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ABSTRACT

Calculations have been made of electromagnetic wave scattering from dielectric disks of

arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is

obtained by approximating the fields inside the disk with the fields induced inside an identically

oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The

fields inside the disk excite conduction and polarization currents which are used to calculate the

scattered fields by integrating the radiation from these sources over the volume of the disk. This

computation has been executed for observers in the far field of the disk in the case of disks with

arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been

expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks

whose diameter is large compared to wavelength and whose thickness is small compared to diam-

eter, but the thickness need not be small compared to wavelength. Examples of the dependence of

the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are

presented for disks of circular cross section.
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HIGH FREQUENCY SCATTERING FROM ARBITRARILY ORIENTED

DIELECTRIC DISKS

I, INTRODUCTION

A solution is presented for the scattering from dielectric disks of arbitrary shape and orienta-

tion. This work was motive:; d by an investigation of the effects of leaves oil 	 remote

sensing of vegetation (Lang, 1981). Determining the scattering and absorption properties of a

collection of objects such as leaves requires knowledge of the scattering and absorption properties

of the individual objects, and in this work the dielectric disk was adopted as a first order model for

leaves. The disk is also of interest as a model to study the scattering and absorption from other

particles such as ice crystals in clouds.

Although much work has been done on scattering from perfectly conducting disks (Meixner

and Andrejewski, 1950; Andrejewski, 1953; Hodge, 1980; Ruck et. al., 1970), very little has been	 Y

done oil 	 from dielectric dis"> and disks with non-circular cross section (Ruck, et, al.,

1970; Bowman et. al., 1969). How(' :X, YJere has been recent work applicable to thin dielectric

disks. Weil and Chu (1976a-b) developed a numerical approximation for the resonant region valid

for thin circular disks. This was done by choosing a set of basisfunctions apropos of a thin circular

disk and then using a method similar to the moment method to express the induced currents in

terms of these basisfunctions. Schiffer and Thielheim (1979) developed a low frequency approxi-

mation for the thin dielectric disk by using a Rayleigh type approximation. In this solution the

induced currents are found by assuming that the internal fields have the same form as would be

obtained in statics. The approximation is valid for disks whose physical cross section is much larger

than the thickness and whose thickness is much less than a wavelength. The solution applies at

high frequencies (i.e. to disks whose cross section is large compared to wavelength) only if the disk

is sufficiently thin

The work to be described here applies specifically to disks whose cross section is large com-

pared to wavelength but is not restricted to disks which are thin compared to wavelength nor to



disks of circular cross section. The solution is obtained by using a variation of the Kirchoff approxi-

mation employed in physical optics scattering from rough surfaces. In this approximation the fields

on the surface; are approximated by the fields on a plane tangent to the surface. In the application

to the disk, the fields inside the disk have been approximated by the fields inside a slab of the same

orientation and thickness. Given the fields inside the disk the scattered fields can be obtained from

currents induced by these internal fields. In the required integration the cross section of the disk

need not be circular nor must the disk be thin compared to wavelength.

In the sections to follow a formal solution for the scattered electric fields is developed in terms

of the unknown fields inside the disk. Then the K irchoff-style approximation for the internal fields

is derived for an arbitrarily oriented disk. Using this approximation the volume integration is

carried out to obtain explicit forms for the scattered fields for observers in the far held of the disk.

Finally, this solution is expressed in the form of a dyadic scattering amplitude for the disk. Ex-

amples of the scattering amplitude are presented to illustrate the effects of frequency, dielectric

properties and orientation of the disk. Several checks have been made on the solution and are also

described. It can be shown that the solution satisfies conservation of energy at high frequencies and

that the solution predicts the accepted result for radar cross sections in the special case of normally

incident plane waves.



II. GEOMETRY

The problem to be addressed here is to calculate the fields scattered by a plane wave of

arbitrary polarization incident on an arbitrarily oriented disk. The problem is illustrated in Figure

1. The plane wave is assumed to have polarization (direction of the electric field) q and to be prop-

agating in the i direction. Specifying 1 in .teams of the spherical coordinates (8 i3Oi) and for con-

venience letting the incident wave have unit amplitude, one can write:

Eine _, q exp6 ko i • r)
	

(1)

where

i = — sin(8 i) [cos (0i) z + sin(0i) y] — cos(8i) i	 (2a)

and ko =	 eopo . Aside from the requirement q - i = 0 the unit vector q is arbitrary. The orientation

of the disk is described by the Eulerian angles 	 as indicated in Figure 2. (See Goldstein, 1966

and also Appendix B). Starting with the axes of the disk (x', y', z') aligned with the reference

system (x,y,z) the disk is rotated to its arbitrary position by: 1) rotating 0 degrees about the z'

z axis; 2) rotating about the new x'-axis 8 degrees; and 3) rotating about the new z' axis y degrees.

All rotations are counter clockwise. In terms of these angles the normal to the disk, n, is:

n = sin 8[sinO z — cos 0y1 + cos 9 i	 (2b)

The shape of the disk is described by the function S(i), defined in the coordinate system (x', y' z')

fixed on the disk. It is the cross sectional shape looking along the local normal to the disk (i.e.

z' axis). The disk is imagined to be cut from two parallel planes T meters apart by a cookie cutter

with shape S(x',y'). S(x',y') = 1 on the disk and zero otherwise.

