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Chapter 1 

INTRODUCTION 

1.1 Background and General Statement of Problem 

During the past decade, the importance of alternative energy source 

development has gained increased recognition. Faced with both rapidly 

depleting domestic oil reserves as well as politically and economically 

unstable foreign sources of petroleum crude, the United States must 

unfold alternative domestic energy sources. 

In the past, liquid hydrocarbons have provided an abundant, econom

ical source of easily refined and combusted mobile fuels. However, as 

various factors deleteriously affect the availability of these petroleum 

products, significant reductions in their use through energy conserva

tion or fuel substitution is demanded. 

H1storical~y, the automotive and transportation sector has formed 

a large segment of the'total U.S. petroleum diet. Combined, transporta

tion demands comprise over 53% of all United States' petroleum require

ments and nearly 25% of its total energy needs (1)*. In response to 

this concentrated demand on petroleum-based fuels, both government and 

private programs have directed major efforts toward developing alterna-. 

tive mobile fuels for specific application to transportation and 

automotive areas. In addition, equal importance has been placed upon 

the goal of more efficient use of presently available energy sources 

by transportation. 

*N~bers in parentheses refer to entries in Reference List on page 102. 
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In the quest to cultivate viable near-term alternative fuels, 

alcohols have received significant consideration for motor fuel applica

tions. There are three common types of alcohol: ethyl, methyl, and 

isopropyl. The former two alcohols warrant evaluation as gasoline 

and fuel oil substitutes since they are generally produced from non

petroleum distillates (2). 

Arguments in favor of and against development of alcohols as 

petroleum fuel alternatives are numerous. Proponents emphasize the 

potential "renewability" of alcohols, a result of their ability to be 

produced from biomass, a see~ngly perennial supply of fuel feedstock. 

Agriculture leaders point out the beneficial effects of alcohol 

development: reduction of United States foreign oil dependency and 

the creation of a domestic market for surplus agricultural commodities. 

Thus, a sound economic base is created for an often ailing and unstable 

farm community (3). Critics contend that present gasohol subsidies 

have already introduced several negative factors; energy imbalance in 

alcohol production and increased pollution during alcohol refining are 

cited as disbenefits resulting from gasohol production (4). 

Alcohols may not necessarily represent the most resource-efficient 

or cost-effective use of available fuel feedstocks. Howeve~, it is 

generally recognized that these fuels are among only a very few 

alternative energy sources which resemble currently.used petroleum 

fuels and permit consumption in existing power plants with minimal 

modifications (5). As a result, alcohols will probably continue to 

receive consideration and development as petroleum-based fuel 

substitutes. 
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Methanol, the most simple of alcohol fuels, has generated 

sigpificant interest among alcohol proponents. Its production involves 

a catalytic reaction of carbon monoxide and hydrogen with the fuel 

feedstocks including natural gas, wood wastes, and coal. In an effort 

to make use of large, undeveloped resources of midwestern lignite, 

studies have shown that this economical and abundant feedstock can be 

used to produce equivalent methanol yields comprising nearly 45% of the 

total lignite available energy. Current (1979) costs for methanol 

production from this source are estimated to be approximately twice 

that of gasoline (3). 

Ethanol is commonly produced by one of two processes: fermenta

tion of grains and other sugar or starch feedstocks or by the synthesis 

of ethylene (6). Since ethylene is in fact a petroleum distillate, 

advocates of ethanol development favor fermentation of renewable feed

stocks for its production. In the fermentation process, a decomposition 

is brought about by enzymes on sugar solutions or saccharafied mashes 

of starch containing materials such as grains and grasses (7). Ethanol 

production facilities include distillation columns designed to separate 

ethyl alcohol from water used and formed in the feraentation process. 

Since ethanol is completely soluble in water, the final proof, generally 

between 100 and 190, is a direct function of the distillation effi

ciency. Due to the formation of azeotropic bonds with water, an 

additional processing step beyond distillation is necessary to obtain 

200 proof ethanol (7). This final processing step usually involves the 

addition of bond-breaking benzene, followed by a final distillation; 

"~s adds significantly to production costs. 
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Methanol, due to the more complex nature of its production rela

tive to ethanol, is commonly manufactured in large-scale industrial 

facilities. The simpie fermentation process involved in ethanol 

production on the other hand, lends itself more readily to small-scale 

applications and in particular to individual farm manufacture. 

However, the natural presence of water following initial distillation 

is of concern especially as applied to these small, farm-operated 

ethanol stills. Since higher quality ethanol (i.e •. higher proof) 

entails higher production costs, justification of further distillation 

must be based on several factors: engine performance and emissions 

when using anhydrous fuel, and engine wear rates resulting from water 

effects. 

The use of alcohol fuels in internal combustion engines is not 

new. These fuels have been used intermittently in spark ignition 

engines since their invention. The lower alcohols, methanol and 

ethanol, are known to be excellent fuels for spark ignition (SI) 

engines due to their high octane ratings, lean flammability limits, 

increased thermal efficiency and low exhaust emissions (8, 9). 

Numerous studies have examined the effects of alcohol both as a fuel 

supplement and as the primary fuel. Significant SI performance 

improvement and emission reduction have been shown (10-12). In the 

past, little attention has been given to the utilization of alcohol 

fuels in compression ignition (CI) engines. This is due largely to 

the low cetane number (extrapolated to be approximat~ly 0-5 for 

alcohols (8» and the resultant combustion-related problems associated 

with alcohol usage in these power plants. 
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The development of alternative fuels, however, must be coupled with 

more efficient use of all fuels. The compression ignition engine has 

surfaced as a potential ingredient of this more efficient energy utiliza

tion, particularly in its broad application as a substitute for the 51 

engine in light-duty service. Factors including higher compression 

ratio, reduction in pumping losses, and lean part load combustion are 

primarily responsible for the Diesel engine's improved thermal 

efficiency compared to its spark-ignited counterpart. 

Tests conducted by Southwest Research Institute (13) have compared 

the Oldsmobile Cutlass Diesel and a production Volkswagen Rabbit Diesel 

with similar gasoline-fueled models. "The results corroborate 

recognized tradeoffs of Dieselization: ~ome ·30-60% better fuel economy, 

moderate losses in acceleration, a bit more noise and levels of 

regulated emissions comparable to those of converter equipped gasoline 

cars (14)." 

However, previously unregulated Diesel emissions are currently 

creating concern. Particulates, reactive hydrocarbons, smoke, and odor 

created during fuel-rich combustion (characteristic of diffusion 

controlled reactions) may pose serious problems with an expanding market 

of light-duty Diesel-powered vehicles. In particular, the formation 

and biological activity of Diesel particulates have recently generated 

substantial concern. 

Despite the several emission problems linked with Diesel combus

tion, the CI engine is likely to playa major role in future automotive 

applications. Diesel engines already assume much greater importance 

than 51 engines in the economies of developing nations; particularly 

concentrated use ex~sts in heavy transportation and agriculture (15). 
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It is apparent then that alternative fuels such as alcohols must be 

applicable to Diesel combustion if they. are to contribute signifi

cantly as long-term substitutes f~r petroleum-based fuels. 

The poor auto ignition properties of alcohols are responsible for 

~o types of combustion complications in Diesel engines: severe knock 

due to rapid burning of vaporized alcohol, and combustion quenching 

caused by high latent heats of vaporization and subsequent charge 

cooling. Rough or knocking combustion in Diesel engines is a complex 

phenomenon. It is generally associated with rapid rates of pressure 

rise re~ulting from increased ignition delay and rapid combustion of 

gaseous fuel. Attempts to improve the combustion of alcohols in 

unmodified Diesel engines have included the use of ignition accelerators 

such as amyl nitrate and cyclohexyl nitrate (16). Although having a 

beneficial effect on knock reduction, these additives are prohibitively 

expensive and tend to produce increased levels of nitric oxide emissions 

(17, 18). 

Engine modifications to improve alcohol combustion have included 

increased compression ratios, spark ignition aSSist, and imposed surface 

ignition (16, 19, 20). Modifications of this type frequently improve 

alcohol combustion, but are costly. Documented usage of neat alcohol 

has been achieved by utilizing these fuel and engine modifications. The 

poor compression-induced ignition of alcohols, however, has directed the 

major investigation of alcohol fuel utilization in Diesel engines toward 

variations of dual fueling. In such cases, alcohols are burned in 

conjunction with an amount of Diesel fuel oil which acts as an ignitor 

for the alcohol fuels. Typically, dual fueling has been conducted by 

one of three major processes: 
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1) formation of alcohol-fuel oil blends or emulsions, 

2) separate injection of alcohol and fuel oil, and 

3) fumigation, carburetion, or injection of alcohol into the 

intake air change. 

To date, extensive work has been conducted evaluating each of 

these methods of dual fueling. Attempts to form stabilized emulsions 

or blends of alcohol and fuel oil have been unsuccessful when even 

trace amounts of water were present in the mixture. Strait et. ale 

injected stabilized emulsions of Diesel fuel oil and up to 407. absolute 

ethanol; separation problems were noted if as little as 0.27 percent 

water was present in the alcohol (21). Methanol presents a more 

severe separation problem; water toleran~e of methanol-fuel oil blends 

is only about 1/5 that of similar ethanol blends (6, 22). 

Surfactants have been added to stabilize alcohol-fuel oil blends. 

Although infinitely stable mixtures of up to 307. alcohol were produced, 

these additives added significantly to the cost of the fuel blend 

(5, 23). 

Fuel separation problems have directed some investigators toward 

the direct use of unstable mixtures. In most investigations, fuels 

were stored in separate tanks and mixed ahead of the injection pump or 

nozzle. Holmer (24) experimented with forming mixtures in the injection 

pump and in the injection nozzle. Engine performance, in general, was 

comparable to that during fuel oil operation. However, unanticipated 

nozzle problems resulted from the lower dampening qualities of methanol; 

injector needle contact points showed increase wear. Mechanical mixing 

devices create unstable or moderately stable blends which have been 

used with limited success. Lawson et ale (25) produced an acceptably 
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stable emulsion which was supplied directly to the standard fuel 

inj~ction system. Mixtures containing up to 30% methanol were injected 

with noted increases in engine efficiency and reductions in particulate 

emissions. 

Separate direct injection of alcohol eliminates the need to form 

stabilized alcohol-fuel oil blends. Dual fuel systems, including 

reservoirs, pumps and injectors, are required for this method of dual 

fueling. 

Fuel of poor combustion properties is injected through the primary 

nozzle and supplies the bulk of the engine fuel requirements. A good 

autoignition-property fuel (high cetane number) injected through a 

secondary nozzle, acts as a pilot which ignites and supports combustion 

of the primary fuel. Factors controlling the start of combustion in 

dual injected Diesel engines utilizing alcohol fuels have been 

identified as: (26) 

1) pilot fuel quantity used to liberate the ignition energy, 

2) timing and duration of the pilot oil and ethanol injection 

periods, 

3) injection pressures, and 

4) compression temperature at the time of injection. 

Important influences on the type of combustion are associated 

closely to the interaction of the pilot and alcohol fuel charges. 

This interaction is often regulated by the nozzle spray pattern and 

injector location (27, 28, 29). Tests generally ·confirmed that 

combustion started in portions of the fuel oil spray which had not 

mixed with the alcohol charge. Undue ignition delay was also avoided 

by minimizing unfavorable interaction of the two sprays. 
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Optimization of factors most strongly affecting dual injection 

combustion has produced excellent results. Gaseous pollutants and 

visible smoke have been reduced while combustion problems related to 

increased ignition delay have been minimized (27). Despite the noted 

advantages, negative factors unique to dual injection of alcohols do 

exist. Cost and complexity are significantly increased by the 

requirement of two separate fuel injection· systems. Related fuel 

system problems, ranging from insufficient alcohol lubricity for 

critical pump parts to corrosive and mechanical injector problems, 

have also been reported (30). 

Early investigation of methods to improve Diesel engine performance 

showed that substantial gains could be ~ade by fuel addition to the 

intake air (31). This work formed the basis for fu~igation, a commonly 

used method of alcohol introduction in Diesel engines. 

Fumigation is a particularly attractive means of alcohol utiliza

tion in Diesel engines; successful operation is achieved with minimal 

engine modifications. Up to 80% of the total fuel requirements have 

been carburetted into a Diesel engine at the Indian Institute of 

Technology with generally satisfactory performance over most of the 

load range (32). In multicylinder testing, Houser et ale (33) 

fumigated up to 40% methanol into an Oldsmobile Diesel engine and found 

methanol substitution to be limited either by poor combustion or knock 

limited operation. (A more thorough discussion of fumigation is 

presented in Section 2.2.3.) 

Results of preliminary studies indicate that although alcohols are 

not generally suitable for neat alcohol combustion in Diesel engines, 

performance results.generally support at least some percentage of 



10 

alcohol substitution via dual fueling. However, further investigation 

of alcohol dual fueling should be focused on two areas: 

1) the potential hazards associated with particulate and exhaust 

emissions produced under alcohol-fueled conditions, and 

2) the performance and emissions related effects of low-quality, 

i.e., lower proof, alcohols. 

Initial work by Houseret a1. (33) has indicated that particulate 

mass emissions, although reduced by alcohol substitution, are of 

enhanced biological activity, thus posing a possible health problem. 

Low-quality alcohols are likely to be produced by cpst-conscious small

farm distillaries. To date, only limited investigation of these low

quality fuels has been conducted. 

If alcohols are to achieve Significance as a Diesel fuel 

substitute, further work is justified to provide additional information 

in these areas. Further evaluation of emissions-related biological 

hazards as well as performance and emission trends of low-quality 

alcohol combustion forms the basis of this experimental program. 

1.2 Specific Objectives 

In light of past studies of performance and exhaust emissions in 

alcohol-fumigated Diesel engines, the specific objectives of this study 

are set forth as follows: 

1. Establish a baseline matrix of engine operating conditions as 

defined by rack setting and engine speed. Document engine performance 

as well as exhaust emissions at these conditions for certified No. 2 

Diesel fuel oil operation. 
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2. Develop and install instrumentation to provide information 

regarding injection timing, ignition delay, pressure, rate of pres8ure 

rise, and knock intensity for baseline and alcohol operation. 

3. At each 2400 RPM test condition, fumigate various proofs of 

ethanol and methanol as limited by engine knock or misfire. Obtain 

for each operating condition, performance data including thermal 

efficiency and power output as well as regulated emissions data (CO, 

HC, NO ). 
X 

4. For various test conditions collect sufficient exhaust 

particulate to document the effects of alcohol fumigation on the 

biological activity of these solid phase emissions. 
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Chapter 2 

THEORETICAL CONSIDERATIONS 

2.1 Fuel Characteristics 

Complete assessment of changes in performance and emissions of an 

engine utilizing alternative fuels must include an insight into the 

differences in physical, chemical, and combustion properties of the 

fuels. Alcohols, although representing the most attractive near-term 

substitute for petroleum-based fuels, differ greatly with respect to 

certain fluid and combustion characteristics from their petroleum

based hydrocarbon counterparts. Selected liquid fuel properties 

comparing anhydrous ethanol and methanol with fuel oil are presented 

in Tables 2.1 and 2.2. Before attempting to interpret observed changes 

in engine emissions and performance occurring during alternative 

fueling, some of the ioportant characteristics of the diffe:ent fuels 

must be considered. 

