods suffer from large uncertainties in relating impact impres-
sion and actual droplet sizes 14, 15, 16, Also, when adjusted to operate at
mean mass fluxes, an enccunter with a large fluid mass typical of AMK sprays
may ruin an entire slide. This method was employed at a secondary level in
support of the major effort in droplet sizing., It is reported more fully in
section 5.7.

In summary the unique requirements of a spray analysis system capable of
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operating with sprays of wide fuel drop concentration, size, and shape varia-
tions of a locally time-varying nature, comprised of a fluid of unknown opti-
cal properties, renaer most existing techniques unsuitable. Photographic re-
cording with suitable illumination could meet these requirements, but manual
counting and sizing of thousands of droplets in photographic images 1is tedious
and subject to operator-induced errors of up to 30%17,18,19,20, Because of
these problems, automated particle analyizers, notably the British Quantimet?l
and the Parker-Hannifen22 systems, have appeared on the market. The principle
of operation of these analyzers is described by Graf23. They rely on simple
pattern recognition algorithms to identify and measure droplets in an image of
a spray. Because of their limited computing power they cannot eliminate out-
of -focus drops nor can they interpret overlapping and non-spherical drops ac-
curately, Absolute counted drop size is a function of picture brightness and

operator preference.

5.1.2 Image Processing in Spray Measurements

The recent dramatic increase in ability to handle large amounts of data
has permitted the development of digital image processing as contrasted to the
simpler counting schemes characteristic of Quantimet. Digital image processing
may be defined as the representation of images as large arrays of discrete da-
ta values and the manipulation of these arrays according to specific algori-
thms. The impact of this development is that much more of the vast quantity
of information available in an image may be used for the quantitative analysis
of the image content (image analysis). Also, information either present in
the images or known about the conditions present during the original imaging
may be used to reduce imperfections such as blurring, excesses or deficits in
contrast, uneven subject lighting and foreign object interference (image

enhancement ).
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Image processing techniques have been developed at the Jet Propulsion
Laboratory over the last 22 years mainly 1in support of unmanned lunar and
planetary probes (see the discussion of this development given in the appendix
of reference 24), Digital image processing techniques have also been applied
at JPL to problems such as imaging of data from non-visible sources (ref. 24
p. 387), mapping of vorticity in planetary circulation 25, automated computa-
tion of stellar magnitudes from astronomical images 26, automated reconstruc-
tion of side-looking sonar-generated images 27, geological analysis of air-
craft scanner data 28, and extraction of lost handwriting in historical docu-
ments 29,

Through use of pre-existing algorithms developed for programs such as
those mentioned above and new algorithms tailored to this application, image
processing has been applied in this effort to the characterization of fuel
sprays. The sprays analyzed are from various simulations of the aircraft
crash fuel spill dynamics and from engine fuel nozzle performance observations
(see Section 6.2). Both image enhancement and image analysis capabilities
were exploited in this investigation. Enhancement was used to eliminate film
grain, lighting variations and out-of-focus objects from recorded images.
Automated analysis was employed to measure the perimeters and area of the
large number of droplets (500-1000) 7530 which must be counted in each subject
spray to yield valid statistical results.

The system described in sections 5.2 through 5.6 is free of assumptions
concerning droplet shape, velocity, refractive index, opacity and flow time
invariance which seriously limit the confidence which should be placed in
results of scattering methods. It does not rely on the inversion of signal
conditioning integrals which may have broad areas of insensivity and even

singularities which may hamper many optical and optical/photographic tech-

23



niques. Capabilities have been developed to ensure maintenance of a large
enough viewing field to adequately represent large drops (up to 2 mm diameter)
with sufficient resolution to represent small drops to below 10 um diameter,
No assumptions are made concerning drop size distributions and the ambiguity
introduced in assessing drop size from impact impressions is absent., Finally,
unlike other available automated imaging systems, absolute picture brightness
level3l and 11lumination distribution effects do not disturb the measurements.
The system represents a new application of image processing technology and an

advance in the state of the art of fuel spray analysis.

5.2 System Overview

The initial investigation of the application of image processing tech-
niques to jet fuel flammability studies began by using the facilities at JPL's
Image Processing Laboratory (IPL). Several alternative data paths were con-
ceived through which the stored image information of the fuel spray imaging
experiments «:«Id be transferred to the IPL for digitization, processing, and
hard copy image output (figs. 8, .. 10). For the initial study, a methodology
was selected which fulfilled the task objectives most efficiently, satisfied
physical and material constraints, ard provided the necessary environment for
image processing technique development.

Fuel droplet illumination requires a light source that will freeze the
high speed particles, enabling an imaging device to record an accurate picture
of the in situ fuel droplet behavior. Accuracy and uniformity in the depth of
field of illumination must be achieved in order to control the statistical
relation between subscenes within both a single image and among a collection
of images for varying experimental conditions., A pulsed ruby laser system
serves as the illumination source which satisfies the imaging experiment

requirements (see Section 5.3).
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Recording the laser-illuminated fuel droplet scene a]laws two viable op-
tions as recording media: photographic film or video frames. A 4x5 inch film
format provides a high resolution analog recording with a large field of view.
At a 1:1 optical magnification, a microdensitometer digitization procedure can
achieve a pixel (picture element) resolution as high as 3 microns, This com-
bination of resolution and field of view allows the researcher to study fuel
droplets with diameters below 10 microns and simultaneously gather global sta-
tistical information about the droplet size characteristics by simultaneously
sampling a large physical area of the fuel mist. Vidicon imaging has as its
foremost advantage a higher data throughput rate where direct digitization and
image display of the digitized signal are accomplished at video rates. Field
of view and resolution are limited by the 512 square element matrix of data
sites available for the storage and digitization of each video signal frame.
However, the data processing speed provides compensation by making it possible
to record a large sampling of subscenes within the experiment and then combine
particle statistics for both adjacent and separated droplet image sections,

As a preliminary tool for the development of fuel droplet image processing
techniques, the highest quality image possible was desired to investigate the
maximum achievable resolution of the experiment and to examine a wide spectrum
of image data. Furthermore, the images recorded at the experimental site had
to be transportable to the IPL facility to provide access to a large library
of image processing software necessary to accomplish the Phase I research.

For these reasons a highly sensitive photographic film, Technical Pan, devel-
oped by Kodak and characterized by a submicron film grain, was used to record
the fuel droplets.

The final stage in the development of images suitable for computer en-

hancement involves the digitization of the recorded fuel droplet data. In the
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case of a video frame, a compatible video digitizer is the single method
available for digitization. These analog video frames can be digitized to a
512 x 512 element array at a rate of 30 frames/sec. At this point, the digi-
tized image is stored in solid state hardware memory and is readily accessible
by the digitizer's host computer. A De Anza ID-5400 Image Display System was
acquired to perform video digitizing and first order image processing of the
AMK fuel data 32, The video signal digitizer can perform video rate digitiza-
tions of 512 x 512 frames with 8-bit accuracy, thus allowing up to 256 image
pixel values. Film recordings of the fuel data can also be digitized by re-
imaging the film negative via a vidicon and then digitizing the output video
signal, Digitization noise resulting from the quality of the analog signal
and sampling effects must be accounted for in the image processing scheme to
minimize image artifacts that may interfere with the fuel droplet detection
process. A second method of film digitization that succeeds in lowering the
digitization noise is to scan the film negative with a microdensitometer. In
extensive use at the IPL is a PD5 10 x 10 G Scanning Microdensitometer capable
of digitizing film negatives at varying resolutions and optical configurations
33, The microdensitometer scans the film in a raster format, recording the op-
tical density of the film negative as measured by an electronic sensor. The
viewing window used in determining each digital valve and the spacing interval
between each window are adjustable to the requirements and specifications of
the particular application. For this study, the Technical Pan 7ilm negatives
were digitized on the PDS microdensitometer and a set of digital images were
created on magnetic tape for subsequent image processing technique development
and testing.

Digitized fuel data in image format enables a computer to perform image

processing operations to enhance and thus distinguish the fuel droplets from
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extraneous information in the images. To perform the necessary image proces-
sing tasks for the fuel droplet imagery, a customized computer facility with
interactive image processing capabilities and comprehensive image processing
software was essential., The IPL facility at JPL provided all of the above and

served as the primary site for the initial image processing research 34.

5.3 Illumination

Subject illumination is a critical consideration in the design of an im-
aging/image analysis system., Elimination of blurring due to subject motion
becomes particularly critical as subject size decreases and velocity in-

creases. The time, t, for a subject to traverse its diameter, d, is

where V is the subject velocity.

For sharp imaging only a small fraction {(~ 20%) of the subject diameter
may be displaced during an exposure. Given the system requirements to image
10um droplets (Section 5.1) moving at up to 100 ms-1 (Section 4.1.1), the
light source must be no longer than 20 ns in duration. The Tlight energy which
is to be provided during this short interval is a function of the size of the
area to be illuminated, receptor optics and sensitivity, and the light reflec-
ting/scattering capacity of the subject. Forward scattering <chemes have been
devised to take advantage of this relatively efficient scattering mode 10, 35,
As shown in figure 1la, the forward scattered beam illuminates drops through
the entire spray. The only means to examine individual drops in dense sprays
without overwheiming drop image overlap problems is through imaging optics
with a short depth of field yielding a limited focal volume. Because focus is
used to choose the obsarvation region, a determination must be made of which
drops are in focus and whici. are not. This is extremely difficult in prac-
tice. Small droplets at the margins of the focal volume will not be resolved,
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whereas larce droplets at the same axial location will be., This skews the
measurements obtained toward larger sizes.

Figure 11b shows the sheet ilumination chosen for this investigation.
Here the focal volume is not significant as the only droplets imaged must lie
in the plane of the sheet, The sampled volume is well defined in this ar-
rangement so that the fuel loading, which is the volume occupied by liquid
fuel or a fraction of the total volume examined, may be measured along with
drop sizes. Because of the relatively weak scattering at right angles to the
1ight source, a bright light is required. For this application a one Joule
pulsed ruby laser was chosen (Apollo Laser Systems). The laser is equipped
with a Pockels cell to compress the radiated energy into a 20 ns pulse, meet-
ing the duration requirement for sharp imaging. Referring to figure 12, the
laser, which has an initial beam diameter of 20mm, is passed through a spheri-
cal lens of Im focal length, which reduces the beam thickness to approximately
10mm as it tranverses the spray. The beam then passes through a cylindrical
lens of 25 mm fccal length. This spreads the beam about 1 axis, forming the
flat sheet. Viewing along a line normal to this sheet, one can see a thin

cross section of the spray.

5.4 Image Recording

As previously discussed (sec. 5.2) photographic film was chosen as the
most compatible medium for initial data recording and subsequent digital ana-
lyses. Resolution of a statistially significant number of drops ranging in
size from 10 to 2000 um at widely separated regions of a spray places extreme
requireme its on optical and film resolution. Three avenues were taken toward
meetiny this requirement: design of the photographic system, film choice, and
image mosaicking.

A 4 x 5 inch format view camera was employed so that the image size could
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be kept relatively large compared with the subject size. The camera was
mounted, in the case of the nozzle spray observations, 75 cm above the focal
plane so that it would not disturb the fuel spray. To maintain imaye size at
this distance, a 380 mm focal length lens was used with an 86 cm extension.
This configuration, shown in figure 13, yields images approximately equal in
size to the subject.