The problem as stated above is sufficiently general to describe scattering from a plane wave of

arbitrary polarization and direction of propagation incident on an arbitrarily oriented disk. The

orientation of the disk, the shape of the disk, S(x',y'), its thickness, T, and its dielectric properties

are all arbitrary in the analysis to follow.
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III. THE FORMAL SOLUTION

To obtain a solution for the scattered fields in terms of the fields inside the disk the constitu-

tive relations D = e0E + P and E = µo (H + M) are first used to obtain a form of Maxwell 's equations

with P, h1 and conduction current, Tc , as sources. Then, Fourier transforming and introducing the

magnetic vector potential, A, one obtains the wave equation:

V,2 A + k2A = — µo (Jc — jwP + p X M)	 (3)
1.

which has the particular solution

A(f) = 4a S [ T0 — jw P + V X M] R
ejkoR. 

dr	 (4)

where R = IT — r I and di = dx 'dy'dz' and the integration is over the volume of the disk. The.

scattered electric field can be obtained from the vector potential in the form:

E(r') = jw[A + r (0 ' A)]	 (5)
k0

which yields (Substituting Equation 4 into Equation 5):

	

E(T) = jwuo c TT(r) • G(T/t') df	 (6)

V
In Equation 6, TT (f) = Tc jwP + p X M and Zemr,) is the dyadic Green 's function for free space:

k R
G('r/f') _ [I + k2	 ] 4aR 

= [ 1 +j koR (k R ] I —
0

- --	 -	 (7)
3	 3	 eikaR

— [l +j
kOR 

(k0R),] ^RPR} 4aR

'To complete the solution the sources T c , jw P and p X bi are required. In principle, arbitrary

relationships between JC , P and M and the fields E and B can be used; However, for most media

important in remote sensing of the earth (e.g. ice, snow, water, vegetation, soil, etc.) it is -appro-

priate to assume a simple linear relationship:
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JC = A

	

P = eO Xe E	 (8)

M = XM Ff

where Xe is the electric susceptibility and XM the magnetic susceptibility. In most cases XM ?' 0.

Assuming this to be the case the total current TT becomes

	

JT = jweO Re E	 (9)

where Xe is an equivalent, complex, electric suscectibility:

	

Re = Xe + jolweo 	(10)

The complex relative permittivity of the medium, er is:

r	 Xe+1	 (11)

= er +j a/weo	 (12)

where er is the relative permittivity of the disk when a = 0. Substituting Equation 9 into Equation

6, one obtains an expression for the scattered electric field in terms of the electric field P(T') inside

the slab:

	

195cat (^) = ko f Xe(P') (r')	 • Z (̀f/T') dT'	 (13)
vv
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IV. THE FIELD INSIDE THE DISK

Equation 13 applies for observation points both inside and outside of the object. If the

observer is inside the object, then Equation 13 is an integral equation for E(r). When the observer

is outside, then Equation 13 is a solution for the fields scattered by the object in terms of the

fields inside the object. The problem, of course, is that the fields inside the object are not known in

either case, and approximations are necessary. The approximation to be used here will be to

assume that the fields inside the disk are the same as would exist in a slab of inifinite parallel faces

of the same thickness and orientation. This is an approximation which ought to be reasonable for

disks whose cross section is large compared to wavelength and thickness and is independent of

the dielectric constant of the medium. It is the analogue of the tangent plane (Kirchoff) approxi-

mation employed in the physical optics approach to scattering from surfaces.

The fields inside the equivalent slab are most easily obtained in the coordinate system (x'y'z')

fixed on the disk. Once obtained they can then be expressed in terms of the reference coordinates

(x,y,z) by a suitable transformation of coordinates. The problem as seen in the coordinate system

fixed on the disk is shown in Figure 3. Notice that the origin of the primed coordinate system is

at the center of the slab and that the plane wave is incident from the arbitrary direction, i . As

seen by an observer on the slab the incident plane wave has the form:

Rinc (r) — q eJkOr•?,	 (14)

where primes (') are being used to remind the reader that these are coordinates in the reference

frame of the disk. To find the fields inside the slab, it is convenient to resolve the incident wave

into its horizontally and vertically polarized components as seen by an observer on the slab. Letting

h and v be the appropriate unit vectors in the slab's reference system, one can write q in terms of

its projections on these polarization vectors: q = (q • h )fi + (q • v )v . With this notation a unit

amplitude incident wave, as seen by the observer on the slab, can be written:

€inc (r) ° [(q • h )fi + (q • y )v ] eiko I- '	 (! 5)
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The fields inside the slab are also plane waves. Explicitly separating their dependence on the co-

ordinate perpendicular to the slab (z') and coordinate parallel to the slab boundaries (x',y'), they

can be written in the form:

Eslab (r') _ ^+ (x' ,y')eJ(nk o K i)Z' +_ (x',y')e 1(nk oKi)z '	 (16a)

where

	

i(x',y') = e± ejnka [Kx x' + Ky y')	 (16b)

n is the index of refraction of the medium in the slab (n fd and K = Kx x' + K ey y' + Ki z'

is a unit vector in the direction of propagation of the wave inside the slab wluch propagates in the

+ z-direction (i.e. K' > 0). The vector amplitudes e+ of the waves inside the slab can also be re-

solved into horizontally and vertically polarized components. Thus, let hE , v*, be unit vectors

in the direction of the electric field inside the slab when the slab is excited by an incident hori-

zontally or vertically polarized wave, respectively. (For example, if q = h then the waves inside

the slab will have polarization hE .) Also let the (scalar) amplitude of the waves inside the stab

due to an incident horizontally or vertically polarized wave of unit amplitude be eh, eY respec-

tively. Then, in the case of an incident wave of arbitrary polarization q one can write the ampli-

tude of the waves inside the slab as

	

et = (q • h) eh IiE + (q • v) eV vE
	

(17)

The scalars eh,v are characteristics of the slab, independent of its orientation. They are obtained

from the boundary conditions at the slab interfaces in the same manner as is conventional in find-

ing the reflection or transmission coefficients (e.g. Born and Wolf, 1959). One obtains:

+ _ th,v rh,v ^	 j e +
eh,v 1 —T'v e^ ^ 

e

(18a)

_	 th,v	 —iA—	 (18b)
eh,v 

1 —r v e] 0h	
e

7
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where

= 2ko T n Ki

O± a ^ ko T[—ia :t nKi)	 (19b)

a

rh,v	 1 +Xh.v
	 09c)

h,v

th,v . S 1l 2(19d)
rtvh,v 

K'
^h = — n ^	 (19e)

iz

Y.

