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Turbulent solution of the Navier-Stokes equations for 

an inhomogeneous developing shear layer 
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National Aeronautics and Space Administration 
Lewis Research Center 
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ABSTRACT 

To study the nonlinear physics of inhomogeneous turbulent shear flow, 

the un averaged Navier-Stokes equations are solved numerically. For initial 

conditions a three-dimensional cosine velocity fluctuation and a mean-

velocity profile with a step are used. Although the initial conditions are 

nonrandom, the flow soon becomes turbulent. Concentrated turbulent energy 

develops near the plane where the mean veiocity gradient is initially 

in~inite. The terms in the one-point correlation equation for turbulent 

energy, including those for the diffusion and production of turbulence, are 

calculated; the diffusion terms tend to make the turbulence more homogeneous. 



The production, transfer between eddy sizes, and dissipation of turbulent 

energy have been studied numerically.1,2 In those references the turbu-

lence is homogeneous, and no net spatial diffusion occurs. 

Here, the work is extended to an inhomogeneous developing shear layer so 

that diffusion, as well as the other turbulence processes, can be considered. 

The initial condition chosen for this purpose is, in dimensionless form 

U. 
1 

where 

3 

~ a~ cos qn·x + w6 i1 V [sgn (x2 - w) + 1] 

n=l 

xo * 
V = - V , 

\I 

n Xo *n 
a. =-a., 

1 \I 1 
and 

* X. 
1 

X. -
1 Xo 

(1 ) 

Note that the stars on dimensional quantities are omitted for correspond'ing 

dimensionless quantities. The subscripts can assume the values 1, 2, and 3. 

-* * The quantity ui is an instantaneous velocity component, V is a 

constant with the dimensions of a velocity, a~n is an initial velocity 

+*n amplitude or Fourier component of the disturbance, q is an initial 

* wavenumber vector, xi is a space coordinate, Xo is an initial 

characteristic length, \I is the kinematic viscosity, 6ij is the Kronecker delta 

(equals 1 for i = j and 0 for i t j), and sgn x designates the sign 

of x. The quantities qn·x are dot products. The first term on the 

right side of Eq. (1) is the fluctuating part of the initial ui' and the s~cond 

term is the initial mean velocity. The latter is plotted against x2 in the 

curve for t = 0 in Fig. 1. In order to satisfy the continuity condition 
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-au. 
-' = 0 aXi 

.f' 

For the present work 

a; = k(2,-I,I}, a~ = k(I,-2,1), 

and 

1 qi = (-1,-1,1), 2 q. = {1,1,1}, 
1 

3 a. = k(I,-1,2} 
1 

3 q. = (1,-1,-1), 
1 

'" "", 

where k is a quantity that fixes the Reynolds number. In addition to 

satisfying continuity, Eq. (4) gives 

(2) 

(3) 

(4) 

(5) 

-at the initial time, where u
i 

= u
i 

- 6
i1

U1, Ui is a mean velocity component 

and the overbars indicate averaged values. Thus, Eqs. (1) and (4) give a 

particularly simple initial condition, as the components of the mean-square 

velocity fluctuation are initially equal. 

The components in Eqs. (4) are the same as those in the earlier works1,2 

except that the signs of the a~ and q~ have been changed to make the 

initial negative. Thus, does not have to change sign as a result 

of the dynamics of the flow, as it did in the earlier work, and the initial 

adjustment period is eliminated. If the adjustment period remained, much of 

the development of the shear layer would be distorted. 

To calculate the evolution of ui ' the Navier-Stokes equations can be 

written in dimensionless form as 

3 



where p is given by the Poisson equation 

2-a p 

x2 
v * - 0-* t = :2 t , and p = -:z p 
Xo pv 

* * The quantity t is the time, p is the pressure, and p is the 

density; the rest of the symbols are defined after Eq. (1). A repeated 

subscript in a term indicates a summation of terms. Equation (7) is 

obtained by taking the divergence of Eq. (6) and using the continuity 

equation, Eq. (2). 

(6) 

(7j 

In order to carry out the numerical solution of Eqs. (6) and (7) subject 

to the initial conditions of Eqs. (1) and (4) , a cubical grid with 323 

points and with faces at x. = 0 and 2w is used. Modified periodicity 
1 

is assumed for boundary conditions;l that is, 

and 

for any bj . Equation (8) (not a tensor equation) is consistent with the 

initial condition given by Eq. (1) and is used to numerically calculate 

derivatives at the boundaries. 

(8) 

(9) 
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The spatial- and time-differencing schemes are essentially those used by 

Clark, et al. 3 and in Refs. 1 and 2; that is, for the spatial derivatives, 

centered fourth-order difference expressions are used. For time-

differencing a predictor-corrector method with a second-order predictor and 

a third-order corrector is used. The Poisson equation for the pressure is 

solved directly by a fast Fourier-transform method, which preserves 

continuity quite well. 

The calculated evolution of the mean velocity U1 (U2 and U3 are 

zero) is plotted against x
2 

in Fig. 1. The mean velocity is obtained by 

averaging u
l 

over Xl and x3 at fixed values of x2• The shear 

layer grows (from essentially zero initial thickness) because of the presence 

of the turbulent and viscous shear stresses. The ratio of turbulent to vis-

cous shear stress (averaged over Xl and x3 at the central plane 

x? = w) is plotted against dimensionless time in Fig. 2. Except at very 
t:. 

early times the growth of the shear layer is almost completely dominated by 

the turbulent shear stress. 