Besides offering resolution of drop images at least as small as 10 pm,
film chosen for this application must be sufficiently sensitive to form an
image with the light available via 90° scattering of the diffused laser, Use
of these large lenses limits shutter/flash synchronization speed to 0.02
second, but imaging via ambient light must still be minimal to avoid blurring.
Many orthographic and lithographic films were considered but found unsuitable
because of their low sensitivity and extreme contrast., The digitization pro-
cess can resolve 256 gray levels (8 bits of information) in each pixel, The
availability of the large number of gray levels in the original recorded image
may be crucial to the performance of processing algorithms. Often a bright-
ness gradient is used to help identify particle edges, and resolution of only
a small number of gray levels typical of high contrast emulsions would cause
extreme variations in these derivatives. The requirements for high sensiti-
vity and spatial resolution with moderate gray level resolution were met best
by Kodak Technical Pan film (Ref. 5). Though rated at a daylight ASA of 125,
its sensitivity is skewed toward the red causing it to perform at an effective
ASA 6000 when used with ruby laser illumination. The specified resolution of
the film is 330 lines per millimeter. Exposures were made through a Kodak #24
red filter at 0.02 second exposure with an aperture setting of fl6. No trace
of daylight illumination is detectable in the images. Processing was carried

out by a Kodak Versamat processor operated at a film speed of 4.1 cm/s.
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Imaging of the entire fuel spray of interest was possible on one negative
only with the mini wing shear and FCTA facilities. Nozzle sprays were to be
analyzed from 0 to 12 cm downstream, necessitating formation of a composite of
3 images as shown in figure 14, To create the mosaics the camera was mounted
on a stee! bracket which coula be repositioned to each of the three imaging

locations,

5.5 Image Processing Hardware

With the set of digitized fuel droplet images compiled and stored on mag-
netic tape, a digital computer becomes the necessary link to perform image
processing, Etach image consists of an array of digital numbers (DN), each of
which represents the value of one picture element or pixel. The storage re-
quired for each pixel value is dependent on both the type of data being ana-
lyzed ard the dynamic ranye of interest in the stored digital information,
[Integer, real or complex numbers may be assigned to each pixel as appropriate
for the image type or mathematical function beinqg stored. Typically, an 8-bit
unsiyned integer fills each pixel storage location, i.e., one byte of computer
storage., Image data sets to be held in hardware storage devices range in
array size anywhere from several thousand to several million pixels, For the
AMK task, video digitization produces images containing approximately 262K
bytes, while ¢ film digitization may create images of over 4 megabytes. Suf-
ficient disk space must be provided to store a collection of images as they
are being processed and allow temporary storage space allocations to hold dad-
ditional input, output, and intermediate data sets which certain computing al-
gorithms require. At the IPL, the total disk storage capacity exceeds 2900 M
bytes, allowing a large multi-user interactive and batch system to catalog and

process a wide range of digital imagery.
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Microdensitometer digitization is the initial hardware interface of the
recorded fuel droplet data. Under program control, optical density values of
the film negative as recorded from a light source passing through the film and
aperture are stored in a PDP/8 computer and read on a line-by-line basis onto
a magnetic tape. As each tape is generated (containing several separate image
files), it is transported tn the mainframe computer of the IPL system, an [BM
370/158. There the tape is mounted on a tape drive and the image file is
copied onto an allocated data set on one of the CDC 33501-B2 disks. A spe-
cialized collection of image processing software and I/0 subroutines that was
originally developed at the IPL and is currently in operation not only there
but at several other educational and research institutions is called VICAR
(Video Image Communication and Retrieva1)33 [VICAR will be discussed more
fully in Section 5.6, but is of consequence here in the hardware interface
discussion]. When outside data is first brought to the IPL computer, the soft-
ware used to copy the data to disk also serves to add a VICAR label to the da-
ta set. The first label line within the VICAR label contains image format and
size information that is used by subsequent VICAR software programs to inter-
pret the image, while succeeding lines can optionally add verbal image
description labels. Image processing tasks typically read and write data very
frequently as the input is collected, computed, and output on a line-by-line
or block-by-block basis. Therefore, while the actual image processing is ne-
ing performed, it is almost essential that the data be stored on a direct ac-
cess storage device such as a magnetic disk., After the image computing has
been completed, the data is copied to a magnetic tape file. 1In addition to
the image data itself, annotation information is appended which describes the
processing steps and uniquely identifies the particular image. Tick marks are

added at the image edges to compute the relative pixel size in the final hard-
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copy image, and gray scales are displayed at the top and buttom of the images
to control photographic processings., The enhanced, labeled image tape file is
then transported to a playback device to create photographic negatives from
digital tape data. Most of the fuel droplet images were played back as black-
and-white negatives. A DICOMED image analyzer 39 reads the tape file via a
PDP 11/40 and then assigns a voltage to the digital readings. The image is
reconstructed on a CRT which is then scanned at a pre-selected resolutinn, the
image 'spot' exposing a photographic film negative in raster form, Color
playback of digital images at JPL is accomplished using a specialized laser
device originally developed for the Viking lander images of the Martian sur-
face. Given the name GRE (Ground Reconstruction Equipment), this machine ac-
cepts 9 track, 800 bpi magnetic tapes tirom the IPL. These digital tapes are
converted from their 8-bit format to an analog signal, Acousto-optic-
modulators are driven by these analog signals to vary red, green and blue
laser light levels during the color negative generation. Finally, the color
or black-and-white film negatives are sent to the JPL photo lab for standard

photographic printing,

5.6 Image Processing Software Development and Methodology

Just as the hardware components of the image processing system must sa-
tisfy certain essential requirements, the software design and processing se-
quence must lend themselves to efficient image manipulation. At the post-
image recording stage of the experiment, image processing options and the
ordering of each step become critical to the successful detection of fuel
droplets. Several different objectives may require individual procedures that
will connect in an overall systematic technique. Ultimately, automation of the

fue” droplet detection process will reduce human interpretation bias and allow

38



an expedient characterization of the jet fuel sprays with repeatable accurate
results.

Microdensitometer digitization produced the preliminary imagery for
examining the nature of laser-~illuminated droplets. For the first set of jet
fuel nozzle spray negatives, a series of digitizations of the same negative
subsection was made to compare the effects of different digitizer aperture/-
spacing combinations. Fig., 15 shows an entire Jet A fuel nozzle spray image
that covers a 2000 x 2000 element pixel matrix made with the microdensitometer
set to a square aperture of (50um)? and a spacing of 50um between adjacent
pixel measurements., A first priority of the digitization tests was to achieve
a maximum resolution with which to detect as small a droplet as possible given
the existing optical constraints (approximately a 1:1 magnification) and film
resclution capability. For a subscene of the fuel spray, a set of higher
resolution images was produced (figs. 16 thru 21), relocating the upper left
hand corner of each new image to within 5 micivns of the same position on the
previous scan. While figure 15 encompasses an area of 100 cn’ on the photo-
graph image, the subsequent figures contain 1 cm? (fig. 16), 0.26 cm? (figs.
17 and 18), 6.6 mm? (figs. 19 and 20), and 2.40 mm®> (fig. 21). Thus the
digitization process allows area magnification factors of over 4000x if film
resolution and image sharpness allow. Table 1 lists the aperture sizes and
spacing used to form each of these images. The total number of pixels forming
an image may be found by multiplication of the number of lines in an image by
the number of samples per line. While the spacing increment sets the image
scale, the aperture width (in conjunction with the spacing) controls the
quality of the A/D conversion through the degree of pixel sampling overiap.
The lower the spacing-to-aperture ratio, the higher the degree of overlap. A

consequence of undersampling (little or no overlap) the continuous film signal
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Figure 16. Portion of the Jet A fuel spray corresponding to 1 cm? on the
negative, 512 x 512 pixel array, 20 ym microdensitometer aperture

and spacing.
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Figure 17. Portion of the Jet A fuel spray corresponding to 0.26 cm? on the
negative 512 x 512 pixel array, 20 uym microdensitometer aperture
with 10 uym spacing (50% oversampling).
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Figure 18. Portion of the Jet A fuel spray corresponding to 0.26

cm4 on the negative 512 x 512 pixel array, 10 uym microdensitometer
aperture and 10 ym spacing
(no oversampling).
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Figure 19. Portion of the Jet A fuel spray corresponding to 6.6 mm“ on the
negative, 512 x 512 pixel array, 10 ym microdensitometer aperture
and 5 um spacing (50% oversampling).
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Figure 20. Portion of the Jet A fuel spray corresponding to 6.6 mm?2 on the
negative, 512 x 512 pixel array, 5 ym microdensitometer aperture
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Figure 21. Portion of the Jet A fuel spray corresponding to 2.4 mmZ on the
negative, 512 x 512 pixel array, 5um microdensitometer
aperture, 3 m spacing (40% oversampling).



is that a folding back of spectral energy produces an aliasing error26, 40,
This is because of possible undersampling of high frequency irage components,
They may then appear as lower frequency artifacts superimposed on the digi-
tized image. Subsequent filtering cannot entirely remove the aliasing arti-
facts, thereby justifying an overlapped sample spacing during digitization,
Because a 50% smaller spacing doubles the image scale, visual comparison be-
tween differently spaced images is difficult,

Microdensitometer aperture and spacing were chosen for this experiment
with the goals of resolving 10um drop images while reducing aliasing effects
as much as possible, A 5 um aperture was felt adequate to resolve the drop-
let., Current densitometer practice is to choose a spacing approximately 2u%
smaller than the aperture for aliasing elimination, so a 4 um spacing is used,
Because of concern that such small apertures might resolve film grain, DN val-
ues were plotted for an image using various apertures and spacing, No signi-
ficant increase in the high frequency component of the data, indicating grain
resolution, was noted.

When forming images for human viewing it is often necessary to enhance
the contrast of the final image before printing. This is partly because of
the tendency of the digitizer to compress brightness levels, decreasing con-
trast, when operated in some modes. Variations in saturation of negatives re-
sulting from fuel density variations in the spray may be reduced through en-
hancement, Stretching is the most often used form of contrast enhancement, A
histogram is created which lists the number of pixels having each of the
available DN levels., The pixel DN assignments are then shifted away from cen-
ter so that the dimmest pixels are forced to black, while the brightest pixels
are forced to white. The upper and lower 2% of the pixels are saturated in
this way for "quick look" processing so that the remaining pixels span the
dynamic ranye more fully.
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Table 1

MICRODENSITOMETER SETTINGS FOR IMAGE DIGITIZATION

Image Number umber of |
Figure Number Aperture Spacing |Of Lines|Samples/Line

17 (50um)?2 50um 2000 2000

18 (20um)2 20um 512 512

19 (20um)?2 10um 512 512

20 (10um)2 10um 512 512

21 (10um)2 5m 512 512

22 ( 5um)2 5um 512 512

23 ( 5um)2 3um 512 512
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Figure 22 shows a digital “"quick look" image of one of the fuel spray
images that have been analyzed in depth for this study as discussed more fully
in section 6.1, The data digitized for these analyses are examples from the
nozzle spray, mini wing shear and FCTA apparatuses. For the nozzle spray
tests, cruise flow rates were considered for neat Jet A and Jet A + 0,30% FM-
9. Considerable noise created during microdensitometer digitization is appar-
ent, particularly in figure 22a.

Before digitization .t is necessary to choose the region of interest on
the negative. Using the nozzle spray experiment as an example, the drop size
distribution is to be determined at discrete downstream distances. Areas on
the negative (windows) are chosen for each of these axial locations as shown
by figure 23. An enormous amount of data is present in a high resolution
image of 129 e’ area (i.e. each of the 4 x 5 inch technical pan negatives
produced). Using the 5 um diameter aperture and 4 um spacing of the microden-
sitometer to ensure resolution of the smallest droplets of interest, complete
digitization of the negative would result in over 5 x 108 data points of 8
bits each. Reduction of this quantity of data is an important reason for the
use of smaller windows. In the case of the nozzle spray, existence of
axial symmetry allows the use of windows spanning only 1/2 the spray width.
But because of the possibility that the spray is not homogeneous in size
across its half-width, a window of sufficient height must be chosen to span
the entire half.width., Typical windows were of 2 mm width and up to 14 mm
height for the nozzle spray representation of such a long range with hardware
devices designed mainly for square images requires mosaicing of images into as
many as 4 discrete subimages. As an example figure 22 is divided into 3 parts
which fit together end to end (the right side of 22a joins the left side of

figure 22b). The automatic contrast enhancing stretch discussed earlier has

49



PHOTOGRAPH

BLACK AND WHITt

(sa8ed ¢ jo 1) “pPaFyl TUII (2) pue ‘pITyl

puodas (q) ‘payyl 3s1yJy (e) a8ewjqns yYoea uUFYIFM uojInTOosSa1 Izyuwyido 03
ATTenpiajpul pamiojiad uaaq sey Sujyod3ai13l§ °*I[zzou Y3 WoiJ A[TEFXe wd 7
‘mopuim a8ewmy Leids Jjoaye3l [3A3[ eas Yy I3 3yl Suysodwod saBewmyqns 331yl

*77 2an8yy




(sefed ¢ 3o 7) “Pa Yyl TeURJ (2) pue ‘payyl

puodas (q) ‘payyl 3s1yJ (e) 28ewjqns yoea uFylIfm uoFINTosax azjwjido o3
A1Tenpiajpul pomiojiad uaaq sey SBujyolails *Irzzou Y3 woij A[TETXE WO 7
‘mopujm a8ew; Leiads jjoayel [2Aa] eas Y I3 3yl Suysodwod saBemyyns Iaayyl