Xv _-1Ki	
090

n if

where K' = K • h > 0 and i f = i • n < 0; and the rh ,v and til w are the reflection and transmission

coefficients, respectively, of a half-space with the same dielectric properties as the disk. The minus

sign (—) in Equations 19e, f are the result of the convention adopted here for it and n ( i.e. the wave

is incident on the slab from the n side).

09a)9a)
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V. THE SCATTERED FIELD

The fields scattered from the disk can now be obtained by substituting the fields inside the

disk (Equations 16) into Equation 13. To do the integration in Equation 13 over the volume of

the disk it will be assumed that the observer is many wavelengths from the disk (k,R >> l) and

that the disk is small compared to the distance between the disk and the observer (e.g. L/R << l

and kL2 /R << 27r where L is a dimension characteristic of the size of the disk). In this case one

can approximate the Green 's function by:

^	 Iko(Ro-o^9(-r/! ,)
^
 = (I - o o) a 4aRo

where Ro is the distance from the center of the disk to the observer and o is a unit vector from the

origin to the observer (i.e. in 01 A. Erection of propagation of the wave scattered to the observer).

Substituting Equation 16 into Equation 13, using Equation 20, and separately doing the integra-

tion over the (x', y') and z' coordinates one obtains the following c w.dression for the fields scatter-

(20)

Y.

ed from homogeneous disks (Xe and o constant):

Jkoko
Escat (9) = ko Xe e4^rR R (T) S OP

0

where

T/2

(T) _	 o X I[a+ elkc[nKi-oZJ z ' + ^ ^iku [nKZ + oZJ z' X o Idz'
-T/2

= T { o X [E+ X o ] sine [ %koT (nKZ - oz)] +

+ o X [E- X o J sine [ lhko T (nKZ +6')J}

S(v t) - S S 
S(rt)eJ2n 'v^ 

• i[ drt

The subscript "t" in Equation 22c denotes transverse components: it = x' z' + y' y'

k
and vt = ka [nKt - oi] = 7r n X [nk - o ) X n 1. Notice that using Snell's law at the slab

(21)

(22a)

(22b)

(22c)

9



boundaries, n Ki, so that one can write vi in terms of i and o

v, _ a n X ((i 
_6) 

X n)	 (22d)

The vector direction of the scattered field, Escat, is determined by the vectors o X (e^ X o )

associated with "R (T). Since o is a unit vector in the direction of propagation of the scattered field

(i.e. pointing from the disk to the observer), the scattered fields are clearly transverse as seen by

the observer. This is as expected since a far field limit has been taken to obtain the solution.

It is conventional to express the scattered fields in terms of their vertically and horizontally

polarized components. To do so, let p be a unit vector in the direction of vertical or horizontal

polarization (defined by the observer). Then p ° scaA ) is the scattered electric field of polari-

zation g due to an incident wave of polarization q (as defined at the transmitting antenna). Noting

that p • [4 X (E_ X o )j = p • e_ and using Equation 17 for za. one can write:

_k R
p Escat (^!) _ [P ' F( i ^o ) • a i Tko Xe (^i) iJkO 

o	

(23)0

where the dyadic F(i ,o) has the form:

F  ,o) _ [h Eli eh + vE v ey ) sinc ['Jzk o T (nKZ — oi)] +
(24)

+ [hEh eh + vE v e+] sinc [ %k°T(nKz' — oz))

Equation 2, 3 suggests the definition of a dyadic scattering amplitude f(i ,o ):

T,k2 
`xf(i ,o) _	 ° ° S(vt ) F(1 ,o)	 (25)

4rr

To complete the solution it is necessary to find explicit expressions for the polarization

vectors 0, fiEl iand v, associated with the slab and with q, p associated with the incident and 	 t

scattered waves. To do so :he following definitions will be adopted: A horizontally polarized

wave (h) is one whose electric field is perpendicular to the plane of incidence (plane defined by the

10



z-axis and the direction of propagation) and a vertically polarized wave (v) is one whose electric

field is parallel to the plane of incidence. In addition, v, ti, k form a right hand orthogonal set

where k is a unit vector in the direction of propagation of the waves: f X h = k. With these

definitions, one may write explicit forms for the polarization vectors in the reference tvnedinate

system. Thus, for the incident wave (i.e. q = lij or vj) one has:

XXihj 
I i X i I	 (26a)

vj Z hi X i	 (26b)

where i is defined in terms of the spherical coordinates (9 j , Oj):

i = — sin 9 j [cos $i k + sin Oi yJ — cos 8 1 i	 (260

and in the case of the scattered fields the unit vectors fi st vs in the direction of horizontal and

vertical polarization (q = lis or vs) are:

fi	
o X i	 (27a)s =I6XiI

vs = hs X o	 (27b)

where the spherical coordinates (9 s ,os) have been adopted to define o:

o = sin 9 s [cos 0, k + sin 0s y) + cos Bs i	 (270

The unit vectors h, v are the direction of horizontal and vertical polarization as defined by an

observer on the slab but expressed in terms of the reference coordinate system (unprimed). Since

n = i t as seen in the reference system and since the direction of propagation of the incident wave

as seen in the reference frame is , one obtains:

It

h_ iXn
IiXhI

v=fiXi

where the normal to the slab n is defined by the Eulerian angles (9,^,y):

n=sin g [sinOx — cos0k] +cos9i

(28a)

(28b)

(28c)



The unit vectors hE vEf or the direction of electric field inside the slab are also required. Letting

k+ be a unit vector in the direction of propagation of the two waves inside the slab one has:

ht ! K
t̂ X n (
	 (29a)

w

v hE X Kt	 (29b)

It is shown in Appendix A that

kx = 1
4
 (i + nt 51	 (30a)

n
where

^± _ — Ci ')	 Cn'" — l) t (i • n)'`	 (30b)

Thus one obtains:

hF = h	 (31 a)

v= 1 [v+Stt h X n] = 1 [v+Stt ]	 (31b)
n	 n

With the polarization unit vectors given above one can write the solution for the scattered

field in the final form:

P • (Q) = [P • f{i, o) • q] R R ^	 32a)scat(4)

7(1, d) =4^TO Re S (pi) F (1, o)	 (32b)

a
F(i; o) o [h h e + n (v + SE_) v e„] sinc ['hk o T(nK' + oi)]

32c)

+ [h h eh + n (v + +) v a ^J sinc [ '̂/ak0 T(nKi oz)]

12
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where the et are given by Equations 18 and 19 and

if = i • ii = — sin B i sin 9 sin (0 — 0i) — cos 9 i cos B	 (33a)

of = o • A - sin B S sin 9 sin (0 — O s) + cos es cos 9	 (33b)

nKf = nK • n = (n2 1) + ( • n)'-	 (33c)

Stt	 (—if t nKf) h X n	 (33d)

Explicit forms for the shape function '§(P,) are given in Appendix C.

e

Y.

w
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VI. EXAMPLES

Examples of the scattering amplitude will be presented in this section for a sample disk to

illustrate some of the characteristics of Equations 32. Calculations have been made to illustrate

effects of frequency, disk orientation and dielectric constant on 'the scattered fields. 'The calcula-

tions are for a nominal disk of radius 10 cm and thickness 0.5 cm, and except where indicated the

frequency of the incident radiation is 9 GHz and the dielectric constant of the disk is 1r = 25 +j 11

which is representative of leaves in the microwave region. In these examples the incident radiation

has been choosen so that the direction of incidence is in the y-z plane 30° from the z-axis (i =

—cos(30°)z — sin(30°)y) and the normal to the disk, n, is in the plane of incidence (n = —sinO y +

coso t). The geometry is shown in Figure 4. To do the calculations the observer is imagined to be

on the surface of a large sphere centered on the origin and the scattering amplitude p f(i,o)•q

is computed as the- observer is moved around one of the great circles formed by passing a

plane through the z-axis. The magnitude of the scattering amplitude, 1 p •T(i,o) • q 1, has been dis-

played as a polar plot of amplitude versus angle on the great circle (Figures 4-15). In each case the top

of the figure corresponds to the point when the observer is on the z-axis. When the observer is in

the plane of incidence (e.g. Figures 6 - 15) backscatter occurs at 30 0 to the right of the top and

forward scatter at 150° to the left. The polar plots are all linear in amplitude. The outer circle

represents I p •T(46) • 4 1 = 1.0 and the inner circle is I p •T(i,o) • q 1' = 0.2. This scale is the same in all

the examples to be presented here (Figures 5-15) except for the 45° and 90 0 cuts in Figure 5 where

the outer circle °ras chosen to be I p-T(i,6) • q i = .05 to better show the detail of these small

scattered fields.

The elements of the scattering amplitude most commonly of interest are:

hs • 7(1',6) • hi = fhh

vs • T(i,o) • h i = f„h

h s • i(i,o) • vi = fhv

vs • 7(1,6) - v i = fVV

14



The elements fhh and fvh are proportional to the horizontal and vertical polarized scattered field,

respectively (as seen by the observer), due to an incident wave of horizontal polarization. The

elements, f11v 
and fvv are proportional to the scattered field o l,'horizontal and vertical polarization,

respectively, due to a vertically polarized incident wave. The unit vectors, h l , vl and hs , vs are

indicated in Figure 4 for reference. The magnitude of these four components of the scattering

amplitude have been calculated.

Figure 5 shows the four components of the scattering amplitude fhh , fvh , fhv and fvv for an

observer in the plane of incidence (0°), in a plane perpendicular to the plane of incidence (90°)

and in a plane half way between these two (45 0 ). (See Figure 4.) The calculations are for the case

h = L Each plot indicates the magnitude of p •t(i,o)-q in polar form with the z-axis at the top

of the polar plot. Notice that fvh = fhv = 0 when the observer and n are in the plane of incidence

(0°). That is, there is no depolarization in this case. This is true whenever o, n and i are coplanar.

Also notice that fhh = 0 when the observer is in a plane perpendicular to the plane of incidence. 	
4,

This is a coincidence dependent on the definitions choosen for the polarization unit vectors. In the

plane of incidence (0°), the scattering amplitude has two major peaks, one in the direction of inci-

dence, 14 (the downward pointing peaks in Figure 5) and one in the specular direction (the upward

pointing peaks). The specular peak is in the direction of radiation reflected from an identically

oriented infinite slab and the downward or "forward scattered" peak is in the direction of radiation

transmitted through such a slab. For a highly conducting disk, the forward scattered radiation com-

bines with the incident field to produce a "shadow" behind the disk.