2.1.1 Stoichiometry and Charge Density 

Diesel combustion unlike spark ignition combustion is a diffusion

controlled, heterogeneous process. As such, localized regions of air 

and fuel burn in nearly stoichiometrically correct proportions. The 

Diesel cycle's unthrottled aspiration results in an overall stoichi"

ometry which is quite lean at light load and would not normally result 

in spontaneous ignition. By proper design of the combustion chamber, 

combustion can be initiated and maintained to yield a nearly complete 

reaction. 



Table 2.1 

Physical and Chemical Liquid Fuel Properties 
(Adapted from Houser (33). Obert (35) and Yost (36» 

Ethanol Methanol No.2 Fuel 011 

Phlsical Pro~erties 

Specific Gravity at 68°F .795 .796 .846+ 
Liquid Density (Ibm/gal) 6.60 6.61 7.05 

Boiling Temperature (OF) 172.0 149.0 376-627+ 
Freezing Temperature (°It') -170.0 -144.0 

Cp at 60°F (Btu/Ibm-OF) .648 .60 'V.52 
Heat of Vaporization (Btu/Ibm) 396. 502. 110. +t 

Viscosity at 68°F (cp) .595 .785+ 
Uater (1120) Solubility '\,00 'VOO 'VO 

Chemical Properties 

Formula C2H50n CH3011 

Holecular Weight 46.06 32.04 

Compost tion by Weight 
% Carbon 52.2 37.5 86-87 
% Hydrogen 13.1 12.6 11.13.5 
% Oxygen 34.7 49.9 'VO 

+ Indicates property value is from laboratory analysis of No. 2 Diesel fuel oil 
+t Indicates property value is for dodecane 

-w 



'fable 2.2 , 

Gaseous Fuel Co.bustion and Ignition Properties 
(Adapted fro. lIouser (33), Obert (35), and Yost (36» 

Combustion Property 

Combustion Equation 

Stoichiometric Air/Fuel 
Ratio 

Moles Product Per Mole Charge 

Constant Pressure Heating 
Value at 7JOF ,-t\I1 (Bt.u/lbm) 

IIHV 
LIIV) liquid fuel 

3 Btu/ft (Stoich. Mix.) 
Btu/Ibm (Stoich. Mix.) 

Ignition Properties 

Octane Number 
Research Method 
Pump (RONfttoN) /2 

Cetane Number 

Flash Point (OF) 

Autoignition Temperature (OF) 

gthanol 

C2"5011+302+U.3N2 

~ 2C02+311 20+1 1. 3N2 
9.0 

1.065 

12;780 
11,604 
92.9 
1184. 

107 
98 

0-5 

54-55 

738-964 

Methanol 

CII
3
0Il+l.50

2
+5.66N2 

-. CO
2

+21120+5. 66N2 
6.4 

1.061 

9,770 
8,644 
89.4 
1'069. 

106 
99 

0-5 

52 

867-878 

+ Indicates property value is from lahoratory analysis of No. 2 Diesel fuel oil. 
++ Indicates property value is for Dodecane. 

Fuel 011 

CnIl2n+l.5n02+5.66nN2 

~ nC0
2 
+nIl20+5. 66nN2 

""15.0 

1.062++ 

19,192+ 
96.9++ 
1204.++ 

47.5+ 

158.+ 

",,230 

-s:-
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Stoichiometrically correct air-fuel ratios (A/F) for Diesel fuel 

oil. are typically about 15:1, i.e., approximately 15 pounds of air are 

required to burn one pound of fuel. The charge density of a 

stoichiometrically correct mixture of fuel oil and ·air is approximately 

3 97 Btu/ft. However, incomplete combustion occurring in fuel-rich 

zones, a consequence of diffusion combustion processes, generally 

limits A/F ratios to a minimum of 20:1. This is referred to as smoke-

limited power. 

The stoichiometrically correct A/F ratios for ethanol and methanol 

are lower than those for Diesel fuel oil due to bopnd oxygen in the 

alcohol molecule supplying a portion of the oxygen required for 

stoichiometrically correct combustion. Oxygen constitutes 34.7 percent 

of the molecular weight of ethanol (34), and contributes approximately 

14 percent of the stoichiometric oxygen requirement, yielding an over-

all A/F ratio of 9.0:1. Methanol by comparison, has respective values 

of 50 percent and 25 percent With a stoichiometric A/F ratio of 6.4:1 

(37). In addition, the higher hydrogen to carbon ratio of the alcohols 

results in lower oxygen requirements since hydrogen requires less air 

to burn than carbon (Table 2.1 and 2.2). 

As noted in Table 2.2, the charge densities of a stoichiometrically 

correct mixture of either alcohol fuel and air is approximately 

equivalent to that of fuel oil. This may seem confusing in light of 

the heats of combustion listed for ethanol and methanol which are 

approximately 60 percent and 45 percent, respectively, that of fuel 

oil. However, the proportionately lower oxygen requirement of the 

alcohols results in similar charge densities for air combustion of 

these three fuels. 
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2.1.2 Vapor Pressure, Volatility and Latent Heat of Vaporization 

In normal Diesel combustion, liquid fuel oil is injected into hot 

compressed gases which supply the required energy for fuel vaporization. 

A multiconstituent fuel such as Diesel fuel oil has a range of boiling 

temperatures. A single vapor pressure is undefined since the vapor and 

liquid phase contain different amounts of each constituent. It is 

apparent then that the vapor pressure of a multiconstituent liquid 

fuel depends upon the extent of vaporization - upon the vapor volume 

(35). 

The volatility, nevertheless, can be defined as the percent of 

liquid vaporized at a particular temperature. Typical distillation 

curves for Diesel fuel may have initial vaporization points beginning 

around 370°F, with an end point around 640°F. The latent heat of 

vaporization of Diesel fuel oil is quite low - only 110 Btu/Ibm for 

dodecane, a pure hydrocarbon characteristic of fuel oil. This low 

heat of vaporization results in minimal cooling of the compressed 

air-fuel charge preceding combustion; chemical delay, an important 

factor affecting the intensity and noise of Diesel combustion, is 

minimized. 

Since anhydrous ethanol and methanol are pure substances, their 

vapor pressure can be determined as a function of temperature by the 

Antoine equation, 

where 

B 
10glO P m A - C + T 

P • vapor pressure (mm Hg) 

T - temperature (OC) 

2.1 

and A, B, C are constants characteristic of pure compounds. Typical 
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values are listed in Table 2.3. At room temperature, these vapor 

pressures are higher than that of many fuel oil distillates resulting 

in relatively high voiatility. 

Fuel 

Ethanol 

:-!ethanol 

Table 2.3 

Constants for Antoine Equation 

Temperature Range (OC) 

-2 to 100 

-14 to 65 
65 to 110 

A 

8.32109 

7.89750 
7.97328 

B 

1718.10 

1474.08 
1515.14 

Source: R. C. Wilhoit and B. J. Zwolinski (38) 

C 

237.52 

229.13 
232.85 

Strong bonding of the hydroxyl group (-Oll) in ethanol and methanol 

is responsible for high latent heats of vaporization compared to other 

hydrocarbon fuels. Ethanol, higher in the aliphatic alcohol series, 

has a lower heat of vaporization (396 Btu/Ibm) than methanol due to its 

smaller relative oxygen content and subsequently weakened hydroxyl 

bond (39). 

The vaporization of a stoichiometric amount of ethanol and 

methanol in air will lower the adiabatic mixture temperature by 200°F 

and 356°F, respectively, compared to only a 30°F drop for a stoichio-

metric mixture of cetane in air (40). As pure substances, ethanol and 

methanol also have unique boiling points which couple with their low 

vapor pressures at low temperature and high latent heats of vapor1za-

tion to cause driveability problems in SI engines (41). In Diesel 

combustion, these characteristics cause charge cooling, leading to 

excessive ignition delay and related combustion problems. 
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2.1.3 Engine and Fuel System Compatibility 

The natural lubricity of Diesel fuel oil makes it a compatible fuel 

for most injection pumps and nozzles. In these systems, the fuel oil 

commonly acts directly as both a lubricating agent and coolant for the 

fuel system components. Wear rates for both engine and fuel system are 

generally low for Diesel engines burning fuel oil. Formation of 

carbonaceous residue during the combustion process, however, results 

in accelerated engine oil contamination and may lead to nozzle fouling 

during over fueled operation. 

Unfortunately, alcohols lack the good lubricating properties 

characteristic of most petroleum-based hydrocarbon fuels. As a result, 

attention has been focused on the possibility. of increased wear rates 

in engines and fuel systems utilizing alcohol fuels. In addition, 

alcohols are highly polar; therefore, they tend to be more reactive than 

conventional nonpolar hydrocarbon fuels with certain materials. 

Corrosion and degradation problems have been noted in engines where 

methanol-gasoline mixtures have contacted lead, magnesium, aluminum, and 

certain plastics (42). Most elastomeric materials used in seals and 

gaskets, such as nitrile rubber, are oil resistant due to highly polar 

acrylonitrile molecules. However, these materials are generally 

susceptible to attack by other highly polar groups such as alcohols, 

which may lead to problems includi~g swelling (43). 

Although numerous studies report material compatibility problems 

associated with alcohols in the fuel and air management systems, less 

work has been completed regarding the effects of alcohol on basic engine 

components. Unburned alcohol may have a ha~ul effect on lubricant 

additives due to its highly polar nature. Blowby gases produced during 
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alcohol combustion may contain organic acids and aldehydes wbich may 

further increase corrosion by mixing with the engine lubricant (44). 

Tests simulating short-trip winter service have confirmed that ethanol 

produced a 180 percent increase in iron wear when c9mpared to gasoline 

(45). 

2.2 Combustion Considerations 

Normal Diesel fuel oil combustion in a compression ignition engine 

proceeds as a petroleum-based fuel vaporizes and diffuses into 

surrounding oxygen. Since fuel oil is a full boiling range fuel, 

lighter ends vaporize initially and ignite, providing additional energy 

to vaporize the heavier fuel species. Typically, nonuniformities will 

exist in the air-fuel mixture, causing carbonaceous residue or particu

late to be formed as a result of incomplete combustion and pyrolysis. 

The differences in fuel properties noted earlier (most importantly 

molecular structure, high latent heat of vaporization and high vapor 

pressure), combined with specific combustion properties typical of the 

alcohols, produce varied combustion characteristics in comparison to 

Diesel fuel oils. 

2.2.1 Combustion Properties 

Ethanol and methanol burn with a nonluminous, sootless flame. 

Products of combustion normally include ~arbon monoxide and water. 

Alcohols generally have a higher flame speed than typical petroleu~

based fuels due to the formation of hydrogen during high temperature 

dissociation of the alcohols. Ethanol undergoes this thermal 

decomposition at temperatures exceeding 1472°F, producing ethylene, 
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acetaldehyde, water and hydrogen (7). Similarly, methanol dissociates 

at high temperatures into carbon monoxide and hydrogen. 

Alcohols tend to burn somewhat cooler than most petroleum-based 

hydrocarbons. Factors including high latent heat of vaporization 

(resulting in intake charge cooling), an increase in the number of 

moles during combustion, and thermal decomposition of the fuel are 

responsible for this phenomenon. 

Flammability limits are significantly wider for alcohol fuels. 

Methanol has the widest limits, nearly 5 times that of gasoline; the 

limits for ethanol fall in a range between these two fuels (34). These 

wider limits have been used beneficially to achieve lean combustion in 

SI engines, yielding lower emissions and higher thermal efficiencies 

(12). 

2.2.2 Cetane Rating and Knock 

In a Diesel engine, the cetane rating is a measure of a fuel's 

ability to ignite spontaneously upon injection. Tied intimately to 

this fuel characteristic is the phenomenon of knock, a result of rapid 

rates of pressure rise in the cylinder. 

Typical SI combustion occurs by ignition at a single point with an 

orderly movement of the flame front through the homogeneous air-fuel 

mixture. In this case, knock is associated with autoignition of 

unburned gases compressed ahead of the flame front and the subsequent 

rapid rise of pressure. Since orderly flame propagation and auto

ignition are two distinctly different types of combustion, knock is 

easily detected by audible percussions emanating from the combustion 

chamber. 



21 

Diesel knock is more difficult to describe quantitatively than 5I 

knock. Diesel combustion begins by autoignition occurring at many 

points within the mixture, resulting in rates of pressure rise which 

are much higher than normal 5I combustion. However, this does not 

necessarily imply that audible knock must be occurring (35). Combustion 

in most Diesel engines follows four major stages: 

1) ignition delay - the period of time between start of injection 

and autoignition, 

2) uncontrolled combustion - fuel accumulated during ignition 

delay burns rapidly, 

3) controlled combustion - diffusion processes control burning of 

fuel injected after combustion has been initiated, and 

4) late combustion - combustion of fuel occurring after injection 

ceases. 

Diesel knock is most closely associated with the first two stages 

of combustion. If the ignition delay is extended, indicative of a low 

cetane number fuel, a larger amount of fuel will accumulate in the 

cylinder preceding autoignition. This may cause high rates of 

pressure rise to occur during the uncontrolled combustion stage. 

Another factor influencing the severity of stage-two combustion is the 

ratio of vaporized fuel to cylinder displacement at the instant of 

ignition. 

Cetane ratings for Diesel fuel oil indicate that the ignition 

qualities of the respective fuel are comparable to a mixture of 

reference fuels under similar conditions. Ratings for most commercial 

Diesel fuels range around a cetane number of 50; gasoline, by compari

son, has poorer ignitability characteristics and a cetane number of 
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near 20. Alcohols have very low cetane numbers; generally, extrapolated 

values are between 0 and 5. In addition, alcohols have high auto

ignition temperatures (46) which may range to nearly 5 times that of 

gasoline under the same conditions. These ignition characteristics 

make alcohol a poor CI engine fuel as confirmed by many investigators 

utilizing alcohol fuels in Diesel engines (33). 

Other chemical characteristics aside·from low cetane number and 

high autoignition temperature can be cited as a cause of knock enhance

ment during alcohol usage. One method of reducing knock in Diesel 

engines involves reducing the amount of fuel that simultaneously auto

ignites in stage two, uncontrolled combustion (47). Fuel oil, being a 

multiconstituent fuel, has a full boilin~ range; the lighter ends 

vaporize first and ignite, providing a source of heat energy for further 

vaporization of the heavier ends. However, pure substances such as 

alcohols are single boiling point fuels, and will vaporize at the same 

instant, forming a vapor envelope which is active in the initial 

combustion reaction. The high energy content of this vapor envelope, 

released rapidly by high flame speeds and reaction kinetics, creates 

strong amplitude shock pulses which strike the cylinder wall and cause 

Diesel knock. 