*ZZ 2an8y13



(se8ed ¢ 3o £) “PITY3I T¥uRy (2) pue ‘PITY2
puodas (q) ‘PIFyl 3saj3 (e) Jewjqns Yoe?a UTYIFA UOINTOSA az7uwj3ido 03
ArTenpjajpul pamaojiad uaaq sey Sujydlailg *I[zzou Y3 Woli3 A1TeTXE WO 7

‘mopuja 28ewmy Leads jJJjoayel [3A3] ®IS YV I 33 Suisodmod safewyqns I3y}

*77 2813




OF POOR QUALITY

ORIGINAL PACGE 1S

*hurssadosd abeun Aeuds (any :~) uor JnBLjuod moputM “gZ2 AJanbiy

P iy //
S R S ,///// INZZON
e e o
llgﬂll-,! 1" - - I'// OW/.N///
— —— —_ t’!/‘/
SIXV 31ZZON lll"lNl\Hl'gﬂlHl'l s el
L - — -
- T \\ - — \\\\
I e
\\‘ \\ ‘IL TllEE
" |
il i
> o

“3AILVO3IN HOV3

304 Q310313 3¥3IM SIHOI3H
JW/YIIVA ~ AV¥dS 13N ¥IIN3
JH1 ¥3A0D Ol A¥VSS3IO3N

41 03SN SNOISNILX3 MOANIM

53




been applied to these images to render them suitable for viewing, This unfor-
tunately has a different effect on each subimage depending upon the relative
amount of bright and dark areas it contains, A different pixel stretch is
therefore applied to e.q. figure 22a than to figure 22b, This stretched ver-
sion of the subimage is produced only for viewing, It is not used in droplet
counting because it would cause uneven weighting of droplets in subimages from
different radial spray locations., It also gives an uneven appearance to the
mosaic when viewed as a whole., To illustrate a mosaic whose subimages are
treated uniformly, figure 24 (a, b and c) was produced, This is identical to
figure 22 except that one stretch has been applied to all of the subimages in-
stead of applying individually determined stretches to each subimage. The
mosaic now appears more internally consistent., This viewing method is inade-
guate because window sections of denser fuel mist regions have many more high
DN pixels c4'ng to the larger amount of scattered light., Thus, by applying
the same contrast stretch to these images as to those with lower mean DN val-
ues, the effect of the correspondingly lower upper stretch limit is to satur-
ate the image at the high end, producing the large white (255 DN scturation)
regions as seen on subimages 24b and c.

At this stage identifying and counting the fuel droplets on each image
and compiling overall statistics for each window is the fundamental image pro-
cessing objective., Pre-processing the images to remove unwanted information
is the initial step in such a detection process. An algorithm then searches
the image to detect droplet pixels based on an intensity threshold and accumu-
lates droplet statistics. Output takes the form of line printer listings and
graphic plots describing critical droplet parameters that relate to the poten-
tial vor mist flammability,

The 3 x 3 pixel low pass filter may be represented diagrammatically as
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Picls §-1 Pi-ls j Picls §j +1
Piv -1 Pi,j Pi,j 41
Pi a1 =1 Pi+lsd P d4+10j+1
where
Pisj = pixel at row i, column j. If Wjj is the filter weight associated

with the pixel pjj, the filtering algorithm is

1 +1 j+
z b P W
e y s -1 Xo XY
Pij =
i+ j+1
) » % Nx.y

x =1 -1 y=J-1

Thus if the pixel weight is 1 for all pixels (unweighted filter) the cen-
ter pixel in a box is assigned the value of the average pixel value of all
nine pixels within the box, Thus 3 x 3 filters were generated by assigning
Nij the value of 1, 2, or 3 while all H111.J!1 values were left at 1. These
correspond to unweighted, double and triple centerweighted filters. This type
of low pass filter achieves the effect of smoothing amplitude spikes in data
appearing within the box. Higher center pixel weighting results in less
smoothing. If noise caused by small grain disturbances or very small drops on
the order of 1 pixel diameter were present in the picture the filter would
lower their DN values. In practice a particular threshold level is chosen
either by operator choice or a suitable algorithm., Pixels with DN levels be-
low the thresnold are assigned 0 DN (black) while pixels above the threshold
are assigned a DN of 255 (bright white). Upon filtering, a light pixel sur-
rounded by darker pixels will also become darker and may fall below the thres-
hold. This is the way in which high frequency noise is eliminated by a low-
pass filter,

Following the filter operation, the images were counted by a computer al-

gorithm currently operating in a VICAR program originally designed to count
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and catalog stars, The key principle of the algorithm is the application of
an intensity threshold assigned by a parameter input, As each line is pro-
cessed, continuous segments whose pixel DN values equal or exceed the given
threshold are assigned a unique identification value, Droplet parameters, be-
ing compiled line-by-line, are updated for each concateration or generated for
each new initial segment, These parameters include summation of individual
pixel intensities, the total pixel count per particle, the image coordinates
of the extent of each droplet, the droplet rentroid coordinate and the droplet
characteristic length (the square root of the imaged drop area divided by «).
A1l of this information is written on a disk data set as a catalog whose in-
formation can be retrieved by other VICAR programs, Besides providing a list-
ing of the parameters for each counted droplet, the program can generate plots
describing the frequency distributions and cumulative distributions of the
area, perimeter, and characteristic length values. The output image from the
program is identical to the input image except that all particle segment end-
point pixels throughout the image are assigned a DN value of 255. By applying
a linear stretch to this output image such that all DN values below and in-
cluding 254 are forced to zero, the resulting image displays only the particle
boundaries, line-by-line, as the algorithm recognized them., A minimum droplet
size can be input to act as a type of pseudo-lowpass filter, rejecting those
droplets composed of less than a certain number of pixels. Scaling is also in-
corporated so that a pixel width is interpreted as a linear scale value in
microns.

In generating images of particle outlines used in drop counting and mea-
surement, two parameters may be varied, the center weight of the filter and
the threshold DN value. Figures 25 through 29 show the particle boundary im-

ages for four filter conditions unfiltered and center weights of 1, 2 and 3,
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and three intensity thresholds, Just as a larger filter box may further reduce
individual bright pixel DN values, a higher intensity threshold will selecti-
vely remove dimmer pixels from the counting process. As the experimental data
were counted, the need arose for an iterative adjustment of the filter box
size, the minimum particle area, and the threshold value, Different experi-
mental conditions produced wide variations in particle statistics.

Particle sizes do not depend strongly on the threshold value chosen since
edge gradients are very steep., However the total number of droplets counted
changes considerably with threshold DN. This is because at low threshold val-
ues the effect of the filter is diminished, Also, droplets lying just out of
the laser plane are bright enough due to refraction of scattered light to be
included in counting at low threshold levels., Experimentation and comparison
with original images led to an automated scheme, It was found that the clos-
est agreement with perceived droplet densities was achieved by setting the
threshold value 1 staidard deviation in DN above the mean DN of the unpro-
cessed digital image. For window subimages, a mean, ., and standard
deviation o, were computed for the combined images so that the same processing
treatment was applied to an entire window.

The effect of threshold level alone is shown by figures 25 and 26 re-
solved at threshold DN of 22, 20, and 18, respectively. As the threshold DN
is lowered, the number of droplets present increases. Figures 26 through 29
show the progressive effect of the low pass filtering, All are formed at DN
thresholds of 18, but fig, 26 is unfiltered while fig., 29 is filtered with an
equal filter weighting. Again the tendency with increasing filtering is to
reduce the number of droplets in the image. Filtering does not eliminate more
dimly illuminated drops as selectively as thresholding but affects smaller

drops much more than larger ones, After final parameter adiustments were
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made, a 5 x 5 lowpass filter was used, This resulted in a minimum droplet

size resolution of 4 ym diameter,

1)

2)

3)

Conclusions from the image processing effort:

Raw digitized images produced from film imaging contain artifactual in-
formation as a result of the random noise introduced from both the film
grain structure and the digitization process. Two-dimensional lowpass
filtering, a standard image processing enhancement technique, 1s suc-
cessful at removing this extraneous data from the fuel particle counting
process.

In order tn obtain a comprehensive flammability determination based upon
droplet size characteristics, two prerequesites must be met: a) a large
field of view to measure th: dropiet parameters and their variations
across the flow field of the experiment, and b) an unusually high digital
image resolution capable of measuring droplet images with diameters on
the order of ten microns., This unique combination of requirements neces-
sitates the accumulation of massive amounts of data which must be
optimally processed to maximize processing speed, From an image proces-
sing standpoint, the computer system design and algorithm development are
both impacted to accommodate the data load and achieve a high processing
efficiency. An example of an optimization technique is the use of the
digital videc processor in the De Anza Image Display System, which is
capable of performing lowpass convolutional filters on the image data
directly in the machine hardware, enabling time savings of several orders
magnitude,

Film digitization via a microdensitometer is costly in terms of the bulk
of data requiring analysis and the corresponding time expended in physi-

cally scanning each film negative, Direct imaging and digitization or
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4)

5)

6)

7)

film digitization alone with a vidicon camera will achieve a real-time
process for digitizing the fuel data and storing the resultant digital
image,

The mode of film digitization used to create the images studied in this
report yielded DN histograms with comparatively low standard deviations,
Furthermore, the separation of the droplet and background intensities was
not well defined, Subsequent selection of an intensity threshold level
for droplet counting became an interactive procedure subject to a high
level of DN sensitivity,

Large-scale intensity gradients did not appear in the digital images.
Such gradients may arise from vidicon sensor characteristics or the
nature of the object illumination, In these experiments, the attenuation
of the laser light by particle scattering close to the illumination
source could potentially lower the average intensity of light reaching
the more distant droplets and thereby produce an image gradient, A
gradient effect was not apparent in each individual image and therefore a
removal technique was not applied, Such a removal would involve a high-
pass filter applied to every column in the image oriented normal to the
gradient, thus removing any low frequency gradient occurring across the
1mage columns.

Tre . .ensity threshold counting algorithm was successful in outlining
droplet edges as they were recorded on film., For larger droplets con-
taining twenty or more pixels, a visual inspection comparing the B8-bit
digitized images with their particle outline counterparts revealed a
close correlation of computer-recognized droplets with human-recognized
droplet

Droplet shape statistics are highly dependent on the range of droplet

sizes included in the counting operation, While lowpass filtering serves
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to remove those droplets at the low end of the size distribution, very
large droplets strongly affect the overall SMD of the images. Manual in-
spection of the images 1s necessary to verify the existence of larger
droplets and a restriction of upper size limits is needed to confine the
droplet size range.

8) Fuel droplet signatures vary widely in the current library of digital
fuel spray imagery. Generally, all droplets exhibit an internal inten-
sity gradient which grows inward from the edge and then declines at the
center., This qradient may prove to be helpful in the detection of drop-
let edges. The magnitude of the gradient and of the central density
plateau is affected by the droplet size and the irregularity of the drop-
let perimete~, Those drops which lie at or beyond the edges of the
laser-i1luminated sneet of light contain optically "hollow" interiors;
i.e., the gradient function “.ils off sharply toward the droplet center,
This phenomenon is associated with the diffraction properties of the

droplets.

5.7 Control Experiment.

As a check on drop measurements derived via the image processing system
and to gain experience with the capabilities of alternative counting tech-
niques, an independent drop size measurement system was sought. Because of
its widespread acceptance and use and its basic simplicity, the slide impac-
tion technique was adopted. This method uces a coated slide on which drops
impact, leaving an impression proportional in size to the drop'et diameter,
These impressions are then wmeasured and counted manually with a microscope.
There are, however, several disadvantages associated with this method.? The
primary one is obtaining a statistically valid representation of the spray.

Smaller, slower drops tend to follow the airstream around the slide, reducing
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the number of smaller droplets which impact it, In addition, larger drops
with Weber numbers greater than a certain critical value tend to split on im-
pact., There are also problems in obtaining an accurate drop size distribu-
tion, Not only do a great number of drops and hence slides need to be ana-
lyzed, but operator biases also affect the count. Another drawback is in the
determination of a reasonable impression coefficient, that is, determining the
relationship between the actual droplet and the impression diameter, Most of
these problems can be addressed to some degree; howeve,, the biases caused by
smaller drops being carried by the airstream create uncompensated errors indi-
genous to this method.