Figure 3 shows the evolution of the instantaneous velocity component 

u
2

and of the root-mean-square value of u2 (averaged over the central 

plane x2 = w). Although the initial conditions are nonrandom, the 
"21/2 

evolution of u
2 

has a random appearance. On the other hand u2 evolves 

smoothly. These characteristics are representative of a turbulent flow. The 

"'7 1/2 quantity 02 increases monotonically at small times in contrast to the corre-

sponding curve in Ref. 1, where an initial adjustment period was present. As 

mentioned earlier (after Eqs. (4)), the initial adjustment period has been 

eliminated here by changing the sign of the initial u2' so that ulu2 does 

not have to change sign as a result of the dynamics of the turbulence. The 
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decrease in 
2 1/2 u

2 
near the end of the curve is caused by a decrease in mean 

velocity gradient, and thus of turbulence production, at large times (Fig. 1). 

As in the homogeneous case1, small-scale fluctuations are generated in 

the inhomogeneous turbulence in Fig. 3 by the interaction of the mean velocity 

with the turbulence. This can be seen by comparison of Fig. 3 with Fig. l(a) 

in Refs. 1 and 2, where mean velocity gr:dients are absent. One might expect 

this, since it has been shown4 that even for a general inhomogeneous tur-

bulence, a term in the two-point spectral equation for the turbulence can 

transfer energy between scales of motion as a result of the presence of mean 

gradients. 

A dimensionless plot of turbulent kinetic energy as a function of x2 

and time is given in Fig. 4. As for a1l of the averaged values, ukuk/2 is 

averaged over xl and x3 for fixed values of xZ· As time in-

creases, an intense concentration of turbulent energy develops near the plane 

x
2 

= ~, where the mean velocity gradient is initially infinite. The tur­

bulence is highly inhomogeneous. Inhomogeneity, in fact, seems to be the 

dominant characteristic of the turbulence generated in the shear layer. The 

indicated increase of turbulence with time is similar to that obtained ex­

perimentally.5 

Terms in the one-point correlation equation for the rate of change of 

the turbulent kinetic energy 

l.,Jauku k \­
at, 2 -;-

(10) 

are plotted for t = 0.000293 in Fig. 5. Equation (10) is constructed from 

Eq. (6) after letting ui = ui + Ui and p = P + P. The terms that 

contribute most to the rate of change of ukuk/2 are the production term 
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2

, the pressure diffusion term -apu2/ax2 and the 

kinetic-energy diffusion term -(1/2)a ukuku2/ax2• The viscous diffusion 

term -a2(ukuk/2)/ax~ and the dissipation term -aukJax~aukJax~ are small 

in Fig. 5. At early times, however, when the mean velocity gradient is 

large, the dissipation term is appreciable. 

The production term, whose form shows that turbulent energy is produced 

by work done on the Reynolds shear stress by the mean velocity gradient, is 

largest near the plane x2 = ~, where the velocity gradient is initially 

infinite. The plots of the pressure and kinetic-energy diffusion terms show 

that those terms are negative near x2 = ~ and positive away from that 

plane. Thus, they remove turbulent energy from the maximum.energy region 

and deposit it where the energy is smaller. Both diffusion terms therefore 

tend to make the turbulence more homogeneous. 

A comparison of the turbulence diffusion processes with the spectral 

transfer processes 1,2 and the directional-transfer processes arising from 

the pressure-velocity correlations is instructive. 1 The spectral-transfer 

processes remove energy from wave number (or eddy-size) regions where the 

energy is large and deposit it in regions of smaller energy. The directional-

transfer processes remove energy from large-energy directional components 

and deposit it in a directional component (or components) where the energy 

is smaller. The turbulence-diffusion processes, as shown here, remove energy 

from regions of space where the energy is large and deposit it in regions 

smaller energy. The spectral-transfer, directional-transfer, and turbulence-

diffusion processes tend, respectively, to make the turbulence more uniform 

in wave number space and more isotropic and homogeneous in physical space. 
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Although one might suppose that turbulence diffusion terms would always 

tend to make the turbulence more homogeneous, that supposition is not sup­

ported by all experimental data. For instance, measurements of wall-bounded 

turbulence6 indicate that the pressure diffusion and the kinetic-energy 

diffusion terms transfer energy in opposite directions, although the net 

diffusion is from regions of high to regions of lower energy. On the other 

hand, measurements of turbulence in a free jet7 (closer to the case con-

sideredhere) seem to support the present findings. 
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Figure 1. - Calculated development of shear layer mean­
-112 

velocity profile with dimensionless lime. u~2 
xrjv • 554, V • 2216 in Eq. (1). 
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Figure 2. - Calculated time variation of ratio of turbulent 
0:; 112 I to viscous shear stress at x2 • 11'. u02 Xo v • 554, 

V • 2216 In EQ. (!). 
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Figure 4. - Development of dimensionless kinetic-energy 
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profile with time. u~2 xOlv • 554, V' 2216 in Eq. m. 
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