As a result of these problems associated with Diesel combustion of 

alcohols, present efforts to utilize alcohol fuels generally employ some 

form of dual fueling. Fumigation is a particularly attractive means of 

alcohol utilization in Diesel engines; successful operation is achieved 

with minimal engine modifications. This method of alcohol utilization 

was used in this work. 
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2.2.3 Fumigation 

Utilization of fuels by spraying, carbureting or injecting the 

fuel into the intake air stream has been termed fumigation. Fumigation, 

the standard method of fueling SI engines, has received considerable 

attention with regard to applications for using alternative fuels in CI 

engines. Tests in the 1950's showed that a variety of fuels could be 

utilized in Diesel engines resulting in reduced smoke and increased 

power depending on the fuel quantity and type (48). TWo theories were 

advanced to explain the observed beneficial effects of fumigation: 

1) better air utilization resulting from good mixing of the inlet 

air and fuel, and 

2) pre flame reactions during the compression stroke accelerating 

the reaction process. 

More recently, fumigation has been investigated as a means of 

burning alcohol fuels in Diesel engines. The injected fuel oil acts 

as a pilot charge, similar to dual injection, providing a source of 

ignition for the more homogeneous alcohol-air vapor mixture. Both 

diffusion controlled heterogeneous combustion of the pilot charge as 

well as homogeneous combustion of the vaporized mixture of alcohol are, 

therefore, present in fumigated Diesel engines. 

The degree of alcohol fuel vaporization in the intake air stream 

controls the charge temperature as well as the homogeneity of the 

inducted mixture. As discussed in Section 2.2.2, charge cooling in 

Diesel combustion may cause increased ignition delay p~riods, 

combustion knock, and in some cases engine misfire due to quenching of 
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the combustion process. Some investigators have utilized waste exhaust 

or suppleaentary energy sources to preheat the inlet air to minimize 

these effects. 

Work by Houser et ale (33) involved methanol fumigation of a 

light-duty automotive Diesel engine with up to 40% of the energy 

reqUirement. Upper limits of alcohol substitution were set by 

deterioration of thermal efficiency at light load due to poor 

combustion and knock limited operation at higher loads. Investigators 

using fumigation have attempted to achieve a large amount of alcohol 

fuel vaporization well ahead of the intake valve and combustion chamber. 

Varying from this practice, Bro and Pederson (49) used an electronic 

fuel injection nozzle positioned in the intaKe air circuit, close to 

the cylinder head. Injection was intermittent rather than continuous. 

Intake air temperature, tied intimately to the degree of fuel vaporiza

tion, was found to have a significant effect on the combustion process. 

Three types of combustion were identified: 

1) single combustion, in which only the pilot spray envelope and 

alternative fuel contained within the envelope were combusted, 

2) consecutive combustion, in which combustion of the pilot 

charge preceded and acted as an ignition source for the 

alternative fuel, and 

3) simultaneous combustion, in which the pilot charge as well as 

the alternative fuel burned coincidentally. 

The cooling effect, which so profoundly alters combustion in 

alcohol-fumigated Diesel engines, may be put to practical use, however. 

Since turbocharged engines tend to benefit either by an aftercooler or 

liquid evaporator, the high latent heat of vaporization of alcohol may 
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be utilized. In one test, methanol was added to the intake air through 

a pressurized valve at the turbocharger inlet (50). Better air 

utilization led to reduced smoke and increased power-per-weight with 

the same emission levels. 

By nature of its simple application to existing Diesel systems, 

fumigation presents an attractive means of dual fueling. Waste heat 

reclamation could conceivably be applied to minimize combustion 

problems common during alcohol fumigation, making this method of dual 

fueling even more attractive. 

2.2.4 Effects of Water Addition 

Water and alcohols are infinitely soluble. During distillation, 

particularly in the case of ethanol, water which is produced during 

manufacture is removed. The quality or water content of the final 

product is a direct function of the degree of distillation as well as 

the opportunity for contamination of the alcohol following this process. 

As mentioned earlier, commercial stills may easily obtain 190 proof 

alcohol; however, smaller home-operated stills may produce lower quality 

alcohol, often 140-180 proof. 

If lower quality alcohol is used in Diesel engine applications, 

the effects of water on combustion must be considered. Water has 

been added to the combustion chamber in many 5I engine tests to reduce 

knock and certain gaseous exhaust emissions (51, 52). More recently, 

water addition has been investigated as an aid to Diesel combustion 

(53). Oxides of nitrogen (NO ) emission reduction has frequently been 
x 

a goal of water addition studies. Concentrations of NO in exhaust x 

gases are closely related to peak temperatures reached during 
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combustion. Since chemical equilibrium and reaction rates are highly 

te~perature dependent, the significant action of water vapor appears to 

be its ability to reduce peak combustion temperatures. 

When considering the proposed Zeldovich mechanism of NO production, 

the temperature-related effects of water appear to dominate by slowing 

the reaction kinetics. However, the presence of water vapor during 

combustion produces several results. Oxygen radicals may be reduced by 

the presence of water vapor by the following reaction (54). 

H20 + 0 ~ 20H 2.2 

This reduction of oxygen radicals further slows the Zeldovich 

mechanisms.. (For further discussion on emissions, the reader is 

referred to Section 2.3, Emissions.) 

In one study, SI combustion temperatures were reduced primarily as 

a result of the dilution of the charge molar and energy density by the 

water vapor, thus accounting for a reduction in NO (55). Related work 
x 

included fumigation of a CI engine with similar results: reductions in 

nitric oxides and a slight increase in ignition delay. Water has also 

been introduced into CI engines by forming water-fuel emulsions. Micro-

explosions resulting from rapidly vaporizing water particles acted as 

atomizers which formed smaller and more finely dispersed fuel droplets. 

Observed reductions in NO resulted from the creation of more x 

homogeneous combustion conditions by improved fuel distribution. In 

addition to reduced NO emissions, better combustion with less smoke x 

resulted (53). 

Water might also be expected to affect unburned hydrocarbon 

emissions. Strong evidence suggests that wall and midair flame 

quenching may be primarily responsible for the production of this 
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pollutant. Increased amounts of water vapor may cool combustion to the 

extent that the quench layer is thickened and, in the limit, misfire 

occurs. These factors tend to increase hydrocarbon emissions. 

In light of these considerations, the combustion effects of water 

in low-quality alcohol may be summarized as follows: 

1) reductions in NO , 
x 

2) increases in unburned hydrocarbons, 

3) increased ignition delay, and 

4) misfire due to midair and wall flame quenching. 

2.3 Emissions 

Concern over the health and environmental effects of gaseous and 

solid emissions produced by autonotive sector has led to nore stringent 

contrQl of certain combustion products. This section discusses the 

~ajor ?ollutants emitted by Diesel engines and the possible effects of 

alcohol funigation on their for~ation. 

2.3.1 Gaseous Emissions 

At the present time, three gaseous exhaust emissions are regulated 

by the federal government under pollution control legislation. These 

are nitrogen oxides, carbon monoxide, and unburned hydrocarbons. Typical 

concentrations of these pollutants in Diesel exhaust are shown in Table 

2.4. The chemical formation of each of these exhaust pollutants follows 

a complex series of reaction steps. Stoichiometric calculations show 

that for dodecane, a pure hydrocarbon characteristic of Diesel fuel 

oil, the following reaction would occur: 
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Table 2.4 

Typical Diesel Emission Levels 

Pollutant Volume Concentration 

Smoke 1-10 mg/ft3 

Carbon Monoxide 50-5000 ppm 

Oxides of Nitrogen 200-300 ppm 

Hydrocarbons 10-500 ppm 

Source: Bascom, et ale (56) 

Power SpeCific Mass 
(gm/bhp-hr) 

0.05-0.3 

2-10 

4-20 

.2-3 

This reaction equation shows that the major pollutants are not 

predicted, indicating that normal combustion does not follow this simple 

stoichiometry. Lean and rich areas of combustion are normally present 

in compression ignition engines. Opposing, simultaneous, and consecu-

tive reactions in the gas phase may compete to form products far 

different from those predicted in Eq. 2.3. In addition to chemical 

kinetics, the design of the combustion chamber and injection system has 

a significant effect on heat transfer and turbulent mixing. This may 

strongly affect combustion and the composition of the exhaust gases. 

In light of the complex reactions involved in the formation of 

these gaseous emissions, prediction and explanation of the exhaust gas 

composition is, at best, difficult. However, some general trends in 

Diesel emissions can be explained; in addition, the effects of alcohol 

fuaigation on the formation of these emissions can be predicted. 

2.3.1.1 Hydrocarbons and Aldehydes 

Unburned or partially oxidized fuel may appear in the exhaust 

gases as hydrocarbons or oxygenated species such as aldehydes or 
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ketones (40). Several theories exist detailing the formation of 

unburned hydrocarbons; most promote the idea of wall quenching and 

incomplete combustion as the cause of these pollutants. 

Hydrocarbon emissions in the Diesel engine are generally lower 

than in a comparable 5I engine. This is a result of the diffu~ion

controlled combustion process, characteristic of eI engines; air 

surrounds the burning fuel charge, shielding the flame from the 

combustion chamber wall and effectively minimizing quenching. 

Incomplete combustion is reduced due to the high compression ratios of 

the Diesel engine which provide favorable oxidatio~ conditions. This 

tends to eliminate midair-induced quench He emissions which may occur 

in lean Alp ratio regions (57). Problems unique to Diesel combustion 

such as leaking or dripping injectors tend to increase He emissions, 

however (40). Although He emissions are generally lower for the eI 

compared to 5I engine, the emitted compounds tend to be more 

photochemically reactive, toxic, and biologically active than those 

from a catalyst-equipped S1 vehicle (40). 

Fumigation of alcohols in Diesel engines introduces the effect of 

homogeneous as well as diffusion-controlled combustion. The afore

mentioned effects of wall quenching on homogeneous combustion may be 

expected to increase the amount of unburned hydrocarbons in the exhaust. 

In addition, the high latent heat of vaporization of the alcohols may 

tend to lower combustion temperatures, conceivably thickening the quench 

layer as well as increasing the occurrence of midair flame quench. To 

a lesser degree, higher flame speeds (which may reduce heat losses and 

thus effectively decrease the quench layer) as well as wider lean 

flammability limits ,would be expected to reduce hydrocarbon emissions. 
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In addition to unburned hydrocarbons, recent attention has been 

given to certain other organic emissions. These unregulated yet 

potentially hazardous compounds include oxygenated species such as 

aldehydes and ketones (40). As such, these species are not true 

hydrocarbons. Aldehydes are a class of organic compounds which may be 

formed by the oxidation of alcohols and are generally more common 

during the combustion of alcohol fuels. Alcohol-fueled CI engines 

would, therefore, be expected to produce higher concentrations of these 

emissions. 

2.3.1.2 Carbon ~onoxide 

By virtue of its unthrottled operation, the CI engine runs at 

relatively hi~h A/F fuel ratios compared to 51 engines. Carbon monoxide 

emissions are typically lower in Diesel engines due to excess oxygen 

present duri~~ com~ustion. However, locally fuel-rich zones are 

r~sponsi;le f0r sone carbon nonoxide formation. There is also so~e 

evidence that CO may be produced in quench envelopes as applied to SI 

combustion (58). :his trend may also exist in CI combustion. 

The effect of ~unigated alcohol on CO emissions is not expected 

to be Significant since overall lean combustion is mai~tained. 
o 

30wever, que~ching due to lower temperatures during combustion may lead 

co slight i~creases i~ CO production. Offsetting this result will be 

the tendency for CO production (normally a high temperature phe~omenon) 

to be slowed ~y the lower reaction temperatures. 

2.3.1.3 Oxides of Nitrogen 

Oxides of nitrogen (NO ) playa significant role in the reaction 
x 

cycles of photochemical smog. Automobiles are responsible for a large 

Q 
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share of NO emissions, of which nitric oxide (NO) constitutes the x 

major portion. Although different models have been proposed for the 

formation of NO, most of these agree on the important effect of 

temperature on equilibrium kinetic parameters. 

The formation of nitric oxide can be shown as 

2.4 

However, NO formation does not normally follow this kinetic route, 

since oxygen and nitrogen molecules do not combine in this manner (42). 

Rather, the Zeldovich mechanism, 

o + NZ -+ NO + N 2.5 

N + Oz -+ NO + 0 2.6 

in which a dissociated oxygen molecule attacks a nitrogen molecule, 

thus initiating the chain reactions 2.5 and 2.6, is responsible for 

most of the NO produced. Reaction 2.5 is slow due to the high activa-

14 tion energy (k=1.4xlO exp(-78000/RoT») required; as a result, kinetic 

rather than equilibrium considerations are the rate-controlling factors. 

NO formation usually peaks at a mixture composition slightly leaner 

than stoichiometric for homogeneous combustion. Although peak tempera-

tures are reached at stoichiometric conditions, kinetic factors push the 

peak NO formation slightly toward the fuel lean region (54). In 

diffusion combustion systems of this type, the fuel burns in local, 

nearly stoichiometric proportions thus producing more NO than would be 

predicted on the basis of the apparent overall stoichiometry. However, 

these local mixture conditions are leaner than those normally existing 

in SI combustion, resulting in correspondingly lower NO emissions. 
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Although the final mixture temperature may be lowered as unreacted 

oxidizer dilutes the combustion products, NO levels remain in frozen 

equilibrium at high temperature concentrations. The hypothesis of peak 

temperature equilibrium levels is supported by many investigators who 

agree that the reduction reactions of NO are too slow to be signifi

cantly affected by the drop in temperature during later stages of 

combustion (54, 59). 

In previous studies, reductions in oxides of nitrogen during 

alcohol dual fueling have been reported (59). These reductions were 

attributed to decreased peak combustion chamber temperatures resulting 

from the alcohol's high latent heat of vaporization and endothermic 

dissociation. However, at least one author reported increases in NO x 

emissions during alcohol fueling (25). Increased peak pressures and 

possibly higher peak temperatures due to rapid combustion of the alcohol 

may be responsible for this trend. In addition to these effects, 

fumigation of alcohol may alter the mixture composition and the type 

of combustion (homogeneous or diffusion), thus changing the levels of 

nitrogen oxide concentration. 

2.3.2 Particulate Emissions 

Although gaseous pollutant levels found in CI engines are generally 

low compared to 51 engines, the production of particulate matter is 

considerably higher. Recent attention has been given to the possibly 

harmful health effects which may be caused both by the solid particulate 

matter as well as the soluble organic fraction (SOF) of these emissions. 

If the Diesel engine is to assume a significant role in light-duty 

vehicles, processes res~onsible for the formation of these particulate 
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emissions as well as the potential biological hazards associated with 

their presence must be assessed. 

2.3.2.1 Formation 

Diesel particulate emissions are on the order of 50 to 80 times 

that of a comparable SI engine (60). This results primarily from the 

diffusion type combustion typical of fuel-injected systems. Many 

identifiable factors alter the formation of soot, primarily through 

their effect on the mixing of vaporized fuel and oxygen during 

combustion. These include fuel injection characteristics, combustion 

chamber design, and combustion chamber mixture turbulence. The chemical 

make up of the fuel is also important; the relative content of carbon 

compounds as well as differences in chemical reactivity of the fuel 

species affect soot formation. 

The formation of soot is also highly dependent upon both the local 

temperature and A/F ratio. Mechanisms which are generally responsible 

for particulate emissions, occur in fuel-rich areas and include 

pyrolysis as well as autothermal cracking (61). Simply stated, fuel 

combusted in the absence of sufficient oxygen forms soot which does 

not contact sufficient oxidizer until the temperature has been reduced 

below the level for combustion (35). 