For this study, 5 cm square glass slides are coated until nearly opaque 9
with soot from a kerosene lamp. These slides are placed in a metal container
with a removable lid as shown in figure 30. A shutter with speeds ranging
from 1 second to 0.002 seconds is mounted on the container and is triggered by
a cable release, The device is mounted on a lead screw cu provide lateral
movement across a spray cone,

The entire device is placed inside the nozzle spray testing apparatus
with the shutter opening level with the nozzle. Samples are taken by trig-
gering the shutter, allowing a volume of droplets to pass into the container
and impact on the slide, forming impressions, After several settings of the
nozzle spray testing apparatus were tried, the idle fuel flow setting of 23
atm un the primary nozzle and 0 atm on the secondary nozzle was chosen as
giving acceptable slides while still providing results comparable to the image
processing studies. An acceptable slide has little or no droplet impression
overlap. The higher fuel flow rate settings of cruise and sea level! takeoff
have too high a droplet density, completely covering the slide in 0.002 secs.
This difficulty in capturing high density liquid spray particles is one of the

fundamental drawbacks to the slide impaction technique.
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To obtain a droplet size distribution measurement of the entire nozzle
spray cone, samples need to be taken across one side of the spray cone, For a
preliminary test, 4 samples were taken at a distance of 7.5 cm from the
nozzle, starting at the centerline and moving 3 cm outward perpendicular to
the spray centerline for each different slide. Four photographs were made of
different portions of each slide using a microscope. An example of one photo-
graph is given 1n figure 31, The inner sides of the darkened crater are
measured and compared with a scale photographed at the same magnification
(figure 32). This crater is formed upon initial impact of the drop and has no
significant change in size for droplets of the same size impacting at differ-
ent velocitiesl4, The grainy circular area surrounding the black crater edge
differs in diameter with the impact velocity and is caused by the droplet
splashing over the crater edge. Once the photographs have been counted, the
impression coefficient (ratio of droplet diameter to impression diameter) must
be Jdetermined. Stokerl4 suygests that this coefficient is a function of the
Weber number and is of the form I = ,77(We)2. To use this equation, an esti-
mate of the droplet velocity must be known, As an alternative, May15 suggests
that multiplying factors of 0.75 for impressions in the 10-15 um range, 0,8
for the 15 to 20 um range and 0.86 for the 20 to 250um range are good approxi-
mations., For the present results the latter method was used,

Some estimate of the accuracy of the final count versus the number of
droplets counted must be included in the results., Azzopardi’/ reports that
within the 95% confidence limits, for a sample of 500 drops the accuracy is
+ 17%. For the preliminary study 194 droplets were actually counted. Some of
these droplets were then counted two or four times (double or quadruple count-
ing weight) to account for different exposure time., For exampie, while drops
on slides exposed for 0.008 second receive a weighting of 1, those exposed for

0.002 seconds receive a quadruple weight, This allows variation in exposure
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time to accommodate sprays of varying density without skewing results in favor
of low density areas which were sampled over longer intervals, Thus, 310 drop-
lets were available for analysis. One droplet was discarded as it was far
larger than the distribution range of 0 to 200 um, leaving 306 droplets,

Preliminary results show that the Sauter mean diameter is 83 um and the
mean is 28 um, The distribution is shown in figure 33. This curve is typical
of droplet size distributions observed with this type of fuel nozzleb, Also
shown is the size distribution obtained using the techniques of section 5.6
with Jet A for the same location downstream of the nozzle and flow con-
ditions,

In comparing the results from the two different counting techniques one
should note that the image processing technique has 1078 droplets while the
impactor slide technique has 306. The two graphs are normalized to the total
count in each experiment, While both have similar shapes, the two plots
differ in exact location of the peak and in the mean and Sauter mean dia-
meters, For the image processing results the peak is located i1n the range of
10-15 um, with a mean value of 17.3 um and a Sauter mean diameter of 32.4 .m.
These calculations and the graph of characteristic diameters use the same type
of data &s the graphs in section 5.6 and, thus, have similar uncertainties.
The impactor slide graph has a peak at 25-30 um, a mean of 28,2 um and a
Sauter mean diameter of 83.6 um. The larger values of these parameters pro-
bably are due to the smaller total count of droplets with a disproportionate
count of larger droplets. Notice that in the 1078 droplets used in the image
processing study, no droplets were observed in the 100-150 um range, while in
the impactor slide study approximately 10% of the droplets were counted in
this range, With further studies, counting more droplets and eliminating
droplet selection biases in the counting should reduce differences in the

quantitative comparison of resu’ ‘s from the two methods., Measurements by
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Fiorentino et 213 were carried out with the same type of nozzle and the same
flow conditions (idle flow rate) using Jet A fuel, Using a Malvern particle
sizing device based on scattering of a laser light, they could not obtain a

drop size histogram, However, they obtained an SMD valve of 33 um, in agree-

ment with our results from automated photograph analysis within + 2%.
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VI. EXPERIMENTAL RESULTS

6.1 Flammability Measurements

The experimental parameters that are likely to be important to the aero-
dynamics of fuel atomization and droplet vaporization in the wing shear exper-
iments include:

Airspeed

Fuel mass flow rate

Fuel orifice size and shape
Fuel temperature

Polymer concentration

Free stream turbulence

Fuel preshearing

The aerodynamic forces are a direct function of airspeed. The relative
fuel/air mass flow ratio ultimately affects the vapor concentration, The ori-
fice size in combination with the fuel mass flow allows the speed and shearing
rate of the liquid jet to be varied independently. Besides increasing the
fuel vapor pressure, increased fuel temperature decreases the critical shear-
ing rate necessary for gellations4l, Both effects increase flammability.
Polymer concentration, of course, determines the non-Newtonian characteristics
of the fuel, Free stream turbulence is impurtant to droplet vaporization and
heat transfer,

0f these parameters, polymer concentration, airspeed, and fuel tempera-
ture, in that order, seem to determine the fire protection of the modified
fuel in large scale wing shear experiments 5, One eventual aim of the proaram
is the comparison and correlation of flammability results with those of the
Lakehurst aircraft crash tests and the FAA large scale wing shear facility.

Since tests were performed with the larger facilities over a range of FM-9
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concentrations, a similar approach was taken for the present work, Addition-
ally the goal of addressing the size scaling issue requires parametric varia-
tion of several parameters in order to attempt to preserve similarity, For
example, the Reynolds number, LUp/n, where L is the length scale, U the velo-
city, p the fluid density, and n the viscosity, may be held constant while L
and U decrease, by substituting fluids of lower n or higher density. Similar-
ly, it may be necessary to alter the characteristic shearing rate of the fluid
for rapid onset of shear thickening. The most reliable way to vary this para-
meter is through FM-9 concentration variation, Since the present study is
concerned with determining the range of validity of those observations, sec-
ondary parameters such as fuel mass flow and shearing rate have also been em-
phasized. The objective has been to make precise enough flammability measure-
ments that the effects of many of these parameters can be observed, and to
determine under what circumstances they become important,

Most of these parameters affect combustion directly through effects on
e.9. spray density and convective heat transfer, as well as the antimisting
performance of the fuel., In order to distinguish between the two, the flamma-
bility measurements were combined with image processing, Analysis of spray
photographs was undertaken to measure only the antimisting performance, The
matrix of wing shear operating conditions is shown in figure 34, The nominal
airspeeds were 60, 80, and 100 m/s; the nominal fuel flow rates were 0.4, 0.6,
and 0.8 kg/s; and the FM-9 polymer concentrations were 0,20, 0.25, and 0,30 %.
The operating matrix was intended to bracket pass/fail conditions at all three
polymer concentrations, The jet breakup and fuel spray were photographed at
each point in the matrix, The flammability measurements excluded operating
conditions where fuel adhering to the walls of the test cell caught fire with-

in the first 3 or 4 seconds. The nominal operating conditions could not be
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achieved with very great accuracy (fig. 34). Although the performance of the
wing shear facility was disappointing in this regard, there was enough redun-
dancy that any trends should be apparent, Spray photographs and flammability
measurements were also combined with the FCTA, which was operated at an air
pressure of 6,1 atm (75 m/s peak airspeed), a speed control setting of 900 (21
g/s fuel flow rate), and polymer concentrations of 0, 0,20%, 0.25%, and

0.30%.

The image processing results are discussed in Section 6.2, The wing
shear flammability measurements are summarized in figures 35 through 37, In
each case, flammability was measured with an array of 4 thermocouples distri-
buted along the blower centerline, In all of these wing shear apparatuses,
including the FCTA, combustion takes place in the mixing layer of an air jet,
In jet flows the distribution of mean turbulence quantities generally scaler
with the jet diameter4?, For that reason, probe positions have been scaled
with the exit diameter (or side dimension for square cross-sections) of the
contraction section,

Flammability of 0.3% FM-9 is depected in figure 35, Flammability in-
creased with airspeed, but appeared to be relatively insensitive to fuel flow
rate, Pass/fail is indicated by a P or F for each temperature distribution,
In these cases a pass is defined as a test where the combustion temperatures
stabilize and there is no wall fire. A fail is a test where the temperatures
increased with time until the walls caught fire. 1[n such cases temperatures
represent peak values before the fuel flow was interrupted, At polymer con-
centrations of 0.25% and 0,20% FM-9 (figures 36 and 37) flammability increased
with both airspeed and fuel flow rate.

In figures 35-37 failures were generally characterized by temperatures

that increased with downstream distance. The average temperature slopes are
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shown in figure 38 as a function of airspeed for all three polymer concentra-
tions and for the various fuel flow rates., The pass/fail notations shown are
those determined by wall ignition observations as described earlier. The
failures are generally assdciated with large positive temperature slopes; the
temperature slopes generally increase with airspeed and fuel flow rate,
Temperature measurements with the FCTA are shown in figure 39. A single
thermocoupie was located 10 mixing tube diameters downstream of the torch, on
the centerline. The polymer concentration was 0.3% FM-9, and three different
fuel mass flows were tested. The combustion temperatures increased with both
airspeed and fuel mass flow. Peak airspeeds are used as they depend solely on
plenum initial conditions and hence are more easily determined. They are in-

tended only to allow comparison among other FCTA tests performed identically.

6.1.1 Fuel and Air Mass Flow Effe:t:

In order to express the meu.:r«d temperature rise in the combustion
region as a measure of the extent of combustion a reduced temperature, 8, is
introduced (see Appendix 1 for a more complete discussion):

.Ma-ir cpT
o = P (6.1-1)

Mfuel dc

mass flow rate of air

where Ma-] r

mass flow rate of fuel

Mfyel
cp = specific heat of air (= 103 joule/kgvk)

1]

enthalpy of combustion of fuel (= 4.32x107 joule/kg for Jet
A) in air

dc

T = Measured temperature rise in the combustion region
In effect, 6 is the fraction of the enthalpy of combustion of the entire
fuel mass in air that is actually released to the gases. If the fuel is com-

pletely burned then 0=1. In practice, © is a lower bound estimate of the ex-
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tent of combustion because of radiation heat Tosses and because of entrainment
of cooler air. This concept is tested in figure 40 by applying it to a set of
the Jet A measurements where the apparent flammability was high. The fuel/air
massflow ratio was 0.04, which is below the stoichiometric ratio. The reduced
temperature reached a peak value of about 0.6, which is consistent with good
combustion efficiency. At lower fuel/air ratios, reduced temperatures as high
as 0.7 were measured with Jet A,

The FCTA data of figure 39 are replotted in figure 41 as reduced tem-
peratures. The data collapse suggests that the combustion efficiency (and
fire protection) was independent of fuel mass flow rate and was mainly sensi-
tive to airspeed, The magnitudes of the reduced temperature indicate that the
efficiency was quite low, i.e., good fire protection.

The wing shear data for AMK do not collapse as well. Temperatures mea-
sured at x/D = 12.7, figures 36-37, are replotted in figure 42 as reduced tem-
peratures against fuel massflow at various polymer concentrations and at fixed
airspeeds. The variation of & with fuel mass flow suggests that the mass
flow, as well as the airspeed, influenced flammability. At high FM-9 concen-
trations o decreased with fuel flow, and at lower concentrations the trend
seems to depend on airspeed.

The reduced temperatures measured with the wing shear apparatus are con-
sistent in magnitude with those measured with the FCTA, as demonstrated in
figure 43. The range of fuel/air massflow ratios, 0.1-0.6, is reasonably
large, and although the data scatter is large, the two facilities give compar-
able results. Based on this measure of combustion efficiency the two facili-

ties yield comparable measures of fuel flammability.

6.1.2 Orifice Effects

The effect of orifice dimension on fire protection was investigated.
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Specifically, the effects of orifice shearing rate and jet Reynolds number
were examined.

When the modified fuel is subjected to large shearing stresses shear
thickening occurs. The shear thicke«ing is a time-dependent phenomenon and
the rate o gellation depends on the shearing rate. Typical shear thickening
histories for 0.30% FM-9 at different shearing rates are shown in figure 44
(from ref, 41). For any flow configuration there is a critical shearing rate
beyond which gellation occurs rapidly with respect to the characteristic time
scale of the flow. In general, the critical shear rate depends on the polymer
concentration and the temperature.