In the physical optics regime the shape and amplitude of the forward scatter and specular

peaks depend on the product, ka = 2ira/X where a is the radius of the disk and X is the wavelength

of the incident radiation in the ambient medium (Appendix C), This is illustrated in Figures 6-7

which show fhh and fvv (respectively) for several values of ka. The geometry is as illustrated in

Figure 4 with the observer in the plane of incidence (0° plane). Notice that as ka increase the peaks

become larger and narrower in the directions of the reflected and transmitted waves. For a circular

is



disk, the peaks behave like J 1 (x)/x where J 1 (x) is a Bessel function of first kind and x depends on

ka and disk orientation (Appendix Q.

Changing the orientation of the disk affects the direction and shape of the peaks. This is

illustrated in Figures 8 (fhh) and 9 (fvv) for the special case where o,n 11, i are all coplanar. In

these examples the observer is in the 0° plane (Figure 4) and n is also in the 0° plane but at several

different angles with respect to the incident wave. The four polar plots have been obtained with n

parallel to 1(9 = 0°) and then moved to the left so that the angle between n and it is 15°, 45° and

finally 60°. Notice that as the direction of n is changed the specular peak changes direction but

that a peak always remains in the forward scatter direction. As the disk appears more edge on to

the incident radiation (0 > 60°) the specular and forward scatter peaks merge and their amplitude

decreases toward zero. (The theory is not applicable near grazing incidence.)

r

The effect of the dielectric constant of the disk on the scattered fields is illustrated in Figures

10. 15. The geometry is as illustrated in Figure 4 with the observer in the 0° plane and n = i. The

frequency is 9 GHz (ka = 2). Figures 10 and 11 are for a lossless dielectric Or real) and show the

effect on fhh and fvv , respectively, of increasing the relative dielectric constant of the disk. With the

choosen frequency (9 GHz) and thickness (0.5 cm) the disk goes through a quarter wave resonance

near Er = 11. These figures show the effects on the scattering amplitude of increasing E r from 1.0

(upper left) through resonance and then to large, non-resonant values. Initially the scattered

radiation increases as Er increases; however, near the resonant condition, er = 11, the reflected

radiation decreases markedly. The forward scatter peak, on the other hand, is only slightly affected

and appears to increase somewhat near resonance. This pattern of decreasing specular peak occurs

at all quarter wave resonances, which for this disk (T = 0.5 cm) and frequency (9 GHz) occur at Er =

11, 44, 99, etc. For large values of e not near resonance the scattering amplitude approaches a

limiting shape as illustrated by the last two examples in Figures 10 and 11 (Zr = 70 and 1000).

ii
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The presence of loss in the dielectric significantly affects the behaviour of the scattered fields

near resonance. With even small amounts of loss, the resonance is virtually eliminated. This is

illustrated in Figures 12 and 13 which show examples of the scattering amplitude f hh and fvv,

respectively for the nominal disk with fixed loss (Im Zr = 2) and with the real part of irr having

values near the quarter wave resonance at er = 11. For values of Im er less then 2 a decrease in the

specular peak is noticeable and for values of Im er greater then 2 the resonance is even less

apparant than in Figures 12 and 13.

Figures 14 and 15 present examples of the scattering amplitude for the nominal disk with a,

purely lossy dielectric: Re er = 0. Four examples illustrating the effects of increasing Im er = e" are

shown. The behaviour is very much like increasing Re er except for the lack of resonances. The

scattering amplitude quickly reaches a limiting value and is essentially independent of r, for 	 u
A

e" > 10.

17



VII. NORMAL INCIDENCE

The special case in which the radiation is normally incident on the disk provides a check on

the solution. In this case one expects the horizontally polarized radiation scattered from horizon-

tally polarized incident radiation to equal the vertically polarized radiation scattered from vertically

polarized incident radiation, and that there will be no cross polarized scattered radiation. That is,

one expects:

fhh = fvv

fhv = fvh = 0

Also, at normal incidence one expects the backscatter cross section, ON to be

R2ON
	

m
aN Rn o„

3.

where v„ is the backscatter cross section of a perfectly conducting disk and Rn is the reflection

coefficient of a slab of the same thickness as the disk (Ruck et al., 1970). It will be shown that

these results are obtained from the solutions developed here.

At normal incidence n = i and h X n = v, and consequently, the dyadic 0,o) has the simple

form:

r(i,o) = lili [en sinc(9+) + eh sinc(8!)] + W [eY sin e(9+) — e—, sinc(8+ )]	 (34a)

where

0 = 1/:ko T [nKZ ± oz' ] _ %2ko T (n i l ]	 (34b)

The polarization vectors at normal incidence are hs = hi = h and — vs = + vi = + v where the minus

sign (-°) in the vertical polarized scattered radiation V S is a consequence of the convention chosen

for polarization (vs = liS X o) and the fact that a normal incidence 1 = — o. With these polarization

vectors one has:
hs • F • hi = eh sinc (9 + ) + eh sinc(9')

hs . • vi =0
(35)

vs•F•hi=0

vS • F vi eY sinc(9 + ) — e+ sinc(6—)

18



Clearly thy = fyh = 0 at normal incidence. To determ wu &.. like-polarized components of scat-

tered electric field, fhh and fvv , note that at normal incidence

	

+	 ekTn

	

eh,v = — rh ,v 	 eh	 36a,v 	()

	

rh	 1 + n
	ry	 (36b)

and also that the reflection coefficients R h,v of a slab of thickness  which in the notation adopted

here are

	

Rh^y 
='/2[( 1 + Xh v̂) eh^y	 + (1— Ahoy) ehy e10 ]	

h a OT	 (37)
Ahoy

have the following form at normal incidence

Rh = y2 [(1 + n) eh ej« n + (1 — n) eh a Jan j eja	 (38a)

Ry = %z((I + n) e+ elan _ (1 _ n) e-, a jan j e ja	
(38b)

where a = %2koT. Now substituting Equations 36 into Equations 35 and using Equations 38 one

obtains:

h .	 fi t	— j 	,	 R	 (39a)s	 i	 (koT) 
(n__ 1) h

	v • F • v _ —j	 2,	 R	 (39b)S

	

i	 (koT) (n--1)	 v

And since R h = — R v = Rn it is clear that fhh = — fvv• The sign difference between flih and fvv

is a consequence of the convention chosen for polarization: vertical polarization for scattered and

incident waves along the same line of sight are in opposite directions.