Glassman (54) identifies three stages in the soot-forming reaction: 

1) nucleation, in which gas-phase reactions occur and lead to 

condensed-phase solid nuclei, 

2) heterogeneous reactions, which occur on the nuclei surface, and 

3) agglomeration and coaggulation. 
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Oxidizing reactions compete with stage one of this soot-forming process, 

emphasizing the importance of the A/F ratio in the high temperature 

flame envelope. 

Alcohol fumigation may be expected to decrease total particulate 

formation. This may result from physical as well as chemical 

differences in fuel and combustion characteristics. Alcohols burn with 

a nonluminous flame, indicating the lack of carbon particles present in 

the reaction zone. In addition to this effect, leaner combustion 

regions created by the homogeneous alcohol-air charge should reduce soot 

formation. 

2.3.2.2 Biological Analysis 

With the increasing number of Diesel-powered vehicles, there has 

been renewed interest in the potential biological health hazards posed 

by particulate emissions. Particulate, for biological purposes, 

consists of a carbon core surrounded by a soluble organic fraction (SOF) 

composed primarily of hydrocarbons (62). It is this soluble fraction 

which is suspected of containing biologically active compounds which 

may be inhaled by the human respiratory system. 

Extensive research has been conducted dealing with the health 

aspects of particulate, and appears to support these concerns. The 

physical nature of particulate is such that it can lodge deeply in 

respiratory passages. At least 90% of all particulate is less than 

one micron in diameter; this is well within the size range that 

can be breathed into the lungs and deposited in pulmonary air spaces 

(62). Compounds of greatest concern in Diesel particulate include 

polycyclic aromatic hydrocarbons (PAR) which have demonstrated 

carcinogenicity in previous animal tests (63). Benzo(a)pyrene (B(a)P), 
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a purified PAH,was shown to produce tumors of the respiratory tract in 

several animals which inhaled particulate matter containing these 

compounds (64). 

Investigation of biological activity can be performed by using 

long-term animal tests or by short-term tests which assess the changes 

in bacteria or animal cells. Due to extensive time and monetary 

requirements involved in animal studies, short-term tests are frequently 

employed to evaluate mutagenic rather than carcinogenic events (62). 

Mutagenic events are tho~e in which pe~nent damage to genetic "blue 

prints", DNA, occur. By comparison, carcinogenic events are those in 

which cancerous tumors result. Since genetic mutations statistically 

correlate with tumor formation or cancer, mutagenic events are often 

evaluated to determine biological hazards (62). 

One mutagenicity test which is co~only used is the Ames Salmonella 

test. Briefly, bacteria are used which lack an essential amino acid 

histidine for growth. If a test compound causes DNA changes, bacteria 

will revert such that this critical amino acid is produced and growth 

will occur. By counting the number of colonies or revertants per dose 

of mutagenic tester compound, the mutagenic tendency of the tester 

compound is determined. A more detailed description of the Ames test 

is included in Appendix A. 

By collecting and testing particulate produced during fuel oil as 

well as alcohol-fuel oil operation, any changes in biological activity 

caused by the different fuels can be measured. 
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Chapter 3 

EXPERIMENTAL EQUIPMENT AND PROCEDURE 

3.1 Introduction 

An experimental program was completed to determine the effects of 

aqueous alcohol fumigation on engine efficiency and emissions, in 

accordance with the objectives of this study listed in Section 1.2. 

This chapter describes the equipment, instrumentation, and experimental 

procedures used in the completion of this work. 

3.2 Engine Set-up 

A fully instrumented Diesel engine served to generate experimental 

data for the purpose of evaluating the effects of alcohol fumigation. 

The associated engine apparatus pe~tted speed and load control, as 

well as evaluation of combustion events related to injection timing and 

cylinder pressure rise. Detailed descriptions of the equipment are now 

presented. 

3.2.1 Engine and Dynamometer 

An AVCO Lycoming Bernard single-cylinder, direct injected Diesel 

engine was used in this study. The engine chosen was a four-cycle, 

air-cooled model capable of producing 6 brake horsepower (bhp) at full 

load and 3000 revolutions per minute (RPM). Table 3.1 lists the 

pertinent engine and injection system specifications. 

The engine was couplea directly to a Westinghouse cradled electric 

dynamometer which acted both as a motor to start the engine and as an 

absorbing generator to load the engine during testing. The dynamometer 

was a closed-loop feedback type which maintained a constant, operator 
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Table 3.1 

Engine Specifications 

Bore 

Stroke 

Displacement 

Compression Ratio 

Intake Valve Specifications 
Diameter 
Opens (Degrees Crank Angle) 
Closes (Degrees Crank Angle) 

Exhaust Valve Specifications 
Diameter 
Opens (Degrees Crank Angle) 
Closes (Degrees Crank Angle) 

Injection Timing 

Rated Power (Continuous Output) 

3.00 in. 

3.0625 in. 

21.7 cubic in. 

18:1 

.1.281 in. 
19.0 0 BTDC 
35.00 ABDC 

1.031 in. 
49.0 0 BBDC 
5.00 ATDC 

27 0 BTDC 

6 bhp @ 3000 RPM 
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selected speed, independent of engine performance. Torque and load 

measurecents were made from a scale which had a resolution of 0.10 

pounds or 0.10 foot-pound-force (ft-lb~) torque. 