For a given geometry, the aerodynamic shearing of the fuel by the air-
strean is mainly a function of airspeed, Shearing of the fuel by the orifice
is independent of the airspeed, and for viscous flows the shearing rate
through the orifice is roughly

y = 8 T/d (6.1-2)
where U = ﬁ/ps = area average velocity, and d = orifice diameter. The effect
of orifice shearing rate on combust.on efficiency is shown in figure 45. Re-
duced temperatures are plotted against shearing rate for fixed airspeeds for a
polymer concentration of 0.3%. Three different orifice sizes were tested.
They were selected to provide shearing rates that encompass the critical rate,
;c- According to Peng and Landel4l, the critical shearing rate in well de-
fined flows for FM-9 at 24°C is 3,1 x 10 s~l and for a polymer concentration
of 0.3%. These rates are indicated in figure 45 by dashed lines. The com-
bustion efficiency may have a slight minimum near the critical shearing rate.
In any case, orifice shear did not have a significant effect on flammability
in these experiments. This is not very surprising because the aerodynamic

shearing rates caused by the airstream are always much larger.
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The effect of jet Reynolds number is examined in figure 46. The Reynolds
number, based on orifice exit area and apparent viscosity, is defined by:

RL=M
FS (6.7 -2

where K| is the zero shear rate apparent viscosity as measured by a Brookficld
viscometer, As shown in figure 46, there was no apparent Reynolds number

effect up to a jet Reynolds number of 2.5 x 104,

6.1.3 Polymer Concentration Effects

Fire protection clearly increases with polymer concentration. Figure 47
is a plot of temperature rise vs. polymer concentration for five experiments
involving different FM-9 batches, operating conditions, facilities, and ther-
mocouple locations. In each experiment the temperature rise decreated more or
less as a power of polymer concentration,

The polymer concentration was varied by addition of base fuel to t. e
madified fuel (0.3% FM-9). The two components were blended by slow tumbling

for at least 15 minutes before testing.

6.1.4 Radiometer Measurements

A major reason for undertaking an experimental program using the JPL
mini wing shear facility was that more reliable instrumentation could be in-
stalled in it than was possible in the FAA large scale facility. The choice
of what specific measurements were to be made remained a subject for investi-
gation. The FCTA used a radiometer and so devices of this type ware con-
sidered for the JPL wing shear. Thermocouples were also considered and tests
were performed to assess the relative merits of the various probes. Two types
of radiometers were tested: a narrow angle optical system and an omn.direc-

tional calorimeter similar to that used in the FCTA.
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In order to insure that the same spatial position was being sampled, the
optical radiometer was focused on the thermocouple which was located 7.5 dia-
meters downstream from the blower exit. The field of view of the radiometer
was about 3 cm square, whereas the thermocouple junction was 0.8 mm in diame-
ter. Radiation from the thermocouple surface should thus not affect the mea-
surement very much. The fuel orifice and torch were located 1.8 and 3.7 dia-
meters downstream respectively. The radiometer was located approximately 3
meters off-axis. Modified fuels with various polymer concentrations were
tested, and radiometer measurements were made simultaneously with temperature
measurements. The results appear in figure 48. The radiometer measurements
are expressed as equivalent black body temperatures. Although the two sets of
measurements show similar trends, the black body temperatures deviate consid-
erably from the thermocouple temperatures. At the highest temperatures the
deviations are several hundred degrees, and at the lowest temperatures the re-
lative deviation is large. Since the emissivity of the gas is not constant,
it is impossible to calibrate the radiometer.

The calorimeter measures radiant heat from the entire combusion region,
It was tested with the array of thermocouples. Unlike the optical radiometer,
the calorimeter measurement is a function of distance from the source because
the radiant flux obeys the inverse square law. The calorimeter was located 3
meters off-axis. opposite the torch. Calorimeter measurements were taken
during the flammability test, using modified fuel with 0.25% FM-9. The calor-
imeter readings are plotted in figure 49(b) against airspeed for a family of
fuel flow rates. The corresponding temperature slopes, replotted from figure
38, are shown for comparison, The trerds are consistent between the two sets
of data. Operating conditions that produce a large rate of increase of tem-

perature with downstream distance also produce considerable heat radiation.
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Figure 48.
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Thus the calorimeter should be useful at providing pass/far! information.
The radiant heat flux decreases with distance from the source, If the
geometry is assumed to be axisymmetric, then the radiant heating rate, bR’

could in principle be measured by a line array of calorimeters:

QR = 2nR [ E(x,R)dx, (6.1-4)
where E(x,R) is the radiant flux measured by a calorimeter located a radial
distance, R, from the centerline and a distance x from the blower exit. For a
single calorimeter, and if the combustion region is spatially compact, the

total heating rate is approximately
QR =~ 4nRZ E(R).

Since latent heat is being introduced at the rate qcmf, where gqc is the speci-

fic heat content of the fuel, a measure of radiation efficiency, eR, can be
defined
4nR% E(R)
e =
R ———
qemf

(6.1-5)

In effect, egp is the fraction of the fuel combustion enthalpy that is con-
verted to radiant heat.

In figure 50 calorimeter and thermocouple data are compared in terms of
"efficiencies", ep and 8, which were measured simuitaneously. The thermo-
couple was located at x/D = 12.7, and the data are from figure 48. Pass/fail,
indicated by a P or F, is based on whether fuel adhering to the walls caught
fire. The calorimeter is especially effective in registering pass/fail be-
cause it is sensitive to radiation from the walls.

In summary, the imaging radiometer cannot be used for quantitative

measurements, The calorimeter is useful when there is radiative heating, and
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is good as a pass/fail device in a particular e irizament. Its sensitivity to
the details of the radiating surfaces makes it difficult to generalize the

measurements, however,

6.1.5 Quality Control and Deterioration Effects

As the program proceeded, problems of flammability test reproducibility
became evident. Even though different AMK batches appeared uniform when sub-
jected to cup and filter tests, their flammability was variable to the extent
that the parametric variations under investigation were obscured. To deter-
mine the extent of this problem, a simple quaiity control flammability test
was devised. The test was to be performed on a routine basis and hence could
not practically be carried out in great detail. A simple, single datum figure
of merit was required. To achieve this, a simplified, standardized quality
control test was devised which could be rapidly carried out using the FCTA,
The test procedure used only for these quality centrol tests is described in
Appendix 2.

Results of these quality control tests for February through June of 1981
are shown in figure 51. While the batch to batch repeatability of the cup
test was high, the filter ratio changed by 100% between March and May.
Similarly, temperature rises measured in the standardized flammability test

varied by approximately tne same amount.

6.2 Drop Formation and Measurement

As emphasized in Section 5.1, suppression of small droplet formation is
believed to be fundamental to AMK's flammability resistance. The physical
forces leading to disintegration of liquid drops and jets include unbalanced
and filuctuating pressure, inertial and viscous forces on the jet or drop

surface43, Thesc are resisted by the jet or drop surface tension, viscous
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and elastic forces. Depending on the nature of the breakup configuration,
nondimensional parameters which influence the processes are (see Wang, ref,

43.)

Inertial Force
Reynolds number =

Viscous Force

Inertial Force

Weber Number =
Surface Force

Inertial Force
Elastic Force Parameter =

Elastic Force

Results are presented here for four experimental arrangements. Drop
shattering and jet breakup were specifically studied in earlier NASA-sponsored
work13 at JPL. To more closely relate observation to flammability tests,
breakup of a fuel jet was also studied using the mini wing shear experiment.
Drop sizes were also measured in the mini wing shear experiment to seek a re-
lationship between them and observed flammability behavior. Similarly, drop
sizes were measured in the flammability comparison test apparatus (FCTA)I»2
for comparison with flammability behavior observed in this experimental ap-
paratus. Performance of an engine fuel nozzle in atemizing both neat Jet A
and modified fuel was studied with the ultimate goal of determining necessary
levels of degradation for recovery of proper nozzle behavior and to study the

effects of the polymer additive on pressure nozzle atomization (sec. 6.2.2).

6.2.1 Mini Wing Shear

Simulating fuel ejection from a moving aircraft, the mini wing shear ap-
paratus operates by ejecting fuel through an orifice into an oncoming air-
stream. Observations were made of the mode of jet disintegration for water,
Jet A and Jet A with 0.30 % FM-9 (AMK) at 57, 73 and 96 m s~! oncoming air

velocities. Jet velocities obtained through the 21 mm diameter fuel orifice
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ranged from 0,45 to 3,51 m s-1, Photographs were taken using the pulsed laser
described in section 5.3 and the photographic arrangement described in section
5.4,

rigure 52 shows the fuel nozzle with no fuel flow and an inch-scale ruler
for scaling., The behavior of Jet fuel injected into an air stream can be seen
in figures 53 and 54. In the former, the air velocity is 96 m s~1 and the jet
velocity at exit is 1.5 m s-1. Figure 54 shows the breakup of AMK by an air-
stream of 96 m s~1, Figure 53 shows the rapid disintegration of the unmodi-
fied fuel into a cloud of small droplets. Jet penetration upstream of the
exit nozzle is very limited because of the large amount of surface area of the
many small drops exposed to the shearing flow., In contrast figure 54 shows
the behavior of AMK at 96 m s-1 shearing air flow velocities and a jet speed
of 0.5 m s-1, In marked contrast to the other jets, these break up via a dif-
ferent mode. Rather than shearing immediately into drops, a sheet appears
roughly perpendicular to the oncoming flow. Ligaments are then extruded from
this sheet resulting in a ligament tearing atomization behavior characteristic
of many viscoelastic fluids 47, Even several centimeters downstream very few

individual drops are apparent.

6.2.2 Drop Size Measurements

Image processing techniques have been applied to images of fuel sprays
formed by the mini wing shear (sec. 4.,1.1), F.C.T.A. (sec. 4.1.2) and nozzle
spray (sec. 4.1.,3) facilities. The first two of these experiments were devel-
oped as flammability tests. Fuel spray diagnosis was carried out at the loca-
tion of the ignition source in each case to correlate spray parameters with
flammability behavior. Atomization performance of the antimisting fuel and

neat Jet A was measured with the nozzle spray facility.
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Figure 52. Mini wing shear jet breakup photographic perspective. An inch
scale ruler is attached to the 1 inch orifice. The igniZor torch
flange is visible at the extreme left,
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Figure 54. Breakup of AMK by a couterflowing airstream; liquid veloicty
0.5 ms~!, air veloicty 96 m s~




Ihe importance of the short laser pulse duration to droplet imaging is
shown by figures 55-57, They are images of Jet A sprays taken using photo-
flash illumination (~ i ms duration), laser sheet illumination without the
Pockels c2ll (~1 ps duration) ana laser sheet illumination with the Pockels
cell (~25 ns duration). During the development of the mmproved illumination
system, better photographic optics were also installed, Thus somewhat greater
subject magnification is apparert in figure 57 than in figures 56 and 55. The
major difference due to shorter duration illumination is in the elimination of
streaking, In figure 55, no individual spray particles are visible and the
spray appears 2s a smooth cloud, In figure 56, individual fuel elements are
distinguishable though they still appear as streaks, With the 25 ns flash
individual drops are visible (figure 57) without streaking or blurring. By
Pl Twainating only a narrow (~ lem) slice of the spray, the opaque appearance
of figure 55 1s also eliminated,

Photographs of fuel sprays similar to fig. 5/ were made for Jet A and an-
timisting fuel (Jet A + 0,.3% FM-9) at 4 levels of degradation, Degradation
vas accomplished through blending for 0 (no degradation), 10, 30, and 90 sec-
onds in a Waring kitchen blenderd, Sample cup tests were 2,71, 7,05, 7.33 and
/.55 ml respectively, Jet A cup test results were 7,87 ml, Each fuel sample
was photographed at flow rates corresponding to ignition, idle, cruise, and
sea level takeoff conditions for the JT8-D engine fuel nozzle., All but the
Jet A images were formed through mosaicing of three images (sec. 5.4). Analy-
515 of photographs was accomplished using image processing methodolooies de-
scribed in section 5.5 and 5.6,

Comparison of atomization behavior may be made among figures 57 through
6l., They show cruise flow rate conditions for Jet A and AMK at (%, 840, 90

and 93% restoration of Jet A cup test res..ts, While the Jet A photo shows
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Figure 55. Jet A fuel spray photographed under photo-strobe illumination of
“1 ms duration.
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Figure 56. Jet A fuel spray photographed under pulsed laser sheet lighting of
] us duration.
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Figure 57. Jet A fuel spray photographed under pulsed laser sheet lighting of
25 ns duration.
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Figure 58. Spray of undegraded AMK at cruise flow rate.
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Figure 59. Spray of 84% degraded AMK at cruise flow
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Figure 60. Spray of 90% degraded AMK at cruise flow rate.
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Figure 61. Spray of 93% degraded AMK at cruise flow rate.




rapid atomization, jet breakup is delayed for all AMK samples., Ever at 93%
degradation, many relatively large ( > 1 mm diameter) droplets remain,

The resistance of AMK to separation is clearly demonstrated by figures 62
(93% degraded AMK, ignition flow rate) and 63 (Jet A ignition flow rate), At
this relatively low flow rate the AMK jet remains intact despite the develop-
ment of waves with heights much larger than the jet thickness. No conical
spray pattern appears and the only spreading is due to growth of the waves.
Similar behavior is exhibited at cruise flow rate for 90% degraded AMK (figure
87). While a definite conical shape is apparent, the sheet is smooth indicat-
ing suppression of high frequency instabilities. The thin fuel sheet again
resists fracturing for a great distance downstream. In comparison, figures 63
(Jet A, ignition flow rate) and 57 (Jet A, cruise flow rate) show very rapid
growth of instabilities, sheet breakup and formation of a broad cone angle.