The radar cross section at normal incidence is readily obtained from the preceeding results

and also provides a check on the solution. Recalling that the definition of radar cross section at

normal incidence is

19



aN = lim 4rP.2 
F	 E*P 	 (40)

R- 00	 p • p

one obtains

22
aN = IDS •	 • Fl 12 

(Tk	 (	 S (Vt) l 2	 (41)

Now using the result that n 2 — 1 = j4 and that at normal incidence S (—Pt )= So where So is the

area of the disk (Appendix Q one obtains:

aN = 112S° I Rn 12	 (42)
A

The radar cross section of a perfectly conducting disk at normal incidence is a„ = ko So/ir and so

the radar cross section of the dielectric disk at normal incidence can be written

aN = I Ra P o.	 (43)

which agrees with t"p expected result (Ruck, et al., 1971).

This result is especially simple for thin

disks. (koTn << 1). Keeping only lowest terms in koT in Equation 38 one can show that

RN j 4T 02 — 1)	 (44)

and so at normal incidence

 I
n2 

—
112a„ 

_
k4

(TSo)'- In,— 1 1 2	 (45)aN (kO_T
 4 )	 ° 167r

That is, the thin disk ai- ;normal incidence is Rayleigh-like, scattering power proportional to 1 /X4

rather that than as 1/X2 as the perfectly conducting disk would suggest.

t,

r

0
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VIII, ENERGY CHECK

A check has been made to see if the solution for the scattered fields conserves energy. This

has been done by showing that the solution satisfies the `optical theorem". The optical theorem

relates the total power scattered (Ps) and absorbed (Pa) to the scattering amplitude in the forward

direction (Born and Wolf, 1959). One can state the optical theorem as follows:

PS +Pa Pi 
kv
I m[q ' f(i,i) .

4]
o

where Pi is the power density of the incident wave, i is a unit vector in the direction of propagation

of the incident :wave, and 4 is a unit vector in the direction of polarization of the electric field of

the incident wave. Defining scattering and absorption cross sections by as = Ps/Pi and as = Pa/Pi

respectively, the optical theorem becomes:

as + as = k7 Im [4 ' f([,i) '
 4]

0

where

a= ^ = J [ f(1s	 ,6) - 4) - [7(1,6) ' 4l * do	 (48a)
Pi Sphere

as = pa =F!4LO Yyya E • E* dv	 (48b)
disk

the integration in the expression for a s is over solid angle M = sinO dOdO and the fields E in the

expression for as are the fields inside the disk produced by a unit amplitude incident plane wave.

They are given in the reference frame fixed on the disk by Equations 16 in the text. For purposes

of doing the energy check, the orientation of the disk is unimportant and can be chosen for con-

venience; the choice in which the primed and unprimed systems are identical is most convenient

(6 = ¢ = 7 = o). In this case, using Equations 16 in Equation 48b one obtains:

va = S 	 µo eo 
^ 11

eq (? + le+q ^?^ 
sin'h (KiT)+,,Rc 

[e—
q 

e++*
(QE 

•qE*) sin #c rT)i) 	 (49)

i 	
JJ

where S o is the cross sectional area of the disk and q e Ih,v) . The eq are given in Equations 18a,b,

(46)

(47)

21



and ar - Re(nka Kz), xi = im(nko Kz) where Ki is given by Equation 33c,

An analytical and a numerical method has been used to check that the solution given by

Equation 25 does satisfy the optical theorem when ka»1. The analytical check is made by
G

asymptotically evaluating the integral for as given by Equation 48a for ka»1. This evaluation is

carried out in Appendix D where an explicit formula for a s is given by Equation 6D. When this

expression is used in the optical theorem along with Equation 49 and Equation 25, the conservation

theorem has been shown to be satisfied identically.

Following the analytical check, a numerical check was made by computing as and as from

Equations 48 and 49 and comparing their sum with the right hand side of Equation 47. Calculation

were made for the case of a circular disk of radius 7cm, thickness I mm and relative dielectric

constant Zr = 36 + j 13. The dielectric constmit of the disk was choosen using the de Loor formula

(Fung and Ulaby, 1978; de Loor, 1968) for leaves with 7017o water at a frequency of 7 GHz. Two 	 Y

expressions for the total cross section were developed: The first, aT , was found by computing as

and as from Equation 48 and 49. The second, aT, was obtained by taking the imaginary part of

41r (q•f(i,i)-q)/ko. If the optical theorem is satisfied exactly then OT = OT'. The results of these

calculations are shown in Tables I and II. Table I shows the results for a horizontally polarized

wave incident at 300 with respect to the normal to the disk and Table II shows the results for a

vertically polarized wave also incident at 300 . The tables list as ,aa ,aT = as + as and the albedo,

as/OT all obtained numerically from Equations 48 and aT obtained from Equations 47.