3.2.2 Needle Lift and Crankshaft Phasing Inst~umentation 

The stock fuel injector body (Bosch UJ3671) was modified to pe~i~ 

determination of fuel injection timing. ~eedle lift was detected jy a 

~~~ Xeasuring Systecs proxi~ity measuring unit which i~corporated a 

noncontacting inductive sensor and a solid state signal conditloni~b 

module. The inductive sensor featured 10 microi~ch resolution and 1\: 

kilohertz (kHz) frequency ~esponse. 

A magnetic inductance pickup manufactured by AIRPAX, ~orth 

American Philips Controls Corporation, sensed the location of a top 

dead center (TDC) indicator affixed to the crankshaft flange. This 

unit furnished information regarding the crankshaft orientation. 

Outputs froc the needle lift and magnetic pickup sensers were 

displayed on a ~ricolet Instrument Corporation Explorer III digital 

oscilloscope (Figure 3.1). Comparison of the two Signals pe~itted 

determination of fuel injection timing relative to piston displaceoent 

from TDC. 

3.2.3 Combustion Pressure Xeasurement 

Cylinder pressure measurements were made using two quartz trans

ducers mounted in the cylinder head. One transducer (Kistler :lodel 

GOlB) was mounted flush with the combustion chamber,and the second 

transducer (Kistler Xodel 6031) communicated with the main chamber 

through a small connecting passageway in the cylinder head. ~o damping 
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or frequency effects created by the passageway were detected when 

signals from the two transducers were compared. 

Each transducer acted on the piezoelectric principle. The 

surfaces of the quartz crystals became electrically charged when 

stressed mechanically, in this case by pressure forces. This changing 

charge induced a current which was proportional to the rate of ~ressure 

change. By coupling the surface-mounted pressure transducer to a 

charge amplifier, a voltage signal proportional to cylinder pressure 

was obtained. In this study, a KIAG Swiss Model 5002 dual charge 

amplifier massaged the transducer output and delivered an output signal 

of 1 volt per 100 psi measured in the combustion chamber. 

~e current from the remote Qounted transducer was shunted to 

ground through a high impedance resistor. The resulting Signal, a 

voltage proportional to rate of pressure change, was evaluated as a 

means of knock quantification. (The knock quantification system is 

described in more detail in Appendix B.) The pressure transducer 

circuits and characteristic output Signals are shown in Fig. 3.1. 

3.3 Air-Fuel Induction Xanagement 

Careful control and measurement of air and fuel flows into the 

engine were maintained throughout the study. This section describes 

the hardware utilized in the management of fuel oil, alcohol and inlet 

ai~ flows. 

3.3.1 Diesel Fuel Oil System 

The quantity of fuel oil injected per combustion stroke was 

regulated through adjustment of a graduated rack control. Actual fuel 

flow was measured by means of a calibrated rotameter (Brooks Tube 
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R-2-25A) located upstream of the injection pump and return fuel line. 

During initial testing, it was found that rotameter calibration was 

sensitive to temperature-induced changes in density and viscosity of 

the fuel oil. In order to obtain accurate flow measurements, the fuel 

oil was passed through a constant temperature water bath adjusted to 

maintain a fuel oil temperature of 85 Q F at the rotameter inlet. The 

fuel oil storage tank was pressurized with nitrogen to hold a 12 psig 

fuel pressure at the injection pump inlet port. Decails of this system 

are presented in Fig. 3.2. 

3.3.2 Alcohol System 

Alcohol was fumigated into the intake air charge and entered the 

engine as a vapor or mist dependent upon the degree of vaporization 

which occurred. A Spraying Systems Inc. 1/4 J Series air atomization 

nozzle was used for fumigation. Secondary air was supplied at a 

constant 10 psig to the nozzle where it mixed with pressurized alcohol 

(0-10 psig) to form a finely atomized and distributed spray. 

The nozzle was located in a 4-inch 1.0. steel tube which formed 

the air circuit for the flow of primary inlet air to the engine. 

Positioned approximately 4 feet ahead of the inlet manifold, the nozzle 

delivered a continuous spray of atomized alcohol droplets in the 

direction of the primary inlet air flow. Alcohol was stored under 

pressure regulated nitrogen in a stainless steel tank at approximately 

15 psig. The flow of alcohol to the engine was controlled by varying 

the liquid pressure of the alcohol to the atomization nozzle. The 

liquid pressure was regulated through two flow control valves located 

immediately after calibrated rotameters (Matheson Co. Inc. No. 602 and 
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603) which measured the alcohol flow. The flow of secondary air was 

also measured through a calibrated rotameter (Brooks Tube R-6-l5-B). 

The alcohol fuel system and the primary inlet air system (described 

more thoroughly in the next section) are presented in Fig. 3.3. 

3.3.3 Primary Inlet Air System 

Figure 3.3 shows a schematic of the primary inlet air and alcohol 

induction systems which were used in this study. Primary inlet air 

was dehumidified through an ice bath and subsequently passed through a 

charcoal filter. A regulator maintained a constant 20 psig pressure 

in the. primary air rotameter (Fischer & Porter Precision Bore Flowrator) 

used to measure the air flow. Two flow control valves were used to 

hold manifold pressure at standard test pressure (29.38 in. Hg 

absolute). 

A large plenum chamber located upstream of the engine inlet 

contained thermostatically controlled heating elements which maintained 

a steady primary air temperature of 85°F ahead of the alcohol fumiga

tion nozzle. 

3.4 Temperature Measurement 

Temperature measurements were made using chromel-alumel therwo

couples mounted at relevant locations. A Leeds and Northrup balancing 

potentiometer, calibrated to read directly in degrees Fahrenheit, was 

used to balance the electromotive force created by the selected 

thermocouple. The following temperatures were monitored with thermo

couples throughout the investigation: 
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1) 011 (3 locations) 5) Cooling Air 
2) Exhaust Gases 6) Plenum Tank Air 
3) Cylinder Head 7) Alcohol Fuel 
4) Inlet Air 8) Particulate Filter 

The primary air and Diesel fuel oil flow temperatures were measured 

using mercury-filled glass tube thermometers. 

3.5 Gas Phase Emissions Analysis 

The exhaust gases were analyzed for several constituents: CO2, 

CO, 02' NOx' and unburned hydrocarbons (HC). A representative exhaust 

sample was extracted continuously from the main exhaust flow through a 

stainless steel probe located at a point downstream of a large mixing 

tank. The exhaust extraction system, shown in Fig. 3.4, was also 

used for particulate emissions collection and is discussed in more 

detail in Section 3.6, Particulate Emissions Collection. The exhaust 

gas~s ~ere then transferred through a Teflon sample line to gas phase 

instruments for analysis. 

Prior to entering these analyzers, the exhaust gases were filtered 

to remove particulate matter and cooled to condense any vaporized 

water (Fig. 3.5). Pressure regulators and flow control valves 

governed the flow rates of span and sample gases through the 

instruments. Rotameters located within the instruments and on the 

control panel were used to verify that the correct gas flows passed 

through each respective analyzer. 
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Oxides of nitrogen were measured using a Beckman Model 955 heated, 

chemiluminescent analyzer. The instrument was calibrated on a 550 ppm 

NO span gas. Detection of CO and CO
2 

emissions was made using Beckman 

Model 864 and Model IR-l5A infrared analyzers. These instruments were 

calibrated on 418 ppm CO and 14.9% CO2 span gases, respectively. 

Oxygen was measured by a Beckman ~odel 741 analyzer; this i~strument 

incorporated an amperometric sensor and was calibrated on high purity 

air. Unburned hydrocarbons, measured as CH4 , were detected by a 

Beckman ~odel 109 unheated flame ionization detector. A certified 

calibration gas of 530 ppm methane concentration was used for cali~ra

tion of this unit. 

3.6 Particulate Emissions Collection 

Particulate exhaust emissions were collected on !ef1on-coatea, 

glass fiber filters. The filters, manufactured ~y Pa1lflex Products 

Corporation (Type T60A20), measured 142 mm in diameter and were held ~~ 

a stainless steel holder located as shown in Fig. 3.4. !he exhaust 

sample was extracted from the center of a 1.610 inch 1.0. exhaust stacK 

using a 0.420 inch I.D. stainless steel probe bent at a 90° angle and 

oriented parallel to the exhaust gas flow. The probe was ?ositioned at 

a point greater than 10 pipe diameters beyond a stainless steel mixing 

tank. The Reynolds Number of the exhaust gases at the probe location 

indicated turbulent flow under all operating conditions; therefore, 

probe location was not as critical as it may have been had the flow 

profile been laminar. 

In order to avoid mass discrimination and thus extract a represen

tative sample, an inclined tube manometer (Dwyer ~~nufacturing Co.) was 
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included in the collection system to monitor the relative velocities of 

the sample and main exhaust flows. When gas velocities were matched in 

both the exhaust stack and the sampling probe (i.e., isokinetic 

sampling), the overall pressure differential recorded by the manometer 

was zero, as predicted by the well-known Bernoulli relationship. Since 

the chemical nature of the collected particulate could also be affected 

by high sampling temperatures, a water-cooled heat exchanger was 

employed to limit all sampling temperatures to less than l25°P. 

3.7 Experimental Procedure 

The intent of this study was to draw some conclusions concerning 

the effects of aqueous alcohol fumigation on engine performance and 

emissions. To this end, a test program was outlined which provided 

experimental data to offer insight into these areas of interest. An 

outline of the test program as cefined by rack setting, engine speed, 

and percent alcohol substitution is presented in Table 3.2. 

Full rack was d.etermined by adjusting the fuel flow to obtain an 

output of 4.5 brake horsepower corrected to standard conditions at 

2800 RPM. With the rack locked at this position, the engine was loaded 

such that the speed dropped to 2400, then 1800 RPM. The fuel flow was 

recorde~and the corrected brake horsepower (BHP ) was calculated at c 

each full rack condition. Third and 2/3 rack settings were defined as 

those fuel flows at which the engine developed one-third and two-thirds, 

respectively, of the full rack BHP at each speed. Results obtained in 
c 

these baseline tests were used to generate a test matrix in which each 

test cell defined a particular rate of energy input. 



Table 3.2 

Test Progralll 

Test Series Rack RPM Alcohol Fuel Alcohol Proof % Alcohol Subst. 

1 1/3 
2/3 2800 o (Baseline Only) 

Full 

2 1/3 
2/3 2400 o (Baseline Only) 

Full 

3 1/3 
2/3 1800 o (Baseline Only) 

1<'Ull 

4 1/3 
2/3 2400 Ethanol 200 o to Misfire Limit VI 

0 

Full 

5 1/3 
2/3 2400 Ethanol 180 o to Misfire Limit 

Full 

6 1/3 
2/3 2400 Ethanol 160 o to Misfire Limit 

Full 

7 1/3 
2/3 2400 Ethanol 140 o to Misfire Limit 

Full 

8 1/3 
2/3 2400 Hethanol 200 o to Misfire Limit 

Full 

9 1/3 
2/3 2400 Hethanol 160 o to Misfire Limit 

Full 
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In completing the remainder of the test program, a rigid procedure 

was followed in an attempt to prevent any intervening variables from 

biasing the experimental results. Before each test series, the desired 

proof alcohol was formed by mixing 200 proof alcohol with distilled 

water. All alcohol rotameters were recalibrated using this particular 

alcohol blend. Engine preparation included cleaning all deposits from 

the cylinder head, piston crown, combustion cup, and injector nozzle. 

The valves were lapped, and the engine reassembled such that the piston 

crown-to-cylinder head clearance was held constant at .032+.001 inches. 

An attempt was made throughout the study to document any accelera

tion in wear rates resulting from alcohol fueling. To this end, 

friction horsepower (fhp) was measured p~riodically during testing. 

Cylinder wear rates were also determined during engine tear down by 

measuring the cylinder bore diameter at several locations. 

Actual data collection started by operating the engine at 2/3 rack, 

baseline fuel, 2400 RP~I for approximately 30 minutes until the oil 

temperature reached l45+5°F. The engine oil was maintained at this 

temperature for the duration of the test run. 

At all alcohol-fueled test points the total energy input rate to 

the engine was maintained at the value determined in the baseline 

testing. At each 2400 RPM test condition, performance and emissions 

data were gathered for the baseline (Diesel fuel only) condition. An 

incremental reduction in Diesel fuel flow was then accompanied by an 

energy equivalent increase in alcohol flow such that the total energy 

input rate to the engine remained constant. The engine was allowed to 

run at each condition until steady-state conditions were reached; at 

this point performance and emissions data were recorded. Alcohol was 
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substituted for fuel oil in lOr. energy increments until the engine 

would not run due to combustion quenching. Where necessary, the final 

increment of alcohol substitution was reduced to 5% by energy to avoid 

engine misfire. 

In addition to gaseous emissions and performance data, exhaust 

particulate was collected at specific test points for further biological 

analysis. As for other tests, particulate collection proceeded only 

after the engine had reached steady-state conditions at a particular 

operating condition. 
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Chapter 4 

PRESENTATION OF EXPERIMENTAL RESULTS 

4.1 Introduction 

An experimental program using the equipment and procedures 

discussed in Chapter 3 and outlined in Table 3.2 was completed to 

determine the effects of alcohol fumigation on engine emissions and 

performance. The results of this experimental work are presented in 

this chapter. Raw data, collected during testing, was reduced to 

meaningful parameters using an IBM 370 computer system and an Apple II 

microprocessor. A complete listing of raw and reduced data is presented 

in Appendix C. 

Six fuel combinations of alcohol and water, consisting of four 

ethanol and two methanol proofs, were used to complete this work. The 

ethanol data have been plotted separately. For comparison purposes, 

the methanol data and corresponding-proof ethanol data have been 

presented together. This data will provide a basis for analysis of 

changes in engine combustion, efficiency, and emissions during alcohol 

fueling. 

4.2 Engine Performance 

Any feasible alternative fuel for automotive usage must offer 

attractive performance and emissions characteristics compared to 

conventional hydrocarbon fuels. Damage to critical engine components 

resulting from changes in fuel type are also of primary concern. 

In light of these considerations, several areas of engine 

pe"rformance were excftnined for changes caused by alcohol fumigation. 
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These areas of interest included thermal efficiency, ignition delay, 

combustion intensity, and to a lesser degree, engine wear. 

4.2.1 Baseline Testing 

In order to provide a data base for comparison during alcohol 

substitution, a thorough investigation of engine performance on base-

line Diesel fuel oil was first completed. Table 4.1 lists the 

characteristics of the baseline fuel and lubricating oil used in this 

study. The power output of the engine at 1800, 2400, and 2800 RPM 

was measured and is shown in Fig. 4.1. During subsequent testing, 

engine performance was first gauged against these baseline values to 

verify that all systems were operating properly. 

As described in Section 3.5, a test matrix was established during 

baseline testing which defined the rate of energy input to the engine. 

This matrix (Table 4.2) specifies, according to rack and engine speed, 

the energy input rate to be he~d constant during alcohol substitution. 

The measured lower heating values of the Diesel fuel oil and 

alcohol were used to calculate the correct flow rates of each fuel; 

flow rates were established to control alcohol substitution to the 

engine in lOr. energy increments. 

4.2.2 Engine Efficiency 

The thermal efficiency (nth) of an engine can be defined as the 