Image analysis was undertaken of fuel spray images in the mini wing and
FCTA ignition regions., The goal of these analyses was to measure spray
qualities including Sauter mean diameter and drop number density and correlate
these measures with flammability. Additionally they should demonstrate the
ability of the system to make local measurements, e.g., for comparison of fuel
atomizati.n at different axial distances from a nozzle.

At the time of writing, the results were generated from microdensito-
meter data generated from our laser-illuminated images. This is primarily
because of delays in the delivery of the DeAnza imaging system, These data
are unfortunately of low quality because of the way in which the microdensito-
meter was operated which resulted in compression of the brightness levels to
only about 10 values. This makes threshold level selection very critical, It
is probably not possible to extract meaningful data from these microdensito-

meter-generated digital images on this account, The data compression super-
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Figure 62. Atomization of 93% degraded AMK at ignition fuel flow rate.
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Figure 63. Atomization of Jet A at ignition fuel flow rate.




imposes both analogue noise (film grain and 1llumination gradient) and digital
noise (from sampling operations) on the signal of interest, the drop images.

Final selection of drop recognition algorithms has also not been made,
mainly because of problems with the digitization scheme,

For these reasons, the discussion of these results should be considered
as a report on the state of affairs at the end of the first year effort,
Generally, no conclusions on the relatiuaship between flammability and spray
characteristics may be drawn from the results at this stage.

image analysis was undertaken for Jet A and AMK fuel sprays at cruise
flow rate using the algorithm of section 5.6. From the initial images (e.g.
figure 57) a window was chosen 5 cm downstream of the nozzle for amaiysis.

The ability of this drop counting method to characterize spray locally allows
measurements of drop sizes at various spray locations., To demonstrate this
capacity drop statistics have been generated for the Jet A cruise flow condi-
tion at 2 cm, as well as 5 cm, downstream of the nozzle.

A subimage generated by application of the counting algorithm is shown in
figure 64, Data obtained through image processing have been used to obtain
the Sauter mean diameter, local cone angle, drop number density and pseudo
volume fraction. The drop number density is the number of drops observed in
the window divided by the window volume. The pseudo volume fraction is the
density of fuel within the image space. It is the percentage of the total
pixel matrix occupied by fuel and is felt to be representative of local spray
density.

Data obtained for the three conditions studied are summarized in table 2,
Cone angle trends reinforce subjective opinion of atomization behavior, The
Jet A cone angle is initially large (38°), decreasing slightly due to flow

turning to 32° at the farther window. The AMK cone angle is considerably less
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Figure 64. Portion of the Jet A fuel spray image 5 cm downstream of the
nozzle cruise flow rate, after application of image processing.
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TABLE 2

Drop Statistics Summary: Nozzle Spray Tests

Jet K ANK Jet &
5 cm Window 5 cm Window 2 cm Window

Cone 32 11 38
Angle, deg
SMD/ um 79 65 63
Drop
Number 24 5.4 13
Density, 3
drops/mm
Drop Pseudo 8.0 7.7 3.7
Volume Density,%
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(117), indicating dispersion of the fuel through the combustor volume would be
poor, The lack of variation in the SMD's for apparently widely varying sprays
is taken as an indication of data dilution by considerable noise, A complete
summary of cone angle observations 1s given in table 3,

When looking at a picture of the large scale spray (e.g. fig. 58), none
of the small drops is apparent, This 1s because of the averaging nature of
the photographic process in imaging small details in negatives. Images of
small drops are simply too small to be resolved when printed on the scale of
figure 58, Many fewer droplets are observed for AMK than Jet A, Since the
mass flow rates are identical, the AMK drops should therefore have been
larger on the average, Pseudo volume fractions are also low for the AMK and
Jet A sprays at 2 cm, This would also indicate larger overall drop volumes
since fewer, larger drops will yleld a lower image saturation than more,
smaller drops. These values may indicate that much of the fuel spray was not
counted in these images., This may have occurred because of maximum pixel
limits imposed during processing, These limits are set to reject drops
counted with apparent diameters greater than 2 mm in order to avoid counting
stray objects in the viewing field such as illuminated portions of the nozzle
itself or its supporting hardware, Many large drops may have been interpreted
as this type of stray image and rejected from processing., The low coverage
would thus be an indication of large pixel dropouts and hence the presence of
many large drops.

Drop size histograms have also been generated from drop counting data,
but at this stage should be considered a demonstration of system potential and
not as a reliable description of the observed sprays. An example is shown in
figure 65 for Jet A at 5 cm. This type of data presentation offers more com-

plete spray information than is contained in just the Sauter mean diameter,
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Jet A

AMK
(undegraded)

AMK
(84% degraded)

AMK
(90% degraded)

AMK
(93% degraded)

Ignition
Idle
Cruise
S.L.T.OQ*

Ignition
Idle
Cruise
5.5 T.0."

Ignition
Idle
Cruise
L. T:0.7

Ignition
Idle
Cruise
S.L.T. 0.*

Ignition
Idle
Cruise
3L 0"

*Sea Level Take Off

TAGLE )
Nozzle Spray Cone Angles

Initial Angle, deg

38
35
38
39

a2
21
43
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Because the histograms have been generated with linear bins, they do not show
the complete dynamic range considered (up to 2000 um). Even 1 or 2 drops in
these very large bins have a large effect on computed SMD values, The statis-
tical significance of such low numbers of particles is uncertain and their in-
clusion may also have biased the results, This is a question for future con-
sideration,

To investigate correlations between spray characteristics and flamma-
bility, photographs were made of droplets formed in the mini wing shear ex-
periment (section 4.,1.1) and FCTA (section 4.,1.2) under identical flow
conditions to those used in flammability testing (Section 6.1). It is noted
that for purposes of this study, operation of the FCTA was modified. This was
done so that reduced temperatures could be computed from it for comparison
with the mini wing shear experiments, and to attempt correlation of reduced
temperature with spray characteristics. The results are included here pri-
marily because the image digitization was somewhat improved over the mini wing
shear data and therefore yielded more meaningful results., Until system im-
provements can be made, all these experimental results must be considered pre-
liminary. Figure 66 shows the general flowfield surrounding the fuel source.
Attention was focused on the region just downstream of the torch where fuel
would pass through the flame of the ignitor, Figqure 67 shows the viewing
window with no flow and an inch ruler for scaling. Photographs were made for
a matrix of experimental points spanning airspeeds of 60 to 96 m s-1, fuel
flow rates of 0.2 to 0.8 kg s-1, and polymer concentrations up to 0.30%.

As a further test of the capabilities of the spray characterization
methodology developed, a few of these photographs were digitally processed,
The processed images were of clear pass and fail conditions for 0.30% FM-9 (60

m os=! and 96 m s-1 airspeeds respectively, both at 0.60 kg s=! flow rates),
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Figure 66. Apperance of liquid spray formed in the mini shear facility.
Downstream (right) of the nozzle is the oxyacetylene torch with
shroud used for fuel spray ignition.
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Figure 67. Viewing window for mini wing shear drop size measurements.
torch flame is visible below the 3-inch mark on the ruler.




and of a 60 m s=1 airspeed pass condition (with 0,25% FM-9 AMK) and marginal-
to-fail conditions (with 0.20% FM-9 AMK). Thus the pass/fail boundary was
examined both through variation of the polymer concentration and of airspeed.
No conclusions may yet be drawn from these data because of the poor quality of
A/0 conversion,

FCTA tests were photographed over a range of polymer concentrations., The
pass/fail boundary also occurred for these tests between 0,20% FM-9 and 0.25%
FM-9 so these two cases were digitized and processed.

The six conditions treated in detail are: for the mini wing shear (all
at 0.6 kg s-1 fuel flow rate), 0.30% FM-9 AMK at 60 m s-1 airspeed (pass) and
96 m s-1 airspeed (fail), 0.25% FM-9 AMK at 60 m s-1 airspeed (pass) and 0.20%
FM-9 AMK at 60 m s=1 (marginal to fail) for the FCTA, both at a flow rate
setting of 900 with a plenum pressure of 90 psi, 0.25% FM-9 AMK (pass) and
0.20% FM-9 AMK (fail).

Figures 68 and 69 show some of the raw images of the mini wing shear fuel
sprays. The flow is left to right with the torch exit flange in the picture
at the center left, The atomizing effect of the higher airspeed of figure 68
compared to figure 69 is apparent in the breakup of the central fluid fila-
ment. This explains why the pass condition (fig. 69) seems to contain less
fuel than the fail condition (figure 68) despite their equal fuel flow rates.

Digitization of six images from the mini wing shear and FCTA devices was
carried out for small windows corresponding to 43,7 mm2 of the actual spray
for the mini wing and 33.1 mm2 for the FCTA. The windows analyzed were then
vertically oriented rectangular regions at the approximate center of the
images for the mini wing, and square boxes in the lower right hand corner for
the FCTA.

Data derived from these images are listed in table 4 and presented in
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Figure 68. Drops formed by breakup of a Jet A + 0.03% FM-9 in an airstream of
96 m s~} velocity (fire test failed under these conditions).




Figure 69. Drops formed by breakup of Jet A + 0.30% FM-9 in an airstream of
60 m s~1 velocity (fire test passed under these conditions).




histogram form in figures 70-75. Looking first at the table, SMD values have
been computed based on alternative schemes. The upper (volume/area) value is
computed from separate volume and area data derived from area and perimeter
measurements as described in section 5.6. The lower (characterization) values
are computed by forming the cube and square of a single characteristic length
parameter for each drop. These values are then added and combired to form the
SMD in the normal way. While the values derived in these two manners differ,
the trends between them do not, The upper value is preferred as it is based
upon more direct caiculation of the total spray volume and area while the
lower value rests on a more narrowly applicable characteristic length
argument,

Results of the FCTA measurements show strong agreement of SMD and flam-
mability data, The failure corresponds to a spray SMD less than 1/3 that of
the pass SMD., As expected, the droplet number density decreases as the size
increases because the flows contain equivalent fuel quantities. Pseudo volume
densities reinforce earlier conjecture that a large number of small drops fill
the pixel space more rapidly than a small number of larger drops.

As was the case with the nozzle spray, mini wing shear results seem to
run counter to this trend, Large SMDs and relatively large fuel loadings cor-
relate with failures, while drop number densities are apparently unrelated to
flammability performance. This discrepancy will be more thoroughly investi-
gated when better digitized images become available,

The histograms offer further insight into the nature of the pass/fail
boundary relationship to counted drop sizes. The apparent difference between
the pass and fail histograms for 0.30% FM-9 AMK (fics. 70 and 71, respec-
tively) is mainly the much larger number of particles in the 0-60 um diameter

size range. This is the size range of drops which is expected to offer the

132



iS
ALITY

AL PAGE
OF POOR QU

OGN

!
L
i

4

(*suo1313Lpuod 3sayl Japun ssed 153
*paadsJie {-S W 09 pa 1533 uoLssaJdns 3Jrj)
Buwm Lulw auy 3@

4 1

“1an) 6-w4 TWE'Q + ¥V I3 ¢25Jn0s uoL3tubL Jeays
paAJasqo yibua| d13sLIaIDRJRY doJp jo weJb03StH 0L aJnbL4

5 HIINET WD

1

| |

133



-

*(suo131puod 3sayl Jaoun pa|Lej 333 uoLssaudns 3JLy)
paadsJie [.S W 96 ‘|3N) 6-W4 X0L'0 + ¥ I3F f3%24n0s uoLjtubL Jeays

Bupm Lule 3yl 0 PaAJasqo yibuay d13stJadeseyd dodp jo wesb03SLH

™% HIONTT WD
2

<4
=

*IL 34nbLy

- 2ot

w

134



w 0 y
AGe 9

OR QUALITY

AL P

ORICGM
OF PO

'TF!