Examples are shown in each table for frequencies of i GHz, 4 GHz and 7 GHz corresponding to ka

of about 1.5, 5.0 and 103 respectively, since the theory is a high frequency theory valid for large

ka, one expects energy conservation to be satisfied best for large ka. The results indicate agreement

which improves with increasing ka and is within about 2`Io at the largest value of ka. To obtain

the numerical results for scattering cross section the integrand, (t (11,6) • q 12 in the expression for

as has to be computed on a unit sphere. The results shown in Tables I and II were the result of

computations using a ¢rid of equally spaced points separated about 3° in 0 and 0.
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APPENDIX A

Polarization Vectors inside the Slab

The propagation vector Rt for waves inside the slab can he obtained from the boundary

conditions (Snell's law) at the surface of the disk. To do so, adopt the following notation in the

reference frame of the disk:

# a n ko [K i f +z' Kf P' + K0 i'] = n ko K t	 A 1

i = ko [itk o + i f  y' + if I'] = ko i	 A2

Since the boundary conditions must be satisfied for all x', y', one has:

ko i f = n ko KX'= n ko K e 	A3

ko iY - n ko KY'= n ko KY A4

and since by definition the waves in the slab are propagating in opposite directions along the z'-axis,

it follows that:

1
	 TCt = n ko [K' V+ K' y' t Kz i']	 AS

Now using Ka, • Kt = (n ko )2 which follows form the wave equation, one can solve for K':

KZ - n
	

(n ko)2 [ l — (K ' )2 — (Ky)2 ]
0

_	 (n ko)2 — ko [(i' )2 + (i , )'-]
n ko

^ 'q
= 1 (n2 — 1) + (lZ)2

n

= 
n
1 (n2 — 1) + (i • ii )'-	 A6

Now using Equations A3, A4 and A6 in Equation AS one can obtain an expression for Kt:

[I .,Kt = ko [i' i f + iyy:] t n ko n (n'• — I) + (i • n )2 n

=ko{ [11 — (i - f, n] t (n--1)+(i .h)2h

ko { i + nt n }	 A7

where
S2t= - 6 • n)± (n= -1)+(i • n)2	 A8

r
^s
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1

Thus

Kt = l Rt - I [i + 12t n]	 A9
n ko	n

This result can now be used to obtain an expression for the unit vectors in the direction of hori-

zontal and vertical polarization inside the disk, One obtains:

ht K* X n	 i X 
h o h	 A10

e Ikj XnI	 IiXnI

vF =hE XKt =hXKt = 1 [v+12, iXA]	 All
n

Notice that although hE = h- = h the unit vectors of the vertically polarized waves in the slab in

general are not in the same direction: ve # v e . This is true because the two waves inside the slab do

r.ot propagate in the same direction. This is illustrated in Figure 16. At normal incidence OE

YE=^Y3

+4
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APPENDIX B

Muter Angles for Orientation of the Dish

The Etrier angles which specify the orientation of the disk consist of three coordinate rota.

tions, Starting with the reference coordinate system and coordinate systern for the disk aligned,

one perfornts the following counterclockwise rotations;

1,	 Rotate	 degrees about the original z - z' axis

x'	 cosO	 sink► 0	 x

y'	 x	 —sine¢	 COSO 0	 y

z' ..^	 0	 0 1	 x

2.	 Next rotate 0 degrees about the new x-axis

x"	 1	 0 0	 x'

y"	 0	 cos© sin©	 y`

z"	 0	 —sin8 COSOJ	 z`

3,	 Finally rotate 7 degrees about the new z-axis

cosy	 sin? 0	 x"

y 	 —sin?	 cosy 0	 y"

z 	 0	 0 l	 z"

These three rotations are applied in succession to obtain the relationship between the reference co-

ordinate system (x,y,z) and the final coordinate system faxed on the disk (x',y',z'), Thus;

X'	 COSY	 sing	 0	 1	 0	 0 COSO	 sino	 0	 x

y'	 —siny	 cosy	 0	 0	 coso	 sing —sing	 Cosa	 0	 y

z'	 0	 0	 !	 0	 —sin8	 COSO J L 0	 0	 1. 	 Lz J
or

x' 	 (cos7coso—sirk7sinovosOI Y + (cosysinO+sin7cosocos9 i y + [sinOsiny) z

Y'	 -- (sin7cos¢+cos7sin0cos4) x + (—sin7sino+cos7cos$cosoI y + (sin6cos7) z

z' x (sin9sinoI x + (—sin0cosol y +' : )sOI z

6
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APPENDIX C

The Shape Function 9(vi)

The shape function Ste' (p,') is defined in the reference frame of the slab by

900 = SS S('ri)e j2rrv^ • ti drt

J

i

where SO') is the cross sectional shape of the disk and where
_ k

7r t	 Jr

F,=x'Xty'Y

It is necessary to express this function in the coordinates of the reference frame (but the integration

is done in the primed coordinate system.) The problem is to express T, in terms of the reference

coordinates (angles Op O; and 9s , 0, and 8, 0, y). Since vX and vy ar e the projections of Lt on the

x' and y' axes and since dot (scalar) products are invariant under coordinate rotations, one can write

vX=^(1-p)X'
^fi

ko

where i, o are the directions of propagation of the incident and scattered waves as seen in the

reference coordinate frames:

i = — sin9, [cosoi r + sinoi y] — cos O i i

o = sin9s [coons z + sinus y) + cooss i

and z', y' are unit vectors along the x and y axes of the disk but as seen by an observer in the

reference system. These unit vectors can be obtained from the Euler angle rotations (Appendix 13):

[cosy cosO — sin y sin 0 cos 9] k +

+ [cosy sino + sin y coso cosh] y + sinO sin- i

[sin? coso + cosy sino cos8] z +

+ [— siny sino + cosy coso cos8 ] y + sin8 cosy i

i' = sin@ [sin¢ s — coso y] + cos8 i

M

7



from which one obtains

k
vx = 27r [a siny — 0 cosy]

k
"y = 7r 

[ Q siny + a cosy]

where

a = cos8 [ sinO, sin (^—^ i) + sing s sin (0-0s)] — sin8 [cos8 i + cosO J

Q = sin B i cos (0--0 i) + sing s cos (^--^s)

An important special case is that of a circular disk of radius a. By changing variables so that

the integration can be done in cylindrical coordinates one obtains:

0) = a J t (27rva)
Y

where

v = k°  a-' + Q2

and J 1 (x) is a Bessel function of first kind of order unity.