fraction of fuel energy supplied to the engine which is converted into 

useful work: 

n • engine work output rate 
th fuel energy input rate 

The thermal efficiency results, based on corrected brake horsepower 

4.1 

(BHP ) and fuel lower heating value, are presented in Figs. 4.2 and 4.3. 
c 
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Table 4.1 

Baseline Fuel and Lubricating 011 Specifications 

PROPERTIES OF BASELINE TEST FUEL 

Fuel Type: HILF 46162 A Grade 2 Diesel 

Physical & Chemical Properties 
Gravity (OAPI) 
Flash Point (oF) 
Pour Point (oF) 
Cloud Point (OF) 
Viscosity (SUS) @ lOO°F 
Cetane No. (calculated) 
Total Sulfur (~t.r.) 

Aromatics (r.) 

Distillation Properties 
Initial Boiling Point (OF) 
10% 
50% 
90% 
End Point (OF) 

Recovery (%) 

35.9 
158.0 
-10.0 

0.0 
34.2 
47.5 
.549 
36.5 

376. 
430. 
490. 
575. 
627. 

99. 

PROPERTIES OF TEST ENGINE LUBRICATING OIL 

Oil Type: Shell Rotella T Premium Multipurpose HD 

Physical & Chemical Properties 
Saybo1t Viscosity @lOO°F (SSU) 
Saybolt Viscosity @210oP (SSU) 
Viscosity Index 
Pour Point (OF) 
Sulfate Residue (Wt.r.) 
Neut. No. (TBNE) 

quality Specifications 
Meets 
Exceeds 

API Classification 

560.0 
67.0 
98.0 
5.0 
1.0 
7.0 

MIL-L-2104C 
MIL-L-46152 
MIL-L-2104B 

CD,SE 
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LOAD CO~mITIO!~ 
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Fig. 4.1 - Brake Horsepower as a Function of Engine Speed 
at Baseline Operating Conditions 
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Table 4.2 

Baseline Data Matrix for AVCO-Bernard W51 
Single-Cylinder Dr Diesel Engine 

~ 1800 2400 
Rack 

2.92 3.94 
59.49 60.26 

Full .559 .572 
31,304. 43,317 

2.08 2.84 
42.35 43.50 

2/3 .577 .600 
23,200. 32,643. 

.91 1.35 
18.66 20.69 

1/3 .847 .847 
14,885. 22,027. 

Data in each matrix cell organized as follows: 

BHPc (horsepower) 
BMEP (psi) 
BSFC (Ibm fuel/bhp-hr) 
Energy input rate (Btu/hr) 

Performance data corrected to 
Standard Test Conditions 

T-545°R (85°F) 
P-Z9.38 in. Hg. 

Full Rack Test Horsepower: 4.5 BHP @ 2800 rpm 
c 

2800 

4.50 
58.94 

.613 
53.127. 

3.30 
43.24 

.638 
40;417. 

1.41 
18.41 
1.01 

27,226. 
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Examination of Eq. 4.1 reveals that by holding the energy input 

rate constant for each specific test condition, the thermal efficiency 

curves also represent the trend in power output for the engine. Under 

all operating conditions, alcohol was substituted until engine misfire 

occurred; the last data point for each fuel and test condition defines 

the maximum possible substitution of each proof alcohol fuel. 

At the 1/3 rack setting, thermal efficiency dropped off signifi

cantly for all fuels and test conditions. The 2/3 rack setting 

initially exhibited a slight increase in thermal efficiency for all 

fuels tested; however, at the point of engine misfire, efficiency was 

near its baseline value. Slightly larger thermal efficiency improve

ments were experienced at the full rack condition and were maintained 

to the misfire limit. 

General trends noted here include the rising percentages of 

alcohol which could be substituted for Diesel fuel oil as rack setting 

(load) was increased. In addition, the percentage of water contained 

in the fuel had no apparent effect on performance; however, combustion 

quenching occurred earlier for lower proof fuels. Comparison of 

ethanol and methanol fuels in Fig. 4.3 r~veals that ethanol performance 

was slightly higher at the low rack settings; differences were insignif

icant as rack setting increased. 

4.2.3 Ignition Delay and Combustion Intensity 

The physical and chemical differences in fuel structure of alcohols 

and fuel oil (see Section 2.1, Fuel Characteristics) lead to a combina

tion of changes in the combustion process. The combustion paraceters 
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investigated in this study were those largely responsible for the level 

of mechanical stress placed on the engine. 

Maximum pressure and rate of pressure rise (dp/dt) are believed to 

be two of the more critical factors affecting engine stress. The peak 

pressure data are presented in Figs. 4.4 and 4.5. The scatter observed 

in these data may be due to the engine cycle-by-cycle variations. The 

lack of direct engine-to-computer interfacing prevented analysis of 

greater numbers of combustion cycles; it is assumed that larger data 

samples would have minimized scatter. Nevertheless, an obvious trend 

in peak pressure was observed as alcohol substitution increased. 

Under all alcohol-fueled conditions, peak cylinder pressure 

increased, followed by a decrease near the misfire limit. The maximum 

percentage increase in peak pressure was observed to occur at the full 

rack setting and decrease correspondingly with rack setting. No 

consistent effect of alcohol quality on peak pressure 1s shown for 

ethanol or methanol (see Fig. 4.5). 

The trend in rate of pressure rise data shown in Figs. 4.6 and 4.7 

is similar to that for peak pressure, as might be expected. Again, the 

rate of pressure increased initially, then dropped off with alcohol 

addition. Ignition delay, a factor associated closely with rate of 

pressure rise in Diesel combustion, is shown in Figs. 4.8 and 4.9. 

An increase in ignition delay occurred as alcohol was substituted for 

fuel oil. A dependence of ignition delay on water content of the fuel 

is also indicated by the test data; delay generally increased with 
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Fig. 4.4 - Peak Pressure as a Function of Fumigated Ethanol at 
2400 RPH 
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decrease in alcohol quality, particularly at conditions where water 

volume was significant (i.e., higher rack settings and alcohol substitu

tion points). 

Comparison of methanol and ethanol fuels in Fig. 4 •. 9 indicates 

that the ignition delay of 200 proof methanol was similar to that for 

the 160 proof ethanol. The ignition delay of 160 proof methanol was 

significantly longer than for similar proof ethanol. A further 

correlation between ignition delay and maximum percent alcohol 

substitution is shown in Figs. 4.8 and 4.9; in general, alcohols 

exhibiting the longest ignition delays caused misfire at severely 

reduced alcohol substitution levels. 

Pressure traces recorded during combustion of each fuel are shown 

in Figs. 4.10-4.15. The fraction of fuel energy supplied by ethanol 

(E) or methanol (M) is noted for each curve. The peak pressure, 

rate of pressure, and ignition delay data presented earlier were 

measured from similar recorded events. Qualitative examination of 

these various pressure curves provides an additional insight to the 

effects of alcohol and water fumigation on engine combustion. 

4.2.4 Engine Wear 

Checks for upper-cylinder wear were made periodically during 

engine tear down. The cylinder was measured and visually inspected 

for signs of scoring or pitting. During the duration of this study, 

no abnormal rates of wear were recorded. Carbon deposits were 

observed to form on the nozzle and piston crown; however, the formation 

of these deposits did not seem to be affected by alcohol quality. 
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4.3 Gas Phase Emissions 

During all -segments of the test progral!1, exhaust gases were 

analyzed for CO2, CO, 02' NOx and-unburned HC. Of major concern in 

this work were gaseous emissions currently regulated under federal 

emissions standards: CO, HC, and NO. Oxides of nitrogen and unburned x 

HC are of particular interest due to their role in the formation of 

photochemical smog. Carbon monoxide, although of generally low 

concentration in Diesel engine exhaust, is highly toxic when inhaled 

in even small quantities. 

Emissions data are presented on an indicated power-specific mass-

flow rate basis (gm/ihp-hr). This treatment of the data is necessitated 

by the fact that under certain operating conditions, engine parameters 

in terms of power and exhaust volume flow rate may change independently. 

The emissions parameter of interest is the mass of pollutant per unit of 

energy delivered. 

4.3.1 Hydrocarbons 

The trend in hydrocarbon emissions is shown in Figs. 4.16 and 4.17. 

Before discussing the data, several factors should be considered. In 

this work, an unheated flame ionization detector was used to measure 

unburned HC; error may be introduced by the effect of particulate 

absorption and hydrocarbon condensation in Diesel combustion studies. 

In addition to this problem, disparities in the results may be created 

by measurement error in the HC analyzer. Canton -(10) reported that the 

presence of methanol and oxygen in the sample may slow and ultimately 



-w 
'j" 
Co -..-4 -e 
eG 

10 

8 

6 

4 

2 

0 

10 

8 

6 

4 

- 2 
2 -

0 
6 
(l 

Q 

76 

FUEL TYPE 
200 Prf. Ethanol 
180 Prf. Ethanol 
160 Prf. Ethanol 
140 Prr. Ethanol 

B Q 

Full Rack 

2/3 Rack o 
10r-------------------------------------------~ 

8 

6 

4 

2 

o 
o 

1/3 Rack 

10 20 30 40 50 60 

% Ethanol by Energy 
Figure 4.16 - Unburned Hydrocarbon Emission as a Function 

of Fumigated Ethanol at 2400 RPM 



77 

10Cl------Ir-----,------.-----~------~----~~ 

-w 

8 

6 

4 

2 

o 
10 

8 

T 6 
c. --; -= OG 4 -
= 

2 

FUEL TYPE 
0 200 Prf. Ethanol 
0 160 Prf. Ethanol 
() 200 Prf. }1ethanol 
~ 160 Prf. }1ethanol 

8 g 
~ ~ U 

Full Rack 

r-----------------------------------------~ 

2/3 Rack 

o 
10r---------------------------------------------~ 

8 

6 

4 

2 

o 
1/3 Rack 

o 10 20 30 40 50 6() 

~ Alcohol by Energy 

Figure 4.17° - Comparison of Unburned Hydrocarbon Emission for 
Ethanol and Hethanol Fumigants at 2400 RPH 



78 

lower instrument response. Unburned alcohols, as well as the formation 

of aldehydes (not considered in this study), may also have affected HC 

measure~ent. 

In view of these problems, HC data is presented only as a guideline 

to indicate the general trends in the emission of this pollutant under 

different operating conditions. The moderate data scatter is well 

within the experimental capabilities of the analyzer used in this work. 

General trends in HC emissions are evident with regard to rack 

setting and percent alcohol substitution. An increase in HC emissions 

was observed for all three rack settings as alcohol was introduced. 

The relative increase in HC ecissions was more significant at lower 

rack settings; an increase of over 8 fold at the 1/3 rack setting was 

measured near the misfire limit. Similar rates of HC increase were 

noted for other alcohols. Although percent alcohol substitution and 

rack setting were important factors affecting HC emission, alcohol 

quality had no obvious effect. This is evidenced by the narrow data 

point band width for most operating conditions. 

4.3.2 Carbon Monoxide 

The effect of alcohol fumigation on engine CO emission is shown 

in Figs. 4.18 and 4.19. A strong rack dependence was observed for 

this pollutant. At the 1/3 rack setting, a significant rise in CO 

emissions resulted as the percentage of alcohol was increased. This 

same trend was noted at the 2/3 rack condition; however, the increase 

in CO was less pronounced. At the full rack condition, CO emissions 

showed only a slight increase up to the point of 25% alcohol substitu

tion, followed by a gentle decline to near the baseline value. 
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The fuel type and water content did not significantly affect CO 

emissions. However, the data tended to scatter as the misfire limit 

was approached for each fuel. 

4.3.3 Oxides of Nitrogen 

Oxides of nitrogen (NO) results are presented in Figs. 4.20 and x 

4.21. NO emissions were observed to be highly dependent upon the x 

water content of the alcohol. Figure 4.20 points out this strong 

effect for various proofs of ethanol. As water content increased, the 

exhaust concentration of NO was observed to decline. Wet methanol 
x 

(160 proof) showed significant reductions in NO formation, especially x 

as the amount of fumigated alcohol exceeded 15%. 

General trends in NO emissions also changed with rack setting. 
x 

At the 1/3 rack condition, ~O declined as alcohol was substituted. x 

The 2/3 rack condition showed that a slight increase followed by an 

e~uivalent decrease in NO resulted as increasing quantities of 
x 

alcohol were fumigated. In most cases, NO showed moderate increases . x 

at the full rack condition; however, this again was dependent upon the 

water content of the fuel. 

4.4 Solid Phase Emissions 

Particulate emissions, currently creating widespread concern 

regarding their potentially harmful effect on biological systems, were 

collected and analyzed. Data and test results indicating the 

dependence of rate of formation and biological activity of these 

emissions on baseline and ethanol fuel arc now presented. 
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4.4.1 Loading Rate 

The mass loading rate of particulate emissions (gm/min.) was 

observed to decrease as alcohol replaced the baseline fuel (Table 4.2). 

Reductions of more than 70% of the baseline value occurred at some 

operating conditions. 

A trend of increased particulate loading was noted with an 

increase in water content of the fuel. Very limited particulate 

analysis for methanol-fumigated conditions was performed in this work. 

As a result,comparison of biological enhancement and mass loading rates 

for ethanol and methanol is precluded. 

4.4.2 Biological Assay 

The biological activity of the Diesel particulate as measured by 

the .~es Salmonella typhimurium test is listed in Table 4.2. Both the 

raw particulate as well as the soluble organic fraction (SOF) for 

various racks, proofs, and percentages of ethanol were analyzed. 

Specific emphasis was placed upon performing a complete biological 

analysis of particulate emissions at the 2/3 rack condition. 

Results indicate that the biological activity of the raw particu

late was enhanced as ethanol was substituted for fuel oil. Activity is 

seen to increase in a manner proportional to percentage of ethanol 

fumigated. Tests performed on the SOF were somewhat less conclusive; 

experimental error introduced in the SOF extraction process may have 

been responsible for scattered results. 
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Chapter 5 

DISCUSSION OF RESULTS, SUMMARY AND CONCLUSIONS 

5.1 Introduction 

Data showing the effect of aqueous alcohol fumigation on Diesel 

engine performance and emissions were presented in Chapter 4. Inter-

pretation and analysis of these experimental results, aided by the 

theoretical considerations presented in Chapter 2, are now reported. 

Conclusions drawn from the experimental findings and recommenda-

tions for further work complete the study. 

5.2 Thermal Efficiency 

Thermal efficiency, a measure of an engine's effectiveness in 

producing shaft work, showed slight but consistent trends during 

alcohol fueling at various rac~ settings. Efficiency calculations ~ere 

based upon BHP and the liquid fuel, lower constant pressure heating 
c 

values of the Diesel and alcohol fuels. 

Slight gains in thermal efficiency at the 2/3 and full rack 

settings with increased alcohol substitution are attributed to several 

factors. Increased ignition delays and large quantities of vaporized 

alcohol (inherent in fumigation) coupled to create rapid, nearly 

constant volume combustion near top dead center eTDe) - a more 

efficient process than typical Diesel combustion (Fig. 5.1). Peak 

pressures were possibly increased by the rapid heat release and by the 

formation of more moles of products during alcohol combustion. Rapid 

rates of energy release may also have reduced heat loss from the engine. 
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Although inlet air temperatures were depressed by the high latent 

heat of the vaporizing alcohol, volumetric efficiency (n ) decreased 
v 

slightly. This reduction in n resulted from vaporized alcohol 
v 

displacing air during the intake stroke; a less dense air charge 

existed in the cylinder, possibly deteriorating combustion. Increased 

CO and unburned HC emissions seem to confirm that more complete 

combustion was not responsible for improved thermal efficiency. 

Thermal efficiency was observed to decrease at light load (1/3 

rack setting). Examination of the characteristic 1/3 rack pressure 

traces and ignition delay data presented in Chapte~ 4 provides some 

explanation for this decrease. At light load, the lower total energy 

release and proportionately larger amount of fuel energy leaving the 

cylinder through heat transfer cause overall cooler conditions in the 

combustion chamber. Therefore, less energy is available to heat and 

vaporize the alcohol charge; the quench layer is thickened and 

combustion deteriorates rapidly. These conditions were evidenced by 