*(suoi3tpuod asayy Japun K| |euibiew passed 3533 uoLssasddns aJtL4)
paads Jie =S @0 “19n) 6-W4 %S2°0 + V 9 f3%2Jnos uvoirtubi Jeays
Suim Lue 3yl 3@ paasasqo yibua| d13stiardedeyd dop Jo wes603SLH

™) HIONTT WVHD

' '
"
s 4

<4

4B

*2L ¥nbLy4

135



AL PAGE |9
UALITY

OF POOR Q

ORIGIN

*(suoi3tpuod 3sayl Japun pa|iej 3533 uvoLssasddn
L S aJt
M”oou.:a 1-S @ 09 “19n) 6-K4 T02°0 + ¥ 33 *32Jnos uotrrubi .:.wnw
LM LULE 3Yy] I PaAJasqo yibua| d13siiajdeseyd cdosp jo wesbojsip gL JnbLyg

% NG WHD
= 2 )

281 J 28

w

281

136



IS

R o

ORIGINAL

E£18
ALITY

OF POOR QU

-n-!

(suoriipuod as
3yl Japun passed 3523 uoLssaJddns aJ1j) aunssaud

Jojenwndoe wie |9 ¢
13 6-W4 252°
V124 3yl 1@ S2°C + ¥ I3 ‘3
P3AJ3SO yIbU3| d13sL4a3IRIRYD aogugmee”mM“wca_
03S LH

% HINT WD
- = ey =

+ i

4

*pL danhHy

r—

w

137



\\—-‘4 L
QUALtTY

ORIGINAL ¥
OF

*(suoL31puod 3sayl JIpun pa|iey 3sa3 uolssauddns aJ1)) adanssaud
Joje|nwnioe wie |*9 ‘|any 6-W4d %02°0 + ¥ I3 *3dJnos uor3tubt
v194 3yl 3 paAJasqo yjbua| d13stiaideseyd dosp jo wesboIstH  *GL aJnbL4

%) HIINTT “¥VHO

8

‘w 28 2y /74
A

%)
3 1 1
— — .

¥ S13d0¥0

138



JE

L]

OGN
OF POOR QUALITY,

% “A31sSu3(] awn|OA

£°2 SE°0 01 v°9 6°L 9% °0 opnasd doJq
¢/ A3Lsuag
Sy (113 g 0°2 g5 i | Jaquny doug
(uor3eyndwod y3bua|
082 £ 501 021 0€2 9 J13S1J3joedeyd)
w /aWS
(uo13e3ndwo)
68 062 081 6 02¢ L£ eaJy/awn|0A)
url/QWS
L1e4 sseqd LLtej/uLbaey sseq LLed sced
6-W4 202°0 |5WJ %62°0 [6-W4 %0E°0 6-W4 2£°
6-W4 6-W4 -S 09 -5 w09 1-S W 9 1-S w09
202°0 _2S2°0 = paadsJiy |= pasdsJiy| = paadsJiy|= paadsJ Ly
(1-s 6% 970 = Ju)
V124

JeayS builm Luly

s3s3] Y174 pue Jeays Buim tuly :AJewwns sd13stiels doug

v 378Vl

139



most support to the spray combustion. This trend is also apparent in figures

74 and 75 displaying FCTA pass and fail drop data. Again (note the difference
in Y axis scales) 2 significant difference exists in the raw number of parti-
cles of the size most supportive of combustion, The Sauter diameter indicates
only a weighted average size not the total number of particles present. Also,
since very large fuel droplets occur with very low frequency, their contribu-
tion to the SMD, which is significant, is very difficult to measure. Current

trends indicate that both drop density and SMD combine to determine mist flam-
mability. The low quality of the digital images used and some remaining soft-
ware problems still existing at the time of writing do not permit formation of
definite conclusions at this stage. Figure 76 permits a direct comparison of
drop population changes at various pass/fail boundaries. Clearly in the FCTA
tests for which the data were most reliable, the relative increase in number

density is dramatic proceeding from the pass to the fail case.

6.3 Nozzle Flow Behavior

Engine manufacturer fuel nozzle specifications are stated in terms of
fuel flow rate for each operating condition3, Because only fuel pressure is
measured during operation of the nozzle spray facility, calibration of flow
rate as a function of nozzle pressure drop was carried out. Results of this
calibration for Jet A, AMK, and partially degraded AMK are shown in figures
77 and 78.

These data were reduced by representation in terms of the Reynolds num-
ber, Re, and the nondimensional pressure head, ZAP/sz. The pressure drop
used is that between the storage tank and the nozzle exit plane, and thus rep-
resents the drop in pressure across various orifices and through some piping.
The velocity is the average of that in the inlet piping. Similarly, the Rey-

nolds number is based on the pipe diameter between the tank and the nozzle.
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Figure 77, Fuel mass flow rate as a function of nozzle pressure drop;
primary jet.
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Figure 78. Fuel mass flow rate as a function of nozzle pressure drop;
secondary jet.
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It should be clear that the pressure drop is the result of combined viscous

effects (including pipe and orifice flows) and flow acceleration. These data

are plotted in figure 79.

Because the AMK will shear thicken as it flows through the pipes and
nozzle, a measure of the pressure drop may equate to a measure of the shear
thickening ability of the AMK. Since the AMK's ability to shnar thicken is
tied Lo its degradation level, it is suggested that a measure of the pressure
drop across an arbitrary but specified flow network will equat= to a measure
of degradation level. To test this hypothesis, it is suggested that if the
only reason for changes in the pressure drop at constant flow rate is shear
thickening, then by just choosing the correct value of the viscosity, all of
the pressure drop data plotted as a function of Reynolds number will fall on
one line. The results of this attempt are shown in figure 80. The effective
viscosity chosen for each sample to yield the best fit is shown in the accom-
panying table. The fact that the data do conform to one line just by varying
the viscosity demonstrates that viscosity changes (shear thickening) alone do
explain flow differences. If other, unrelated changes in the flow (e.g.,
turbulent transitions) were taking place, the curves would be shaped differ-
ently besides possibly being shifted, and simple variation in viscosity would
not collapse the data.

The outcome of this analysis is that measurement of pressure drop across
a flow circuit where shear thickening may occur might be a sensitive measure

of fuel degradation level., The sensitivity of this technique is indicated by

the very wide range of apparent viscosity shown in figure 80. It is suggested

that in future work, a device should be built specifically for this purpose to

further test the feasibility of this concept.
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VII. SCALING CONSIDERATIONS OF P

7.1 Dimensional Analysis

The experimental variables that affect the breakup and atomization of the

fuel jet include at least the following:

Uo = airspeed
UL = area average velocity of the fuel jet
d = dimension of the fuel jet orifice

The physical constants that are important to breakup and atomization include

at least the follewing:

Pp = air density (=1.22 kg/m3)

P = fuel density (=800 kg/m3)

np = viscosity of air (=1.8 x 10-% kg/m s)

n. = viscosity of fuel (=3.1 x 10-3 kg/m s for 0.3% FM-9)
o = surface tension of fuel (= 0,028 Nt/m for Jet A)

The non-Newtonian properties of the modified fuel, of course, dominate the
dynamics of droplet formation. The information necessary for characterizing
these non-Newtonian properties must include the critical shear rate, §c, for
the rapid onset of shear thickening. For 0.3% FM-9 at 24°C, yc = 3100 s-1
(ref. 41).

After dimensional analysis, these nine parameters can be arranged into
four independent nondimensional variables and two constants. We have selected

the following groupings:

s PA ___ 5 PL/PA > NL/Mp (7.1)

Thus, the droplet size, §, depends on the foliowing nondimensional variables:
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T
a) ___ = De, the hydrodynamic Deborah number of the fuel jet., It is

dy ¢
the ratio of liquid shearing rate to the critical shearing rate.

Uss
b) ___ = Dep, the aerodynamic Deborah number, which is the ratio of

d«}c

mean azrodynamic shearing rate to critical shearing rate,

PLULd
c) = Rcp, the hydrodynanic Reynolds number of the fuel jet
L
which is the ratio of inertial hydrodynamic forces to viscous forces.
U 2d
d) Pp = We, the Weber number, which is the ratio of aerodynamic
(¢}

forces to the surface tension of the fuel.

Any other nondimensional grouping of the parameters can be expressed in
terms of these four. To this level of complexity, at least, we expect any two
facilities and generating conditions to exhibit dynamic similarity if their

values of De_, Dep, Re, and We are in the same range.

7.2 Fuel Jet Parameter Space

The two nondimensional variables that should most affect the dynamic
similarity of the fuel jets are hydrodynamic Reynolds number and hydrodynamic
Deborah number. In figure 81 the FAA wing shear facility, the JPL wing shear
facility, and the Flammability Comparison Test Apparatus (FCTA) are each lo-
cated in the parameter space formed by Re| and Del.

With the FAA facility, the highest Deborah numbers and Reynolds numbers
are produced at a massflow of 227 1/s (60 gal/s) through a 7.6 cm (3 inch)
orifice. The lowest values are produced at a massflow of 38 1/s (10 gal/s)

through a 19.7 cm (7 3/4 inch) orificed.

148



- 73
PO B e
Rl L b L
O paon GuALITY

100 | ! I
czg' FAA WING SHEAR
Q100 ~
el
0
Z
P _
o 2 10t - JPL WING SHEAR |
3
S
o) 3l FCTA _
& 10
0
>..
I
102 | | |
08 1072 107] 1 10
HYDRODYNAMIC DEBORAH No.
DeL =.._.E--
"y
Ye

Figure 81, Parameter space relevant to fuel jet similarity. The Deborah
number is referred to the fuel critical shear rate, vyc.
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With the JPL facility the highest Deborah and Reynolds numbers were pro=-
duced by a massflow of 0,68 1/s through a 0.79 cm orifice. The lowest were
produced by a massflow of 0,28 1/s through a 2,15 cm orifice,

The massflow range tested with the FCTA was 11.22 g/s (speed control
range of 400-950).

Based on figure 46, there is no change in the overall flammahility as the
Tiquid jet Reynolds number increases. At high Reynolds numbers typical of the
FAA facility the jet breakup should be dominated by inviscid mechanisms. How-
ever, the relationship between Reynolds numbeér and droplet size is not well
understood. Most of the available research however is concerned with the
breakup of low Reynolds number jets, such as occur in nozzle sprays. Flow vi-
sualizations by Hoyt and Taylor5l of high Reynolds numbei water jets indicate
that the largest droplets scale with the jet instability which depends on jet
speed and diameter. In their study the jet stability was insensitive to aero-
dynamic shearing and was insensitive to the addition of a drag reduction poly-
mer. However, the size of the smallest droplets changes with aerodynamic
shearing and with the polymer additive. These observations suggest that the
distribution of droplet sizes is related to the distribution of turbulence
scales in the jet. The range of turbulesce scales become: larger with in-
creasing Reynolds number. This may tend to decouple the size of the smallest
droplet from the size of the jet. For example, the smallest turbulence scale
within the liquid jet is the dissipation scale, &, which is a function only
of the kinematic viscosity (Y| = M/PL) and the turbulent dissipation rate

EL42'

1/4
Bl o= (VL35 (7.2)
The turbulence level, uy', and the dissipation rate, €|, are dominated by the

largest turbulence scales represented by A, the integral scale. For example,

150



if the liquid was newtonian and the jet turbulence was 1isotropic and

homogeneous,

e~ (UL)3/a0 (7.3)
In that case

SLom a4 (vyur)3/4 (7.4)

and so the smallest scales increase much slower than the largest scales,

Strictly speaking, these scaling arguments apply only to Newtonian
fluids. The presence of the FM-9 polymer will directly influence the smallest
turbulence scales and, if the Deborah number is large, the jet dynamics will
be modified as well. Experiments with the JPL wing shear facility and the FCTA
over a range of Deborah number (figure 81) indicated that thw hydrodynamic
Deborah number did not have a strong effect on flammability (figure 45). In
larger facilitins the Deborah number will be smaller and so should influence
the flammability even less.