Y,

28
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APPENDIX D

High Frequency Evaluation of as

The scattering cross section, as , is evaluated asymptotically for large k o a in this appendix.

`	 Starting with the definition of scattering cross section (Equation 48a) and using Equation 25 for

f(i,o) on obtains:
4

aS 3 C J J (
 S( t) 12 W(q) (e,O)dS2	 t-D

sphere

where

W(q) (9 ,0) = I F(i,o) •q 1 2 = I sinc (9 +)egi+ + sinc (9— )cggE 1 2	 2-D

P = %2  k0T(nK' ± oz ]	 3-D

C = 1
4 

koT 1 2	 4-D

and q e { h,v) and the subscript "e" in Equation 2-D indicates polarization unit vectors of waves

inside the disk (see Equations 29-31). Without loss of generality, it has been assumed that the disc

remains in its unrotated position (8 = = 7 = 0).

When ko »al, the function I S(Pt) 1 2 appearing in Equation 1-D becomes very sharply peaked

at the angle of reflection (60 r) and the angle of transmission ( e t ,o t ); and since W(q) (e,0) is a

smoothly varying function under most conditions, the major contribution to a s for large koa is

expected to come from the vicinity of specular reflection and transmission. This leads to a pro-

cedure to evaluate the integral in Equation t-D which is asymptotically correct for large k o a. To

formally carry out the procedure, the integral over the spherical surface surrounding the disk is

projected onto two integrals in the plane of the disc by means of the transformation.

aY = sinBcoso
5-D

ay = sing sin¢

29



The transformed expression is:

as = c I Y+ S 1 I (vt> 12 W(q) (0,0) 
aro se I

Ar At

where	 6 -D	 z

Ar (Oql + a2 < 1,cos9, 0)	 y
t	 llt

Using the sharply peaked character ofI S( -vi) 12 , Equation 6D becomes

- C1y(q) (er,Or)	 IS(vi) 1 2 daX day + CW
(q) (epot)	

1 S(vt ) I2 daXday 7-D
as _
	9 A 

S	 Ico so t 1	 S
1 Cos rl	 A

r	 r

Once again using the fact that ko a»1, the integrals in Equation 7D can be extended to the whole

aX ,ay plane. The resulting integrals can then be evaluated exactly by employing Equation 22c.

The result is

as 
= (27r)2 CSo 

1`V(q) (er,0t ) + W(q)(e t ,O t )1 	 8-D
ko —Co soi

where S o is the area of the disc. In arriving at Equation 6D the identity cos9 i = I cos8 r I = I cos6 t I

has been used.

00
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FIGURE CAPTIONS

Figure 1.	 Problem Geometry.

Figure 2.	 Eulerian angles (0, 0, y) which describe the disk orientation.

Figure 3.	 Geometry as seen in the coordinate frame fixed on the disk. The origin is half :way

between the parallel faces of the disk.

Figure 4.	 Geometry used in calculating the examples. 8 i = 30° and i is in the y-z plane. n is

also in the y-z plane and except where noted ii -1 as show.ii here.

Figure 5.	 Components of the scattering amplitude when the observer is in the plane of incidence

(0°), perpendicular to the plane of incidence (90°) and half-way between (45°).

Figure 6.	 Magnitude of the scattering amplidue, fhh , in the plane of incidence as a function of

ka.

Figure 7.	 Magnitude of the scattering amplitude, fVVI in the plane of incidence as a function of

ka.

Figure 8.	 Magnitude of the scattering amplitude, fhh , as a function of disk orientation. 9 is the

angle between n and l.

Figure 9.	 Magnitude of the scattering amplitude, f VV , as a function of disk orientation. 9 is the

angle between h and i.

Figure 10. Magnitude of the scattering amplitude, fhh , in the plane of incidence as a function of

-	 dielectric constant (no loss): e = e'.

Figure 11. Magnitude of the scattering amplitude, f„V , in the plane of incidence as a function of

dielectric constant (no loss): 'E = e'.

f Y.
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Figure 12. Magnitude of the scattering amplitude, fhh , in the plane of incidence near resonance
i

for dielectric with loss.

Figure 12. Magnitude of the scattering amplitude, fvv , in the plane of incidence near resonance

for dielectric with loss.

Figure 14. Magnitude of the scattering amplitude, fhh , in the plane of incidence for purely lossy

dielectric: Z - je".

Figure 15. Magnitude of the scattering amplitude, fvv , in the plane of incidence for purely lossy

dielectric: Z = je".
Figure 16. Polarization and propagation vectors inside the slab.
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Figure ?. Eulerian angles (B, 0,'Y) which describe the disk orientation.
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Figure 6. Magnitude of the scattering amplitude, f hl,, in the plane
of incidence as a function of ka.
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Figure 7. Magnitude of the scattering amplitude, fw, in the plane
of incidence as a function of ka.
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