the rapid increase in CO and HC emissions for the low rack settings. 

A general trend noted in the thermal efficiency data is the 

reduction in maximum possible alcohol substitution with lower rack 

setting and higher water content; misfire due to combustion quenching 

was enhanced by the high heats of vaporization. The relatively higher 

latent heat of methanol compared to ethanol created cOQbustion condi-

tions that were significantly different - combustion quenching occurred 

at a much lower alcohol substitution quantity. This same effect was 

also observed as the amount of water in the fumigated alcohol was 

increased. These trends are illustrated in Fig. 5.2. 
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5.3 Combustion Intensity 

Factors affecting the severity of Diesel combustion have already 

been discussed (Sec. 2.2); however, before evaluating the experimental 

results, a brief review of these factors will be presented. 

Knock, the audible manifestation of rapid rates of cylinder 

pressure rise, occurs early in the Diesel combustion cycle. The 

initial energy release during auto ignition is generally responsible 

for creating strong pressure pulses which strike the cylinder walls. 

The strength of these pulses is controlled by the quantity of fuel 

which ignites almost simultaneously as combustion begins. Fuels 

exhibiting long ignition delays, such as alcohols, permit larger 

quantities of fuel to accumulate and vaporize preceding ignition; 

as a result, combustion usually begins with a large release of energy, 

creating engine knock. Severe knock is undesirable in Diesel engine 

combustion due to the mechanical stresses created by the associated 

rapid pressure rise and high peak pressure. 

The peak pressure and rate of pressure rise data presented in 

Figs. 4.6-4.9 show that increases in both of these combustion 

parameters occurred during initial alcohol substitution. Aural and 

quantitative measurement of knock (see Appendix B) confirmed that 

combustion intensity increased at these alcohol-fueled conditions. 

Two characteristics of alcohol fumigation are responsible for 

these observed increases in combustion intensity: 

1) increased ignition delay resulting from the charge cooling of 

the vaporizing alcohol, and 
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2) the presence of a vaporized, homogeneous alcohol fuel charge 

which ignites immediately as combustion starts. 

The effect of both of these factors can be noted in Fig. 5.1. Constant 

voluce combustion near TDC occurred as high flame speeds enhanced 

combustion in the alcohol fuel charge. Correspondingly higher rates of 

pressure rise and peak pressure resulted. 

However, peak pressure and rates of pressure rise declined below 

baseline values as the misfire limit was approached; a significant 

reduction in combustion noise accompanied these events. Autoignition 

delayed until well after TDC was responsible for the observed reduction 

of combustion severity. Combustion of this type is also shown in 

Fig. 5.1. The effect of water in the alcohol fuel was most evidenced 

by its extension of ignition delay - a result of increased charge 

cooling. Combustion quenching posed the limiting constraint on maximum 

alcohol substitution as auto ignition occurred progressively later in 

the expansion stroke. Figure 5.3 illustrates more clearly the extended 

. ignition delay which occurred during combustion of lower quality 

alcohols. The increased ignition delay experienced during methanol 

compared to ethanol fumigation is seen in Fig. 5.4. 

5.4 Emissions 

Both gaseous and solid emissions were collected and analyzed 

during engine operation. Equivalence ratio [(F/A) t I(F/A) t i h ] is ac • soc • 

known to have a significant effect on particulat~ and gaseous emissions 

production. The measured A/F ratio for anhydrous methanol and ethanol 

(Fig. 5.5) was observed to decrease as alcohol substitution increased. 

Similar trends were noted for the lower proof alcohols. The lower 
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heating value of the alcohol necessitated a larger mass substitution of 

fuel, accounting for the observed reduction. However, the stoichio

metric ~/F ratio also decreased due to bound oxygen and the higher 

hydrogen to carbon ratio of the alcohol molecule. As a result, the 

equivalence ratio remained nearly constant (Fig. 5.6). 

From this brief analysis, it appears that factors other than 

mixture composition were responsible for the changes in pollutant 

formation. Since diffusive-type combustion of the ~uel oil as well as 

homogeneous alcohol combustion existed, emission characteristics of 

both Diesel and SI engines would be predicted. A more thorough 

analysis of the factors responsible for emissions changes is now 

presented. 

5.4.1 Gaseous Emissions 

Federal standards currently regulate the emission of three harmful 

gaseous pollutants: CO, NO , and unburned HC. x Fumigated alcohol 

significantly altered the levels of each of these pollutants produced 

under varied operating conditions. 

Carbon monoxide emissions increased with alcohol substitution at 

the 1/3 and 2/3 rack settings, but remained fairly constant at the full 

rack operating condition. An obvious rack (load) dependency is 

indicated by the data. 

Carbon monoxide is produced as a result of incomplete oxidation of 

the fuel. Factors causing combustion deteorioration (such as high 

latent heats of vaporization) could be responsible for increased CO 

production. The rack dependency of this emission indicates that 

combustion chamber temperatures may have had a significant effect. A 
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thickened quench layer created by the cooling effect of vaporizing 

alcohol could have played a major role in the increased CO production. 

As· rack setting (and combustion temperature) increased, better 

air utilization due to the presence of a homogeneous alcohol charge may 

have lowered CO emissions. This effect, combined with higher 

combustion temperatures, would tend to minimize the increase in CO 

emission. At the full rack setting, CO emissions remained constant or 

decreased slightly; improved air utilization and a smaller quench 

effect apparently dominated at this condition. 

In general, at the lower rack settings CO~ emissions decreased 
~ 

while O2 levels increased with greater alcohol substitution. These 

trends also point to combustion deterioration - supporting the 

proposed explanation for increased CO formation. 

Incomplete combustion, the mechanism responsible for increased CO 

production, generally has a similar effect on unburned hydrocarbon 

emission. Cylinder wall quenching of the homogeneous charge in 5I 

engines is known to cause increased exhaust emission of unburned HC. 

At least one investigator has shown that mechanisms responsible for 

increased HC emissions in SI engines are similar to those in fumigated 

Diesel engines (49). 

Other factors may have been responsible for the rapid increase in 

He emissions as the misfire limit was approached. Here, combustion 

began late in the cycle due to extended ignition delays (Figs. 5.3 and 

5.4). Bulk quenching of the fuel oil and alcohol charges may have 

resulted as pressures dropped rapidly during the expansion stroke. 

Distinct differences in HC and CO emissions were not observed for 

ethanol and methanol; water content also did not appear to affect the 
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emission levels of these pollutants. It was expected that combustion 

would be.deteriorated due to the presence of water vapor in the 

combusrion chamber and create higher unburned He emission levels. 

Operating conditions which provide high local temperatures in 

oxygen-rich areas generally promote large production of oxides of 

nitrogen. Decreases in NO levels at the 1/3 rack setting were 
x 

probably a result of peak temperature reduction due to the cooling 

effect of the vaporizing alcohol and the ensuing combustion deteriora-

tion. 

Increases in NO production at the 2/3 and full rack settings are x 

less easily explained. Rapid burning of the homogeneous alcohol charge 

at the beginning of combustion resulted in increased peak pressures for 

most of these load conditions. Locally high peak cylinder temperatures 

accompanied these rapid combustion events. Nitric oxide (NO) formation 

is a function of the local temperature, local oxygen concentration, and 

the time available for reaction. These dependencies suggest that 

increased NO production may have occurred in lean alcohol fuel areas 

during the initial stages of combustion. 

Levels of NO production also showed a dependence on alcohol type x 

and quality. The relative difference in latent heats of vaporization 

of methanol and ethanol, and their effect on the degree of charge 

'cooling probably caused these differences. Similarly, increased water 

content of the alcohol should have depressed peak temperatures, 

explaining the relatively lower NO emission levels for the low proof 
x 

alcohols. 
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5.4.2 Solid Phase Emissions 

Decreases in particulate loading rates occurred with increased 

ethanol substitution. This was a direct result of the sootless flame, 

characteristic of alcohols. The formation of a homogeneous ethanol 

charge may also have been responsible for leaner combustion of the 

injected fuel oil. 

The limited biological analysis performed in this work indicated 

that the activity of the raw particulate and its soluble organic 

extract appear to have been enhanced by ethanol substitution (Table 

4.2). Determination of the exact mechanisms responsible for this 

increased biological activity is outside the scope of this study. 

5.5 Summary and Conclusions 

The increasing unavailability of petroleum-based fuels necessitates 

the development of alternative energy sources. Alcohols represent one 

of the most attractive near-term alternative fuels. Diesel engine 

combustion of this fuel is an important consideration in light of the 

increasing application of this power plant in the light-duty automotive 

sector. 

In the past, most alcohol-in-Diesel engine feasibility studies 

have examined the combustion of anhydrous fuels. Physical and econom

ical implications may make small-scale distillation of these high

quality alcohols impractical. 

This study was undertaken to determine the effects of aqueous 

alcohol fumigation on Diesel engine combustion and emissions. The 

following conclusions, in accordance with the specific objectives of 

this study, have been drawn from the experimental results: 
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1) Slight thermal efficiency improvements, resulting primarily 

from constant volume combustion of the homogeneous alcohol 

charge, are possible with limited alcohol fumigation (up to 

30% by energy) at the 2/3 and full rack operating conditions. 

2) Alcohol type and quality (as low as 140 proof) have an 

insignificant effect on thermal efficiency up to the point of 

engine misfire. 

3) Rapid combustion of the alcohol charge, resulting in 

unacceptably high rates of pressure rise (especially at the 

higher load conditions), may limit the pe~cent of alcohol 

substitution to avoid engine damage over prolonged use. 

4) Fumigation of alcohol produces increased ignition delays; 

higher water content of the alcohol lengthens this delay 

period. 

5) Maximum possible alcohol substitution is set by engine misfire, 

a consequence of the alcohol and water vaporization charge 

cooling effect. 

6) Increased carbon ~onoxide and unburned hydrocarbon formation 

7) 

resulted during alcohol fumigation, but showed a strong rack 

dependence. Water content had no significant effect on these 

emissions. 

Relative levels of NO emissions decreased with higher alcohol x 
water content for all load conditions. 

8) Particulate emissions are reduced by ethanol fumigation. 

Limited biological analysis of this particulate indicates that 
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ethanol fumigation may increase the biological activity, as 

measured by the Ames test, of the raw particulate and its 

soluble organic extract. 

5.6 Recommendations for Future Work 

This study is part of a continuing program to evaluate the 

utilization of alternative fuels in Diesel engines. To date, results 

indicate that limited quantities of aqueous alcohol ·can be used 

efficiently while avoiding Diesel knock. However, enhanced biological 

activity of the resultant particulate emissions may discourage alcohol 

usage. Further work is justified in examining the effects of optimized 

injection timing on improving combustion efficiency and reducing engine 

knock. A method of determining and controlling the degree of vaporiza

tion of the alcohol charge preceding ignition, may also contribute 

toward controlling combustion severity; exhaust waste heat reclamation 

may be applicable in this regard. Direct engine-to-microprocessor 

interfacing would allow a more thorough investigation of peak pressure 

and rate of pressure rise characteristics. The significance of the 

biological findings cannot be understated; further investigation of 

emissions related work is paramount. In addition to the pollutants 

already considered, gas chromatography may prove useful in measuring 

aldehydes, not considered in this work. 
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APPENDIX A 

The Salmonella/Ames Test (33) 

"The Ames Test involves several (usually 4) specially constructed 

strains of the bacterium Salmonella typhimurium (1,2,3). The tester 

strains all require an exogeneous supply of the amino acid histidine 

for growth. These strains contain unique types of DNA damage at the 

sites of mutation in the gene(s) which code for the enzymes necessary 

for the production of histidine. Because of these mutations the strains 

are auxotrophic (they require exogenous supplies). In strains TA1535 

and TAlOO there are base pair substitutions (the proper base in the 

DNA has been replaced by one of the three other bases). Strains TA1537, 

TA98 and TA1538 contain frame shift mutations (extra bases have been 

added or bases have been subtracted from the DNA strand). 

Different doses of the compound to be tested are combined directly 

on a Petri dish along with a bacterial tester strain. A trace of 

histidine, which is not enough to permit colonies to form but which 

will allow sufficient growth for expression of mutations, is added. 

About 108 bacteria are tested on a single Petri plate. The number of 

bacteria reverted back to an ability to grow without added histidine 

are measured by counting the revertant colonies on the plate after two 

days incubation at 37°C. Quantitative dose-response curves are 

obtained which generally have linear regions. 

Thus, if a compound causes changes in primary structure of the 

DNA it will cause one more of the tester strains to revert so that 

they no longer require exogenous histidine for growth. The potency 

of compounds are compared by determining how many revertants per 
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microgram of sample are generated in the linear portion of the dose

response curve. The test is based on the high correlation which exists 

between an agent's ability to cause mutations in bacteria and cancer in 

animals. The Ames Test is extremely sensitive, and usually micrograms, 

and in some cases even nanograms of mutagen can be detected. It is 

important to note that some mutagens may not be carcinogenic. That 

is, there are agents which cause mutations in bacteria while they 

apparently do not cause cancer in animals. In spite of this, the Ames 

Test has been the most successful widely used short term test." 
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APPENDIX B 

Knock Quantification System 

Knock is generally undesirable in engine combustion due to the 

damaging mechanical stresses resulting from associated high peak 

pressures and rates of pressure change (dp/dt). In this study, knock 

quantification was used as a means of comparing combustion intensity 

as different types and quantities of alcohol were fumigated. 

Hoffman (68) and Duke (69) concluded that analysis of knock in 

5I engines is best conducted by examination of the filtered dp/dt 

signal. The reader is referred to their work for a more complete 

explanation. Knock in Diesel combustion is less easily detected and, 

consequently, is more difficult to quantify. As a result, qualitative 

description of Diesel knock based on aural detection has generally 

been used. 

In an attempt to quantify knock in this study, filtered pressure 

as well as filtered dp/dt signals were examined. Initial testing 

revealed that knock intensity measurement based upon rates of presSure 

change correlated best with audible manifestations of harsh combustion 