Experimental evidence suggests no strong link between liquid jet Reynolds
number and flammability. Figure 46 shows no apparent trend in flammability
for either the mini wing or FCTA tests. Since drop size variations should in-
fluence the flammability, this indicates little relationship between the size
of drops generated and the fuel jet diameter or Reynolds number.

The viscous terms in the turbulent energy budget are modified by the non-
Newtonian effects, and so the turbulent dissipation is directly affected by
the FM-9 additive. One way of visualizing this effect is in terms of the
critical shearing rate, ;c, of the modified fuel. If the turbulent shearing
rate, 6“; /0%, exceeds ?C then rapid shear thickening should reduce the pro-
duction rate of turbulent energy. Roughly speaking, turbulence production is
equal to the turbulence dissipation rate, €, which is expected to be Timited

by the critical shearing rate. We recall that for a Newtonian liquid
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)2
L = 15y (7.5)
BX !
It is then expected that the product 15vL(§C)2 will, 1in the case of AMK, form

an upper bound on € . The dissipation scale, j, would then be bounded by
1/4 . 1/2 ,
gLo= [V3/eL] " > [VL/3.9 Yl y

For the case of 0.3% FM-9, and &C = 3100 s-1, eqn. (7.5) suggests that the
dissipation scale is bounded by 20 pm. This number is quite small and may
indicate that the inequality is much too conservative,

Based on these arguments, we would expect that the formation of small
turbulence scales within the fuel during breakup is promoted by the combina-

tion of large hydrodynamic Reynolds number and small Deborah number.

7.3 Aerodynamic Parameter Space i

The two nondimensional variables that most affect the external aerodyna- %
mics of fuel atomization are Weber number and aerodynamic Deborah number. In
figure 82 the three facilities are located in this parameter space.

The range of airspeeds for the FAA facility was 57-82 m/s and the range
of jet dimensions was 7.6-19.7 cm. The range of airspeeds used in the JPL
facility was 60-100 m/s and the range of jet dimensions was 0.79-2,15 cm. The
range of airspeeds tested in the FCTA was 50-80 m/s (5.1-6.8 atm plenum air
pressure), The full-scale estimates were based on an airspeed of 80 m/sec and
a jet dimension of 1 m.

The dynamics of jet breakup involve scales on the order of the jet dimen-
sion. In all three facilities the Weber numbers were large enough that sur-
face tension was probably unimportant at those large scales. Turbulence
scales are much smaller, however, and it is probably the combination of sur-

face tension, turbulent shearing, and shear thickening that determines the
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ultimate drop size., In that case, the combination of parameters that provides
tne poorest antimisting performance is large Reynolds number, large Heber num-
ber and small Deborah number.

Based on those arguments the FAA facility might be expected to produce
less fire protection than the JPL facility or the FCTA. The primary flamma-
bility measurement used with the FAA facility was the growth rate of the fire-
ba11. Salmon reports that growth rates greater than 6 m/sec were considered
to be in the "fail" region. His data is replotted in figure 83 as a pass/-
fail boundary of airspeed vs. polymer concentration. Pass/fail bounds for the
JPL facility, from figure 38, are also replotted here as a pass/fail boundary.
In the JPL facility, fire protection is apparently provided up to airspeeds
that are 10-15 m/sec higher ian those of the FAA facility. The spread may be
even larger than that because the FAA airspeeds are nominal values, and the
actual airspeeds at the location of the wing were somewhat less. This compar-
ison must be viewed with some caution, of course, because different flamma-

bility measures were used.

7.4 Aerodynamic Shearing

External aerodynamic shearing of the fuel by the airstream will always
dominate the hydrodynamic shearing of the fuegl by the orifice because fuel
velocities are much smaller than the air velocity. Consequently, aerodynamic
shearing is very important to the antimisting properties of the modified fuel.
These shearing rates are difficult to scale because they are dominated by tur-
bulent shearing at high Reynolds numbers. The turbulent shearing rate is
directly related to the turbulence dissipation rate e. If the turbulence is
isotropic at viscous scales, from equations (7.3) and (7.5)

dy' 2

W E/15vp s (u')3/15ApVp, (7.7)
DX
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if the turbulence is isotropic at the largest scales (subscript A) and where
u' is the rms turbulent velocity. This and subsequent Newtonian relations are
employed as approximations for lack of a full rheological description of AMK
and because non-Newtonian equivalents have not, in many cases, been devised.
Their use only for estimation of the relative jmportance of various terms is
further justified if the viscosity, v, is considered that of the liquid at its
local state (i.e., not necessarily the zero shear viscosity). The ratio of
turbulent shearing rate to mean shearing rate is then

bul/ax W' 23/2 o d 172  Ud 172 (7.8)
[N [z‘] ) L) '

For turbulent shear flows, the turbulence level is typically in the range
10-20%. It u'/U,= 0.1,

dy'/d

X 1/2

Uod
~ 0,01 [d/aplt/e [ 17, (7.9)
U /d VA

@

If the integral scale of the turbulence scales with d, the physical dimension
of the fuel spill, then the ratio of turbulent to mean shearing depends on the
Reynolds number of the flow. For Reynolds numbers, u,d/vA, greater than 104
turbulent shearing should dominate. Thus, we may conclude that all of the ex-
periments (FCTA, mini wing, FAA wing shear) 1ie within the range of dominant
turbulent shearing. In that respect they accurately model the aerodynamic
breakup of an aircraft fuel spill. If any jet scaling effects do have impor-
tance they would tend to result in larger drops appearing in larger scale
crashes. Since smaller drops form a more flammabie mist, the laboratory ex-
periments would be more critical than an actual crash in terms of flammable

mist suppression.
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VIII. Conclusions

1)

The diverse nature of the jet breakup scaling parameters prevents
perfect replication of all aspects of the full scale event

simultaneously in the laboratory.

Theoretical scaling arguments suggest that the smallest relative
drop sizes, d/A, should be observed for large Reynolds and Weber

number flows with low Deborah numbers.

A reduced temperature has been defined which quantities the extent

of fuel mist combustion.

A correlation between increased drop size and increased fire
suppression has been found for some FCTA tests. #More information
such as drop density is needed to fully characterize mist
flammability. This information is, in principle, available in the

photographs made for this investigation.

Mini wing shear and Flammability Comparison Test Apparatus (FCTA)
results are found to be similar in terms of the reduced

temperature,

Increasing reduced temperature with increased fuel/air ratio (e.g.,
figures 39 and 50) indicate that combustion is vapor limited (lean

burning regime) in both the FCTA and mini wing shear devices.

A relationship of the form 6 = acP appears to exist between the
antimisting polymer concentration, ¢, and the extent of combustion
expressed as the reduced temperature, 0 (a and R are constants)

(see figure 47).
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Radiometric calorimetry has been found capable of resolving a fire
suppression pass/fail boundary. Thermocouples offer the advantages
of increased spatial resolution and decreased sensitivity to the

presence of radiating surfaces.

Measurement of apparent viscosity of the fuel during induced shear
thickening in a nozzle flow provides a sensitive measure of polymer

degradation level.
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APPENDIX I
DERIVATION OF THE NON DIMENSIONAL TEMPERATURE, 0,
AS A MEASURE OF FLAMMABILITY

Consider an experiment performed with certain air and fuel mass flow
rates, with a resulting temperature rise reading in the combustion region. If
the experiment is repeated identically except with a doubling of the air mass
flow rate, a different temperature rise may be observed. Is this change in
the temperature rise due to some fundamental difference in the fuel atomiza-
tion and combustion as airflow increases, or is the temperature rise changed
simply because in the second test the combustion region was diluted with twice
the airflow of the first test? Furthermore, how may different flammability
tests performed with widely varying fuel/air ratios be compared? Since the
effect of antimisting additives is to isolate much of the fuel in large, in-
combustible fuel drops, the net antimisting effect is to decrease the fraction
of the total fuel available which burns, i.e. the flammability.

For all of these reasons, comparison of different tests within one ex-
periment, comparison of tests between different facilities, and measurement of
the fraction of the total fuel available which is burned, a more sophisticated
measure of flammability than simple temperature or heat flux measures is in-
troduced. This new measure of temperature is called 6, the nondimensional
temperature. Simply stated it is the ratio of the temperature rise observed
in the combustion region to the temperature rise one would observe in the com-
bustion region if all of the available fuel would have burned.

For many practical open combustion calculations the equation

af = CpT™m (A-1)
is used where Cp is an average specific heat value of the combustion gases, T*

is the measured temperature rise and m is the mass flow rate of combustion
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gases. The term qf is given by

4F = f W"F, (A-2)
where gf is the fuel "heat of combustion" and m*f is the rate of fuel injec-
tion, assuming all fuel injected 1is burned. Thus

i W¥E = G T (A-3)
The further assumption is then made that Cp of the combustion products is ap-
proximately equal to Cp of air, and similarly that m of the combustion gases
is equal to m of air. Both of these assumptions are based on the large flux
of air compared to fuel typical of most combustion systems. The assumption is
particularly valid in experiments like the mini wing shear where Air/Fuel mass
flow ratios are typically greater than 10.

The temperature rise we would then expect to reach if the fuel injected

were completely burned is then given by

T = camcms JET (A-4)

Cp(air)mair

If only a fraction, x, of ﬁf burns then by following an identical derivation
to that which leads to eqn. (4) we reach an expression for a new temperature
rise given by

T = comemnn e (A-5)

Cp(air)mair

T is the temperature rise measured when only a fraction, x, of the total fuel
injected, h*f, actually burns. T is thus the temperature rise measured in
actual combustion experiments where complete combustion of the fuel does not
occur. If we form the ratio T/T*, we can measure x, the fraction of fuel

burned, because
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thus

The right hand side of the equation contains quantities which are avail-
able either during the experiment by direct measurement (T is the measured
temperature rise, m*s is the fuel mass flow rate, and m(ajp) is the air mass
flow rate) or from compiled tables of thermodynamic properties (Cp(air) and
df). Thus for any given combustion experiment we can compute what the extent
of combustion is. We see immediately too that if nothing is altered except a
doubling of the air flux, and the extent of combustion, x, does not change,
then T will be half as large which answers a question posed early in this dis-

cussion. Obviously for any experiment, 0< x < 1 because at x = 0, T = 0, and

at x = 1, T = T, the maximum theoretically achievable temperature rise. '
Finally, for convenience we define
0= X
and call o the "nondimensional temperature" or the "reduced temperature" be-
cause it is a measure of the achieved temperature rise compared to the maximum

achievable temperature rise for the particular experimental conditions.

In the AMK program, we may now compare the flammability of fuel in, for

example, a low airspeed test, to the flammability in a high airspeed test. We

see that if T is the same for both tests, we may earlier have been tempted to

160



conclude that the flammability was the same, Now it is realized that in the
high airspeed test, h(ajr) is much greater, thus X or 6 must be much greater
for the same T, the same measured temperature rise. Finally, for these two
hypothetical tests we may confidently conclude that at high airspeed, more of
the available fuel was burned, and thus even though the observed temperature
was no different, the fuel spray was more flammable at the high airspeed than
at the low airspeed. This is because flammability in this context means how
readily does the fuel burn and what fraction of the total available fuel is

combusted, to which the answer is in measurement of 0.
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Appendix 11
AMK QUALITY CONTROL MEASUREMENTS

A special run procedure, described below, was devised for the FCTA to

enable rapid relative flammability measurement for quality control tests only.

This procedure yields a single point flammability measure and is not intended

to replace standard FCTA procedure. It was incorporated because of the need

to carry out testing on a routine basis,

1.

2.

4,

5.

The speed control dial which controls the fuel injection rate is set
at 900,

The air accumulator tank pressure which determines the air flow rate
is allowed to climb to 6.5 atm (95 1b in-2). This reading is taken

at the highest pressure reached during the run and occurs just as the
air begins to flow through the nozzle.

Temperature measurements are made with a 0.76 mm diameter lead,
chromel-alumel thermocouple., The probe is placed Tevel with and 25cm
downstream of the exit flange tip, Thermocouple readings are made
with a strip chart recorder set so that a 1 mm deflection (the
minimum resolvable) corresponds to a 240 temperature change.

A series of runs is performed until these tests yield results con-
sistent within the measuring precision of + 120C,

A photograph is taken of each run, exposed 9 seconds after the set
switch is tripped. Kodacolor print film (400 ASA, 35 mm size) is
exposed for 0,008 of a second at f2, The 35 mm camera equipped with
a 55mm focal length lens is placed 3 meters from the apparatus so
that the edge of the FCTA is visible on one side and as much of the
flame is visible as possible. These provide a qualitative record of

each test.
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