in the cylinder. Therefore, it was decided to use a filtered dp/dt 

signal for quantifying knock. 

A quartz pressure transducer (Kistler Xodel 6031) communicated 

with the combustion chamber through a small connecting passageway in 

the cylinder head. By shunting the signal (current) from this 

transducer to ground through a high impedance resistor, a small voltage 

proportional to the rate of pressure change in the cylinder could be 

measured. 
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The dp/dt signal was amplified and passed through a KRO~~-HITE 

Model 3700 band-pass filter which was set to attenuate frequencies 

outside a 2000-8000 Hz bandwidth. Filtering effectively removed 

pressure changes associated with the normal compression and expansion 

strokes of the engine; electrical noise resulting from mechanical 

vibrations was also eliminated. The filtered dp/dt signal represented 

pressure fluctuations which occurred within the engine as a result of 

autoigniting fuel-air pockets. This filtered signa~ provided the basis 

for knock quantification. 

The filtered dp/dt signal was input to a co~parator that detected 

voltages (in this case proportional to rate of pressure rise) which 

exceeded a selected threshold level. The comparator output stepped to 

a high state when the threshold level was exceeded and triggered a 

monostabilizer or "one-shot". The monostabilizer delivered a square 

wave pulse of selected duration (15 osec) to a digital frequency 

counter (Beckman ~·!odel 6380 counting unit, Model 678 function unit, 

and a Model 683 input module). The purpose of the monostabilizer was 

to deliver only one pulse to the frequency counter per severe coobustion 

cycle. By connecting the needle lift sig~al (see Section 3.2.2) to the 

time base of the frequency counter, the fraction of combustion cycles 

in which the filtered dp/dt signal exceeded the selected threshold 

voltage was determined. This value was displayed on the digital output 

of the frequency counter. An electrical schematic and a characteristic 

signal display pattern of the knock quantification system are presented 

in Figs. B.l and B.2, respectively. 

The threshold level of the comparator was set such that distinct, 

audible knock which occurred during certain operating conditions was 
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detected. By displaying a pressure trace (from a second transducer) on 

a digital oscilliscope and measuring the maximum slope, it was 

determined that strong, audible knock generally resulted when dp/dt 

values exceeded 100 psi/degree of crank angle. Capacitive and inductive 

effects of the circuitry as well as the fact that a filtered rather 

than absolute dp/dt signal was being evaluated deterred more definitive 

determination of exact dp/dt threshold levels. ~evertheless, changes 

in combustion intensity resulting during various operating conditions 

were detected. 

The knock quantification system was used in a portion of the 

alcohol fumigation work. The experimental results are shown in Fig. 

B.3. Trends in the knock intensity data correlate with trends observed 

in the dp/dt and peak pressure data presented in Section 4.2.3. Knock 

generally increased as alcohol was fumigated; however, as the misfire 

limit was approached the percentage of knocking combustion cycles 

decreased. 

Although certain trends are evident, the data is widely scattered 

for different proofs of alcohol fuels; this degree of scatter was not 

evident in other pressure phenomena data. Additional work must be 

completed to explain these results. Further analysis may determine if 

instrument malfunction or engine cycle-by-cycle variations skewed the 

experimental results. 

-
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APPENDIX C 

Reduced Experimental Data 

Key.to Data 

percent of total fuel energy supplied by. fumigated alcohol 

engine thermal efficiency (7.) 

brake horsepower corrected to standard test conditions, 
T=S4SoR, P=29.38 in. Hg 

brake mean effective pressure (psi) 

brake specific fuel consumption (lbm fuel/BHP -hr) 
c 

brake specific energy consumption (Btu/BHP -hr) 
c 

peak pressure (psi) 

maximum rate of pressure rise (psi/degree crank angle) 

ignition delay (degrees crank angle) 

air-fuel ratio 

equivalence ratio 

exhaust temperature (OF) 

volumetric efficiency (percent) 

power specific emission of carbon monoxide (gm/ihp-hr) 

power specific emission of unburned hydrocarbons (gm/ihp-hr) 

power specific emission of oxides of nitrogen (gm/ihp-hr) 



Table C.l 

Reduced Experimental Data 

Operating Condition: 1/3 Rack, 2400 RPM 

}o'ue 1 : 200 Proof Ethanol 

%ALCH 0 10 20 30 40 

Tlmlo'lo' 15.85 14.42 13.08 12.14 8.17 

BliP 1.36 1.24 c 1.13 1.05 .71 
BMEP 20.98 19.06 17.31 16.08 10.84 

BSFt .83 .975 1.14 1.30 2.06 

nSEC 16067. 17632. 19453. 20943. 31419. .... 
PMAX 931. 957. 985. 846. 715. 

.... .... 
PRATMAX 91. 105. 160. 123. 55. 

IGNDLY 26.12 27.94 30.81 33.34 

AF 49.97 46.36 43.67 41.63 39.68 

PilI .299 .302 .302 .300 .298 

TEX 392. 373. 362. 352. 341. 

VOLEFF 87.7 86.2 85.6 86.2 87.1 

CO 5.21 7.39 10.25 14.5 23.32 

IIC .90 2.32 2.97 4.68 8.41 

NO 2.30 1.73 1.60 1.06 .40 

NOX 2.99 2.99 3.20 2.68 1.48 



'fable C.2 

Reduced Experimental Data 

Operating Condition: 2/3 Rack, 2400 RPH 

Fuel: 200 Proof Ethanol 

%AI.CIl 0 10 20 30 40 50 

TIIEFF 22.68 23.16 23.48 22.75 21.91 21.45 

BliP 2.89 2.98 3.02 2.91 2.80 2.74 
c 

BMEP 44.23 45.63 1.6.15 44.58 42.84 41.96 

BSFC .58 .61 .63 .69 .76 .82 

BSEC 11214. 10959. 10834. 11183. 11608. 11858. ...... 
...... 

PHAX 927. 942. 975. 984. 937. 861. N 

PRATMAX 83. 107. 124. l34. 93. 86. 

IGNDLY 25.49 25.85 27.93 29.02 31.75 35.28 

AF 33.10 30.65 29.08 27.71 26.47 25.27 

PilI .452 .457 .454 .450 .448 .445 

TEX 546. 534. 528. 519. 493. 514. 

VOLEFl" 86.9 85.5 85.3 85.3 85.1 84.0 

CO 6.47 8.04 8.67 10.27 11.92 l3.98 

IIC 1.31 2.50 2.79 4.01 4.28 5.41 

NO 2.48 2.49 2.47 2.28 2.02 1. 57 

NUX 2.73 2.86 3.15 3.19 3.17 2.50 



Table C.3 

Reduced Experimental Data 

Operating Condition: Full Rack. 2400 RPM 

!t'ue I: 200 Proof Ethanol 

%ALCH 0 10 20 30 40 50 55 

TIIEFF 23.98 25.49 25.91 26.49 26.80 26.38 26.00 

BliP 4.08 4.33 4.40 4.52 4.55 4.48 4.41 
c 

BMEP 62.42 66.26 67.31 69.06 69.58 68.53 67.48 

BSFC .55 .55 .57 .59 .62 .67 .69 

BSEe 10609. 9981. 9816. 9597. 9492. 9643. 9780. 
..... 

PHAX 993. 1029. 1042. 1052. 1076. 996. 953. ..... 
w 

Pl{ATMAX 13' •• 139. 161. 168. 165. 170. 140. 

IGNDLY 23.11 25.92 26.33 27.88 28.94 32.90 33.84 

All 24.43 22.68 21.67 20.58 19.57 18.73 18.31 

PilI .612 .618 .610 .606 .601 .599 .598 

TEX 716. 707. 686. 690. 666. 642. 645. 

VOLEl-'F 85.8 83.9 0'1.0 84.1 82.6 80.8 80.2 

CO 11.65 12.29 13.65 14.25 13.74 14.91 12.73 

lie 2.16 2.41 2.41 2.35 2.47 3.24 4.23 

NO 2.31 2.45 2.62 2.81 2.91 2.66 2.73 

NOX 2.44 2.64 2.88 3.17 3.31 3.24 3.46 



Table C.4 

Reduced Experimental Data 

Operating Condition: 1/3 Rack, 2400 RPr-f 

!<'uel: 180 Proof Ethanol 

%ALCH 0 10 20 30 35 

TH~l<'F 15.45 14.32 13.33 11.95 10.32 

BliP 1.33 1.23 1.15 1.04 .90 
c 

IUtEP 20.46 18.88 17.66 15.91 13.81 

BSFC .86 .98 1.12 1.32 1.58 

USEC 16462. 17770. 19082. 21282. 24633. --PMAX 873. 892. 898. 862. 744. s:-

PRATMAX 92. 119. 135. 121. 70. 

IGNDLY 27.29 28.29 29.81 31.10 34.27 

AF 50.09 46.43 43.80 41.61 40.28 

PilI .298 .302 .301 .300 .299 

TEX 400. 381. 369. 371. 356. 

VOLEFF 89.3 87.0 87.1 87.3 87.7 

CO 4.93 7.24 10.39 14.93 19.52 

IIC .809 1. 75 3.17 4.44 6.04 

NO 2.36 1.71 1.5'1 .97 .52 

NOX 3.0'1 2.97 3.13 2.60 1. 90 



Table C.5 

. Reduced Experimental Data 

Operating Condition: 2/3 Rack. 2400 RPM 

Fuel: 180 Proof Ethanol 

%ALCH 0 10 20 30 40 45 

THEFF 22.28 22.97 23.28 22.59 21.80 21.18 

BliP 2.86 2.95 2.99 2.89 2.82 2.72 c 
BMEP 43.70 45.10 45.80 44.23 43.18 41.61 

BSFC .59 .61 .6'. .70 .77 .81 

BSEC 11417. 11076. 10927. 11262. 11672. 12009. ..... 
PHAX 929. 971. 972. 995. 937. 815. ..... 

V1 

PRATM~ 91. 109. 114. 196. 156. 75. 

IGNDLY 25.05 26.35 28.22 30.23 33.84 36.14 

AF 32.92 30.92 29.28 28.0 26.43 26.29 

PI.I1 .454 .453 .450 .448 .444 .437 

TEX 550. 536. 525. 511. 491. 504. 

VOLEFl-' 87.30 86.90 87.20 87.10 87.50 88.20. 

CO 7.24 8.51 9.18 10.56 11.95 13.87 

He 1.60 2.38 2.77 3.06 3.82 5.15 

NO 2.53 2.37 2.24 2.31 1.80 1.14 

NOX 2.74 2.79 3.00 3.04 2.98 2.06 



Table C.6 

Reduced Experimental Data 

Operating Condition: Full Rack, 2400 RPM 

Fuel: 180 Proof Ethanol 

%ALCH 0 10 20 30 40 50 

TlIEFF 23.85 25.23 26.23 26.61 26.85 26.52 

BliP 4.07 4.·30 4.46 4.54 4.57 4.52 
c 

BHEP 62.24 65.73 68.18 69.41 69.93 69.06 

BSFC .55 .56 .57 .59 .62 .66 

BSEC 10664. 10085. 9699. 9558. 9474. 9593. ..... 
PHAX 994. 1015. 1069. 1103. 1085. 1010. 

..... 
'" 

PRATMAX 96. 98. 118. 161. 182. 154. 

IGNDLY 23.46 24.69 27.23 28.89 31.03 34.28 

AF 24.49 22.85 2L.72 '20.70 19.79 18.80 

PIlI .612 .613 .607 .603 .598 .597 

n:x 726. 713. 694. 676. 664. 652. 

VOLEFF 86.5 85.0 84.1 83.5 81.8 81.4 

co 10.46 12.64 12.62 12.85 11.83 11.10 

HC 2.03 2.30 2.36 2.57 2.73 3.32 

NO 2.20 2.34 2.56 2.63 2.73 2.66 

NUX 2.33 2.50 2.80 2.99 3.17 3.27 



Table C.7 

Reduced Experimental Data 

Operating Condition: 1/3 Rack, 2400 RPM 

Fuel: 160 Proof Ethanol 

%ALCII 0 10 20 30 35 

TUEFF 15.11 14.54 13.0 10.98 9.74 

BliP 
c 1.31 1.25 1.13 .96 .84 

BMEP 20.11 19.0 17.28 14.66 12.91 

BSFC .88 .97 1.15 1.44 1.67 

BSEC 16839. 17506. 19570. 23188. 26122. ...... 
867. 901. 887. 840. 730. 

...... PHAX ...., 

PHATMAX 102. 104. 134. 103. 51. 

IGNDLY 26.93 28.73 29.81 31.11 33.63 

AF 49.87 46.18 43.76 41.51 40.85 

PilI .301 .303 .301 .302 .297 

TEX 400. 383. 36ft. 355. 358. 

VOLEFF 89.4 86.9 86.3 85.1 85.8 

CO 4.42 6.86 10.67 17.32 21.27 

HC .697 1.83 3.20 4.86 7.23 

NO 2.43 1.98 1.64 .73 .37 

NOX 3.04 3.28 3.22 2.29 1.67 



Table C.8 

Reduced Experimental Data 

Operating Condition: 2/3 Rack, 2400 RPH 

Fuel: 160 Proof Ethanol 

%AI.CII 0 10 20 30 40 

TIlEFl" 22.24 23.08 23.84 23.56 22.34 

8l1P 2.85 2.97 3.06 3.02 2.85 
c 

OHEP 43.63 45.38 46.77 46.25 43.63 

8Sl"C .59 .61 .63 .67 .75 

OSEC 11435. 11023. 10671. 10797. 11387. .-.-

PHAX 922. 954. 983. 959. 895. 00 

PRATHAX 84. 96. 128. 128. 132. 

IGNDLY 25.35 26.78 28.72 31.25 34.70 
0 

AF 32.99 30.80 29.36 27.86 26.74 

PilI .455 .455 .450 .448 .444 

TEX 553. 540. 516. 503. 498. 

VOLElo'F 87.6 85.5 84.2 83.0 81.9 

CO 7.02 8.37 8.79 10.51 12.45 

IIC 1.62 2.47 2.63 3.41 4.26 

NO 2.56 2.43 2.28 2.01 1.63 

NOX 2.80 2.82 2.94 2.86 2.63 



Table C.9 

Reduced Experimental Data 

Operating Condition: Full Rack, 2400 R~ 

Fuel: 160 Proof Ethanol 

%ALCH 0 10 20 30 40 45 

THEFF 23.81 25.34 26.70 27.40 27.71 27.07 

BliP 4.06 4.31 4.61 4.68 4.74 4.59 c 
BMEP 62.13 65.97 70.51 71.56 72.43 70.16 

BSFC .55 .55 .56 .58 .60 .63 

BSEC 10657. 10038. 9528. 9284. 9179. 9394. -PHAX 964. 998. 1060. 1083. 1007. 890. -\0 

PRATHAX 109. 101. 129. 162. 168. 114. 

IGNDLY 23.52 26.43 28.29 29.95 33.05 36.58 

AF 24.46 22.66 21.23 20.48 19.33 19.11 

PUI .612 .619 .608 .609 .611 .602 

n:x 722. 708. 697. 689. 700. 695. 

VOLEFF 85.8 82.6 81.7 79.9 78.9 78.6 

co 9.89 14.11 12.30 11.99 10.71 10.67 

lie 2.14 2.26 2.35 2.41 2.73 3.28 

NO 2.17 2.22 2.49 2.68 2.43 2.18 , 

NOX 2.30 2.38 2.73 3.03 2.75 2.50 



Table C.10 

Reduced Experimental Data 

Operating Condition: 1/3 Rack, 2400 RPM 

1~uel : 140 Proof Ethanol 

%ALCII 0 10 20 30 

TIfE ... ·F 15.76 14.21 12.75 10.94 

BliP 1.36 1.22 1.10 .94 
c 

BMJo:P 20.78 18.68 16.94 14.49 

nSFC .64 .99 1.18 1.45 

n::mc 16143. 17908. 19954. 23256. .... 
N 

PH AX 885. 894. 914. 848. 0 

PRATMAX 95. 98. 163. 89. 

IGNULY 26.98 29.09 30.24 32.10 

AF 50.34 47.12 43.90 42.33 

Pill .298 .296 .299 .294 

TJo:X 396. 380. 359. 345. 

VOLEFF 88.4 86.9 85.8 85.4 

CO 5.05 7.89 11.18 18.10 

IIC .781 1.60 2.56 3.69 

UO 2.29 1.57 1.28 .61 

NOX 2.88 2.80 2.74 1.99 



'fable C.ll 

Reduced ExperilDental Data 

Operating Condition: 2/3 Rack. 2400 RPM 

Fuel: 140 Proof Ethanol 

%ALCH 0 10 20 30 35 

THEFF 22.83 23.16 23.72 22.70 22.22 

BliP 2.95 2.97 3.05 2.91 2.86 c 
BMEP 45.22 45.39 46.62 44.52 43.82 

BSl~C .58 .61 .63 .70 .73 

BSEC 11141. 10997. 10723. 11204. 11447. ...... 
947. 963. 993. 945. 924. 

N 
PMAX ...... 

PRATMAX 87. 89. 139. 138. 104. 

IGNDLY 25.63 26.68 29.09 31.04 33.19 

AF 33.03 30.96 29.43 27.95 27.06 

PilI .453 .453 .449 .448 .4/.6 

TEX 550. 530. 516. 497. 493. 

VOLEl<'F 86.7 85.3 83.8 82.4 82.4 

CO 7.18 8.13 8.42 10.40 10.83 

IIC 1. 54 2. e)3 2.31 2.61 3.00 

NO 2.45 2.21 2.07 1.65 1.49 

NOX 2.71 2.68 2.82 2.57 2.46 



Table C.12 

Reduced Experimental Data 

Operating Condition: Full Rack, 2400 RPM 

Fuel: 140 Proof Ethanol 

%ALCII 0 10 20 30 40 

TIIEFF 24.34 25.55 26.55 28.03 28.19 

BliP 4.12 4.34 4.52 4.77 4.81 
c 

HMEP 63.03 66.3 /• 69.14 72.98 73.51 

BSFC .54 .55 .56 .56 .59 

BSEC 10452. 9959. 9582. 9076. 9025. .... 
N 

PHAX 991. 1024. 1036. 1092. 1058. N 

PRATMAX 113. • 150 161 • 207. 230. 

IGNDLY 23.62 25.92 28.73 30.02 34.49 

AF 24.67 23.06 21.9 20.54 19.4 

PIlI .606 .609 .602 .605 .608 

TEX 716. 691. 696. 689. 685. 

VOLEFl~ 85.6 82.5 80.6 79.4 79.2 

co 10.20 11.68 12.46 10.68 10.43 

IIC 1.99 2.79 2.45 2.41 2.53 

NO 2.20 2.23 2.13 2.19 2.03 

NOX 2.13 2. /.0 2.37 2.4 /• 2.34 



Table C.1l 

Reduced Experimental Data 

Operating Condition: l/l Rack, 2400 RPM 

Fuel: 200 Proof Methanol 

%ALCH O' 10 20 lO 

TIlEFF 15.05 13.10 11.49 9.49 

BHP 1.~0 c 1.ll .99 .82 

BMgp 19.93 17.31 15.21 12.58 

BSFC .88 1. 14 1.4l 1.91 

BSEC 16894. 19/.39. 22135. 26875. 

PttAX 854. 902. 880. 793. .... 
N 
w 

PRATMAX 76. 133. 121. 80. 

IGNDLY 26.64 28.37 30.24 31.97 

AF 49.63 43.42 39.23 36.29 

PUI .301 .305 .304 .298 

TEX 400. 386. 377. 356. 

VOLE/o'F 88.5 86.2 86.1 85.2 

CO 4.96 7.21 11.09 19.12 

IIC .81 1.48 2.69 3.73 

NO 2.32 1.53 1.09 .37 

NOX 2.97 3.47 3.48 2.40 



Table C.14 

Reduced Experimental Data 

Operating Condition: 2/3 Rack, 2400 RPM 

Fuel: 200 Proof Methanol 

%ALClI 0 10 20 30 35 

TIIEFlt' 22.01 22.50 22.52 22.0 21.21 

BliP 2.82 2.89 2.89 2.83 2.74 
c 

BMEP 43.18 44.23 44.23 43.18 41.96 

BSFC .60 .66 .73 .82 .89 

USEG 11555 11304 11293 11563 11995 ...... 
N 

PtlAX 910 949. 973. 953. 910. ~ 

PRATMAX 90. 119. 133. 142. 120. 

ICtlULY 25.27 26.85 28.52 31.97 34.49 

AF 32.93 28.76 26.61 24.36 23.34 

PlII .454 .461 .448 .444 .444 

TEX 547. 532. 519. 498. 480. 

VOLEFLo' 86.8 83.9 84.3 83.8 83.4 

CO 7.38 7.85 9.22 10.44 10.86 

IIC 1. 56 1.92 2.01 2.12 3.20 

NO 2.51 2.16 1.83 1. 51 1. 37 

NOX 2.82 3.01 3.28 3.25 3.39 



Table C.15 

Reduced Experimental Data 

Operating Condition: Full Rack, 2400 RPM 

Fuel: 200 Proof Methanol 

%ALCII 0 10 20 30 40 

I'll I!: l< .... 23.71 25.03 25.95 26.56 26.13 

BliP 4.03 4.24 4.40 4.52 4.46 
c 

8HEP 61.72 64.86 67.31 69.06 68.18 

nSFC .56 .59 .63 .68 .75 

nSl!:c 10729. 10161. 9803. 9579. 9736. 
I-' 

PHAX 945. 1004. 1038. 1062. 851. 
N 
VI 

PRATMAX 91. 112. 120. 142. 73. 

IGN[)L'f 23.54 26.50 27.43 29.74 34.85 

AF 21.64 19.87 18.03 16.85 

PilI .613 .601 .600 .585 

n:x 710. 704. 696. 679. 689. 

VOLE..,1<' 83.0 83.2 81.7 80.3 

CO 11.06 13.09 12.56 10.53 9.12 

lIC 2.69 2.15 2.47 1.95 2.25 

UO 2.32 2.32 2.52 2.71 2.18 

NOX 2.47 2.53 2.90 3.30 2.91 



Table C.16 

Reduced Experimental Data 

Operating Condition: 1/3 Rack, 2400 RPH 

Fuel: 160 Proof Methanol 

%ALCII 0 10 20 25 

TIiEFF 14.85 13.50 12.10 10.52 

BliP 1.28 1.17 1.05 .92 
c 

BHEP 19.74 17.99 16.06 14.15 

BSFC .89 1.10 1.36 . 1.63 

OSEC 17127. 18839. 21015. 24180. .-
N 

PHAX 868. 885. 784. 646. 0\ 

PRATMAX 88. 120. 91. 40. 

IGNDLY 26.64 29.01 33.55 35.94 

AF 49.0 43.4 39.8 37.81 

PHI .305 .305 .298 .301 

TEX 396. 369. 370. 359. 

VOLEl<'F 87.6 85.8 84.9 84.3 

CO 4.47 7.36 15.29 21.92 

IIC .669 1.14 2.16 3.32 

NO 2.42 1.34 .44 .17 

NOX 2.94 3.10 2.17 1.30 



Table C.17 

Reduced EKperimental Data 

Operating CondItion: 2/3 nack, 2400 RPH 

Fuel: 160 Pt'oof Methanol 

%ALCII 0 10 20 30 

TIIEFF 21.77 22.15 22.42 21. 76 

BliP 2.81 2.83 2.87 2.79 
c 

BMEP 42.96 43.31 44.01 42.61 

BSl<'C .6u .67 .73 .83 

USEC 11682. 11485. 11335. 11694. .... 
PHAX 897. 923. 925. 758. N ...... 

PRATMAX 82. 112. 119. 76. 

IGNDLY 25.63 28.00 30.68 37.38 

AF 32.92 29.29 26.67 24.38 

PilI .382 .456 .449 .443 

'rEX 538. 507. 504. 504 .• 

VOLEH' 86.9 83.6 82.2 80.9 

CO 7.57 7.41 8.60 10.56 

IIC 1.59 1. 73 1.99 2.38 

NO 2.45 2.05 1.64 1.24 

NOX 2.65 2.78 2.66 2.39 



Table C.18 

Reduced Experimental Data 

Operating Condition: Full Rack, 2400 RPM 

Fuel: 160 Proof Methanol 

%ALCII 0 10 20 30 

TIlEFF 22.99 24.62 25.61 26.1 

BllP 3.89 4.17 4.34 4.44 
c 

BMEP 59.56 62.75 66.37 67.94 

8SFC .57 .60 .64 .69 

USEC 11064. 10333. 9929. 9749. .... 
N 

PHAX 929. 993. 1018. 966. CD 

PRATMAX 85. 122. 122. 97. 

IGNULY 23.68 27.00 29.40 34.63 

AF 24.28 21.48 19.61 17.80 

PUI • 616 618 • .609 .607 

TEX 716. 705. 685. 703. 

VOLEH' 85.2 82.7 79.4 78.8 

CO It. 39 11.08 11.65 9.84 

IIC 2.09 1.92 1.67 1.72 

NO 1.98 2.27 2.09 2.12 

NOX 2.10 2.49 2. '15 2.51 
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